Assignment \#6: due Tuesday, Dec. 01
 Theoretical Astrophysics

Winter 2009/2010
Ralf Klessen \& Ingo Berentzen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Parker instability

30 pt

Consider the Galactic disk consists of isothermal gas which is threaded with a horizontal magnetic field. Assume a constant gravitational field perpendicular to the disk plane in the z direction, i.e. $\vec{g}=-\hat{z} g$ and a magnetic field parallel to the disk plane x which varies only with z, i.e. $\vec{B}=\hat{x} B(z)$. For simplicity study the system in two dimensions using cartesian coordinates.
(a) Assume that the system is in hydrostatic equilibrium with a constant ratio of the magnetic to thermal pressure, i.e.

$$
\begin{equation*}
\alpha \equiv \frac{B^{2}}{8 \pi P}=\text { const. } \tag{1}
\end{equation*}
$$

What is the pressure distribution as a function of z ? Use the relation $P=c_{\mathrm{s}}^{2} \rho$ where c_{s} is the constant speed of sound and the scale height $H=(1+\alpha) c_{\mathrm{s}}^{2} / g$ to express the result.

Now consider this system slightly perturbed out of its equilibrium. Then, from the linear perturbation analysis one gets the following dispersion relation in the $x z$-plane,

$$
\begin{align*}
n^{4}+ & c_{\mathrm{s}}^{2}\left[(1+2 \alpha)\left(k^{2}+\frac{k_{0}^{2}}{4}\right)\right] n^{2}+ \\
& k_{x}^{2} c_{\mathrm{s}}^{4}\left[2 \alpha k^{2}+k_{0}^{2}\left[\left(1+\frac{3 \alpha}{2}\right)-(1+\alpha)^{2}\right]\right]=0 \tag{2}
\end{align*}
$$

where $n=i \omega, k_{0}=H^{-1}$, and the Fourier modes in the x and z direction for the perturbed quantities are

$$
\begin{equation*}
\exp \left(i \omega t-i k_{x} x\right) \quad, \quad \exp \left(i \omega t-i k_{z} z\right) \tag{3}
\end{equation*}
$$

with $k^{2}=k_{x}^{2}+k_{z}^{2}$. (It is an useful exercise to derive the dispersion relation 2. However, you are not requested to do so in this homework assignment.)
(b) Show that in the absence of a magnetic field all roots (in terms of n^{2}) of this dispersion relation are negative, i.e. $n^{2}<0$. What is the physical implication of this result regarding the instability?
(c) In the case of a non-vanishing magnetic field derive the instability criterion for the Parker instability, also called magnetic Rayleigh-Taylor instability,

$$
\begin{equation*}
\left(\frac{k}{k_{0} / 2}\right)^{2}<2 \alpha+1 \tag{4}
\end{equation*}
$$

Hint: Use the roots of n^{2} to find at least one unstable mode, i.e. $n^{2}>0$.
(d) Show that the instability criterion is equivalent to

$$
\begin{align*}
& \lambda_{x}>\Lambda_{x} \equiv 4 \pi H\left[\frac{1}{2 \alpha+1}\right]^{1 / 2} \tag{5}\\
& \lambda_{z}>\Lambda_{z} \equiv \frac{\Lambda_{x}}{\left(1-\left(\Lambda_{x} / \lambda_{x}\right)^{2}\right)^{1 / 2}} \tag{6}
\end{align*}
$$

with the wavelengths $\lambda_{x}=2 \pi / k_{x}$, and $\lambda_{z}=2 \pi / k_{z}$. Discuss this result.

2. Magnetic Braking of an Alligned Rotor

Consider a uniform gaseous disk of density ρ_{cl} and half-thickness Z rotating rigidly with an initial angular velocity Ω_{0}. Furthermore assume the disk is threaded with a magnetic field \vec{B} of strength B_{0}, initially uniform and parallel to the rotation axis. The magnetic field links the disk with the external medium of density $\rho_{\text {ext }}$ which is initially at rest. Assume axisymmetry and use cylindrical coordinates (R, φ, z) for the calculations.
(a) Derive the evolution equations for the toroidal magnetic field B_{φ} and the angular velocity Ω (where $v_{\varphi}=R \Omega$) outside of the disk, i.e. $|z|>Z$, assuming that the radial velocity v_{r} and the poloidal velocity v_{z} are negligible small (compared to the Alfvén velocity).
(b) Show that the evolution of the external medium can be expressed by the wave equation

$$
\begin{equation*}
\frac{\partial^{2} \Omega}{\partial t^{2}}=v_{\mathrm{A}, \mathrm{ext}}^{2} \frac{\partial^{2} \Omega}{\partial z^{2}} \tag{7}
\end{equation*}
$$

where $v_{\mathrm{A}, \mathrm{ext}}=B_{0} / \sqrt{4 \pi} \rho_{\mathrm{ext}}$ is the Alfvén velocity in this medium.
(c) Derive the evolution equation of the angular velocity at the surface of the disk, i.e. $|z|=Z$, using the torque per unit area, $N=R B_{0} B_{\varphi} / 4 \pi$, which the magnetic field exerts on the surface of the disk. Result:

$$
\begin{equation*}
\frac{\partial^{2} \Omega_{\mathrm{cl}}}{\partial t^{2}}=\left.\frac{1}{Z} \frac{\rho_{\mathrm{ext}}}{\rho_{\mathrm{cl}}} v_{\mathrm{A}, \mathrm{ext}}^{2} \frac{\partial \Omega}{\partial z}\right|_{|z|=Z} \tag{8}
\end{equation*}
$$

(d) Bonus: Combine equations (7) and (8) to calculate the spin-down time of the disk.
(+10 pt)
Hint: Use the solution of equation (7) at the disk surface $|z|=Z$.

