Theoretical Astrophysics

Winter 2010/2011

Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

In a cold, magnetized plasma consisting of electrons (charge $q_e = -e$, mass m_e) and ions (charge $q_i = Z e$, mass m_i), the equation govering the propagation of a wave-like disturbance, $\vec{E} = \vec{E}_0 \exp(i\vec{k} \cdot \vec{x} - i\omega t)$ is

$$\mathcal{E}\vec{E} = 0. \tag{1}$$

We use cartesian coordinates with basis $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$ and assume that the wave propagates along the magnetic field which we take parallel to \vec{e}_z . In this case, the dielectric tensor \mathcal{E} is

$$\mathcal{E} = \begin{pmatrix} S - n^2 & -iD & 0\\ iD & S - n^2 & 0\\ 0 & 0 & P \end{pmatrix},$$
(2)

where $n = kc/\omega$ is the refractive index, and

$$S = 1 - \frac{\omega_{\rm pe}^2}{\omega^2 - \Omega_{\rm e}^2} - \frac{\omega_{\rm pi}^2}{\omega^2 - \Omega_{\rm i}^2} , \qquad (3)$$

$$D = \frac{\omega_{\rm pe}^2 \,\Omega_{\rm e}}{\omega(\omega^2 - \Omega_{\rm e}^2)} + \frac{\omega_{\rm pi}^2 \,\Omega_{\rm i}}{\omega(\omega^2 - \Omega_{\rm i}^2)} \,, \tag{4}$$

$$P = 1 - \frac{\omega_{\rm pe}^2}{\omega^2} - \frac{\omega_{\rm pi}^2}{\omega^2} \,. \tag{5}$$

The quantities $\omega_{\rm pe,pi} = \sqrt{4\pi n_{\rm e,i} q_{\rm e,i}^2/m_{\rm e,i}}$ are the electron and ion plasma frequencies (with $n_{\rm e,i}$ the number densities) and $\Omega_{\rm e,i} = q_{\rm e,i} B/m_{\rm e,i} c$ are the electron and ion gyration frequencies. Note that both have opposite signs.

1. Alfvén waves

- $30~{\rm pt}$
- (a) Find the dispersion relation in a neutral electron-proton plasma in the low frequency limit, $\omega \ll \Omega_{\rm i}$ and $\omega \ll \omega_{\rm pi}$. Make use of the fact that $m_{\rm i} \gg m_{\rm e}$. Show that only transveral waves are permitted.
- (b) Find the polarization vectors of the corresponding transversal modes. Note, they correspond to the eigenvectors of the system.

2. Faraday rotation

(a) In the high frequency limit, $\omega \gg \omega_{\rm pe,pi}$ and $\omega \gg \Omega_{\rm e,i}$, show that the dispersion relation in the electron-proton plasma for waves travelling in the positive z direction can be written approximately as

$$\frac{kc}{\omega} = 1 - \frac{\omega_{\rm pe}^2 + \omega_{\rm pi}^2}{2\omega^2} \pm \frac{\omega_{\rm pe}^2 \,\Omega_{\rm e}}{2\omega^3} \,. \tag{6}$$

The upper and lower signs refer to the polarization vectors $(1/\sqrt{2}, \pm i/\sqrt{2}, 0)$. Use again the fact that $m_i \gg m_e$.

- (b) Show that a linearly polarized photon that is emitted along the magnetic field will rotate its direction of polarization as it propagates by an amount proportional to the inverse square of its frequency.
- (c) For ionized hydrogen gas in the Galactic plane with $n = 1 \text{ cm}^{-3}$ and $B = 20 \,\mu G$, find the distance over which a photon of frequency 3 GHz that is emitted linearly polarized in the *x*-direction travels before it is converted to one polarized in the *y*-direction. Assume propagation along a uniform magnetic field.
- (d) How does the result change if the photon propagates in a hypothetical electronpositron plasma, where $m_{\rm e} = m_{\rm i}$?