Theoretical Astrophysics

 $Winter\ 2010/2011 \\ Ralf\ Klessen,\ ZAH/ITA,\ Albert-Ueberle-Str.\ 2,\ 69120\ Heidelberg$

1. Stability of magnetized gas clouds

15 pt

Consider a spherical, self-gravitating gas cloud with homogeneous density which is threaded by a uniform magnetic field of strength \vec{B} . Assume that the cloud has a radius of r = 0.1 pc and a mean density of $\bar{\rho}_n = 1.67 \times 10^{-20}$ g cm⁻³.

- (a) Calculate the mass-to-flux ratio given by $\mu = M_{\rm cl}/\Phi$, where $M_{\rm cl}$ is the total mass of the cloud and $\Phi = \pi r^2 |\vec{B}|$ is the total magnetic flux in the scenario under consideration. Assume a magnetic field strength of $B = 30 \mu \rm G$.
- (b) The critical mass-to-flux ratio for gravitational collapse of the magnetized cloud can be derived as $\mu_{\rm crit} = 0.13 G^{-1/2}$, where G is the gravitational constant. Calculate the critical magnetic field strength $B_{\rm crit}$ for which the cloud is stable against gravitational collapse.
- (c) Now consider the drift between charged and neutral particles. This process is called ambipolar diffusion. Its timescale is defined as

$$\tau_A = 4\pi\gamma \rho_i \rho_n L^2 / B^2 \tag{1}$$

where ρ_i and ρ_n denote the density of the ions and neutrals in the gas, respectively, and L corresponds to the size of the cloud. Assuming that ρ_i is given by $1.15 \times 10^{-26} \mathrm{g \ cm^{-3}} \cdot (\rho_n/[3.85 \times 10^{-19} \mathrm{g \ cm^{-3}}])^{1/2}$ and the friction coefficient is $\gamma = 3.3 \times 10^{13} \mathrm{\ g^{-1} \ cm^3 \ s^{-1}}$, calculate τ_A for the magnetic cloud considered above. What is the corresponding gravitational free-fall timescale $\tau_{\rm ff} = (3\pi/32 \mathrm{G}\rho_n)^{1/2}$ of the system? Discuss the consequences of the difference between the two timescales.

2. Magnetic Braking of an Alligned Rotor

35 pt

Consider a uniform gaseous disk of density $\rho_{\rm cl}$ and half-thickness Z rotating rigidly with an initial angular velocity Ω_0 . Furthermore assume the disk is threaded with a magnetic field \vec{B} of strength B_0 , initially uniform and parallel to the rotation axis. The magnetic field links the disk with the external medium of density $\rho_{\rm ext}$ which is initially at rest. Assume axisymmetry and use cylindrical coordinates (R, φ, z) for the calculations.

- (a) Derive the evolution equations for the toroidal magnetic field B_{φ} and the angular velocity Ω (where $v_{\varphi} = R\Omega$) outside of the disk, i.e. |z| > Z, assuming that the radial velocity v_r and the poloidal velocity v_z are negligible small (compared to the Alfvén velocity).
- (b) Show that the evolution of the external medium can be expressed by the wave equation

$$\frac{\partial^2 \Omega}{\partial t^2} = v_{\text{A,ext}}^2 \frac{\partial^2 \Omega}{\partial z^2} \tag{2}$$

where $v_{\rm A,ext} = B_0/\sqrt{4\pi\,\rho_{\rm ext}}$ is the Alfvén velocity in this medium.

(c) Derive the evolution equation of the angular velocity at the surface of the disk, i.e. |z| = Z, using the torque per unit area, $N = R B_0 B_{\varphi}/4\pi$, which the magnetic field exerts on the surface of the disk. Result:

$$\frac{\partial^2 \Omega_{\rm cl}}{\partial t^2} = \frac{1}{Z} \frac{\rho_{\rm ext}}{\rho_{\rm cl}} v_{\rm A, ext}^2 \left. \frac{\partial \Omega}{\partial z} \right|_{|z|=Z}$$
 (3)

(d) Combine equations (2) and (3) to calculate the spin-down time of the disk. Hint: Use the solution of equation (2) at the disk surface |z| = Z.