Theoretical Astrophysics (MKTP2)

Winter Semester 2015/2016 Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Lane-Emden Equation and Polytropic Stars

In a spherically symmetric system, the equations of hydrostatic equilibrium and Poisson's equation are:

$$\frac{1}{\rho}\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{\mathrm{d}\Phi}{\mathrm{d}r} \tag{1}$$

$$\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\Phi}{\mathrm{d}r} \right) = 4\pi \, G \, \rho \tag{2}$$

where Φ is the gravitational potential and G Newton's gravitational constant.

(a) Taking $\Phi(r_{\text{surf}}) = 0$ and $\rho(r_{\text{surf}}) = 0$ at the surface of the star, $r = r_{\text{surf}}$, show that for a polytropic equation of state, i.e. $P = K\rho^{(n+1)/n} = K\rho^{\gamma}$, the density in the star ($\Phi < 0$) can be expressed as

$$\rho = \left(\frac{-\Phi}{(n+1)K}\right)^n \tag{3}$$

(b) Substitute this expression into the Poisson equation and show that this then reduces to the *Lane-Emden equation*:

$$\frac{1}{z^2}\frac{\mathrm{d}}{\mathrm{d}z}\left(z^2\frac{\mathrm{d}w}{\mathrm{d}z}\right) + w^n = 0 \tag{4}$$

when written in terms of the variables $w = \Phi/\Phi_c$ and $z = r/r_0$, where Φ_c is the potential at r = 0 and r_0 is a characteristic length scale. Find an expression for r_0 in terms of n and K.

(c) Given that there exists a solution of the Lane-Emden equation for the given system, show that the radius R of a non-relativistic degenerate star (n = 3/2) is related to its total mass by

$$R \propto M^{-1/3} \,. \tag{5}$$

$30 \ pt$

2. Application of the Scalar Virial Theorem

- (a) Globular clusters are gravitationally bound, dense stellar systems with half-light radii of typically $r_{1/2} \sim 5 \,\mathrm{pc}$ and (one-dimensional) velocity dispersions $\sigma_{1/2}$ of roughly $6 \,\mathrm{km \, s^{-1}}$. The total bolometric luminosity is $\sim 2.4 \times 10^{38} \,\mathrm{erg \, s^{-1}}$. Using the scalar virial theorem calculate the mass-to-light ratio Υ for a globular cluster in units of the solar mass-to-light ratio $\Upsilon_{\odot} = M_{\odot}/L_{\odot}$.
- (b) The dwarf-spheroidal galaxy Draco a satellite galaxy of our Milky Way has a distance of about $d \approx 72 \,\mathrm{kpc}$ and an estimated half-mass radius $r_{1/2}$ of about 5.7' on the sky. Draco has a luminosity of $L = 2.6 \times 10^5 L_{\odot}$ and a (one-dimensional) dispersion velocity of $\sigma \approx 13.2 \,\mathrm{km \, s^{-1}}$. Calculate the mass-to-light ratio Υ of the Draco galaxy.
- (c) Compare the result to the one found by Irwin & Hatzidimitriou (1995, Monthly Notices of The Royal Astronomical Society, 277, 1354). Speculate about the difference? The high mass-to-light ratio suggests that Draco is dark matter dominated. Can you think of an alternative explanation for the high value of Υ derived above?