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1. Parker instability 25 pt

Consider an isothermal gas in the galactic disk which is threaded with a horizontal
magnetic field. Assume a constant gravitational field perpendicular to the disk plane
in the z direction, i.e. g⃗ = −ẑ g and a magnetic field parallel to the disk plane x which
varies only with z, i.e. B = x̂ B(z). For simplicity study the system in two dimensions
using cartesian coordinates.

(a) Assume that the system is in hydrostatic equilibrium with a constant ratio of the
magnetic to thermal pressure, i.e.

α ≡ B2

8π P
= const. (1)

What is the pressure distribution as a function of z? Use the relation P = c2s ρ
where cs is the constant speed of sound and the scale height H = (1 + α) c2s/g to
express the result.

Now consider this system slightly perturbed out of its equilibrium. Then, from the
linear perturbation analysis one gets the following dispersion relation in the xz-plane,
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(it is a good exercise to derive this relation), where n = iω, k0 = H−1, and the Fourier
modes in the x and z direction for the perturbed quantities are

exp (ikx x− iωt) , exp (ikz z − iωt) (3)

with k2 = k2
x + k2

z .

(b) Show that in the absence of a magnetic field all roots (in terms of n2) of this
dispersion relation are negative, i.e. n2 < 0. What is the physical implication of
this result regarding the instability?

(c) In the case of a non-vanishing magnetic field derive the instability criterion for
the Parker instability (magnetic Rayleigh-Taylor instability)(
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Hint: Use the roots of n2 to find at least one unstable mode, i.e. n2 > 0.



(d) Show that the instability criterion is equivalent to

λx > Λx ≡ 4πH
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and λz > Λz ≡
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with the wavelengths λx = 2π/kx, and λz = 2π/kz.

2. Plasma Waves: Fluid Treatment 25 pt

A common approximation in plasma physics is that the electrons and/or ions can be
described by fluid equations. Assume the ions in a plasma can be treated as a smooth,
uniform, motionless background charge density that neutralizes the average electron
charge density. The electron number density n and velocity v⃗ obey the continuity
equation and the equation of motion, in which the Lorentz force appears in the same
way as an external force,

∂n

∂t
+ ∇⃗ · (nv⃗) = 0 , (6)
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where me is the electron mass, q = −e is the electron charge, P the pressure of the
electron gas, j⃗ the current density, and E⃗ and B⃗ are the electric and magnetic field
strengths. The electron density and pressure are related by the equation of state,

P = Knγ, (8)

where K is a constant and where we assume the electrons behave as an adiabatic gas
with γ = 5/3. Electric and magnetic fields, E⃗ and B⃗, are related to the charge density
qn and the current j⃗ via Maxwell’s equations.

(a) Assume the system originally is in equilibrium and apply a small perturbation of
the form,

n = n0 + δn , P = P0 + δP , v⃗ = δv⃗ ,

E⃗ = δE⃗ , B⃗ = δB⃗ , j⃗ = δj⃗ ,

where n0 and P0 are the homogeneous equilibrium density and pressure. Linearize
the equations and find the equation that governs the evolution of the density
perturbation δn.

(b) Consider plane wave perturbations of the form δn ∝ exp[i(k⃗ · x⃗ − ωt)]. Derive
their dispersion relation, and find their phase and group velocities as a function
of the thermal velocity of the electrons, vth = (P0/men0)

1/2, and the ratio k/kD,
where
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is the Debye wave-number, which is the inverse of the Debye wavelength that was
introduced in the lecture.

(c) Discuss the nature of these waves in the limits of small and large wavelengths.


