Quasars in the Epoch of Reionization

Fabian Walter MPIA Heidelberg

Eduardo Banados, Bram Venemans, Roberto Decarli, Xiaohui Fan, Emanuele Farina, Chiara Mazzucchelli, Frank Bertoldi, Chris Carilli, Ran Wang, Axel Weiss, Hans-Walter Rix

cosmic history

cosmic history

Reionization

Last major phase change of our universe

theoretical framework

hydrodyn. simulations of structure formation

galaxies and black holes grow through gas accretion...

cosmic star formation

Volume density of star formation in galaxies as f(cosmic time)

z>6 = 'the first Gyr of the Universe'

the earliest galaxies

Bouwens et al.

these galaxy candidates are very faint! ...often impossible to confirm spectroscopically

quasars to the rescue!

- powered by accreting black holes
- brightest sources in universe
- UV/optical spectrum:
 - power-law cont. by accretion disk + broad emission lines
- line width+continuum≈black hole mass

quasars: seen out to z~6 already a decade ago

...using SDSS:

supermassive black holes (>10⁹ M_{sun}) already exist within 1 Gyr after Big Bang

challenging for black hole formation models

λ(Å)

Fan et al. 2006

quasars: spectral energy distribution

quasars: spectral energy distribution

- UV/optical: accretion disk
- Mid-infrared: hot dust and torus
- Far-infrared: cool dust / host galaxy

quasars: a phase of a (host) galaxy

nearby quasars reveal hosts

quasars: a phase of a (host) galaxy

local black hole – bulge mass relation

we expect massive black holes to live in the most massive galaxies...

Kormendy & Ho 2013

quasars: tracing overdensities

...consequently we expect massive quasar hosts to live in galaxy overdensities...

Credits: B. Keel, N. Wright

Credits: B. Keel, N. Wright

Credits: B. Keel, N. Wright

Gunn Peterson effect

problem: complete absorption if universe is only 10⁻⁴ neutral —> not a good measure of neutrality of IGM

resolution: damping wing of the IGM...

...sensitive to neutral IGM: $f_{HI} > 0.1$

outline of this talk

- Characterize massive quasar host galaxies at z>6
- Environment of the first supermassive black holes at z>6
- State of the intergalactic medium at z>6

but first!

but first... we need to find the quasars

finding the needle in the haystack

- the challenge:
 - Quasars at z>6 are **very** rare
 - < 1 Gpc⁻³ at z=6, i.e., < 1 per 100 deg²
- requirement: large area multi-color surveys
- Pan-STARRS1 database ~4 billion sources

DARK ENERGY SURVEY

Fan+ 2000-2006 Jiang+ 2008-2009 Willott+ 2007-2010 Mortlock+ 2011

the Pan-STARRS1 z~6 quasar sample

200 z>5.6 quasars

black hole masses: few 10^8 to few 10^9 M_{sun}

note: many sources visible from the south

the Pan-STARRS1 z~6 quasar sample

Bañados+ 2016

outline of this talk

- Characterize massive quasar host galaxies at z>6
- Environment of the first supermassive black holes at z>6
- State of the intergalactic medium at z>6

HST attempts to detect z>6 host galaxies

black hole masses: few $10^9 M_{sun}$ -> stellar bulges of ~ $10^{12} M_{sun}$?

...hosts not detected in continuum or Ly- α

...JWST!

quasar host galaxies

The host galaxies dominate at rest-frame FIR

(sub-)millimeter observations

J1148+5251 (z=6.42) 100s of hours:

Size: 5 kpc (CO), 2 kpc ([CII]/dust) $M_{H2} = 2 \times 10^{10} M_{SUN}$ $M_{dyn} < 10^{11} M_{SUN}$ SFRSD=1000 $M_{sun}/yr/kpc^2$

Walter+ 2003, 2004, 2009, Riechers+ 2009

(sub-)millimeter observations

z=6.6 quasar (Banados et al. 2015) only 3.5 hours with NOEMA!
(sub-)millimeter observations

z=7.08 quasar (Venemans+ 2017)

- very compact emission
- no evidence for rotation

z=6.6 quasar (Banados et al. 2015) only 3.5 hours with NOEMA!

- 27 quasars at 6 < z < 7
- 8 min on-source
- >100% [CII] + continuum detection!

Decarli+ 2017b

Stack of ~30 [CII] spectra of z>6 quasars

No evidence for outflows in stacked (and individual) [CII] spectra.

complete sample of z>6 quasars

FIR luminosity (host)

...do not appear to depend on...

UV luminosity (black hole accretion)

Venemans+ 2018 in prep

The ALMA revolution: resolution

at z=6, 1" = 6kpc —> sub-kpc resolution can be easily achieved with ALMA!

note: billion solar mass black hole: ALMA can zoom in to the sphere of influence (few 100 pc)

spatially resolved quasar host kinematics

PJ036+03 at z=6.54 at ~1kpc res.

consistent with regular disk rotation

Venemans+ in prep

spatially resolved quasar host kinematics

spatially resolved quasar host kinematics

PJ308-21 at z=6.25 at ~1kpc res.

HST NIR (w/o quasar)

SFR in extended features (from [CII], FIR, and rest-frame UV): 10 M_{sun} yr⁻¹

SFR in central region: >> 100 M_{sun} yr⁻¹

Decarli+ in prep

Kormendy & Ho 2013

Kormendy & Ho 2013

Kormendy & Ho 2013

multi-line ISM diagnostics at z=6.9

J2348-3054 at z=6.9

Venemans et al. 2017

multi-line ISM diagnostics at z=6.9

J2348-3054 at z=6.9

Line ratio [C II]/[C I] ≈ 20

Venemans et al. 2017

multi-line ISM diagnostics at z>6.5

global properties not dominated by X-rays

[CII]/[CI] ratio: G ~ 1000 G₀ [CII]/CO(7-6) ratio: $n_{gas} \sim 2 \ 10^5 \ cm^{-3}$

Venemans et al. 2017

outline of this talk

- Characterize massive quasar host galaxies at z>6
- Environment of the first supermassive black holes at z>6
- State of the intergalactic medium at z>6

Searches for Lyman Alpha Emitters around z>6 quasars:

Bañados+ 2013 Mazzucchelli+ 2017a Ota et al. 2017, in prep.

—> no evidence for galaxy overdensities observations still inconclusive …

FIR-bright companions!

15"~82kpc

contours: [CII] *color:* dust continuum

these companions are not seen in deep Spitzer / HST images

4 companions in 27 fields

4 companions in 27 fields

Background ~ 2 x 10⁻⁴ cMpc⁻³

(based on 1 source in HUDF, Aravena+ 2016)

4 companions in 27 fields

Background ~ 2 x 10⁻⁴ cMpc⁻³

(based on 1 source in HUDF, Aravena+ 2016)

factor > 100 higher than the field!

outline of this talk

- Characterize massive quasar host galaxies at z>6
- Environment of the first supermassive black holes at z>6
- State of the intergalactic medium at z>6

quasars in the epoch of reionization

Greig & Mesinger 2017

IGM damping wing

Reminder: Damping wing sensitive to neutral gas fraction

from Miralda-Escude 1998

challenge: unknown intrinsic spectrum

first IGM damping wing signature at z=7.1

z=7.1 quasar J1120 shows damping wing signature :

f_{HI}=0.4+/-0.2 at z=7.1 t_{univ}=770 Myr

no clear consensus on IGM absorption nature e.g., Bosman & Becker 2015

Mortlock+ 2011, Greig et al. 2017

z=6.4 (t_{univ}=880 Myr) is 110 Myr after z=7.1 (15% of cosmic time)

z=6.4 (t_{univ}=880 Myr) is 110 Myr after z=7.1 (15% of cosmic time)

z=6.4 (t_{univ}=880 Myr) is 110 Myr after z=7.1 (15% of cosmic time)

absorber present at z=6.40392, very close to quasar!

very uncommon that we see the the host galaxy in absorption.

caution needed when interpreting IGM Damping Wing features

Bañados+ 2017 subm.

We need more quasars at z>7...

new record-redshift quasar at z=7.54

Age of universe: 690 Myr; ~10% younger than at z=7.1

M_{BH}=8 10⁸ M_{sun}

Bañados+ 2017, Nature, subm.

damping wing signature... ...*and* no evidence for absorber

new record-redshift quasar at z=7.54

(one sightline) constraint on the IGM at z=7.5

Bañados+ 2017, Nature, subm.
new record-redshift quasar at z=7.54

constraints on early black hole growth

Bañados+ 2017, Nature, subm.

new record-redshift quasar at z=7.54

this z=7.5 quasar is bright in [CII] and dust emission

currently spatially unresolved, FWHM = 380 km/s $M_{dust} = 1-4 \ 10^8 \ M_{sun}, \ M_{[CII]} \sim 5 \ 10^6 \ M_{sun}$

...interesting questions regarding metal production in the very early universe

Venemans et al. 2017

concluding thoughts

quasars in the first Gyr of the universe: unique probes of physical properties of massive hosts, their environments, and the intergalactic medium.

puzzling findings... out to z=7.5 (t_{univ}=690 Myr)

- rapid early supermassive black hole growth
- significant chemical enrichment already at that time

bright future: EUCLID/WFIRST, LSST, JWST

THE END