Assignment \#4: due Thursday, Nov. 11, 2010

Theoretical Astrophysics

Winter 2010/2011
Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Scalar Virial Theorem

(a) Globular clusters are gravitationally bound, dense stellar systems with half-light radii of typically $r_{1 / 2} \sim 5 \mathrm{pc}$ and (one-dimensional) velocity dispersions $\sigma_{1 / 2}$ of roughly $6 \mathrm{~km} \mathrm{~s}^{-1}$. The total bolometric luminosity is $\sim 2.4 \times 10^{38} \mathrm{erg} \mathrm{s}^{-1}$. Using the scalar virial theorem calculate the mass-to-light ratio Υ for a globular cluster in units of the solar mass-to-light ratio $\Upsilon_{\odot}=M_{\odot} / L_{\odot}$.
(b) The dwarf-spheroidal galaxy Draco - a satellite galaxy of our Milky Way - has a distance of about $d \approx 72 \mathrm{kpc}$ and an estimated half-mass radius $r_{1 / 2}$ of about 5.7^{\prime} on the sky. Draco has a luminosity of $L=2.6 \times 10^{5} L_{\odot}$ and a (one-dimensional) dispersion velocity of $\sigma \approx 13.2 \mathrm{~km} \mathrm{~s}^{-1}$. Calculate the mass-to-light ratio Υ of the Draco galaxy.
(c) Compare the result to the one found by Irwin \& Hatzidimitriou (1995, Monthly Notices of The Royal Astronomical Society, 277, 1354). Speculate about the difference? The high mass-to-light ratio suggests that Draco is dark matter dominated. Can you think of an alternative explanation for the high value of Υ derived above?

2. Parker wind solution

Consider a steady, radial flow of an ideal gas in the gravitational field of a star. Assume a polytropic equation of state,

$$
\begin{equation*}
P=K \rho^{\gamma}, \tag{1}
\end{equation*}
$$

where K is constant along the streamlines and $\gamma<5 / 3$.
(a) Show that the continuity equation can be written as

$$
\begin{equation*}
4 \pi r^{2} \rho v=\dot{M} \tag{2}
\end{equation*}
$$

where v is the radial velocity and \dot{M} is the constant rate of change of mass. Derive the relevant Euler equation for this spherically symmetric system.
(b) Show that a smooth solution containing both sub- and supersonic regions of the flow exists only if

$$
\begin{equation*}
v^{2}=c_{s}^{2} \quad \text { at } \quad r=\frac{G M}{2 c_{s}^{2}}, \tag{3}
\end{equation*}
$$

where $c_{s}=\sqrt{\gamma P / \rho}$ is the speed of sound (which depends on $r!$).
(c) Imposing this condition and the boundary conditions

$$
\begin{equation*}
\rho=\rho_{*} \quad \text { and } \quad c_{s}=c_{*} \tag{4}
\end{equation*}
$$

at the surface $r=r_{*}$ of the star, find the mass loss rate in the wind in the limit of low surface velocity $v_{*} \ll c_{*}$, given that the surface temperature is large compared to the "virial" temperature, i.e. $c_{*}^{2} \gg G M / r_{*}$.
(d) Find the location of the sonic point and discuss the behavior of the solutions as $\gamma \rightarrow 5 / 3$.

