Assignment \#10: due Tuesday, Jan. 12
 Theoretical Astrophysics

Winter 2009/2010
Ralf Klessen \& Ingo Berentzen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Hi 21 cm line emission

30 pt
The ground state of atomic hydrogen is split into two hyperfine levels, 0 and 1 , with statistical weights $g_{0}=1$ and $g_{1}=3$. Radiative transitions from upper level 1 to lower level 0 produce emission at a frequency $\nu_{21 \mathrm{~cm}}=1420.40575 \mathrm{MHz}$ - the famous 21 cm hydrogen line. The spontaneous transition probability for this line is $A_{10}=2.9 \times 10^{-15} \mathrm{~s}^{-1}$.
If we can ignore the effects of indirect radiative pumping, then the number densities of atoms in levels 0 and $1, n_{0}$ and n_{1} are related by

$$
\begin{equation*}
\left(C_{01} n_{\mathrm{H}}+B_{01} I_{21 \mathrm{~cm}}\right) n_{0}=\left(C_{10} n_{\mathrm{H}}+B_{10} I_{21 \mathrm{~cm}}+A_{10}\right) n_{1}, \tag{1}
\end{equation*}
$$

where $I_{21 \mathrm{~cm}}$ is the specific intensity at $\nu_{21 \mathrm{~cm}}$ and C_{01} and C_{10} are the rate coefficients for the collisional excitation and de-excitation of level 1 , which are given approximately by

$$
\begin{align*}
& C_{10}=2.7 \times 10^{-13} T^{1.4} \tag{2}\\
& C_{01}=3 C_{10} \exp \left(-\frac{\Delta E}{k T}\right), \tag{3}
\end{align*}
$$

for kinetic temperatures in the range $20<T<60 K$, where $\Delta E=h \nu_{21 \mathrm{~cm}}$.
(a) An interstellar cloud of cold atomic hydrogen with kinetic temperature T and number density n_{H} is illuminated by an external radiation field with brightness temperature T_{b} at frequency $\nu_{21 \mathrm{~cm}}$. Calculate the excitation temperature $T_{\text {ex }}$ of the cloud if
(i) $C_{10} n_{\mathrm{H}} \ll A_{10}$;
(ii) $C_{10} n_{\mathrm{H}} \gg A_{10}$.

Assume that the opacity $\kappa_{21 \mathrm{~cm}}$ of the cloud is negligible.
(b) Calculate the brightness temperature of the cloud in terms of T_{b} and T_{ex} for the case where the opacity $\kappa_{21 \mathrm{~cm}}$ is not negligible.
(c) Consider a sheet-like cloud of thickness 20 pc , temperature $T=60 \mathrm{~K}$ and number density $n_{\mathrm{H}}=10 \mathrm{~cm}^{-3}$. Compute the brightness temperature of this cloud when:
(i) $T_{\mathrm{b}}=100 \mathrm{~K}$
(ii) $T_{\mathrm{b}}=10 \mathrm{~K}$

2. Radiation from an orbiting charge

A particle of mass m and charge e moves at constant, non-relativistic speed v in a circle of radius R.
(a) What is the power emitted per unit solid angle in a direction at an angle θ to the rotational axis?
(b) Suppose that the particle is moving non-relativistically in a constant magnetic field B. Show that the frequency of circular motion is $\omega_{B}=e B / m c$, and that the total emitted power is

$$
\begin{equation*}
P=\frac{2}{3} r_{0}^{2} c\left(\frac{v_{\perp}}{c}\right)^{2} B^{2}, \tag{4}
\end{equation*}
$$

where $r_{0}=e^{2} / m c^{2}$ and v_{\perp} is the velocity perpendicular to the field. Show also that the radiated power is emitted solely at the frequency ω_{B}.
(c) Find the differential and total cross sections for Thomson scattering of circularly polarized radiation. Use these results to find the cross sections for unpolarized radiation.

