Homework Assignment \#12 is due Wednesday, January 20, 2016

Theoretical Astrophysics (MKTP2)

Winter Semester 2015/2016
Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Inverse Compton Process

20 points
Consider a cloud of non-relativistic electrons with kinetic temperature T. The cloud is permeated by large numbers of photons with energies $h \nu_{\mathrm{i}} \ll k T$ which are continuously replenished. (A possible example are CMB photons.) The cloud is optically think with respect to electron-photon scattering $\left(\tau_{\text {es }} \gg 1\right)$ and optically thin with respect to the photon absorption $\left(\tau_{\text {abs }} \ll 1\right)$. As a result of the inverse Compton process the low-energy photons gain energy and leave the cloud through the surface with energies $h \nu_{\mathrm{f}} \gg h \nu_{\mathrm{i}}$. The energy gain depends on the number of inverse Compton scattering events that occur within the cloud, this in turn depends on the optical depth $\tau_{\text {es }}$. The energy transfer saturates when a critical value of $\tau_{\text {sat }}$ is reached.
(a) Calculate the energy gain, $\nu_{\mathrm{f}} / \nu_{\mathrm{i}}$, as function of the optical depth of electron-photon scattering $\tau_{\text {es }}$ and the electron temperature T.
(b) Find an approximate expression for the optical depth $\tau_{\text {sat }}$ at which this process saturates.
2. Synchrotron Radiation 10 points

Ultrarelativistic electrons moving through a magnetized region emit synchrotron radiation. Consider for simplicity that the magnetic field is homogeneous with a value $\vec{B}=$ constant and that the electron is moving in some arbitrary direction with initial velocity $\vec{\beta}_{0}\left(\left|\vec{\beta}_{0}\right| \approx 1\right)$.
(a) Show that the electron loses energy, i.e. that the Lorentz factor $\gamma(t)=\left[1-\beta(t)^{2}\right]^{-1 / 2}$ decreases, as

$$
\gamma(t)=\frac{\gamma_{0}}{1+A \gamma_{0} t}, \quad \text { with } \quad A=\frac{2 e^{4} B_{\perp}^{2}}{3 m^{3} c^{5}}
$$

and with γ_{0} being the initial Lorentz factor.
(b) Derive and expression for the time $t_{1 / 2}$ it takes the electron to lose half of its initial energy.
3. Doppler Shift of the Cosmic Microwave Background Earth's motion introduces a noticeable dipole distortion in the observed cosmic microwave background.
(a) Show that an observer moving with velocity v with respect to a blackbody radiation field of temperature T will see blackbody radiation with temperature T^{\prime} that depends on the angle θ^{\prime} with respect to the direction of motion according to

$$
\begin{equation*}
T^{\prime}=\frac{\left(1-\beta^{2}\right)^{1 / 2}}{1+\beta \cos \theta^{\prime}} T \tag{1}
\end{equation*}
$$

with $\beta=v / c$.
(b) The temperature shift in the observed microwave background due to the motion of the Earth is $\Delta T= \pm 3.3 \mathrm{mK}$. Compared to the average temperature of $T=2.73 \mathrm{~K}$ this deviation from isotropy is only of order of 10^{-3}. Calculate the corresponding velocity.

