Assignment \#3: due Thursday, Nov. 4, 2010

Theoretical Astrophysics

Winter 2010/2011
Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Equation of hydrostatic balance

Using the equation of hydrostatic balance, obtain a crude estimate of the central temperature of the Sun. Hint: Approximate the differential operator by the finite difference between the solar surface and center.
2. Degenerate electron gas

Consider a degenerate electron gas at zero temperature. That means that all quantum levels up to the Fermi momentum p_{F} are filled and all others are empty. The phasespace probability density is then given by

$$
f(\vec{q}, \vec{p})=\left\{\begin{array}{rll}
2 / h^{3} & \text { for } & p \leq p_{F} \tag{1}\\
0 & \text { for } & p>p_{F}
\end{array}\right.
$$

The factor 2 takes into account the two spin orientations of the electrons.

Use this distribution function to compute the density and pressure and show that this gas has a polytropic equation of state

$$
\begin{equation*}
P=K \rho^{\gamma} \tag{2}
\end{equation*}
$$

Find the index γ and the constant K for the non-relativistic case. Assume that each electron is accompanied by one proton whose kinetic energy is negligible.
3. Lane-Emden equation 30 pt

In a spherically symmetric system, the equations of hydrostatic equilibrium and Poisson's equation are:

$$
\begin{align*}
\frac{1}{\rho} \frac{\mathrm{~d} P}{\mathrm{~d} r} & =-\frac{\mathrm{d} \Phi}{\mathrm{~d} r} \tag{3}\\
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right) & =4 \pi G \rho \tag{4}
\end{align*}
$$

where Φ is the gravitational potential and G Newton's gravitational constant.
(a) Taking $\Phi\left(r_{\text {surf }}\right)=0$ and $\rho\left(r_{\text {surf }}\right)=0$ at the surface of the star, $r=r_{\text {surf }}$, show that for a polytropic equation of state, i.e. $P=K \rho^{(n+1) / n}=K \rho^{\gamma}$, the density in the $\operatorname{star}(\Phi<0)$ can be expressed as

$$
\begin{equation*}
\rho=\left(\frac{-\Phi}{(n+1) K}\right)^{n} \tag{5}
\end{equation*}
$$

(b) Substitute this expression into the Poisson equation and show that this then reduces to the Lane-Emden equation:

$$
\begin{equation*}
\frac{1}{z^{2}} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(z^{2} \frac{\mathrm{~d} w}{\mathrm{~d} z}\right)+w^{n}=0 \tag{6}
\end{equation*}
$$

when written in terms of the variables $w=\Phi / \Phi_{c}$ and $z=r / r_{0}$, where Φ_{c} is the potential at $r=0$ and r_{0} is a characteristic length scale. Find an expression for r_{0} in terms of n and K.
(c) Given that there exists a solution of the Lane-Emden equation for the given system, show that the radius R of a non-relativistic degenerate star $(n=3 / 2)$ is related to its total mass by

$$
\begin{equation*}
R \propto M^{-1 / 3} . \tag{7}
\end{equation*}
$$

