Theoretical Astrophysics

Winter 2010/2011

Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Thermal radiation

A spherical gas cloud of radius R and temperature T emits thermal radiation at a rate $P(\nu)$ (power per unit volume and frequency range). Its distance from the Earth is d $(d \gg R)$.

- (a) First assume the cloud is optically *thin*. What is the brightness of the cloud measured on Earth? Assume the cloud is viewed along a parallel ray which has a distance b from the cloud center.
- (b) What is the effective temperature of the cloud?
- (c) What is the flux F_{ν} measured at the Earth coming from the entire cloud?
- (d) How does the measured brightness temperature compare with the cloud's temperature? The brightness temperature T_b is defined by the equation

$$I_{\nu} = B_{\nu}(T_b) \tag{1}$$

where B_{ν} is the black body spectrum.

(e) What are the above answers for an optically *thick* cloud?

2. Eddington limit

- (a) Derive the conditions under which a star with luminosity L_* and total mass M can disperse optically thin gas in its surrounding. The result is $M/L < \kappa/(4\pi G c)$, where κ is the frequency independent mass absorption coefficient.
- (b) Calculate the terminal velocity of the gas in this case. Assume the gas is accelerated away from the center in the gravitational potential of the star.
- (c) Calculate the Eddington luminosity of the star, i.e. the critical luminosity at which a central source starts to disperse its environment. Use the minimum value of κ which you can estimated from Thomson scattering off free electrons in a fully ionized hydrogen plasma. Express your result as a function of the stellar mass in units of M_{\odot} .

30 pt

20 pt

3. HI 21cm line emission

The ground state of atomic hydrogen is split into two hyperfine levels, 0 and 1, with statistical weights $g_0 = 1$ and $g_1 = 3$. Radiative transitions from upper level 1 to lower level 0 produce emission at a frequency $\nu_{21cm} = 1420.40575$ MHz – the famous 21 cm hydrogen line. The spontaneous transition probability for this line is $A_{10} = 2.9 \times 10^{-15} \text{ s}^{-1}$.

If we can ignore the effects of indirect radiative pumping, then the number densities of atoms in levels 0 and 1, n_0 and n_1 are related by

$$(C_{01}n_{\rm H} + B_{01}I_{21\rm cm})n_0 = (C_{10}n_{\rm H} + B_{10}I_{21\rm cm} + A_{10})n_1, \qquad (2)$$

where I_{21cm} is the specific intensity at ν_{21cm} and C_{01} and C_{10} are the rate coefficients for the collisional excitation and de-excitation of level 1, which are given approximately by

$$C_{10} = 2.7 \times 10^{-13} T^{1.4} \tag{3}$$

$$C_{01} = 3 C_{10} \exp\left(-\frac{\Delta E}{kT}\right), \qquad (4)$$

for kinetic temperatures in the range 20 < T < 60 K, where $\Delta E = h \nu_{21 \text{cm}}$.

- (a) An interstellar cloud of cold atomic hydrogen with kinetic temperature T and number density $n_{\rm H}$ is illuminated by an external radiation field with brightness temperature $T_{\rm b}$ at frequency $\nu_{\rm 21cm}$. Calculate the excitation temperature $T_{\rm ex}$ of the cloud if
 - (i) $C_{10}n_{\rm H} \ll A_{10};$
 - (ii) $C_{10}n_{\rm H} \gg A_{10}$.

Assume that the opacity κ_{21cm} of the cloud is negligible.

- (b) Calculate the brightness temperature of the cloud in terms of $T_{\rm b}$ and $T_{\rm ex}$ for the case where the opacity $\kappa_{\rm 21cm}$ is not negligible.
- (c) Consider a sheet-like cloud of thickness 20 pc, temperature T = 60 K and number density $n_{\rm H} = 10$ cm⁻³. Compute the brightness temperature of this cloud when:
 - (i) $T_{\rm b} = 100 \, {\rm K}$
 - (ii) $T_{\rm b} = 10 \, {\rm K}$

Happy Winter Holidays and All the Best for the New Year 2011 !

30 pt