Homework Assignment \#1 is due Wednesday, Oct. 21, 2015

Theoretical Astrophysics (MKTP2)

Winter Semester 2015/2016
Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Number of stars in the Milky Way $5 p t$
 Does the Milky Way Galaxy contain more stars than there are grains of sand in the beach volleyball court at the Neckarwiese? Please justify your answer using simple order-of-magnitude estimates.

2. Timescale estimates for the Sun

(a) Dynamical timescale: The collapse timescale for a self-gravitating object is given by $t_{\mathrm{dyn}} \approx(G \rho)^{-1 / 2}$. Calculate it for the Sun assuming a mean density of $\rho=$ $1.4 \mathrm{~g} \mathrm{~cm}^{-3}$
(b) Sound crossing time: The sound speed in the solar core is roughly $350 \mathrm{~km} \mathrm{~s}^{-1}$. How long does a sound wave need to cross the Sun assuming a constant sound speed throughout the Sun (the solar radius is $6.96 \times 10^{5} \mathrm{~km}$).
(c) Nuclear timescale: The Sun's energy is produced by the process of fusion of hydrogen into helium. If 10% of the solar mass is consumed in this process during the Sun's lifetime, how long does the Sun's energy production persist if the Sun's energy loss (i.e. luminosity: $L_{\odot}=3.846 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}$) is constant during that time. Use the formula $t_{\mathrm{nuc}} \approx E / \dot{E}$ to estimate the nuclear time scale. Note that 0.7% of the hydrogen rest mass is turned into energy in the fusion process.
(d) Kelvin-Helmholtz timescale: The Kelvin-Helmholtz timescale is the ratio of the gravitational energy of an object to its luminosity. Calculate the Kelvin-Helmholtz timescale for the Sun. Assume that the Sun has a constant density.
(a) Estimate the total angular momentum of a molecular cloud core with a radius of $0.1 \mathrm{pc}\left(\mathrm{pc}=3.08 \times 10^{18} \mathrm{~cm}\right)$, a mean density of $\rho=1.67 \times 10^{-20} \mathrm{~g} \mathrm{~cm}^{-3}$ and a constant angular velocity of $\Omega=10^{-14} \mathrm{rad} \mathrm{s}^{-1}$.
(b) Assuming the above cloud collapses to a single solar type star, what would be the rotational velocity at its surface (solar mass $M_{\odot}=2 \times 10^{33} \mathrm{~g}$)?
(c) Could gravity hold this object together? Discuss this result.
(d) Calculate the total angular momentum of the Sun assuming a mean rotational period of 30 days.

4. Relaxation to equilibrium

Consider an ideal gas with a distribution function $f=f_{0}+g$, where f_{0} is the Maxwell distribution function and g is a small perturbation.
(a) Give an expression for the collision term \dot{f}_{c} in the Boltzmann equation in terms of f_{0} and g. [Hint: Use the kinetic theory of elastic encounters and consider only terms up to first order in the perturbation term.].
(b) A coarse approximation for \dot{f}_{c} can be obtained by using the collision approximation (Stoßzahlansatz) as mentioned in the lecture and by looking at the functional form of the individual terms in \dot{f}_{c}. Take one as being representative and show that

$$
\begin{equation*}
\dot{f}_{c} \sim-g n \sigma_{\mathrm{tot}} \bar{u}_{\mathrm{rel}}, \tag{1}
\end{equation*}
$$

where n is the number density of particles, $\sigma_{\text {tot }}$ is the total collision cross-section and $\bar{u}_{\text {rel }}$ is the mean relative velocity between the particles.
(c) Using Eq. 1, show that the Boltzmann equation can be written (approximately) as:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\vec{w} \cdot \vec{\nabla}_{x} f+\frac{\vec{F}}{m} \cdot \vec{\nabla}_{w} f=-\frac{f-f_{0}}{\tau} . \tag{2}
\end{equation*}
$$

where m is the particle mass and $\tau=1 /\left(n \sigma_{\text {tot }} \bar{u}_{\text {rel }}\right)$. Discuss the physical interpretation of τ.

