
Assignment #5: due Thursday, Nov. 18, 2010

Theoretical Astrophysics

Winter 2010/2011
Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Virial Theorem with surface terms 20 pt

The scalar virial theorem with surface terms included can be written as
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where
∫
S ... ~ndS is the surface integral with the normal vector ~n pointing outwards and

where r is the length of the radius vector to the surface element. All other quantities
are defined as in the lecture.

(a) Give a physical explanation for the origin of the Ts, Us and Ψ̇s terms.

(b) Consider a homogeneous, spherical cloud of mass M and radius R. Show that if
the time dependent terms in (1) are zero, and if T � Ts, then we can construct the
following expression for the thermal pressure acting on the surface of the cloud:
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where cs is the isothermal sound speed, and σ is the 3D internal velocity disper-
sion. [Note: T = (1/2)Mσ2].

(c) We can define a “gravitational pressure” PG as
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where V is the volume of the cloud. Show, using (5), that the total energy of the
cloud can be written as
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(d) A giant molecular cloud with mass M = 105M�, radius R = 10 pc, sound speed
cs = 0.2 km s−1, and velocity dispersion σ = 3.0 km s−1 is surrounded by cold
atomic gas with thermal pressure P/kB = 2× 104 K cm−3, where kB is the Boltz-
mann constant. What is the total energy of the cloud?

2. Evolution of a supernova remnant 30 pt

Assume first the supernova remnant in its “adiabatic” phase: all the mass of the
remnant is concentrated in a thin shell located at the position of the shock at radius,
r = rs(t), where M ≈ 4πr3

sρ1/3 with ρ1 being the density of the interstellar medium.
Furthermore, the pressure P (t) interior to the shock can be considered uniform and
the equations of motion for the thin shell is then
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where ṙs ≡ drs/dt.

(a) Use the jump conditions for a strong shock of an ideal gas with an adiabatic index
γ = 5/3 to estimate the thickness ∆r of the shell in terms of rs (assume the shell
density equals the post-shock density).

(b) Given that in the Sedov phase the total internal energy of the gas in the remnant
equals 80% of the explosion energy ESN, show that the equations of motion have
a solution of the form

rs = A tα . (9)

Find the constants α and A.

Assume now that the shell cools rapidly. Because the cooling rate in the gas is propor-
tional to the density squared there is a phase in the evolution when the thermal energy
of the freshly shocked gas can no longer be shared evenly throughout the remnant, as
it was in the adiabatic phase discussed above. Most of the energy is radiated away
and a cool dense shell forms around the still hot interior. To a good approximation
the interior can be described as a hot adiabatic gas bubble of constant mass (again
equation of state P ∝ ργ with γ = 5/3). The evolution of the blast wave is now driven
by the adiabatic expansion of this bubble.

(c) Show that this pressure-driven snow plow phase admits again a solution of the
form

rs ∝ tβ , (10)

and find the index β.


