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Zusammenfassung der Arbeit:

In dieser Arbeit betrachten wir die Anfangsphasen der Sternentstehung: die dynamische
Entwicklung und Fragmentation von Gebieten im Inneren von Molekiilwolken, welche zur
Bildung eines gebundenen protostellaren Haufens fithren. Wir simulieren diese Prozesse
mit Hilfe von SPH (‘smoothed particle hydrodynamics’) in Verbindung mit der Spezial-
hardware GRAPE und weisen nach, dafl bereits ein einfaches isothermes, selbstgravitieren-
des Gasmodel in der Lage ist, einen Grofiteil der Beobachtungsdaten in Sternentste-
hungsgebieten zu erklaren. Die Entwicklung der Modelle folgt aus eine Sequenz statistis-
cher Ereignisse, woraus sich ergibt, dafl das dynamische Verhalten unabhangig von der
konkreten Wahl der Anfangsbedingungen ist.

Die Wechselwirkung zwischen Gravitation und Gasdruck erzeugt ein komplexes Netzwerk
aus Gasklumpen und Filamenten, dessen weitere Entwicklung zur Bildung eines gebunde-
nen, protostellaren Haufens fiihrt. Der Massenzuwachs protostellarer Kerne erfolgt dabei
durch Akkretion aus dem umgebenden Gasreservoir, wobei dieser Prozef} stark von direk-
ten N-Korperstolen gestort wird. Es stellt sich heraus, dal die Drehimpulsverteilung der
protostellaren Kerne mit dem Ort korreliert ist.

Das Massenspektrum identifizierter Gasklumpen kann durch ein einfaches Potenzgesetz
der Form dN/dM o M~'® beschrieben werden, was mit den Beobachtungdaten gut
iibereinstimmt. Im Gegensatz dazu gilt fiir protostellare Kerne, dafl deren Massen einer
logarithmischen Normalverteilung folgen, wobei das Maximum bei der mittleren Jeans-
masse des Gesamtsystems liegt. Diese Verteilung kann mit der stellaren Massenfunktion
fiir Mehrfachsysteme verglichen werden, wobei eine Sternentstehungseffizienz von 5 — 15 %
zu hervorragender Ubereinstimmung fiihrt.






Abstract:

Using smoothed particle hydrodynamics in combination with the special-purpose hard-
ware device GRAPE, we numerically investigate the initial phases of the star-formation
process. We follow the dynamical evolution and fragmentation of large regions within
molecular clouds to form a cluster of protostellar cores. Adopting an isothermal descrip-
tion of self-gravitating gas, we show that even this simple model is able to explain many of
the observed features of star-forming regions and identify the processes that dominate the
formation and evolution of protostellar cores. The number of protostellar cores that form
during the evolution is roughly proportional to the number of Jeans masses contained
in the system initially. The overall dynamical behavior of the system is insensitive to
the adopted initial conditions, since it evolves through a sequence of highly probabilistic
events.

The interplay between self-gravity and gas pressure creates a complex network of clumps,
sheets and filaments, and the subsequent evolution leads to the formation of a bound clus-
ter of protostellar cores. These grow in mass via accretion from the available gas reservoir
and are subject to highly unpredictable N-body interactions. We find that the angular
momenta of protostellar cores are correlated with their location. The mass spectrum
of gas clumps can be well approximated by a power-law distribution dN/dM oc M~
comparable to observed molecular clouds. In contrast, the mass spectrum of protostellar
cores is best described by a log-normal distribution which peaks roughly at the overall
Jeans mass of the system. With the appropriate scaling, this is in excellent agreement
with the IMF for multiple stellar systems and suggests a star-formation efficiency which
ranges from 5 — 15 %.






Wir fuhlen, dafs, selbst wenn alle moglichen
wissenschaftlichen Fragen beantwortet sind,

unsere Lebensprobleme noch gar nicht berihrt sind.
Freilich bleibt dann eben keine Frage mehr;

und eben dies ist die Antwort.

(Wittgenstein — Tractatus §6.52)
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Chapter 1

Introduction and Overview

Understanding the processes leading to the formation of stars is one of the fundamen-
tal challenges in astronomy. Stars are the dominant sources of radiation for almost all
astrophysical objects, ranging from the most distant galaxies down to the bodies found
in our solar system reflecting the sunlight. Not only do the properties of stellar systems
on all scales depend on how their stars were formed, also the properties of the interstel-
lar medium in galaxies are controlled to a large extent by various feedback effects from
stars. Hence, observational studies of star-forming regions and attempts to derive a com-
prehensive theoretical model for the process of star formation are important for many
astrophysical problems.

1.1 Motivation of the Present Study

The recent progress in observational astronomy, especially at infrared and submillimeter
wave lengths, has greatly advanced our knowledge of the formation of stellar systems
and the evolution of molecular clouds. It now is possible to observe the process of star
formation at any evolutionary phase. Studies of the properties and evolution of star-
forming regions need to be accompanied by analytical and numerical work to derive a
self-consistent picture of the entire process. However, current theoretical models fail to
explain the wealth of observational data: analytical models of the star-formation process
are restricted to describing the collapse of isolated, idealized objects and much the same
applies to numerical studies. Hence, there is a great demand for theoretical work in the
field of star formation to reduce that gap between observations and theory.

The general paradigm of star formation is the following: It begins with the formation
of molecular cloud complexes in a galaxy and includes their dynamical evolution to the
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formation of self-gravitating dense cores. Some of these cores become gravitationally
unstable and begin to collapse to form highly-condensed objects in their interior. The
central density increases until it exceeds the threshold for nuclear fusion processes to set
in. This new source of energy leads to an equilibrium stage: a protostar is born. It is still
embedded in its parental gas envelope which continues to fall towards the center. Hence,
the object continues to grow in mass via accretion of this gas reservoir. However, conser-
vation of angular momentum prevents the bulk of the material from falling directly onto
the central object. Instead, it forms a rotationally supported disk and matter can reach
the central star only after the removal of angular momentum through viscous transport
phenomena or global disk instabilities. Magnetic fields may play a crucial role at that
stage. Parts of the gas that streams towards the center may get expelled in form of a
bipolar outflow which is able to pump a considerable amount of energy and momentum
into the surrounding protostellar envelope. At the same time, a strong stellar wind and
radiation field develop. These effects will eventually blow apart the protostellar cocoon
and reveal the star. Furthermore, stars form as members of hierarchically structured
cluster. Hence, they interact with each other and modify each others evolution. Stellar
feedback processes not only modify a star’s immediate vicinity, but may also influence
the entire star-forming region. The UV radiation of a few O stars is enough to create a
large cavity of ionized gas inside a molecular cloud. The most prominent and best stud-
ied example is the Trapezium in the Orion molecular cloud. Statistically, these events
limit the life time of an entire cloud complex to ~ 107 years. On the other hand, stellar
feedback processes may compress other parts of a molecular cloud and thus induce a new
episode of star-formation. Gas from dissolved clouds replenishes the diffuse phase of the
interstellar medium and largely determines its properties. All these processes together
participate in the star-formation cycle and the chain of feedback effects makes star forma-
tion strongly self-regulated. A comprehensive theory of star formation must take all these
processes into account, an apparently unsurmountable task. The formation of individual
stars is subject to highly indeterministic statistical events, which make the existence of a
deductive theory highly unlikely. However, we may be able to understand the properties
of large ensembles of stars, say their mass spectrum or kinematical parameters, within
the framework of a statistical theory. This results of this dissertation will contribute their
share to the development of this theory.

We concentrate our research on the very early stages of the star formation process: on
the numerical modeling of the dynamical evolution and fragmentation of molecular clouds
leading to the formation of a cluster of protostellar cores. Our scientific goal is to identify
the processes that dominate these early phases of the star formation. In the physical
regime of interest, molecular gas is approximately isothermal. Thus, our simulations
describe the interplay between self-gravity and gas pressure. This creates a complex
network of filaments, sheets and knots. The contraction of gravitationally unstable gas
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clumps leads to the formation of protostellar cores, which continue to accrete from their
surrounding gas envelopes and build up a hierarchically structured and dynamically highly
active cluster. We analyze the gas distribution and the properties of the protostellar clus-
ter at any stage of the evolution and compare the numerical results with the observations.
Parameters such as mass spectrum, kinematics, spatial distribution and multiplicity of
cores can be used to constrain the theoretical model. Despite its simplicity, our isothermal
model is able to explain many observational features of young stellar clusters remarkably
well, which suggests that gravitational fragmentation and accretion processes dominate
the formation and early evolution of stellar clusters and the origin of stellar masses.

Since we cannot resolve the evolution of a molecular cloud as a whole, we concentrate
on a smaller volume embedded in the interior of a large, stable molecular cloud complex
where only the overdense regions are able to contract due to self gravity and assume
the molecular cloud is supported on large scales by turbulence and/or other processes.
To follow the time evolution of the molecular cloud, we use the numerical technique of
smoothed particle hydrodynamics which is intrinsically Lagrangian and can resolve very
high density contrasts. To achieve high computational speed, we combine SPH with the
special-purpose hardware device GRAPE. Since we wish to describe a region in the interior
of a globally-stable molecular cloud we have to prevent overall collapse. This is achieved
by applying periodic boundary conditions to the system (see Sec. 3 for technical details).

The second goal of this thesis work is to understand how the formation of protostellar ob-
jects and their properties depend on environmental conditions. Hence, within the frame-
work of isothermal models, we perform computations for a wide range of temperatures
and different sets of initial density distributions, typically Gaussian random fluctuations
with varying power spectra, to mimic different molecular cloud structure. The results of
our large-scale calculations can then be used as more realistic and self-consistent input
data for detailed computations of the collapse of individual protostellar objects, to gain
deeper insight into the late phases of the formation of individual stars.

1.2 Overview of the Present Study

The structure of this thesis is as follows:

Chapter 2 introduces the observational properties of molecular clouds important in the
context of star formation. It specifies their physical state and geometrical structure, and
elaborates on observed scaling relations. This is followed by a description of the properties
of young stellar clusters and of protostellar cores, the direct precursors of individual stars.
Then, the chapter sumarizes the current status of analytical and numerical theories of
star formation. This part is followed by a discussion of the stellar initial mass function
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(IMF) which is one of the most important properties of stellar systems. The chapter ends
with the introduction of a statistical model for the IMF.

Chapter 3 presents the mathematical and numerical concepts necessary to conduct the
current study. It begins with the equations of hydrodynamics which govern the time
evolution of gaseous systems, and analyzes the stability of self-gravitating, isothermal
fluids. Since we follow the dynamical evolution of the gas using smoothed particle hy-
drodynamics (SPH), we introduce the concept of SPH and discuss its abilities and limi-
tations. To achieve high computational performance, this method is combined with the
special-purpose hardware device GRAPE. After describing this technique, we finish with a
discussion of the scheme to implement periodic boundary conditions in combination with
GRAPE.

Chapter 4 discusses the scaling properties of self-gravitating, isothermal gas. Our mod-
els are scale-free and their dynamical evolution depends on one global parameter: the
dimensionless temperature defined as the ratio between internal energy and potential en-
ergy. Therefore, our simulations are performed in normalized units. The conversion back
into physical units and the scaling to observed star-forming regions are described in the
last parts of this chapter.

Chapter 5 specifies the initial conditions adopted for the numerical simulations. At the
begin of the dynamical evolution, the gas density follows a Gaussian random fluctuation
field which is generated via the Zel’dovich approximation. In this chapter we discuss this
approach and its applicability for gaseous systems.

Chapter 6 studies in detail one particular set of models and derives the main results
of this dissertation. It analyzes the dynamical evolution of the molecular cloud region
we study towards the formation of a dense protostellar cluster. We derive the clump-
mass spectrum of the evolving gas and compute the spatial and kinematical properties
of the protostellar cluster. Finally, we discuss the implications of this work for a better
understanding of the IMF.

Chapter 7 gives a parameter study: it specifies the sensitivity of the behavior of our
models on the adopted initial conditions. In detail, we discuss the effect of varying
the slope of the power spectrum of the initial fluctuation field and of changing the gas
temperature.

Finally, in Chapter 8 we sumarize our results and suggest further steps towards a general
theory of the star formation. We discuss the extension of the current isothermal models
of large-scale fragmentation of molecular clouds by including the effects of stellar feed-
back: radiation, stellar winds and bipolar outflows. Furthermore, it is of great interest to
address the question of how dynamical processes in molecular clouds may lead to physical
conditions similar to the ones adopted as starting conditions in our models. This leads
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into the field of studying interstellar turbulence.
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Chapter 2

Observations and Models of the Star
Formation Process

All present day star formation takes place in molecular clouds (Blitz, 1993). In order to un-
derstand the physical processes leading to the formation of stars, the dynamical evolution
and fragmentation properties of molecular clouds are necessary ingredients. Therefore,
this chapter begins with a brief introduction into the main features of molecular clouds
relevant for the context of the present study. After this, analytical and numerical mod-
els of the star-formation process are introduced, followed by a discussion of the different
models for the stellar initial mass function.

2.1 Properties of Molecular Clouds

Molecular clouds are huge associations of gas. Their chemical composition is dominated
by molecular hydrogen and helium. In the plane of the Milky Way, interstellar gas has
been extensively reprocessed by stars, therefore, the metallicity! of molecular clouds is
approximately solar. This has important consequences for the radiation transport prop-
erties and the optical depth of these structures. The presence of elements like carbon,
nitrogen, oxygen and of higher order determines the heating and cooling processes in
molecular clouds (see e.g. Genzel, 1991). And, equally important, these elements are
the physical observables. Radio and submillimeter telescopes mostly concentrate on the
rotational transition lines of carbon, oxygen and nitrogen molecules (like CO, NHs, or
H,0). By now, several hundred different molecules have been identified in the interstellar
gas. An overview of the application of different molecules as tracers for different physical

'In astrophysics, all chemical elements heavier than helium are denoted as metals. The bulk of these
elements has been produced in supernova explosions that terminate the life of massive stars.
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conditions is given in Fig. 2.1. Further details can be found in the excellent reviews by
van Dishoeck et al. (1993) and Genzel (1991).

INFRARED AND MICROWAVE MOLECULAR LINES AS PROBES OF
PHYSICAL CONDITIONS IN MOLECULAR CLOUDS
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Figure 2.1: Molecular lines as probes of the physical conditions in molecular clouds (from Genzel, 1991).

2.1.1 The Geometrical Structure of Molecular Clouds

From molecular line observations, we know that the structure of molecular clouds is ex-
tremely complex. These observations reveal a hierarchy of clumps and filaments on all
scales accessible by present day telescopes. Various studies of the mass spectrum of molec-
ular clouds indicate that the spectrum is well described by a power law. Consequently
there is no natural mass or size scale for molecular clouds between the observed lower and
upper limits. The largest molecular structures considered as “clouds” are the so called
giant molecular clouds (GMC). They have masses of typically 10° to 10° M, and extend
over a few tens of parsecs. On the other hand, the smallest observed entities are proto-
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stellar cores with masses of a few solar masses or less and sizes of 51072 pc. The volume
filling factor of dense clumps, even denser subclumps and so on, is very low. It is of the
order of 10% or less.

The density structure of molecular clouds is best seen in optically thin spectral lines. The
best candidate is '3CO. With the development of very sensitive radio receivers in the
80’s it became feasible to map an entire molecular cloud region with high spatial and
spectral resolution to obtain quantitative information about the overall density structure.
An example of a local giant molecular cloud is given in Fig. 2.2. It is the L1641 cloud in
Orion. The maps show the emission from the '*CO (J = 1—0) transition and cover central
velocities from vpgg = 3 — 13kms™" in steps of 1 kms™! (from Bally et al., 1987). In the
last panel, the emission integrated over the entire velocity range is shown. It is clearly
visible in the maps, that the emission breaks up into clumps and filamentary structure on
all resolvable scales and velocity bins. This feature is common to all observed molecular
cloud complexes. Like L1641, most GMC’s are elongated and are closely aligned with
the Galactic plane. Furthermore they show a strong velocity gradient along their major
axis which is generally interpreted as rotation. The sense of the angular momentum is
typically retrograde with respect to the Galactic rotation (Kutner et al., 1977; Stark &
Blitz, 1978).

The hierarchical structure of clumps and filaments spans all observable scales and sizes
(see e.g. Falgarone et al., 1992; Falgarone & Phillips, 1996; Wiesemeyer et al., 1997;
Wiseman & Ho, 1996). It extends down to individual protostars which are studied by
mm-interferometry (Ward-Thompson et al., 1994; Langer et al., 1995; Gueth et al., 1997;
Motte et al., 1998). This is illustrated by Fig. 2.3 which shows 3CO, '2CO and C'"®*O maps
of a region in the Cygnus OB7 complex at three levels of successively higher resolution
(from Falgarone et al., 1992). At each level the molecular cloud appears clumpy and
highly structured. When observed with higher resolution, each clump breaks up into
a filamentary network of smaller clumps. Unresolved features exist even at the highest
resolution. The ensemble of clumps identified in this survey covers a mass range from
about 1 M, up to a few 100 Mg, and densities 50 cm ™3 < n(Hy) < 10* cm 3. These values
are typical for all studies of cloud clump structure.

Within the observational margins, the clump mass distribution typically follows a power
law of the form

N
Zli—m x m®, (2.1)

with the exponent being in the range —1.3 < a < —1.8 (see Tab. 2.1.1). For the remain-
der of this thesis, a value of @« = —1.5 will be adopted. The fact that all studies obtain
a similar power law is remarkable, and may be the result of turbulent motions acting on
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Figure 2.2: The Orion A cloud (L1641) observed in the **CO (J = 1—0) transition line. Each map shows
the integrated emission from a different velocity bin of width 1kms~'. The LSR velocity of the center
of the velocity range is indicated in the upper left corner of each image. The brightness temperature
is scaled logarithmically with maximum emission being black. The region covered is roughly 2° x 5° in
extent with an angular resolution of about 100”. Placing L1641 at a distance of 450 pc, this scales to
15 x 40 pc. The total amount of molecular gas in this map is 5 x 10% M.
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self-gravitating gas. The data for the different clouds are sensitive to different ranges of
mass and density, and are obtained from different reduction and analysis techniques. Fur-
thermore, all measurements are determined from fundamentally different sources ranging
from very actively star-forming clouds to very cold quiescent ones. Given the uncertainties
in determining the slope, it appears reasonable to conclude that there is a universal mass
spectrum for the clumps within a molecular cloud, and that the distribution is a power
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Figure 2.3: Maps of the molecular gas in the Cygnus OB7 complex. (a) Large scale map of the 3CO
(J =1—0) emission. The first level and the contour spacing are 0.25K. (b) Map of the same transition
line of a sub-region with higher resolution (first contour level and spacing are 0.3K). Both maps are
obtained using the Bordaux telescope. (c¢) 12CO (J =1 —0) and (d) **CO (J = 1 — 0) emission from
the most transparent part of the field. (e) *CO (J =1 —0) and (f) C**O (J =1 — 0) emission from the
most opaque field. (g) *CO (J =1 —0) and (h) C®0O (J = 1 — 0) emission from a filamentary region
with medium density. The indicated linear sizes are given for a distance to Cygnus OB7 of 750 pc. (The
figure is from Falgarone et al., 1992).
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Table 2.1: Observed clump mass spectra in molecular clouds

Exponent | Tracer | Source Reference
-1.7 C180 M17W Stutzki & Giisten (1990)
-1.6 CS Orion B Lada et al. (1991a)
-1.7 13CO | Orion B Kramer et al. (1998)
-1.3 BCO | Rosette Williams et al. (1994)
-1.4 BCO | Maddalena Williams et al. (1994)
-1.3 BCO | Cep OB3 Carr (1987)
-1.6 BCO | Ophiuchus Nozawa et al. (1991)
1.7 13CO | Ophiuchus Loren (1989a)
-1.7 BCO | L1457 Kramer et al. (1998)
-1.6 BCO | L1204 Kramer et al. (1998)
-1.6 1200 | MCLD 126.6+24.5 | Kramer et al. (1998)
-1.6 BCO | NGC1499 Kramer et al. (1998)
-1.8 C'0 | NGCT7438 Kramer et al. (1998)
-1.6 BCO | NGC7438 Kramer et al. (1998)
-1.9 C80 | Taurus Onishi et al. (1996)

law within a mass range of three orders of magnitude, i.e. from 1 Mg to about 1000 M.
Hence, it appears plausible that the physical processes that determine the distribution of
clump masses are rather similar from cloud to cloud. And vice versa, clouds that show
significant deviation from this universal distribution most likely had different dynamical
histories.

There exists an enormous number of studies of molecular cloud structure. For a more
detailed introduction into the properties of individual molecular cloud regions, here is
a list of useful references: Cepheus and Cassiopeia: Carr (1987); Grenier et al. (1989);
Remy et al. (1997); Yonekura et al. (1997); Yang et al. (1990); Yu et al. (1996), Cygnus:
Dobashi et al. (1994, 1996); IC5146: Lada et al. (1994); Dobashi et al. (1992, 1993);
Lupus: Nyman et al. (1987); Tachihara et al. (1996); M17W: Stutzki & Giisten (1990);
Ophiuchus: Abergel et al. (1996); Loren (1989a,b); Nozawa et al. (1991); Orion and
Monoceros: Bally et al. (1987); Herrmann et al. (1997); Kramer et al. (1996); Maddalena
& Thaddeus (1985); Maddalena et al. (1986); Sakamoto et al. (1994); Tatematsu et al.
(1993); Rosette: Blitz & Stark (1986); Williams et al. (1995); Taurus, Auriga and Perseus:
Hayashi et al. (1994); Hirahara et al. (1992); Kramer & Winnewisser (1991); Mizuno et al.
(1995); Nercessian et al. (1988); Ungerechts & Thaddeus (1987); Other clouds: Abraham
et al. (1995); Falgarone et al. (1991, 1992); Falgarone & Phillips (1996); Heithausen et al.
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(1993); Heithausen (1996); Kramer et al. (1998); Perault et al. (1985). In the outer parts
of the Galaxy: Digel et al. (1990).

2.1.2 Temperatures and Line Widths in Molecular Clouds

Molecular clouds are cold. From studying line widths and ratios, the inferred kinetic tem-
perature is typically about 10 K for dark, quiescent clouds and slightly higher for clouds
in the proximity of high-mass star-forming regions. For example, the temperature of gas
and dust behind the Trapezium cluster in Orion is about 50 K. This higher temperature
is due to the heating effects of the UV radiation field from the newly formed O and B
stars. However, the interior of the clouds, i.e. the dense cores, are very effectively shielded
against radiation and the only heating source that remains are cosmic rays. Therefore, in
the presence of nearby star forming regions, one observes a temperature gradient from the
outer layers to the inner parts of giant molecular clouds. The temperature in the interior
is again approximately 10 K, analogous to dark quiescent clouds (Cernicharo, 1991). This
canonical value is the result of the intricate balance between heat input (from cosmic rays)
and emission from the most abundant molecular species. Due to the latter, the thermal
structure of the gas is related to its density pattern and its chemical abundance. It is
therefore remarkable that over a wide range of gas densities and metallicities the equilib-
rium temperature remains almost constant in a small range around 7' ~ 10 K (Goldsmith
& Langer, 1978). This is illustrated in Fig. 2.4 which plots the expected kinetic tem-
perature in dark clouds as function of density for a variety of cooling rates and heating
by cosmic rays. It shows that for reasonable chemical composition and densities, the
temperature in molecular clouds is roughly constant and the gas can be described to a
good approximation by an isothermal equation of state (Eqn. 3.7). This is an important
consequence for the numerical simulations presented in this thesis work. However, the
approximation of isothermality breaks down when heat can no longer be radiated away
efficiently which is the case when the gas density exceeds values of n(Hy) ~ 10%cm 3.
Then the cloud becomes opaque and energy is trapped inside the cloud. The equation of
state is then adiabatic with an exponent ~ 7/5 being appropriate for molecular hydrogen
(see e.g. Tohline, 1982, and references therein).

Giant molecular clouds are gravitationally bound (e.g. Kutner et al., 1977; Elmegreen
et al., 1979; Blitz, 1993). Their masses are orders of magnitude larger than the Jeans mass
computed from the average density and temperature. Assuming only thermal pressure to
oppose gravitational attraction, they should be collapsing and massively forming stars on
a free-fall time scale, which is roughly 74 ~ 10° years. However, that is not the case: the
typical life time of giant molecular clouds with about 107 years is more than ten times
larger than the free-fall time scale and the average star forming efficiency with values
between 1% and 10% is very low (Blitz & Shu, 1980). The reason is that molecular clouds
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are stabilized by internal motions which typically are highly supersonic. The observed
line widths are always wider than implied by the excitation temperature of the molecules.
This is interpreted as the result of bulk motion associated with turbulence. Also magnetic
fields have long been discussed as stabilizing agent in molecular clouds. However, magnetic
fields with average field strength of 10 uG (Verschuur, 1995a,b; Troland et al., 1996) are
not sufficient to stabilize molecular clouds as a whole. Furthermore, magnetic fields
are not capable of preventing turbulent velocity fields from decaying quickly (Mac Low
et al., 1998). It seems therefore fair to say that the role of magnetic fields in stabilizing
giant molecular clouds as a whole is less important. The necessary conclusion is, that
turbulence must be constantly driven, because its energy dissipates away too fast to
explain the observed cloud life times (for a recent review see Mac Low, 1998). The
question about the nature of the source of turbulent energy input is still open. On large
scales, Galactic differential rotation introduces shear motions into giant molecular clouds
(Fleck, 1981). This energy might cascade down to supply turbulence on smaller scales.
Also feedback processes from newly formed stars, bipolar outflows in the late accretion
phase, the radiation fields and stellar winds from massive young stars, and finally, the
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supernova explosions that terminate the life of massive stars transfer huge amounts of
energy and angular momentum into the ambient interstellar medium (e.g. Norman &
Silk, 1980; Bertoldi & McKee, 1996). Furthermore, the motion of stars and protostars
through the cloud have been considered as possible heating mechanism (e.g. Deiss et al.,
1990).

However, the overall velocity dispersion is approximately the same for all molecular clouds,
which includes quiescent clouds (either not forming stars at all, like the Maddalena &
Thaddeus (1985) cloud, or at very low rate and with small masses, like Taurus), as well
as clouds that form stars very actively and with very high masses (like Orion). This fact
appears difficult to reconcile with the hypothesis that turbulence is driven from internal
sources. Furthermore, molecular clouds have vastly different masses, ranging from giant
molecular clouds (with 10° M) down to the very small clouds found at high galactic
latitudes (with typical masses of 50Mg, see e.g. Magnani et al., 1985). For all these
clouds, the global velocity dispersion is of the same order of magnitude and seems to vary
only weakly with galactocentric distance (Clemens, 1985).

For quantification, Tab. 2.2 specifies ‘canonical’ values for different regions in molecular
clouds. It — somehow artificially — distinguishes between giant molecular clouds, that
massively form stars, and dark, quiescent clouds, that form stars at very low rates and
with low masses. Starting from large complexes, it spans orders of magnitude in size and
mass, ranging from individual clouds and their clumpy substructure down to protostellar
cores, the gravitationally bound entities that actually form individual stars or binary
systems in their interior.

2.1.3 Scaling Relations for Molecular Clouds

Molecular clouds exhibit correlations between various physical properties, such as clump
size, velocity dispersion, density and mass. Larson (1981) first noticed, using data of
several molecular cloud surveys, that the density p and the velocity dispersion o scale
with the cloud size R as

p x R
o x RP, (2.2.b)

with « and § being constant scaling exponents. There is a large number of studies of
the scaling properties of molecular clouds. The most commonly quoted values of the
exponents are aw ~ —1.15 £ 0.15 and § =~ 0.4 £ 0.1 (e.g. Dame et al., 1986; Myers &
Goodman, 1988; Falgarone et al., 1992; Fuller & Myers, 1992; Wood et al., 1994; Caselli
& Myers, 1995). However, the validity of these scaling relations is subject of strong
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Table 2.2: Physical properties of interstellar clouds
GIANT MOLECULAR DARK CLOUD
CLOUD
COMPLEX
Size (pc) 20 — 60 6 — 20
Density (n(Hy)/cm?) | 100 — 300 100 — 1000
Mass (Mg) 10* — 106 10% — 10°
Line width (kms™!) 6 —15 1-3
Temperature (K) 7T—15 ~ 10
Examples Wb1, W3, M17 Orion-Monoceros, Taurus-
Auriga-Perseus complex
CLOUD
Size (pc) 3—20 1-5
Density (n(Hz)/cm?®) | 10® — 10° 102 —10°
Mass (Mg) 103 — 10% 5 — 500
Line width (kms™!) 4—12 0.5—-1.5
Temperature (K) 10 — 30 ~ 10

Examples L1641, L1630, W33, W3A | B227, L1495, L1529
CLUMPS

Size (pc) S05-3 <1

Density (n(Hz)/cm?®) | 10® — 10° 10% —10°

Mass (M) 10 — 103 1 — 100

Line width (kms™!) 1-3 0.2—-0.5

Temperature (K) 10 — 30 ~ 10
PROTOSTELLAR
CORES

Size (pc) S0.1

Density (n(Hy)/cm?) | > 10°

Mass (M) 0.1 -10

Line width (kms™!) 0.1—-1

Temperature (K) 10 — 100

Examples see Sec. 2.1.5

This table is adapted from Cernicharo (1991).
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controversy and significantly discrepant values have been reported by Carr (1987) or
Loren (1989a).

The above ‘standard’ values can be interpreted in terms of the virial theorem (Larson,
1981; Myers & Goodman, 1988; Caselli & Myers, 1995). For o = —1, which implies con-
stant column density, a value of 5 = 0.5 suggests virial balance between self-gravity and
the turbulent velocity dispersion, that is the ratio between kinetic and potential energy
is constant with Eyin/|Epot| = 02R/(2GM) ~ 1/2. However, for any arbitrarily chosen
value of the density scaling exponent «, a corresponding value of S obeying virial bal-
ance can always be found (Vazquez-Semadeni & Gazol, 1995). Under the assumption of
virial equilibrium, Larson’s relations (Eqn. 2.2) are not independent. In fact, it has been
proposed by Kegel (1989) and Scalo (1990) that the density-size relation may be a mere
artifact of the limited dynamic range in the observations, and that it may not reflect a
real property of interstellar clouds. In particular, in the case of molecular line data, the
observations are restricted to column densities large enough that the tracer molecule is
shielded against photo-dissociation radiation. With limited integration times, most CO
surveys tend to select objects of roughly constant column density, which automatically
implies p o< 1/R. Surveys that use larger integration times and therefore have larger
dynamic range seem to exhibit an increasingly larger scatter in density-size plots, e.g. as
seen in the data of Falgarone et al. (1992). Also results from numerical simulations, which
are free from observational bias, indicate the same trend (e.g. Vazquez-Semadeni et al.,
1997). There are two further concerns: The proportionality between line integrated CO
intensity and mass surface density has been reliably established only for extragalactic
observations (Dickman et al., 1986). This relationship is only valid for scales larger than
a few parsec, at which calibration has been possible. Also it depends on the assumption
of local thermodynamic equilibrium and virialization of the gas (e.g. Genzel, 1991). Addi-
tionally, for clumps within molecular clouds, the structures identified in CO often do not
correspond to those derived from higher-density tracers (e.g. Langer et al., 1995; Bergin
et al., 1997; Motte et al., 1998). Altogether, the existence of a unique density-size relation
is not well established.

The velocity-size relation does not appear to be so prone of observational artifacts. How-
ever, many measurements of molecular clouds do not exhibit this correlation (see e.g.
Loren, 1989a; Plume et al., 1997). But if it is detected in a molecular cloud, it probably is
a real property of the cloud and may be explained by a number of physical mechanisms,
ranging from the standard argument of virial equilibrium to the action of interstellar
turbulence. In the latter model, the scaling relation is a natural consequence of the char-
acteristic energy spectrum in an ensemble of shocks. Shocks are ubiquitous in supersonic
turbulence, which may the dominant agent for stabilizing molecular clouds on large scales
(Sec. 2.1.2; see also Fleck, 1996; Vazquez-Semadeni et al., 1997; Mac Low et al., 1998).
If the density-size relation (2.2.a) cannot be verified, the standard arguments based on
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virial equilibrium between gravity and internal energy cannot be invoked.

In summary, Larson’s relations and their interpretation as a result of the virial equilibrium
probably apply for dense and strongly self-gravitating clumps. Regions in which the
relations are not observed or not well established often show strong evidence of recent
perturbations (Loren, 1989a; Caselli & Myers, 1995; Plume et al., 1997) and, hence, are
likely not to be in virial equilibrium.

2.1.4 Molecular Clouds as Sites of Star Formation

All giant molecular clouds surveyed within distances less than 3 kpc form stars, except
the Maddalena & Thaddeus (1985) cloud. However this cloud may be in a very early
evolutionary state, i.e. may have formed just recently. Possible formation mechanisms for
molecular cloud complexes involve spiral arm shocks, shear instabilities in the differen-
tially rotating Galactic disk, or Rayleigh-Taylor or thermal instabilities on large scales.
Furthermore, they could form in the converging flows of supershells driven by multiple
supernovae (for a review see Blitz, 1993). Mooney & Solomon (1988) argue that at least
25% of the molecular clouds in the inner part of Galaxy are not forming massive stars.
However, clouds without O or B star formation may still be forming stars of lower mass
in great abundance, like the cloud in Taurus-Auriga. Taking the distance dependent sen-
sitivity limits into account, it appears fair to say that all clouds will form stars at some
stages of their evolution.

The star formation process in molecular clouds is fast. Once the collapse of a cloud region
sets in, it rapidly forms an entire cluster of stars within 10° years or less. This is indicated
by the juvenile stars associated with star forming regions which are typically T Tauri stars
with ages less than 10° years (e.g. Gomez et al., 1992; Greene & Meyer, 1995; Carpenter
et al., 1997) or by the small age spread in more evolved stellar clusters (e.g. Hillenbrand,
1997). Once a stellar cluster has formed that contains O or B stars, their radiation fields
and stellar winds strongly influence the surrounding molecular cloud: their Strémgren
spheres create large cavities of ionized hot gas in the molecular gas distribution and insert
energy and momentum into the cloud. This can either trigger a new cycle of star formation
in the neighboring cloud regions due to the compression of gas by the induced pressure
enhancement, or destroy the molecular cloud as a whole. Using canonical values, a giant
molecular cloud may survive the formation of a few O and B stars before their feedback
will destroy it completely. This limits the cloud life time to about 107 years (Blitz, 1993).

There is considerable debate in the literature, whether there are two distinct modes of star
formation, a clustered one and an isolated one, or whether this picture arises solely from
observational bias and selection effects. Combining radio data (tracing dense molecular
gas) with an IR survey of young stellar objects in the Orion B cloud (L1630), Lada
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et al. (1991b) argue that most stars form in dense clusters. They find four pronounced
clusters containing 58% — 98% of all young stellar objects in L1630, depending on the
correction for field stars. Furthermore, these four clusters are associated with the densest
and most massive molecular clumps (Lada, 1992). In contrast, Strom et al. (1993) found
in L1641, which is part of the Orion complex as well and several degrees south of L1630,
a population of isolated pre-main-sequence stars distributed throughout the cloud. A
similar distribution is seen in the molecular cloud in Taurus, which also contains no dense
embedded clusters and young stellar objects appear to be evenly distributed throughout
the cloud. This dichotomy has led to speculations about two distinct modes of star
formation, a clustered and a distributed one. However, this distinction appears quite
artificial and the above data sets may not be free of observational bias. The original survey
of Lada et al. (1991b) still leaves room for a possible distributed population because of
the unknown distribution of field stars. In addition, the observational method to detect
young stellar objects has been different in both surveys. The latter issue is addressed in
Li et al. (1997) who rederived the results of Lada et al. (1991b). Furthermore, a thorough
analysis of the spatial distribution of pre-main-sequence stars in Taurus and several other
‘distributed’ star forming regions also suggests a clustering tendency (Gomez et al., 1993).

The dichotomy of two different modes of star formation disappears, if one assumes hi-
erarchical clustering of the stars analogous to the hierarchical clump structure in the
molecular gas they form in. In this picture, stars exhibit clustering properties on all
scales considered. The formation of rich clusters is associated with a significant peak in
a statistical fluctuation spectrum and the effect of finding O and B stars preferentially in
regions of enhanced stellar density is explained as a mere statistical effect. Assuming a
universal initial stellar mass function the probability of finding a high-mass star increases
linearly with the sample size, i.e. with the total number of stars in the observed region.
The picture of a hierarchical or equivalently fractal spatial distribution of stars in star
forming regions is also supported by more detailed statistical studies of the distribution of
neighboring stars in young stellar clusters (Larson, 1995; Simon, 1997; Bate et al., 1998).
Hierarchical clustering seems to be a common feature of all star forming regions. Fur-
thermore, it is a natural outcome of the isothermal fragmentation calculation presented
in this thesis. In all our models, the dynamical evolution of self-gravitating gas results in
the formation of a hierarchically structured cluster of protostellar cores (see Sec.’s 6 and
7).

2.1.5 Properties of Protostellar Cores
Protostellar cores are the direct precursors of stars. The properties of young stars are thus

intimately related to the properties of their parental clumps and it is therefore important
to observationally determine the characteristics of condensed cores in molecular clouds. A
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Figure 2.5: Intensity contours at half maximum of 16 dense cores in dark clouds, in the 1.3 cm (J, k) =
(1,1) lines of NHz, in the 3.0mm J = 2 — 1 line of CS, and the 2.7mm J = 1 — 0 line of C*¥0. A linear
scale of 0.2 pc is indicated in each individual map and associated protostars are specified by a cross. The
figure is from Myers et al. (1991).

number of such small dense molecular cores have been identified by low angular resolution
molecular line surveys of nearby dark clouds (e.g. Benson & Myers, 1989). These cores are
thought to be the sites of low-mass star formation. About half of them are associated with
low-luminosity IRAS sources and CO outflows, the other half is designated as ‘starless’
(e.g. Beichman et al., 1986). Those may be in a evolutionary state shortly before forming
stellar objects in their interior, thus they often are referred to as pre-stellar cores. One of
the most notable properties of the sampled cores are their very narrow line widths. These
are very close to the line widths expected for thermal broadening alone and, as a result,
many of the cores appear approximately gravitationally virialized (see Myers, 1983). They
are thought either to be in the very early stage of gravitational collapse or have subsonic
turbulence supporting the clump. A comparison of the line widths of cores with embedded
protostellar objects (i.e. with associated IRAS sources) and the ‘starless’ cores reveals a
substantial difference. Typically, cores with infrared sources exhibit broader lines, which
suggests the presence of a considerable turbulent component not present in ‘starless’
cores. This may be caused by the central protostar feeding back energy and momentum
into its surrounding envelope. Molecular outflows associated with many of the sources
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may be direct indication for this process. The first submillimeter continuum maps of
dense pre-stellar cores were made by Ward-Thompson et al. (1994); for a recent survey
in the p-Ophiuchus cloud see Motte et al. (1998). The authors of this high-resolution
studies found that ‘starless’ cores are larger and less centrally condensed than the cores
with embedded sources. But both groups appear to have similar masses. Altogether,
the ‘starless’ cores are probable the precursors of class 0 protostellar clumps and may
reflect the very early stages of protostellar collapse: a gravitationally bound fragment
has formed in a molecular cloud which evolves towards progressively higher degree of
central condensation, but has not yet formed a hydrostatic protostar in the center (a
class 0 object). The ‘starless’ cores are observed in the mass range from about 0.1 Mg
to 10 M. Typical line widths are 0.4km s™! in NH3 and 0.6km s™! in C!®O for cores
with embedded sources and 0.3kms™" in NH3 and 0.5 kms™" in C*®O for pre-stellar cores
with embedded sources (see e.g. Butner et al., 1995). For comparison, a gas temperature
of 10K corresponds to a thermal line width of 0.16 km s ! for NH; and 0.12km s ! for
C!80. High-resolution maps suggest that the radial density profiles of the pre-stellar cores
on average follow a 1/r%law but are relatively steep towards their edges and flatten out
near their centers (Ward-Thompson et al., 1994; Motte et al., 1998). Furthermore, their
2-dimensional shapes deviate quite considerably from spherical symmetry, as illustrated
in Fig. 2.5. The cores are elongated with ratios between semi-major and semi-minor axis
of about 2 — 3; some even appear completely irregular.

2.2 Overview of the Star Formation Process

A self-consistent and comprehensive theory of star formation does not yet exist, and
maybe a fully deductive theory capable of predicting the properties of star forming regions
from a few basic principles will never exist, because the physical phenomena involved are
too complex and too numerous: star formation depends on many processes and many
variables which are all interrelated in a delicate way. This and the influence of highly
unpredictive and stochastic phenomena make it difficult to treat the complete subject in
a deterministic way in the tradition of classical physics.

The process of star formation begins with the formation of molecular cloud complexes in
a galaxy and includes their dynamical evolution to the formation of highly self-gravitating
dense cores. These may become unstable against collapse and may form a highly con-
densed object in the interior. The central density increases until it exceeds the threshold
for nuclear fusion processes to set in. A new source of energy is available and stops the
contraction — a protostar is born. It still is embedded in its parental envelope which
continues to fall towards the center. Hence, the central object grows further in mass
via accretion of this inflow. However, conservation of angular momentum prevents the
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Figure 2.6: The main stages of star formation: (a) Cores form within molecular clouds in areas where
self-gravity overwhelms turbulent support. (b) A protostellar object surrounded by an accretion disk
forms in the center of the collapsing cloud core. (c) Stellar winds and radiation break out along the
rotational axis of the system, create a bipolar outflow and dissolve the protostellar envelope. (d) The
envelope has been removed and the infall terminates. The newly formed star is revealed on the main
sequence. A circumstellar disk may still exist at that stage, but will disappear on short time scales. The
figure is from Shu et al. (1987).

bulk of the material to fall directly onto the central object. It assembles in a rotation-
ally supported disk and matter can only flow towards the star by dissipating momentum
through viscous transport phenomena. Magnetic fields may play a crucial role at that
stage. Parts of the gas that streams towards the star may get expelled in form of bipolar
outflows maybe confined by magnetic field lines. Such a flow is able to pump a consid-
erable amount of energy and momentum into the surrounding protostellar envelope. At
the same time, strong stellar winds and strong radiation fields may develop. All effects
together will eventually blow the parental gas clump away and reveal the star on the main
sequence. These steps of star formation are illustrated in Fig. 2.6. Furthermore, stars
form in hierarchical groups, where they interact with each other and modify each others
evolution. The binary fraction of young star clusters may be as high as 100%. Stellar
feedback processes not only influence their immediate vicinity, they can influence the en-
tire molecular cloud. The UV radiation of a few O stars is enough to ionize a large volume
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inside a molecular cloud. Statistically, this limits the life time of giant molecular clouds
to ~ 107 years. On the other hand, stellar feedback may compress parts of a molecular
cloud and thus induce a new generation of the star formation cycle. Dissolved clouds
replenish the diffuse phase of the ISM and largely determine its properties. All these
processes participate in the star formation cycle and that chain of feedback effects makes
star formation strongly self-regulated. A comprehensive theory of star formation must
take all these processes into account, an apparently unsurmountable task. The formation
of individual stars are highly indeterministic statistical events. However, for the descrip-
tion of properties of large ensembles of stars, say when studying the IMF, this bears the
chance of understanding the process in a probabilistic sense within the framework of a
statistical theory (see Sec 2.3).

2.2.1 Analytical Models of Protostellar Collapse

Because of the overall complexity of the problem analytical models for the formation
of stars exist only in highly idealized cases. Typically, analytical work concentrates on
the collapse of single, isolated spheres and focuses on efforts to find similarity solutions
describing the asymptotic evolution of a collapsing cloud core including various physical
effects. The two most important solutions represent opposite limiting cases. The first was
derived by Larson (1969) and independently by Penston (1969). It describes the asymp-
totic evolution of the innermost part of an isothermal, freely collapsing spherical cloud
towards the development of a central density singularity and has been extended past the
singularity by Hunter (1977). The second solution was found by Shu (1977) for the inside-
out collapse of an equilibrium singular isothermal sphere that is assumed to have formed
by slow quasi-static evolution (say via contraction on the ambipolar diffusion time scale).
A comprehensive discussion of the possible similarity solutions for an isothermally collaps-
ing sphere has been presented by Whitworth & Summers (1985). They have shown that
there is actually an infinite family of such solutions, where the Larson-Penston and the
Shu solutions represent opposite limiting cases and all other possibilities are intermediate
between them.

One of the most important quantities in these models is the accretion rate onto the
central point mass. In the Shu (1977) solution, the accretion rate onto the protostar is
constant in time and equal to 0.975¢2/G, where ¢, is the isothermal sound speed and
G the gravitational constant. On the other hand, in the Larson-Penston solution, the
accretion rate is strongly varying with time. Initially it is very high, with m = 47¢2/G,
but quickly declines and becomes smaller even than the Shu value. Its much higher
initial value results from the fact that the protostellar envelope is falling inward at 3.3
times the sound speed rather than at rest, and also because it has a higher density at
each radius than the singular isothermal sphere. Numerical simulations give values more
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closely resembling the solution of Larson and Penston (see e.g. Hunter, 1977; Foster &
Chevalier, 1993).

Since the star formation process involves the action of a large number of physical phenom-
ena, many authors have sought to generalize the simple analytical models. Typically, the
effects of magnetic fields and rotation have been examined. The collapse of an unstable
magnetized cylinder with conservation of magnetic flux (i.e. with no ambipolar diffusion)
has been calculated numerically by Tomisaka (1996). His models form a flattened disk-
like structure which becomes increasingly centrally condensed and eventually develops a
central singularity in a self-similar way that closely resembles the Larson-Penston solution
for unmagnetized spherical collapse. The analogous problem of the collapse of an unsta-
ble rotating cylinder with conservation of angular momentum has been addressed most
recently by Matsumoto et al. (1997) who also find a similar result: a central disk forms
and becomes increasingly centrally condensed, evolving towards a central singularity in an
approximately self-similar fashion with superimposed oscillations. In both, the rotating
and the magnetized cases, supersonic infall velocities of about twice the sound speed were
found. This shows that as long as the cloud was initially unstable to collapse neither rota-
tion nor a magnetic field qualitatively changes the way in which a core collapses towards
a central singularity.

Many theoretical discussions of star formation assume that the initial state of protostellar
cores is a stable equilibrium configuration supported by magnetic fields and evolves only
slowly by ambipolar diffusion. In these models, a protostellar core evolves quasi-statically
into a state closely resembling a singular isothermal sphere before it becomes magnetically
supercritical and begins to collapse from inside out, as is assumed by Shu (1977). This
was studied numerically by Basu & Mouschovias (1995) with the result that a singular
isothermal sphere is never closely approached, magnetic support is lost at early stages
before the cloud becomes very centrally condensed. This is also found in analytic work by
Basu (1997) and Safier et al. (1997). Also Whitworth et al. (1996) have given arguments
against accepting the Shu (1977) model as a good description of star formation. This
model provides no clear way to account for binary or multiple stellar systems with are
the most common outcome of the star formation process which requires a more dynamic
picture of the protostellar evolution. Altogether, the most successful analytical model
of the collapse of protostellar cores appears to the Larson-Penston similarity solution,
however idealized it may be.

2.2.2 Numerical Models of Protostellar Collapse

As discussed in the previous section, analytical solutions for the collapse of individual
cores exist, but only for highly idealized cases. To study more realistic cases and es-
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pecially the formation of binary stars, numerical modeling becomes necessary. Hence,
by now the number of publications on protostellar collapse calculations has grown quite
large. Simulations including the effects of magnetic fields have been performed by Basu
& Mouschovias (1995) and Tomisaka (1996). However, most authors have considered
non-magnetic clouds with solar abundance, and typically the collapse has been assumed
to be isothermal with a temperature 7'~ 10 K (see Bonnell & Bastien, 1993; Boss, 1996;
Burkert & Bodenheimer, 1996; Di Sigalotti & Klapp, 1996; Monaghan, 1994; Nelson &
Papaloizou, 1993; Truelove et al., 1998). Other calculations include radiation transport to
account for the heating that occurs once the cloud reaches densities of n(Hsy) 2, 10! cm 3
(Boss, 1993; Myhill & Kaula, 1992), or simply assume an adiabatic equation of state once
that density is exceeded (Bonnell, 1994; Bate et al., 1995). Others invoke cooling during
the collapse (Monaghan & Lattanzio, 1991; Turner et al., 1995; Whitworth et al., 1995)
but treat larger volumes and lower densities than that of protostellar cores. If there is a
series of papers on the same topic, for the sake of brevity only the latest one has been
quoted in the above list of references. For a recent overview see (Burkert et al., 1998).

Typical for all numerical simulations is an almost free-fall collapse with little growth of
initial perturbation. This is followed by a phase in which a disk-like equilibrium is reached
in the central regions of the cloud because of rotational effects. Fragmentation of the disk
into a binary or into a multiple system then occurs. For angular momenta consistent with
those observed for cloud cores, a binary or small system of fragments typically forms with
eccentric orbits and separations in the range 10 to a few hundred AU. Fragmentation
appears independent of the initial density distribution, but is sensitive to the parameters
« and 3, which are the ratios between internal and gravitational energy and between
rotational and gravitational energy, respectively.

The collapse of an isolated protostellar core leading to fragmentation and the formation of
a small multiple stellar system is illustrated in Fig. 2.7. It is from a calculation by Burkert
et al. (1997) and starts with a uniformly rotating spherical core of mass 1.0 M, and radius
3.3 x 103AU = 0.016 pc. The initial density distribution is a power law with p oc 1/r,
where r is the distance from the center, and o = 0.35 and § = 0.23. The initial density
field is perturbed by an m = 2 mode with an amplitude of 10% and the computation
is performed with a finite-difference code with nested subgrids. Figure 2.7a shows the
onset of fragmentation in the central region of the core containing about 12% of the total
mass. The central density has increased by ~ 10% and a spiral arm pattern has formed
in the disk-like structure which is a consequence of the initial m = 2 perturbation. The
spiral arms start to fragment and form a triple system which again induces a new spiral
pattern in the parts of the disk that lie further out (Fig. 2.7b). The interaction of these
outer spiral arms leads to subsequent fragmentation (Fig. 2.7c,d). At the same time, the
unstable inner triple system converts into an close inner binary with an outer orbiting
companion, which soon merges with one of the components of the outer binary. Clearly
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the situation is highly complex and as gas accretion from the infalling envelope continues
additional merging of protostellar knots or further subfragmentation is likely to occur.
The mass distribution of the fragments is very unequal: the mass of outer companion of
the triple system is about one tenth of the mass of the components of the inner binary,
which have comparable masses.
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Figure 2.7: Contours of equal density in the equatorial plane at different times of the evolution of a
centrally condensed protostellar core with a = 0.35 and § = 0.23. The linear size of the shown region
is about 1/20 of the initial cloud radius. Density is scaled logarithmically and velocity vectors are given
with length linearly proportional to the speed. For more details see Burkert et al. (1997), where the
figure is obtained from.

In summary, the collapse of a rotating protostellar core is likely to produce a multiple
system of typically 2 to 5 protostars. Fragmentation occurs only at critical densities which
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are about 6 to 8 orders of magnitude larger than the initial values. Hence, fragmentation
could be suppressed if the core becomes optically thick before its density passed beyond the
critical value. This threshold scales with the core mass m as 1/m?, therefore, higher-mass
cores are more likely to fragment to form multiple stellar systems than low-mass cores.
This may explain why the stellar mass function decreases much faster with increasing
mass than the observed mass function of molecular cloud cores. Like the molecular cloud
cores on larger scales (see Sec.’s 6 and 7), multiple systems of protostars evolve through
N-body encounters while accreting gas from their surrounding. They may merge or
trigger further fragmentation. As a result, the outcome of detailed collapse calculations
of individual protostellar is unpredictable and can only be determined in a statistical
approach.

2.2.3 Numerical Models of Large Scale Collapse

Since most of the numerical work in the field of star formation has concentrated on
the collapse of isolated objects, there is a need to extend these studies to larger scales to
include the effects of the environment on the evolution and properties of protostellar cores
and consequently on the stars that form within. As will be shown in this dissertation,
under typical molecular cloud conditions, protostellar cores form from merging gas clumps
and strongly interact and perturb each other being immersed in the complex global flow
pattern of the cloud. Protostellar cores gain mass through accretion from their parental
gas envelopes. If a gas clump contains multiple cores these compete with each other for
the available gas reservoir. All these processes determine the masses and kinematical and
spatial properties of protostellar cores. Hence, modeling the formation and dynamical
evolution of an entire cluster of protostars requires the correct treatment of all these
effects.

Previous numerical simulations of the collapse and fragmentation of molecular cloud re-
gions have indeed shown that a large number of condensed objects can form on a dynam-
ical timescale as a result of gravitational fragmentation (e.g. Larson, 1978; Monaghan
& Lattanzio, 1991; Keto et al., 1991; Turner et al., 1995; Whitworth et al., 1995). In
these studies, the clouds were treated as isolated gaseous spheres which collapse com-
pletely onto themselves. Instead, to have the necessary dynamic range and resolution,
we study a small region embedded in a large, stable molecular cloud complex where only
the overdense regions are able to contract due to self-gravity. We assume periodic bound-
ary conditions to account for the molecular cloud support on large scales by turbulence
and/or other processes. Previous numerical models were also strongly constrained by
numerical resolution. Larson (1978), for example, used just 150 particles in an SPH-like
simulation. Turner et al. (1995) and Whitworth et al. (1995) were the first who addressed
star formation on larger scales in detail using high-resolution numerical models. However,
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they studied a different problem: fragmentation and star formation in the shocked and
rapidly cooling interface of colliding molecular clumps. While clump-clump interactions
are expected to be abundant in molecular clouds, the rapid formation of a whole star
cluster requires gravitational collapse on a larger scale which contains many clumps and
dense filaments.

It is the aim of this dissertation to extend previous studies of the collapse of isolated
objects to the regime of the isothermal collapse and fragmentation of a gravitationally
unstable region embedded in the interior of a molecular cloud. We present numerical
models of the dynamical evolution and follow the fragmentation into dense protostellar
cores for a large number of different initial gas distributions and different numbers of Jeans
masses. The time evolution of the gaseous system is computed using the SPH method
with particle numbers ranging from 5 x 10* to 5 x 10°. Details of the numerical realization
are found in Sec. 3. These calculations may also provide the input data for more detailed,
high-resolution collapse calculations of individual cores (Burkert et al., 1998).

2.3 The Initial Stellar Mass Function (IMF)

The initial stellar mass function (IMF) is perhaps the most important result of the star
formation process. A detailed knowledge about the distribution of stellar masses is a
necessary ingredient for the understanding of many astrophysical phenomena. It is im-
portant for the structure and the turbulent dynamics of the interstellar medium, out of
which stars form and onto which they directly feed back energy and momentum, but
also for the formation and chemical evolution of galaxies as a whole. Unfortunately, the
current theory of star formation (see Sec. 2.2) remains unable to derive the IMF from first
principles. Most likely, a deterministic analytical formula for the IMF does not exist and
instead, realistic models need to be found in the framework of a probabilistic theory of
the star formation process. The formation of stars is the outcome of the combination of
highly chaotic and indeterministic processes. This picture of the star formation process
is strongly supported by the results of this dissertation.

Before introducing the current (competing) statistical models of the IMF, a brief overview
about its observational derivation will be given.

2.3.1 The Observed IMF

Gravitationally bound gas spheres are considered to be stars in a classical sense only in
a finite mass range. Stellar objects with masses less than about 0.08 M, cannot produce
central temperatures hot enough for the fusion of hydrogen to take place and are called
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brown dwarfs (e.g. Burrows et al., 1993; Laughlin & Bodenheimer, 1993). On the other
hand, stars with masses greater than about 100 M, are unstable (e.g. Phillips, 1994).
Hence, stars are confined to the mass range

0.08 <m <100, (2.2)

with the dimensionless mass m = M/(1Mg) normalized to solar masses.

It is complicated and laborious to estimate the IMF in our Galaxy empirically. The first
such determination from the solar neighborhood (Salpeter, 1955) showed that the number
f(m) of stars with masses in the range m to m + dm can be approximated by a power-law
relation

f(m)dm occ m™“dm , (2.3)

with the index a =~ 2.35 for stars in the mass range 0.4 < m < 10. However, the
approximation with one single power-law is overly simplified. Later, Miller & Scalo (1979)
introduced a log-normal functional to describe the IMF,

2
logyq f(logigm) = A — logy (mﬂoﬂ . (2.4)

2(10g10 0)2

Their work has been reinvestigated and improved in a variety of aspects by many authors,
for a recent review see Scalo (1998). As illustration, Fig. 2.8 plots the IMF derived from
star counts in the solar neighborhood by Scalo (1986) assuming an Galactic disk age of
12 x 10° years. However, the determination by Miller & Scalo (1979) and subsequent
studies before the mid 1990’s have not taken into account the contamination of star
counts by binary and multiple systems. Binary stars can only be resolved and identified
as such, if their angular separation exceeds the angular resolution of the telescope used to
survey the sky. Otherwise, they are falsely counted as single stars. Neglecting this effect
reduces the inferred stellar densities and overestimates the masses of stars. This strongly
influences the derived stellar mass distribution and severely underestimates the number
of low-mass stars.

For the low-mass end of the IMF, we use the values derived by Kroupa et al. (1990, 1993)
for the solar vicinity. Neglecting the effects of binary and multiple systems, Kroupa et al.
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Figure 2.8: Field star IMF de-
rived by Scalo (1986). The data
= are not corrected for binary contam-
ination and assume a disk age of
12 x 10° years. Crosses represent
the IMF obtained by Miller & Scalo
(1979).

(1990) derive the following parameters® for a log-normal fit:

o = 0.42 (2.5)
A=0.1

This is valid for masses less than a few solar masses. Since the numerical simulations
performed for this dissertation cannot resolve close binary stars, this uncorrected mass
function is the appropriate one to compare with the computed values and will be referred
to as the standard IMF for multiple systems later on (see Sec.’s 6 and 7).

If the effect of unresolved binary and multiple systems is taken into account in an appro-
priate way, the initial mass function of single stars in the solar neighborhood is best fit

2Miller & Scalo (1979) derived the log-normal IMF as a quadratic fit to the observed data in logm:
log,, f(log,y m) = ag — a1 log;o m — ay (log;o m)?. For a disk age of 12 x 10? years, they derive ag = 1.53,
a; = 0.96 and a; = 0.47 and for an age of 9 x 10° years, they obtained ay = 1.47, a; = 1.02 and
as = 0.44. The relations between the parameters used in Eqn. 2.4 and by Miller & Scalo (1979) follow
as ag = A — 1/2 (log;omo)*(log,o 0) 2, ay = —log;, mo(log,o o) ™2 and ay = 1/2 (log;q o) 2.
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by a three-component power-law with the following parameters (Kroupa et al., 1993),

0.035m 13 for 0.08 <m < 0.5,
f(m) =< 0.019m 22 for 0.5 <m < 1.0, (2.6)
0.019m=27 for 1.0<m < .

In this formula, especially the exponent for masses 0.08 < m < 0.5 is very uncertain.
Depending on the abundance of very low-mass stars the exponent could vary between
—0.7 and —1.8.

Outside the solar vicinity, only the intermediate to high-mass parts of the IMF can be
determined. There are some indication that the slope of the mass spectrum obtained
from field stars may be slightly shallower than the one obtained from observing stellar
clusters (Scalo, 1998). The reason for this difference is unknown and somehow surprising,
considering the fact that field stars presumably come from dissolved clusters. It is possible
that the field star IMF is inaccurate because of incorrect assumptions about past star
formation rates and age dependences for the stellar scale height. Both issues are either
known or irrelevant for the IMF derived from cluster surveys. On the other hand, these
could be subject to failures in detecting low-mass stars due to extinction, crowding or
unanticipated pre-main-sequence evolution, which may be modified by collisional effects
likely to be important in dense clusters. However, this trend is not at all clear given the
different observational methods applied and the uncertainties involved. The IMF may
furthermore vary as function of the metallicity or correlated with that as function of
Galactic age.

Altogether, the initial stellar mass spectrum has been derived from vastly different regions,
from the solar vicinity to dense clusters of newly formed stars. Besides differing in the
details as discussed above, all determinations share the same basic features. Therefore,
the IMF is ofter considered as being a universal function, common to all star forming
regions.

2.3.2 Models for the IMF

The existing models to explain the initial distribution of stellar masses can be divided
into two major categories. The first group points out the dominance of the initial con-
ditions for star formation. In this picture, the structural properties of molecular clouds,
the mass distribution of Jeans-unstable gas clumps and their spatial and kinematical fea-
tures, determine the mass of the star that forms inside a gas clump. Assuming a fixed
star formation efficiency of individual clumps, there is a one-to-one correspondence be-
tween the final star and the molecular cloud structure. The idea that fragmentation of
clouds leads directly to the masses of forming stars dates back to Hoyle (1953) and later
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Larson (1973). More recently, this has been extended to include the observed fractal and
hierarchical structure of molecular clouds (Larson, 1992, 1995). Indeed random sampling
from a fractal cloud seems to be able to reproduce the basic features of the observed
IMF (Elmegreen, 1997). Price & Podsiadlowski (1995) and Murray & Lin (1996) consider
collisional interaction between cloud pieces to make the clump or star mass distribution.
Studying different fragmentation schemes, Zinnecker (1984, 1990) shows that whenever
a large set of parameters is involved in determining stellar masses, invoking the central
limit theorem naturally leads to a log-normal distribution function. This shall be derived
in detail in Sec. 2.3.3.

The second group of IMF models incorporate the concept, that the stars themselves may
determine their masses. Silk (1995) discusses the IMF for stars that have masses limited
by feedback due to both ionization and protostellar outflows. Nakano et al. (1995) describe
a model in which stellar masses are sometimes limited by the mass scales of the formative
medium and sometimes are limited by stellar feedback. The most detailed model in this
category stems from Adams & Fatuzzo (1996) and provides a transformation between the
initial conditions in molecular clouds and the final masses of the forming stars. In the
limit where many independent physical variable contribute to the stellar masses, applying
the central limit theorem leads to a log-normal IMF.

Probably the truth lies in a combination of both categories of models. The structure and
dynamical state of molecular clouds are certainly important in determining the properties
of protostellar cores that form via gravitational collapse in Jeans unstable gas clumps.
However, further physical phenomena come into play to determine which fraction of clump
mass will end up in the (multiple) stellar objects in the center. The viscous transport
processes in the accretion disk are important, as well as stellar winds or outflows, and in
the case of massive stars their radiation field.

Regardless of the detailed physical processes involved, the most important and common
feature to all appears to be their statistical nature. Given a set of initial conditions, one
is not able to compute the fate of individual objects. Only in a probabilistic sense it is
possible to determine the evolution of an ensemble of objects. The implication is that
the star formation process can only be understood within the framework of a statistical
theory.

2.3.3 The IMF as a Result of the Central Limit Theorem

In this section, a statistical approach to the calculation of the IMF is adopted. The IMF
will be derived in the limit in which a large number of independent physical variables are
required to determine the stellar masses.
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Consider the case in which the mass M of a star can be expressed as the product of N
independent variables x;

Taking the logarithm of this equation, the logarithm of the mass is a sum of the random
variables,

N
InM =) Inz; + constant , (2.8)
j=1

where the constant term includes all quantities that are truly constant, e.g. the gravita-
tional constant GG or the gas constant R. The stellar mass is determined by a composite
random variable which is the sum of N independent random variables Inz;. The central
limit theorem shows that the distribution of the composite variable always approaches a
normal distribution as the number N of variables approaches infinity (Bronstein & Se-
mendjajew, 1987). For the application of the theorem, a transformation into normalized
variables ; is useful, which are given by

&=z — (nz;)=ln (ﬂ> . (2.9)

L
The angle brackets denote averages taken over the logarithm of the variables,

Inz; = (Inz;) = /oo Inz;fj(lnz;)dInz; , (2.10)

here, f; is the distribution function of the variable z;.

Due to their definition, the normalized variables £; have zero mean and their dispersions
oj are given by

o} = /o:o & fi(&)dg; . (2.11)

The composite variable = finally is defined by

(11

zjgjlgj :jilln <ﬁ> . (2.12)

Zj
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It also has zero mean and, since the variables are assumed to be independent, its variance
Y. is the sum of the dispersions of each variable,

N

2= 07, (2.13)

A new normalization introduces

(1>

041 11

(2.14)

which again has zero mean but now unit variance. For N — oo, the central limit theorem
describes its distribution function as being Gaussian,

~ 1-
f(E) = (2m) " exp(=5Z7) (2.15)

independent of the distribution f; of the individual variables x;.

In terms of the variable =, the mass function (2.7) becomes
InM =1InMy+X=, (2.16)

with M, being a characteristic mass scale defined by

In M, = g: (Inz;) . (2.17)

=1

Combining the two equations (2.15) and (2.16), we can write the distribution f of stellar
masses in the form

In f(lnm) = A — L

5 |In (EHQ : (2.18)

mo

where A is a constant and where we have normalized all masses to the solar value (m =
M/(1Mg) and my = My/(1Mg)). This is the log-normal form of the IMF first introduced
by Miller & Scalo (1979). It is known, that in the solar vicinity this functional form fits
very well the mass distribution of multiple stellar systems with masses less than few solar
masses (Sec. 2.3.1). Furthermore, it is well suited to describe the mass distribution of
protostellar cores formed in our numerical simulations as the result of the dynamical
evolution of isothermal self-gravitating gas (see Sec.’s 6 and 7).
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Chapter 3

Mathematical and Numerical
Concepts

In this chapter we present a short introduction of the mathematical equations used to
describe the time evolution of a fluid (Sec. 3.1). The equations of hydrodynamics in-
terconnect mechanical properties of the system with thermodynamical observables like
temperature 7' (or equivalently internal energy ¢€), density p and pressure p. They can
be extended for describing gravitational action (via the potential ¢) or the influence of a
magnetic field B. First, we derive the complete set of equations, including the equation of
state necessary for closure. Following that, the stability of self-gravitating fluids is ana-
lyzed, in particular the Jeans criterion for gravitational stability is derived. Then, in Sec.’s
3.3 and 3.4, we specify methods to solve the equations of hydrodynamics numerically for
complex systems and introduce the technique of smoothed particle hydrodynamics (SPH).
We combine this method with the special-purpose hardware device GRAPE which is de-
scribed in Sec. 3.5. Section 3.6 follows with a description of the method to incorporate
periodic boundary conditions into our numerical scheme. Finally, the performance of the
method is analyzed in Sec.3.7.

3.1 The Equations of Hydrodynamics

In the framework of classical physics, fluids and gases are large ensembles of interact-
ing particles. The state of the system is generally described by its location in the 6/N-
dimensional phase space, where N is the number of particles in the system. The time
evolution of the system is identified as its trajectory through phase space. For large en-
sembles of particles, the exact solution of the problem is an unsurmountable task. In
analogy to quantum mechanics, one furthermore needs to adopt a probabilistic point of

37
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view and substitute the exact location of the system in phase space by a N-body prob-
ability density. The time evolution is then governed by the equation of motion for the
N-body probability distribution f(™). Physical observables are typically associated with
one or two-body operators, which require only knowledge of the reduced one or two-body
probability density. In general, the reduced n-body probability is derived by integrating
out all but n of the N variables of f"). The equations of motion for this reduced de-
scription of the system form a hierarchy of equations, the BBGKY-hierarchy, after Born,
Bogoliubov, Green, Kirkwood and Yvon (for a thorough introduction see the excellent
textbook of Reichl, 1991; or Landau & Lifshitz, 1983). It is impossible to solve this system
of equations without a specific approximation to terminate it, a feature intrinsic to all
reduced descriptions.

On the lowest level of the hierarchy, there is the one-body distribution function f =
fW(q, p,t) in the 6-dimensional phase space. At any time ¢ the function f(q,p,t) d’qd’p
describes the probability of finding a particle in the volume element d3g at the location g
and with momenta in the range d®p around p. The equation of motion for f is called the
Boltzmann equation,

d 0 . :
L AR
:%+pvqf+Ffo=fc. (3.1)

Here, the first line is equivalent to the transition from a comoving (Lagrangian) coor-
dinate system to a spatially fixed one (Eulerian). The second line follows from p = q
and F = p. Finally, f. on the right-hand-side contains the influence of the higher-order
contributions from the BBGKY-hierarchy; it is often called the collision term. For “colli-
sionless” systems the “collision” term f. equals zero; the flow in phase space resembles an
incompressible fluid (this is Liouville’s theorem for the one-body distribution function f).
For realistic systems, solving Boltzmann’s equation exactly is still not feasible. However,
there are further means to simplify the description of the system: Observable quantities —
the thermodynamic observables — are typically moments of the Boltzmann equation. For
the thermodynamic approximation to be valid, expanding equation (3.1) into moments
must yield (locally) well defined and meaningful quantities. This is the case, if the dis-
tribution function is a “smoothly” varying function on the scales considered, or stated
differently, the averaging scale must be much larger than the mean free path of the gas
particles. This is true for the problems considered in this thesis.

However, this approximation breaks down in certain physical regimes. In strong shocks,
for example, the scale over which the thermodynamic quantities vary considerably be-
comes comparable to the mean free path. Therefore, hydrodynamic discontinuities arise
requiring extensions (and modifications) of the thermodynamic description. Supersonic
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turbulence (for instance in the interstellar medium) is an extreme example for this behav-
ior (Mac Low, 1998). Another example for the invalidity of the hydrodynamic approxi-
mation are phase transitions. Here, the correlation length of the particles in the system
increases towards infinity, i.e. each gas particle interacts with every other one and the as-
sumption of isolated (uncorrelated) encounters breaks down. Then, computing moments
of the Boltzmann equation is no longer meaningful and properties of the system have to

be described by a more complex scheme, by the renormalization group theory (Reichl,
1991).

Therefore, applying a thermodynamic description to the interstellar medium and to molec-
ular clouds in particular raises the question about the validity of this approach. Besides
the ubiquity of shocks and perhaps closely related with it, the ISM is hierarchically struc-
tured or fractal on all scales observed (see Sec. 2.1). Fractal or fully hierarchical systems
are per definitionem self-similar on all scales, which means there is no scale below which
the system can be considered smooth and on which the averaging procedure is well defined
(for a mathematically sound discussion of fractal behavior see Falconer, 1990). However
in real physical systems, the fractal regime does have limits. The upper limit is usually
the size of the whole system, e.g. the size of the molecular cloud. And the lower limit
typically is the scale on which new physical effects become relevant. In the ISM, this is
the scale on which a detailed description of the microphysics involved (non-LTE radiation
transfer, the influence of dust grains, etc.) becomes important. Since numerical simula-
tions are not able to reach the resolution necessary to cover the complete fractal regime,
it is not clear whether an algorithm based on the thermodynamic description is adequate
to describe the ISM. This situation gets even more complicated, if gravity is included.
Gravity is not a short range force; its interaction range is infinite. This additionally im-
plies that the system is critical on all scales, and self-gravitating systems behave similar
to systems at phase transition (see de Vega et al., 1996b,a). However, since a complete
and fully consistent theory for self-gravitating gaseous systems does not exist, this work
follows the astrophysical tradition and adopts the thermodynamic approach.

If one assumes that the thermodynamic approximation is valid, then the physical quanti-
ties used to describe molecular clouds and the interstellar medium (and its fragmentation
and star formation properties) are temperature 7' (or equivalently internal energy ),
density p, pressure p, and gravitational potential ¢. The hydrodynamic equations for a
self-gravitating compressible fluid follow as,

dp _ Op

P +v-Vp=—pV-wv (continuity equation) (3.2)
dv . ov . 1 2 n
E_atﬂ” V)v = pr V¢+an+(C+3>V(V v)

(Navier-Stokes equation)  (3.3)
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d d
d_zﬁf = % +v-Ve =T d—i — ]—;V v (energy equation) (3.4)
A¢p = 4rGp (Poisson’s equation) (3.5)
p = RpT (equation of state) (3.6)

The continuity equation (3.2) describes the time evolution of the density, which is the
0. moment of the Boltzmann equation. The 1. moment is the velocity of a fluid element,
and its motion is determined by Navier-Stokes’ equation (3.3). It is the hydrodynamic
equivalent to Newton’s force law. A fluid element can be accelerated by a pressure gra-
dient (1. term), gravitational (2. term), or viscous forces (3. and 4. term with the two
viscosity coefficients 17 and ¢). In an incompressible fluid any velocity divergence vanishes,
V- v =0, and the last term is zero. The energy equation (3.4) follows straight from the
thermodynamic relation de = T'ds — pdV = T ds + p/p*dp (Landau & Lifshitz, 1966).
For an adiabatic gas, the first term on the right hand side vanishes. However, there may
be heat sources in the system that add energy to a fluid element, or phenomena that
remove energy from the gas. Any of those processes can be incorporated into the T'ds/dt
term. For example, in the interstellar medium, stellar winds or cosmic rays heat the
gas, and at the same time the gas radiates away part of its energy and thus cools again.
Typically some kind of equilibrium state is reached. A fully self-consistent description
of the processes governing the ISM should therefore include a detailed description of ra-
diation transfer. However, for typical densities and temperatures in molecular clouds,
ie. lem 3 < n(Hy) < 10" cm 2 and T~ 10 K, the gas can cool very efficiently and the
opacities in the molecular lines involved are low enough for the medium to be optically
thin. Hence, treating the gas isothermally is a good approximation. The gravitational
potential and the density are related via Poisson’s equation (3.5) and finally, the set of
equations has to be closed by the equation of state, which describes the relation between
pressure and density. Typical for closure equations, it cannot be derived from within the
system, but stems from including additional physical phenomena (for a detailed descrip-
tion see Reichl, 1991; Landau & Lifshitz, 1966, 1983). In the simplest description, we
consider the ISM as an ideal gas (Eqn. 3.6). Furthermore, we treat the gas isothermally,
since we deal with gas in the regime, where it can cool very effectively. With ¢, = (RT)/?
being the isothermal sound speed, it then follows

p=cp. (3.7)

Observations in molecular clouds furthermore reveal the presence of magnetic fields (see
e.g. Goodman et al., 1989; Goodman & Heiles, 1994; Crutcher et al., 1993, 1996; Troland



3.2. STABILITY OF SELF-GRAVITATING FLUIDS — JEANS CRITERION 41

et al., 1996). This can be accounted for in the above set of equations, first, by adding a
magnetic force term to the right hand side of the Navier-Stokes equation (3.3):
Fp = VB2+ 1(B V)B (3.8)
B 8T 4w ' '
Second, the time evolution of the magnetic field itself has to be taken into account self-
consistently. This is done in the Lorentz equation,

0B

— =Vx(vx B). 3.9

=V x(vxB) (39)
This equation is already a simplification. It neglects Ohmic dissipation and ambipolar
diffusion which occur in partially ionized media (for a full treatment see e.g. Shu, 1992,
or Mouschovias, 1991).

3.2 Stability of Self-Gravitating Fluids — Jeans Cri-
terion

The first and usually sufficient approach to determine the stability properties of physical
fluids is to analyze the linearized set of equations. In general, an equilibrium system is
described by a time-independent solution of the Boltzmann equation (3.1), a distribution
function fy(g, p) with dfy/dt = 0. Small perturbations to this equilibrium state can be
written as

f(qapat):fO(qap)+€f1(qapat)a (310)

with € < 1. This can be substituted into the Boltzmann equation (3.1). The terms
independent of € sum to zero because they are the equilibrium solution. In a first order
approach, terms of order €2 and higher are neglected since ¢ < 1. What remains is a
linearized set of equations governing the time evolution of the perturbation. Deriving a
dispersion relation, the properties of growing and decaying modes can be studied.

The linearized set of equations for an isothermal, self-gravitating fluid (see Eqn’s. 3.2, 3.3,
3.5 and 3.6) are

op1

E + ng v =10 R (311&)
vy 2P1

= LA 11.b

ot VCs 00 v¢1 ) (3 )

Agbl == 47TGp1 . (311C)
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Here, we have neglected viscosity effects (n = ¢ = 0). The equilibrium state is charac-
terized by py = const. and vy = 0. From the definition of the isothermal sound speed
(Eqn. 3.7) follows p; = ¢2p;. Furthermore, we make the ad hoc assumption that Pois-
son’s equation (3.11.c) describes only the relation between the perturbed potential and
the perturbed density. In this case, ¢ = 0 can be chosen. This is the so called Jeans
swindle (see e.g. Binney & Tremaine, 1987).

By taking the time derivative of Eqn. 3.11.a and the divergence of Eqn. 3.11.b and by
eliminating v; and ¢, the equations can be combined into a wave equation for the density
perturbation py,

0”py
ot?

—V?%p; — 4nGpopy =0 . (3.12)

Since the equilibrium state is homogeneous, the coefficients of the partial derivatives in
Eqn. 3.12 are independent of position = and time t. The solution of this type of partial
differential equation is known to be a superposition of plane waves,

(1) = / &k A(k)elkr—= )] (3.13)
The waves follow the dispersion relation
w? = 2k* — 4nGpy . (3.14)

If the density py or the wave length A = 27/k are small, the dispersion relation (3.14)
reduces to that of a sound wave, w? = ¢2k*. With increasing wave length or density, the
frequency decreases and will eventually become negative. When w? < 0, say w? = —«2, the
time dependence of the solution is proportional to exp(+kt), corresponding to exponential
growth or decay. The existence of a growing solution implies that the system is unstable.
Hence, from Eqn. 3.14, it follows that modes will collapse for wave numbers

471'Gp0
2 2

S

(3.15)

The critical wave number kj is called the Jeans wave number. In terms of the wave length,
a perturbation is unstable if the wave length exceeds the Jeans length A\; = 27 /kj, that
is, if

7'('02

> \2= 5 3.16
J GPO ( )
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Assuming the perturbation is spherical with diameter Aj, this corresponds to a critical
mass contained inside the perturbed volume. The so called Jeans mass is

A 1 1 2\ ?
i i W s i 3.17
I 3 PO(2 J) Gﬂpo (Gp()) ( )

For isothermal gases, substituting the sound speed by its dependence on the temperature,
c2 = RT, the critical mass is

5/2 R 3/2
MF%(E) cpo 2T (3.18)

The critical mass for a perturbation to collapse scales as My o pal/Z T3/2, i.e. it decreases
with increasing density and decreasing temperature. The Jeans instability has a simple
physical interpretation. The energy density of a sound wave is positive. However, its
gravitational energy is negative, because the enhanced attraction in the compressed re-
gions outweighs the reduced attraction in the dilated regions. The instability sets in at
the wave length A; where the net energy density becomes negative. The perturbation
will grow allowing the energy to decrease even further. In isothermal gas, there is no
mechanism that prevents complete collapse. In reality, however, during the collapse of
molecular gas clumps, the opacity increases and at densities of n(Hy) ~ 10 cm™ the
equation of state becomes adiabatic. The collapse proceeds slower. Finally at very high
central densities (p ~ 1 gcm™) fusion processes set in. This energy source leads to a new
equilibrium (e.g. Tohline, 1982).

3.3 Smoothed Particle Hydrodynamics

Using a particle based scheme to solve the equations of hydrodynamics was first introduced
by Lucy (1977) and independently by Gingold & Monaghan (1977). Originally proposed
as a Monte-Carlo approach to calculate the time evolution of a hydrodynamical system,
the formalism of SPH — smoothed particle hydrodynamics — is more intuitively understood
as an interpolation scheme (Gingold & Monaghan, 1982). This provides better estimates
for the errors involved and the convergence properties of the method. It is also the path
followed in this brief introduction. Excellent overviews over the method and some of its
applications provide the reviews of Benz (1990) and Monaghan (1992).

As derived in Sec. 3.1, hydrodynamical quantities are obtained in an averaging process
involving scales larger than the local mean-free path of particles in the system. A related
approach is facilitated in SPH: The fluid is represented by an ensemble of particles i,
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each carrying mass, momentum, and hydrodynamical properties. The technique can
therefore be seen as an extension of the pure gravitational N-body system. Besides being
characterized by its mass m; and velocity v; and its location r;, each particle is associated
with a density p;, an internal energy ¢; (equivalent to a temperature T;), and a pressure
p;. The time evolution of the fluid is then represented by the time evolution of the SPH
particles. Their behavior is governed by the equation of motion, supplemented by further
equations to modify the hydrodynamical properties. Thermodynamical observables are
obtained by averaging over an appropriate subset of the SPH particles.

Mathematically, the local averaging process for any quantity f(7) can be performed by
convolution with an appropriate smoothing function W (r, h):

(f(r)) = /f(r')W(r— r' h)d’r . (3.19)

This function W (r, h), often referred to as the smoothing kernel, must be normalized, i.e.
satisfying

/W(r, h) d*r = 1 (3.20)

The width of the smoothing function is parametrized by the smoothing vector h. It follows
for the limit h — 0 that

{(f(r) — f(r). (3.21)

For h becoming infinitely small, the kernel W (r, h) approaches the Dirac delta func-
tion §(r)!. For simplicity, most authors adopt spherical symmetry in the smoothing and
averaging process, i.e. the kernel degrades to an isotropic function of the interparticle
distances: W(r,h) = W (r,h) with » = |r| and h = |h|. This constrains the achievable
resolution, especially when dealing with huge density gradients along a preferred axis like
in shocks, or in filamentary and sheetlike structures. Some authors therefore introduced
a tensor description of the smoothing method and use anisotropic kernels to account for
anisotropies in the particle distribution. Although more complicated, this approach has
considerable advantages over the spherical averaging (see e.g. Shapiro et al., 1996). We
use SPH in combination with the special hardware device GRAPE which applies spher-
ical smoothing of the gravitational potential and forces (see Sec. 3.5). For consistency,
we therefore use the spherical averaging procedure throughout the entire computational
scheme.

!Dirac’s §(7) is not a function in the sense of classical analysis. It is a mathematical entity exactly
defined as convolution kernel, i.e. by the sequence of Eqn.’s 3.19, 3.20, and 3.21 in the limit » — 0.
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The following list describes some useful mathematical identities for the averaged quanti-
ties: According to Eqn. 3.21, the kernel function can be seen as an approximation to the
delta function for finite h. Hence, the averaged function (f(7)) can be expanded into a
Taylor series for h. If the kernel is an even function, the first order term vanishes and the
errors are given by,

(f(r)) = f(r) + O(h?). (3.22)

For spherical kernels, Eqn. 3.22 reads

() = 1)+ K0 () + 0007, 323

with the constant K being independent of h. Approximating f(r) by (f(r)) is therefore
of second order in h. Since the term in A? is multiplied by the gradient of f, this implies
perfect equality for constant or linear functions. Furthermore, for the term in h? to be
small, the function f should not be discontinuous or having too large gradients over the
size of W. This causes problems in the treatment of strong shock fronts.

Within its intrinsic accuracy, the smoothing process itself is a linear function with respect
to summation and multiplication,

(f(r)+g(r)) = (f(r)) + (g(r)), (3.24.2)
(f(r)-g(r)) = (f(r)) - (g(r)). (3.24.b)
The first equation is an identity following from the linearity of integration with respect

to summation, and the second one is true to second order in h. It furthermore follows for
the time derivative and the gradient,

d d

el — (= .25.

e = (1), (3.25.)

V{(f(r) =(Vf(r). (3.25.b)
The spatial derivative of the physical quantity furthermore can be transformed into a
spatial derivative of the kernel function. This is shown by integrating by parts and

assuming that the surface term vanishes. If the solution space is extended far enough,
either the function f itself or the kernel approaches zero. Thus,

V(f(r) =(V[(r)) = /f(?“') VW(lr—r'|,h)d*" . (3.26)
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The basic concept of SPH is a particle representation of the fluid. Hence, the spatial
integration in the averaging process transforms into a summation over a fixed number of
points. For example, the density at the position of particle i is computed as

(p(ri)y =3 mW(|ri — ], ) . (3.27)

In this picture, the mass of each particle is smeared out over the kernel region. The
continuous density distribution of the fluid is then obtained by summing over the local
contribution of each element. The name “smoothed particle hydrodynamics” derives from
this analogy. Equation 3.27 is subject to two distinct interpretations, which are analogous
to the meanings of computational gather and scatter operations. The scatter interpreta-
tion assumes that each particle has a mass which is smeared out in space according to W
and h. The density at the location of particle i is then determined by summing over the
contributions from the density profiles of those neighboring particles j, whose smoothing
regions overlap with particle ¢, i.e. one uses h; in Eqn. 3.27. Alternatively, the gather
interpretation regards particles as point markers in the fluid. Local properties (i.e. for
particle i) are obtained by sampling all particles within the smoothing region of i and
weighting them according to Eqn. 3.27 using h;. Both viewpoints are indistinguishable, if
all particles have the same smoothing length, but lead to different results, if / is spatially
variable (see Sec. 3.4.1, or Hernquist & Katz, 1989).

SPH is used, because it is intrinsically Lagrangian: As opposed to mesh-based methods, it
does not require a fixed grid to represent fluid properties and calculate spatial derivatives
(see e.g. Hockney & Eastwood, 1988). The fluid particles are free to move and — in
analogy — constitute their own grid. The method is therefore able to resolve very high
density contrasts, by increasing the particle concentration where needed. This it most
effective, if the smoothing length is adaptable, as described in Sec. 3.4.1. There is no need
for the complex and time-consuming issue of adaptive grid-refinement (Berger & Colella,
1989). However, one weakness compared to grid-based methods is that the analytical
convergence behavior is mathematically difficult to assess. Most attempts to address this
issue are based on numerical resolution studies and empirical approximations (Steinmetz
& Miiller, 1993; Balsara, 1995). Another reason for choosing SPH is the possibility to use
it in combination with the special-purpose hardware device GRAPE, see Sec. 3.5. This
allows calculations at supercomputer level on a normal workstation, and enabled us to do
the extensive parameter study presented in this thesis.
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3.4 Implementation and Limitation of SPH

After having introduced the general concept of SPH in the last section, we now present a
more detailed discussion of the numerical realization. We start with the appropriate choice
of the kernel function and the implications of a variable smoothing length (Sec. 3.4.1).
Then follows a derivation of the equations of hydrodynamics in terms of the SPH for-
malism (Sec. 3.4.2), and a discussion of the variable time step scheme used in the code
(Sec. 3.4.3). Finally, in Sec. 3.4.4, accretion particles, a special feature to handle highly
collapsed objects are described. The code was originally developed by Benz (1990). Then,
I. A. Bonnell and more so M. R. Bate modified the scheme by introducing variable time
steps and accretion particles. It was then a considerable effort in this thesis to combine the
SPH code with the special-purpose hardware device GRAPE and to implement periodic
boundary conditions (see Sec.’s 3.5 to 3.7).

3.4.1 Choice of the Kernel Function and Variable Smoothing
Length

As discussed in the previous section, we use 1-dimensional, i.e. spherical kernel functions.
There are a variety of appropriate functions proposed in the literature, ranging from
Gaussian functions (Gingold & Monaghan, 1977), to spline functions of third or higher
order and with compact support (e.g Monaghan & Lattanzio, 1985; Monaghan, 1985).
These kernels interpolate at least to second order in h, and are always positive in the
range of interest. Furthermore all are smooth functions with well defined first derivatives.
The spline functions furthermore have the advantage, that there is a clear limit to the
number of particles contributing in the averaging process due to their compact support.
For the others, one has to implement an artificial cut-off. We use the 3™ order spline
introduced by Monaghan (1985). Defining v = r/h it reads,

1 1— 302+ 343, for 0 <wv <1;
W(r,h) =W (r,h) = e 12 —v)?, for 1 <wv < 2; (3.28)
0, otherwise.

One of the main advantages of SPH over grid-based methods is its Lagrangian nature and
its ability to resolve high density contrasts. The spatial resolution of SPH is limited by
the scale over which forces and physical properties of the fluid are smeared out, i.e. it is
determined by the smoothing length h. To make the best use of its spatial flexibility and
achieve optimum resolution, one has to allow for variations of this parameter. In high-
density regions one needs to decrease h to correctly handle the small-scale kinematics.
On the other hand, in low-density regions one has to increase h in order to ensure that
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a sufficient number of particles contribute in the averaging process. It has proven useful
to determine h such that the number of neighbors always lies in the range from 30 to 70,
with the optimum value being about 50.

However, there are several points to consider when allowing for spatial and temporal vari-
ations in the smoothing length. First, this introduces additional errors to the scheme.
The Taylor expansion of the averaged values, Eqn. 3.23 for spherical symmetric kernel
functions, then contains contributions from VA (Hernquist & Katz, 1989; Nelson & Pa-
paloizou, 1994). But these are of second and higher order, and the total error is of the
same order as the one inherent to the SPH technique. The same is true for the term pro-
portional to dh/0t occuring in the equations of motion. Second, introducing a spatially
varying smoothing length also modifies the gradient of the kernel W (|r — r'|, h) entering
Eqn. 3.26. It is

VW(|lr—7r'|,h) = VW(lr—7r'|,h) +%W(|r—r'|,h) Vh . (3.29)

h=const. r=const.

with A = h(r). The new term on the right-hand side is proportional to the gradient of
the smoothing length. It becomes of importance only if the smoothing length varies on
scales less than the smoothing length itself (Evrard, 1988). Since all quantities in SPH
are smoothed over this length scale, it is generally neglected. In a typical calculation,
this indeed is an adequate approximation, which was numerically confirmed by Nelson &
Papaloizou (1994) who extensively studied cases including and neglecting the Vh-terms
in their derivation of the SPH equations.

Third, more important for a code with variable smoothing length is force anti-symmetri-
sation. When applying the smoothing procedure in the most straightforward way, the
mutual forces between two particles ¢ and j are no longer anti-symmetric for different
smoothing lengths h; and h;. Particle ¢ experiences a different force from particle j
than visa versa. Newton’s third law is violated and momentum is no longer a conserved
quantity. It is therefore necessary to reconstitute the force anti-symmetry. Amongst
the several ways to achieve this (for an overview see Monaghan, 1985), we follow Benz
(1990) and simply substitute & in all previous equations by the arithmetic average of the
smoothing length for all particle pairs,

hi + h;

5 (3.30)

h,—>h,ij:

Fourth, for variation of the smoothing length one needs criteria how to do this. In our
SPH implementation, we modify A such that the number of neighbors roughly remains
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constant for each particle. Hence, it is quite natural to couple h to the density p via

h = hy <@> " . (3.31)

p

Benz (1990) and Evrard (1988) proposed to use the derivative of Eqn. 3.31 for the time
evolution of h,

dh _ 1hdp

TP 3.32

dt 3pdt ( )
In combination with the continuity equation this yields

dh 1

L ZhV.v. )

% =3 V-v (3.33)

The smoothing length is thus evolved similar to any other hydrodynamical quantity. This
method works quite well in general and keeps the number of neighbors approximately
centered between 30 to 70. However, in the extreme cases, where adapting h according to
Eqn. 3.33 exceeds these limits, we enforce them by multiplying i with some appropriate
factor. For alternative ways to control the evolution of h see Steinmetz & Miiller (1993).

3.4.2 The Fluid Equations in SPH

As described in Sec. 3.3, hydrodynamical quantities are obtained in SPH by an averaging
process from an ensemble of fluid particles. When applying a spline kernel with compact
support (e.g. Eqn. 3.28) only particles within a finite radius 2h contribute to the averaging
process. According to Eqn. 3.27 the density at the location r; of particle ¢ then follows as

N;
pi = m;W(ry, hij), (3.34)
i1

with r;; = |r; — rj|, hi; being defined by Eqn. 3.30. N; is the number of neighbors
considered for particle i. Particle ¢ itself is included in the list and contributes to the
sum.

In addition to the density, the pressure p; for each particle must be defined via the equation

of state (3.6), which for an isothermal gas is

p=cp.
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The calculation of the other hydrodynamical quantities requires knowledge of density
p; and pressure p; for each particle . Therefore, the complete evaluation of the SPH
equations is split into two parts. In a first loop over all particles, the values p; and p; are
computed, then in a second one the remaining fluid properties follow.

The motion of the fluid is governed by the Navier-Stokes equation (3.3). Considering only
the pressure contributions, it reduces to Euler’s equation,

d'v_afv

_ 1o o(P\_P
dt_8t+( -V)v= pr— V(p) 5 Vp. (3.35)

p

The last transformation makes use of the identity V(pp~!) = p~'Vp—pp 2Vp. Applying
the SPH averaging procedure, this translates into an integral equation, and only the
second term on the right hand side remains. In the integration of the first term, the
contribution from the surface vanishes, because either the pressure or the kernel itself
are assumed to become zero at the integration border. If this is not the case, adequate
boundary corrections have to be added. When transformed into a summation over a
discrete set of particles, the SPH formulation of Euler’s equation is

d 'vz

p.
- Z (p p_;> ViW (rij, hij) (3.36)
i J

where V; means the gradient with respect to the coordinates of particle <. The equation is
anti-symmetric with respect to ¢+ and 7 and conserves the momentum locally and globally.

So far only the first term on the right-hand side of Eqn. 3.3 has been treated. The next
term, the gravitational force, must be computed by summing over the contributions from
all N particles in the ensemble. Unlike fluid properties, which are defined locally, gravity
has infinite range and the gravitational force for particle ¢ is

Vi = -G Z mj (3.37)

7'1]
— ] Tij
with the gravitational constant G' and r;; = 7, — ;. Our code allows two choices, the
gravitational forces can be computed either by using a TREECODE scheme, or by using the
special-purpose hardware device GRAPE. In the first case, the complete set of particles is
grouped into a hierarchy of mutual nearest neighbors. At the highest level each particle
builds a node together with its nearest neighbor. At the next levels these nodes are
grouped together, until at the lowest level only one node remains, containing the whole
system. When performing the sum in Eqn. 3.37, contributions from distant particles are
grouped together and only the interaction with a complete node is computed. Thus,
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the total number of evaluated force terms scales as O(N log N). To minimize two body
relaxation, the gravitational forces are smoothed using the SPH kernel for consistency.
GRAPE on the other hand solves Eqn. 3.37 by direct summation. Each single particle
is considered, and the forces are computed via the Plummer law (Eqn. 3.51). Despite
performing O(N?) operations, using this device with the force calculation hardwired to
specifically designed chips leads to a overall speed-up of a factor of 5 to 7 on Ultra Sparc
workstations compared to the TREECODE.

The most complicated quantity contributing to Navier-Stokes’ equation is the viscosity
(the 3. and 4. term in Eqn. 3.3). It parametrizes the physical mechanisms that convert
kinetic into internal energy, in heat. An exact treatment and derivation from molecular
kinetics is very complex and difficult. Equation. 3.3 is only a first approximation (see
Reichl, 1991; Landau & Lifshitz, 1966, 1983). In most astrophysical problems the molec-
ular viscosity is very small and dissipation of kinetic energy should occur only in shocked
regions. Therefore, SPH has no explicit treatment of physical viscosity. Nevertheless,
one needs to introduce the so called “artificial” viscosity. Besides the effects of numerical
diffusivity and dissipation inherent to every discretization of the hydrodynamical equa-
tions, in SPH one furthermore needs to prevent particle interpenetration in strong shocks.
The only way to enforce this is to spatially smear out the shock interface and introduce
terms to allow for dissipation in regions with strong velocity divergence. The standard
formulation for the viscous pressures is

Pa = op® = —apley(V - v) , (3.38)
and

ps = gp* = —Bpl*(V - v)*. (3.39)

The free parameters a and [ control the strength of the viscous terms, and £ is the
scale over which the shock is smeared out, typical values are ¢ ~ 3h. Equation 3.38
is a combined shear and bulk viscosity. Its primary purpose is to dampen post-shock
oscillations. Equation 3.39 is a second order, von Neumann-Richtmyer viscosity needed
to prevent penetration in high Mach number shocks. There exists extensive literature on
the limits and capabilities of this formulation of viscosity (Monaghan & Gingold, 1983;
Monaghan & Lattanzio, 1985; Benz, 1990; Monaghan, 1992). Typical values for the free
parameters are a ~ 1 and &~ 2 which guarantee adequate treatment of shocked regions
(Bate, 1995). The implementation of artificial viscosity for particle i is then

N;
sz_visc — Z H”V W Tz]a hz]) (340)
=1
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where the viscosity tensor II;; is defined by

s _{ (—atspij + Bu;)/piy for w1y <0,
l] -

41
0 for Vi - Tij > 0. (3 )

Here, 7;; = r; — r; and v;; = v; — v;. Furthermore, p;; = (p; + p;)/2 is the averaged
density, ¢ is the mean sound speed at the positions of particles 2 and 7, and

h,’l)ij . Tij

T2 00 p2 3.42
M= 2 1 0.010? (342)
Altogether, the SPH description of the Navier-Stokes equation is
d'vz p]
= —Z gt Iy ) Vil (g hy) = Vo (3.43)
i 7

Finally, if one relaxes the assumption of an isothermal equation of state one has to take
the variation of the internal energy into account. For an ideal gas (Eqn. 3.6), the energy
conservation takes the form of Eqn. 3.4. In the absence of external heat sources or sinks,
and for adiabatic conditions, only the second term on the right-hand side remains. It can
easily be translated into the SPH formalism,

de;

P =& Zmy vij - ViW (rij, hij) , (3.44)

Z]l

which is simple p;/p; times the divergence of the fluid V; - v;. In the absence of artificial
viscosity this conserves the energy (Benz, 1990).

However, artificial viscosity is needed and leads to heating of the gas in shocks. Viscous
terms therefore have to be included in the energy equation. As an example, for a polytropic
equation of state, p = Kp?, with K depending on the entropy s, the specific internal
energy of the gas is

K
v—1

€ =

p’t. (3.45)
The change of K due to the artificial viscosity can be derived as (Benz, 1990)

dK v —
PR Z NimILj vij - VW (ri5.hij). (3.46)
Pi j=1
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Altogether, the final SPH formulation of the energy equation 3.4 is

de;  pi 1

d_tl = p—; Z mj'vij . VZW(TZ]h’Z]) + 5 Z Nim]’Hi]’ 'vij . le(T”hZ]) + Fz 5 (347)
1 j=1 7j=1

where I'; includes the effects of external sources. For I'; = 0, this equation ensures total

conservation of the energy in the gas.

3.4.3 Variable Time Steps

The time integration of the SPH equations is performed using a second-order Runge-
Kutta-Fehlberg scheme (Benz & Mayor, 1984) with individual time steps for each particle
and an adaptive maximum time step.

High-density regions of gas are represented by particles with small separations in SPH. In
order to handle their dynamical evolution correctly, one has to allow for very small time
steps. On the other hand, in low-density regions the dynamical evolution occurs on much
larger time scales, and one could allow for relatively long time steps. Thus, allowing for
individual time steps for each particle results in a considerable reduction of the overall
computational time (Hernquist & Katz, 1989; Navarro & White, 1993). In the current
version of the code, the required time step is calculated individually for each particle.
Then, these time steps are binned into multiples of two of the minimum value. This has
the advantage, that groups of particles are evolved simultaneously. Furthermore, particles
on other time steps may also be advanced at the current time, if they are in smaller time
step bins or are synchronized, which means that the current time is a multiple of their
larger time step. The efficiency of the force calculation can be increased by calculating
the interaction between a synchronized particle pair only once, but assigning the result
to both partners.

The time step bins for the particles are determined from the Courant-Friedrichs-Lewy
(1928) condition, which is the ratio between a characteristic length scale and a charac-
teristic velocity. The time step must be smaller than the typical time 0tcpy,. It basically
means that information can only travel a certain fraction of the smoothing length h in

one time step and ensures reliable treatment of the kinematical properties. In the context
of SPH,

0.3h
cs + h|V - v|+ 1.2(acs + Bh|V - v|)

6tCFL = (348)

Here, h is the smoothing length, ¢ is the sound speed, and v is the particle velocity. The
two parameters a and J describe again the artificial viscosity. The term involving the
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viscosity is only included if necessary, i.e. for Vv < 0. Since this criterion is not sufficient
to guarantee good resolution during strong compression, there is also a force criterion,

h
|F|

where F' is the net acceleration of the particle. In addition, the use of a Runge-Kutta-
Fehlberg scheme introduces a third time step criterion. The changes in velocity, accelera-
tion, internal energy and smoothing length of individual particles between two time steps
are forced to be less than a given tolerance threshold. This leads to

5120t A
Stpxe = || o 3.50
ier |Qnew - Q01d| ( )

where () is the physical quantity considered, 0t is the current time step, and A is the given
tolerance. The time bin for the particle is then chosen to be the largest one satisfying
all three criteria. In this procedure, each particle can at all times move to a smaller time
step. However, care must be taken, when increasing the time step. This is only allowed at
times that are synchronized with the larger time bin. Otherwise, the integration scheme
would fail being of second order.

3.4.4 Accretion Particles

Regions in molecular clouds with masses exceeding the Jeans limit become unstable and
collapse. Unless there is an additional source of energy, gas pressure cannot hinder the
collapse and the central density grows with ever increasing rate until the whole reservoir is
exhausted. If the system is resolved properly, the growth of the density contrast demands
an ever decreasing minimum time step. All the computational effort is put into evolving
the gas within a few high density peaks, with the result that the calculation grinds to
a halt. The evolution of low-density gas cannot be followed despite the large number of
iterations done. This happens regardless of the numerical scheme used, and despite the
application of individual time steps.

In reality, however, at some late phases of the collapse additional physical effects become
important. Conservation of angular momentum enforces the formation of an accretion
disk, where matter can only stream toward the center on a viscous time scale. Magnetic
fields play an important role and may drive outflows along the spin axis. Finally at the
very center, the density might reach the level at which nuclear fusion reactions set in.
This new source of energy completely alters the system and establishes a new equilibrium
state. A star is born in the central region and blows away the parental cloud (see Chap. 2).
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All these effects are not included in our code. For this thesis, we concentrate on the
early phases of star formation, on the fragmentation and collapse of molecular clouds in
a regime, where the gas can be treated isothermally. Therefore, whenever the density in
the central core of a Jeans unstable cloud fragment in our simulation exceeds a certain
threshold value, close to the densities for which opacity effects become important and the
evolution changes from isothermal to adiabatic, we replace the entire core by one single,
non-gaseous, massive ‘sink’ particle (Bate et al., 1995). This particle has a fixed radius
of the order of the Jeans radius of the core, and inherits the combined masses, linear
momenta and ‘spin’ angular momenta of the particles it replaces. It furthermore has the
ability to accrete any infalling SPH particle. In this process, the mass of the additional
particle, its linear momentum and angular momentum with respect to the sink particle
are added to the latter one, thus conserving the overall values. The accreted particle is
then removed from the calculation.

By adequately replacing high-density cores and keeping track of their further evolution in
a consistent way, the problem of extremely small time steps slowing down the computation
is avoided. It is also relatively simple to incorporate this procedure into the SPH scheme,
due to the Lagrangian nature of SPH. One needs to find (a) a description of the properties
of sink particles and how they accrete gaseous particles, (b) a method to create a sink
particle, and (c) define a proper treatment of the boundary conditions between the sink
particle and the surrounding SPH gas particles. These issues are discussed in great detail
by Bate et al. (1995). Hence, only a brief overview over the method used in our code will
be presented here.

(a) Properties of Sink Particles and their Accretion Process:

A sink particle is in principle a regular SPH particle, but tagged to carry additional
properties. Sink particles interact with the normal SPH particles and with each other
only via gravity. Furthermore, gas particles do not interact with other gas particles on
the opposite side of the sink particle, except gravitationally. Sink particles have a pre-
defined radius, typically chosen to be comparable to the Jeans radius of dense cores.
Gaseous particles that come close to that accretion radius r,.. may be accreted. There
are several criteria determining whether the particle will get swallowed or not. First, the
particle must be bound to the sink particle. Second, the specific angular momentum of
the particle with respect to the sink particle must be less than what is required to move
on a circular orbit with radius r,.. around the sink particle. These conditions ensure,
that particles that come accidentally close to the sink and would normally leave again the
accretion region are not accreted. The third criterion is that a SPH particle gets accreted
onto the sink particle it is most tightly bound to. If a cluster of sink particles competes
for gaseous particles, typically the most massive one wins. If a gas particle is accreted,
its mass and linear momentum becomes added to the sink. Also the spin of the sink is
updated to account for the angular momentum of the accreted particle. In the individual
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time step scheme, particles are only accreted if they have completed their time step.

(b) Sink Particle Creation:

Either sink particles are included in the calculation from the beginning, or are formed
dynamically during the collapse. When a regular SPH particle exceeds a certain den-
sity threshold (typically a factor of 10* higher than the average density), and when its
smoothing length is less than half the accretion radius (which ensures that a sink particle
is formed from at least & 35 particles), then it is considered to become a sink particle. The
following requirements have to be fulfilled: All neighbor particles must be synchronized
at the current time, and the sink should only be formed, if these neighboring particles
continue to collapse and do not expand again. For this to be true, first, the ratio « be-
tween the thermal energy and the gravitational energy of these particles must be o < 1/2.
Second, we require o + 3 S 1, where /3 is the ratio between the rotational energy and the
binding energy. The angular momentum is calculated about the position of the densest
particle. Third, the total energy of the particles has to be negative and, finally, also the
divergence of the accelerations must be negative. If it were positive, the entire region
could be in the process of being tidally disrupted or in expansion after core bounce. In
both cases no sink particle should be formed. If all these test are passed, the particle
with the highest density gets tagged a sink particle and all its neighbors become accreted
according to (a).

(c) Boundary Conditions

Ideally, the formation of sink particles in an SPH simulation should not affect the evolu-
tion of gas outside its accretion radius. In practice two effects should be considered: The
sink particle is per definition spherically symmetric. The original core of gas particles
from which it was created may deviate from this symmetry. In this case, the gravita-
tional potential will be altered by neglecting all multipole moments higher than zero.
However, this effect is very small, and it is more important that sink particles introduce
a discontinuity into the SPH particle distribution. By accreting particles, they produce
holes of the size of their accretion volume. This affects the pressure and viscous forces
onto neighboring particles. However, constructing adequate boundary conditions at the
‘surface’ of the sink particle can correct for these effects (Bate et al., 1995).

As conclusion, introducing sink particles to the SPH method leads to considerable increase
of the overall computational performance of a code. It solves the problem of high density
regions reducing the time steps by substituting dense cores by one single particle. This
replacement does not alter the evolution of the remaining gas particles, which has been
shown in extensive tests by Bate et al. (1995). A further point of advantage is, especially
for the work described in this thesis, that each sink particle has its own ‘identity’ and
carries properties representing an entire gaseous region. When studying an entire cluster
of condensed cores, this is very useful and simplifies the statistical analysis.
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3.4.5 The Resolution Limit of SPH

This section summarizes the limitations of the SPH method. As discussed in Sec. 3.3,
the advantage of SPH is its Lagrangian nature and its ability to resolve high density
contrasts. Particles are free to move and and concentrate in regions of high density.
In regions of low density, the particle concentration is decreased. The basic feature of
the SPH method is that all relevant quantities are derived in a local averaging process.
For this process to lead to reliable results, the number of neighboring particles taken
into account should be between 30 and 70, with the optimum value being 50. This
fact determines the spatial resolution of the method. To make full use of its Lagrangian
nature and resolving power, it is necessary to introduce an adaptive smoothing length (see
Sec. 3.4.1). The smoothing length of particles in high density peaks can be chosen small.
For particles in voids it has to be large. Naturally, the local spatial resolution depends
on the particle number. The more particles are available in the simulation, the smaller is
the volume around every particle containing ~ 50 neighbors and the better is the spatial
resolution. The spatial resolution is also constrained by the Courant-Friedrichs-Lewy
(1928) criterion. It demands that the minimum time stepping in the SPH code is always
less than the time required for a sound wave to cross through the minimum smoothing
volume (see Sec. 3.4.3). In order to prevent the time stepping required to resolve very high
density peaks to become prohibitively small, one has to introduce a minimum smoothing
length and thus a minimum resolution. In self-gravitating gaseous systems the minimum
resolution is limited by a further constraint. In order to correctly treat the dynamical
evolution of high-density peaks, the mass contained within the smoothing volumes of two
interacting particles must be less than the local Jeans mass. Otherwise, the stability of
the clump against gravitational collapse depends on the detailed implementation of the
gravitational force law and on the kernel function used for the simulation, rather than on
physical processes. The criterion requires that the minimum Jeans mass that is reached
during the calculation must always be greater than approximately twice the number of
particles in the SPH kernels, i.e. M;Z100 m, with m being the mass of individual particles
(see Bate & Burkert, 1997). Within these limitation the SPH method calculates the time
evolution of gaseous systems very reliable.
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3.5 GRAPE and SPH

In the early 1990’s, the first GRAPE boards became available to the scientific community.
GRAPE is an acronym for “GRAvity PipE”. It is a special-purpose hardware device,
which calculates the forces and the potential in the gravitational N-body problem by
direct summation on a specifically designed chip with high efficiency (Sugimoto et al.,
1990; Ebisuzaki et al., 1993), thus leading to considerable speed-up in computing this
type of problems. In the last seven years, GRAPE boards have been used for studying
a variety of astrophysical problems, ranging from the evolution of binary black holes
(Makino et al., 1993b) up to the formation of galaxy clusters in a cosmological context
(Huss et al., 1997).

We use the currently distributed version, GRAPE-3AF, which contains 8 chips on one
board and therefore can compute the forces on 8 particles in parallel. The board is con-
nected via a standard VME interface to the host computer, in our case a SUN workstation.
C and FORTRAN libraries provide the software interface between the user’s program and
the board. The computational speed of GRAPE-3AF is approximately 5 Gflops.

The force law is hardwired to be a Plummer law,

N ommy(r — ) 551
TP 820

Here 7 is the index of the particle for which the force is calculated and j enumerates the
particles which exert the force; ¢; is the gravitational smoothing length of particle i; G
and m; and m; are Newton’s constant and the particle masses, respectively. The force
calculation is performed via a pipelining technique, as schematically described in Fig. 3.5.
First, one needs to store the positions of all particles j in the system into memory on the
board. This is done once at the beginning of the force loop. Then, the position of the
particle ¢ for which the forces need to be computed is loaded into the GRAPE chip. For
each particle pair ij, obtaining the gravitational potential and force involves calculating
their distance vector r;; = r; — 7y, its square 7> = 77, + ¢, and the two inverse values
1/r and 1/r3. Then the potential ¢;; = m;/r and the force F;; = m;r;;/r® have to be
added to the previous pair-wise values. Altogether, it takes 19 arithmetical operations to
perform this calculation. However, it can be done consecutively in a kind of pipeline. For
example, while computing the inverse 1/r for the pair 5, the square r can be calculated
for pair i(j+41), and the distance vector obtained for pair i(j+2), and so forth. Hence, one
needs N + 19 clock cycles to perform the complete force calculation for a single particle 7.

To achieve a high speed, concessions in the accuracy of the force calculations had to
be made: GRAPE internally works with a 20 bit fixed point number format for particle
positions, with a 56 bit fixed point number format for the forces and a 14 bit logarithmic
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Figure 3.1: Schematic diagram of the arithmetic operations involved to compute the potential and the
mutual force of a particle pair ij with GRAPE.

number format for the masses (Okumura et al., 1993). Conversion to and from that
internal number representation is handled by the interface software. The number format
limits the spatial resolution in a simulation and constrains the force accuracy. However,
for collisionless N-body systems, the forces on a single particle typically need not be
known better than up to an error of about one percent. In that respect, GRAPE is
comparable to the widely used TREECODE schemes (e.g. Barnes & Hut, 1986). In addition
to the low-precision GRAPE board, there is a high-precision version available, HARP,
(Hermite AcceleratoR Pipeline), which was specifically designed for treatment of collision
dominated systems (Makino et al., 1993a).

In addition to integrate the time evolution of an N-body system by direct summation,
GRAPE has been incorporated into a TREECODE algorithm (Makino & Funato, 1993) and,
more recently, into a P3M code (Brieu et al., 1995). Besides forces and potential, GRAPE
also returns the list of neighbours for each particle ¢ within a specified radius h;. This
feature makes it attractive for use in smoothed particle hydrodynamics (Umemura et al.,
1993), where gas properties are derived by averaging over a localized ensemble of discrete
particles. For particles near the surface of the integration volume, “ghost” particles are
created to correctly extend the neighbour search beyond the borders of the computational
volume; no forces are computed for these particles. For periodic boundaries, the ghosts
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are replicas of particles from the opposite side of the volume. Our SPH code is modified
to incorporate GRAPE following the strategy described in Steinmetz (1996). Furthermore
we have added the ability to handle periodic boundary conditions (see Sec.’s 3.6 and 3.7).

3.6 Implementing Periodic Boundaries into GRAPE

Due to its restricted force law (Eqn. 3.51), GRAPE cannot treat periodic particle distri-
butions. However, many astrophysical problems require a correct treatment of periodic
boundary conditions. Simulating the dynamical evolution and fragmentation in the in-
terior of a molecular cloud, a process that finally leads to the formation of new stars,
requires periodic boundaries to prevent the whole object from collapsing to the center.
The situation is quite similar in cosmological large-scale structure simulations, where pe-
riodic boundaries mimic the homogeneity and isotropy of the initial matter distribution.
In the following, we present a method to overcome this limitation and to incorporate fully
periodic boundary conditions into an N-body or SPH algorithm using GRAPE. The basic
idea is to compute a periodic correction force for each particle on the host computer,
applying a particle-mesh (PM) like scheme: We first compute the forces in the isolated
system using direct summation on GRAPE, then we assign the particle distribution to a
mesh and compute the periodic correction force for each grid point, by convolution with
the adequate Green’s function in Fourier space. Finally, we add this correction to each
particle in the simulation. The corrective Green’s function can be constructed as the
offset between the periodic solution (calculated via the Ewald (1921) approximation) and
the isolated solution on the grid.

Our approach is thus related to the method described in Huss et al. (1997). However, they
apply the combined force calculation via a periodic PM scheme and direct summation on
GRAPE only to the particle distribution in the center of their simulation volume. In this
region, they compute the dynamical evolution of a galaxy cluster with high resolution,
whereas the remaining part of the volume is treated by a pure PM scheme and provides
the tidal torques for the cluster in the center. For this reason, they do not have to
handle possible force misalignment in the border region of the simulation cube. In our
situation, studying the evolution and fragmentation in the interior of molecular clouds, we
need high resolution and periodicity throughout the whole simulation volume. Ensuring
numerical stability throughout the complete volume requires additional care in combining
both methods, the PM scheme and GRAPE.

We apply the following concept of incorporating periodic boundaries into GRAPE in a
general form. We use the Ewald (1921) method to obtain a Green’s function that accounts
for the correction to potential and force for a system transformed from having vacuum
boundary conditions to periodic ones. GRAPE computes the forces and potential for
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the isolated system. The Green’s function is then used in a PM-like scheme to assign a
correction term due to periodicity to each particle in the simulation.

There also has been an attempt to treat periodic boundaries on a special-purpose hardware
device, WINE, using the Ewald method hardwired on a special chip (Fukushige et al.,
1993). This work has been successful. Fukushige et al. (1996) report the development of
the MD-GRAPE, which can handle an arbitrary central force law, including the Ewald
method. However, these chips only exist in a experimental version and cannot be bought
on the market.

3.6.1 Periodic Force Correction — The Ewald Method

In 1921, P. Ewald suggested a method to compute the forces in a periodic particle distri-
bution (he aimed explicitely to compute the potential in atomic lattices in solids). For a
more recent discussion see Hernquist et al. (1991); for applications to large scale structure
simulations see Katz et al. (1996), or Davé et al. (1997).

Poisson’s equation for a system of N particles, which are infinitely replicated in all direc-
tions with period L, is

V2p(r) = 4rGp(r) = 4WGZ§:mj6(r— r; —nl), (3.52)

n j=1

with n being an integer vector. It can be solved in general using an appropriate Green'’s

function G,
N
o(r) = =G> > miG(r—r; —nl) (3.53.a)
n j=1
G & 5
=~ 73 2 2 Gk)m; exp [ik(r — ;)] (3.53.b)
J:
For the gravitational potential, this Green’s function has the form G(r) = 1/r with

G (k) = 4n/k? being its Fourier transform. The sum in Eqn. 3 converges very slowly,
which strongly limits its numerical applicability. However, Ewald (1921) realized that
convergence can be improved considerably by splitting the Green’s function into a short
range part Gg and a long range part Gy and solving the first in real space and the latter
one in Fourier space:

Gs(r) = Lerte(or) ; Gs(r) = 2% [1—exp (—7)] (3.54.a)
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1 5 4 k?

Gu(r) = ~eri(ar) ; Gu(r) = k—Zexp <—7> . (3.54.b)
Here, « is a scaling factor in units of inverse length and erf(x) is the error function with
erfc(z) being its complement,

erf(x (3.55)

=k

With the Green’s function split into two parts, G = Gs + G, the potential reads as
¢(r) = ¢s(r) + dr(r):

—nlf)
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_ % 3 % exp <_%;> cos (k(r — rj))] . (3.56)

Finally, the force (say exerted onto particle i) is
Fz' = F(Tz) == —mZVqS(rZ) == Gleme(rz - Tj), (357)
J#i
with
f(r) = - Z LnL[erfc (a|r—nLl|) +
|r — nL|?

\/_|'r— nL|exp(—o’|r — nL|%)] -
k2

I Z 4,1? exp <_E> sin (k) . (3.58)

To achieve good accuracy with reasonable computational effort, typical values are @ =
2/L, |r—nL| < 3.6L and k= 27h/L with h being an integer vector with |h|? < 10 (see
e.g. Hernquist et al., 1991; note, the second component in their Eqn. 2.14b is missing a
factor | — nL|; it is otherwise identical to our Eqn. 3.58).

For a particle pair with separation 7, f(7) includes the contributions from all L-periodic

pairs with identical separation. To obtain the pure periodic correction force f. . (r), one
has to subtract the direct interaction of the central pair, which leads to
- T
Jor(r) = F(r) + —5 . (3.59)
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To obtain the periodic correction for the potential of the particle pair, ¢co.(7), one proceeds
similarly and again subtracts the isolated solution from the Ewald solution (Eqn. 3.56),

Geor(T) = O(7) b (3.60)

vl
We compute the correction terms f, . and ¢, for particle pairs on a Cartesian grid
covering our whole simulation box, placing particle 1 in the central node and particle 2
on different grid points, and obtain so a table of pairwise force values.

3.6.2 The Particle-Mesh Method

Particle-mesh methods assign particle properties to mesh points, solve the interaction
equations on the grid and interpolate the solution back onto the particles (e.g. Hockney &
Eastwood, 1988). Typically, the density at each grid point is determined from the particle
positions and masses using CIC (“cloud in cell”) or TSC (“triangular shaped cloud”)
schemes, whose assignment functions are triangles or quadratic splines, respectively (again
Hockney & Eastwood, 1988, Chap. 5). For the gravitational N-body problem one solves
Poisson’s equation. Usually this is done in Fourier space, since the differential operation
there acts as a simple multiplication. Therefore, the density distribution on the grid is
transformed into k-space using FFT and convolved with the appropriate Green’s function
to solve for the potential. To obtain the forces, we convolve the Fourier transform of the
density with the Green’s function for the force?; separately for the z, y and z-component.
Finally, inverse FFT returns the potential and the force at each grid point. The alternative
for computing the forces in Fourier space is, to calculate them in real space as gradients of
the mesh-defined potential. This would induce additional errors and therefore we prefer
the first method.

3.6.3 Combining the PM Method with Direct Summation on
GRAPE

In our application of the PM method, we compute the (periodic) correction to the force
and the potential and add this to the solution for the isolated system, which is obtained
via direct summation on GRAPE. This procedure ensures proper treatment of periodic
boundary conditions. The Green’s function for the PM scheme can be constructed directly

2Strictly speaking, a Green’s function is the solution of an equation of the type, V2G(r) = —4md(r)
and its boundary value problem. Green’s functions are used to solve Poisson’s equation for the potential.
Being the gradient of Poisson’s equation, the force equation can be solved by the same ansatz.
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Figure 3.2: Matrix of pairwise forces — x-component Fj; cut through the yz-plane at x=0: a) The
periodic contribution (replicated onto the whole grid). b) The isolated solution. c¢) The difference
between both, i.e. the correction term.

in Fourier space (Hockney & Eastwood, 1988). However, for the correction force and
potential, this is rather complicated and it is more intuitive and straightforward to proceed
in the following way: We obtain the Green’s function for each force component as the
Fourier transform of the x, y and z-component, respectively, of the mesh-defined pairwise
periodic correction force f. ., defined in Eqn. 3.59. And for the potential correction, the
appropriate Green’s function is the Fourier transform of ¢, in Eqn. 3.60. The corrective
Green’s function is thus the offset between the Green’s function for the periodic system
Gper and the isolated one Gig,

or?

gcor - gper - giso- (361)
Or with other words, f.,, and ¢, are the Green’s functions with the right properties and
only have to be transformed into Fourier space for convolution with the density. Using
the Fourier transform of the Ewald forces as periodic Green’s function was proposed by
A. Huss (private communication) and it is straightforward to extend this for handling the
force correction by subtracting the isolated solution.

Note, in order to obtain the isolated solution in Fourier space, one has to double the linear
dimensions of the grid and zero pad the additional grid points to avoid contamination from
implicitly assumed periodicity (see Press et al., 1989). For example, to solve Poisson’s
equation for a cubic density field with volume L3, we have to use a grid of size (2L)3,
assign the density field to one octant of the large box and fill the remaining grid points
with zero. The Green’s function, however, has to be defined on the complete grid, i.e.
G(r) = 1/|r| for the potential, with —L < z,y,z < L. On the other hand, the periodic
Green’s function is defined on the original grid, with —L/2 < z,y, 2 < L/2. For alignment
with the isolated solution, we have to extend the periodic solution into the larger cube.
To obtain the right correction Green’s function, e.g. for the force, we replicate the table of
pairwise Ewald forces (defined on the small cube) into all octants of the large cube. Then,
we subtract the isolated force field (defined on the large cube) and transform into Fourier
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space. This procedure is illustrated in Fig. 3.2, it plots F} in the yz-plane at z = 0: (a) is
the Ewald periodic force computed on a 32-grid and replicated four time into a 64-grid,
(b) is the isolated solution defined on the large grid and (c) is the difference, the final
correction force. The Green’s function finally is the Fourier transform of this force matrix.
Convolution with the zero padded density field results in the appropriate force correction.
The procedure is analogous for the potential. In practice, it is sufficient to compute the
Green’s function once at the beginning of a simulation run and store it as a table.

The total force acting on an individual particle during one time step then stems from the
particle system inside the simulation cube, computed by direct summation on (GRAPE,
plus the contribution from an infinite set of periodically mirrored systems, computed via
the method described above. For smoothed particle hydrodynamics, one also has to add
pressure and viscous forces.

We compute the periodic and the isolated solution on a grid, subtract the latter from the
first and add the isolated forces calculated with GRAPE. The two isolated solutions cancel
out and one can ask the question, and for a system with more or less homogeneous density
a pure PM scheme is sufficient. However, the advantage of using GRAPE is evident when
computing strongly structured systems. Unlike in PM schemes, the spatial resolution
with GRAPE is not limited to a given cell size, but adapts to the density distribution
due to its Lagrangian nature. It is limited only by the gravitational smoothing length,
or equivalently, by the choice of the minimum time step. Since the potential of strong
density peaks is dominated by self-gravity and the influence of periodic boundaries (and
thus of the Ewald correction) becomes weak, it is sufficient to compute this correction
term on a relatively coarse grid which keeps the additional computational cost low. For
a relatively smooth density distribution, a relatively wide mesh is sufficient anyhow. The
scheme proposed here unites both, high resolution with GRAPE and the periodicity of a
PM scheme. In addition, applying a Courant-Friedrichs-Lewy-like criterion, we typically
do not have to compute the FFT at each smallest time step, but can use stored correction
values from the previous call. This reduces the computational expense even further.

3.7 Optimization of the Scheme and Performance in
Test Cases

The contributions to the total acceleration of one particle are computed by two distinct
methods: by direct summation on the GRAPE board for the isolated solution and by
applying a particle-mesh scheme for the periodic correction term. Compared to the host
computer, the GRAPE chips hereby have only limited numerical accuracy (see Sec. 3.7.1).
The spatial resolution of the PM scheme is limited by the number of grid zones and the



66 CHAPTER 3. MATHEMATICAL AND NUMERICAL CONCEPTS

choice of the assignment function (Sec. 3.7.2). All this may lead to spurious residuals
when combining the forces; some terms may not cancel out completely. This “misalign-
ment” can be minimized by randomly shifting the center of the simulation cube through
the periodic particle distribution. Then on average the force residuals cancel out and
numerical stability is increased (Sec. 3.7.3).

3.7.1 Gravitational Smoothing Length and Numerical Accuracy
of GRAPE

Since GRAPE is used to calculate the force contribution from the isolated system, we also
call the board at the start of the simulation, when setting up the force correction table.
We subtract the isolated solution from the periodic Ewald solution for each particle pair
on a grid. For our test problems and also for calculating the periodic Ewald forces, we use
a fixed gravitational smoothing length e throughout the whole computation. As always in
collisionless N-body simulations, the choice of € is a trade-off between minimising 2-body
relaxation (large €) and spatial resolution (small €). For the simulations presented here,
we typically adopt values between € = 0.01 and 0.001, with the total size of the simulation
cube being [—1,+1]*>. The influence of € is demonstrated in Fig. 3.3. For 32 particles
which are distributed on a regular grid, it plots the distribution of the normalized residual
forces in z-direction, dF,/F,. Assuming periodic boundary conditions, this regular parti-
cles distribution is — in principle — force free. Residual forces dF are a spurious result of
the calculation scheme. We give relative errors by normalizing the residual force for each
particle to the acceleration it would feel without periodic boundaries (i.e. in the isolated
system). For all values of € < 0.001 the distribution of force errors is homogeneously dis-
tributed throughout the volume and determined by the numerical accuracy of the GRAPE
chips. For larger ¢, the force contributions from the two methods become increasingly
misaligned and the residual force errors grow.

3.7.2 Grid Resolution and Assignment Function

Another important factor is the resolution of the grid. The more grid zones are used, the
smaller are the wave lengths that can be resolved by the PM scheme. However, the number
of CPU cycles increases linearly with the number of grid zones. Again one has to find a
compromize between accuracy and computational speed, depending on the problem to be
solved. The errors furthermore depend on the adopted assignment function. To obtain
the force correction, one has to interpolate the particle distribution onto a grid, solve
Poisson’s equation for the density field to obtain forces and assign these forces back onto
the particles. One possibility is to assign all particles to the cell they are located in, the
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Figure 3.3: Influence of the gravitational smoothing length e. The figure plots histograms of the
distribution of the residual force errors in z-direction, dF; /F,, for each particle in the simulation. For
€ < 0.001 the force errors are equally distributed throughout the simulated volume and minimal (thick
dashed line). The errors grow with increasing € (¢ = 0.005 — solid line, ¢ = 0.01 dashed line). These force
residuals are computed for a distribution of 323 particles on a regular grid with periodic boundaries. The
force correction is computed on a 643-mesh. The particles are centered on grid points to be independent
of the assignment scheme.

nearest grid point scheme, NGP. Another way is CIC (cloud in cell), which uses a boxlike
cloud shape to distribute each particle into eight neighbouring cells (in three dimensions).
TSC (triangular shaped cloud) distributes the particle mass into 27 cells (for more details
consult Hockney & Eastwood 1988). For the problems we study here, we consider NGP
as too coarse, higher order schemes on the other hand smear out the particle distribution
and thus limit the spatial resolution. We adopt the CIC scheme in our calculations. Using
CIC, we plot in Fig. 3.4 the normalized residual errors in z-direction, dF,/F,, analogous
to the previous figure. Again the 323 particles are distributed on a regular cubic grid.
However, now they have been shifted by dz = 0.015625, i.e. half of the cell size of a 643-
grid, to be able to assess the accuracy of the assignment scheme. As expected for the finer
meshes, the interpolation is more precise and the force errors are smaller. As a reference,
we have plotted the intrinsic error contribution coming from GRAPE alone (the thick long
dashed line). It is computed for minimum smoothing length ¢ and for particles sitting
exactly on mesh points. Therefore, this distribution has no mesh-assignment errors. Note
that in the general cases, the assignment errors are not evenly distributed amongst the
particles; the errors are small and close to zero in the interior of the simulated cube,
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whereas particles at the border have errors which are one or two orders of magnitudes
larger (dotted and dashed lines in the range —2 < log,, dF'/F < —1). Note as well, that
each grid is in fact a factor of 23 larger to account for the zero padding necessary for the
isolated solution, i.e. the 643-grid is in fact a 1283-grid.
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Figure 3.4: Comparison of the normalized residual force errors dF/F for different grid resolutions: 163
(dotted line), 32 (dashed line) and 64% (continuous line). As reference, the error distribution stemming
solely from GRAPE is plotted as thick dashed line (analogous to Fig. 3.3).

3.7.3 The Influence of Random Shifts

We can increase the stability of the code by minimizing the influence of the force errors
for the border cells. One way to do this is to ensure, that these border cells do not always
contain the same group of particles by applying a random shift of the whole simulation
area. We can think of our simulation box as a window onto an infinite periodic particle
distribution. Since this distribution is infinite and periodic, we are free to choose any
region in it, as long as it contains the periodicity of the whole distribution. By randomly
shifting the center of the simulation box we prevent the errors made in the border cells
to add up coherently for the same particles. On average they cancel out. The stabilizing
effect of this method is demonstrated in Fig. 3.5. It compares the time evolution of the
average particle displacement (due to force errors) for the standard particle distribution
(particles on a regular 323 mesh) for the two cases with and without applying random
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average spacial deviation (dr)

~

Figure 3.5: Average particle displacement as function of time for the system integrated with (squares)
and without (diamonds) random shift.

shift. Clearly, the system computed without shift degrades much faster than the other
one. In fact, we plot the pathological case, where the particles are located exactly between
two mesh points and therefore the assignment error is maximal. This system collapses
due to these errors on a time scale of about 5 free-fall times®. For a system where the
particles are placed exactly on grid points the assignment errors are minimal. Such a
system is more stable without random shift. However, in a physically meaningful context
the particles are far from being placed exactly on grid points and random shift is an
important tool of stabilizing the code.

3.7.4 Comparison with the Ewald Method

A further test of the performance of this new method is, to compare it with a TREECODE
scheme. In this case, the Ewald method can be directly implemented into the force
summation, as described by Hernquist et al. (1991). To do so, we distribute 323 particles
randomly within the simulation cube to get a homogeneous distribution with Poisson
fluctuations. We chose the initial kinetic energy to be zero and follow the fragmentation
and collapse of the system. In this gravitational N-body system, the random density

3The regular infinite system does not collapse; the free-fall time is per default infinite. Here and in
the following free-fall time means the time scale on which the an isolated simulation cube would collapse.
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Figure 3.6: Power spectrum P(k) and 2-point correlation function £(R) for the collapse of a random
fluctuation field in periodic boundaries. The solid lines describe the calculation done with GRAPE and
the dashed lines with a TREECODE scheme. Both systems evolve almost identically.

peaks of the initial distribution start to grow and form a network of filaments and knots.
These knots finally merge to form one big clump. The evolution of the system with
GRAPE and with the TREECODE scheme is compared by plotting the power spectrum
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P(k) and the correlation function {(R) in Fig. 3.6. Considering the differences in the
force calculation method, the evolutions of the two systems agree remarkably well. Only
for small to intermediate particle separations, the difference in the force calculation in
both schemes leads to a deviation in the correlation and in the power spectrum. However,
the computation using the GRAPE hardware is ~ 10 times faster when compared with
the TREECODE run on a Sparc Ultra workstation.

3.7.5 Summary

The method described above unites the advantages of GRAPE as being Lagrangian and
offering good spatial resolution necessary for treating highly structured density distribu-
tions with the advantage of particle-mesh schemes as being intrinsically periodic. The
potential of strong density peaks is dominated by the local mass accumulation. In such a
region the influence of the global properties of the system is weak and it is therefore suffi-
cient to compute the correction term on relatively coarse grid. This keeps the additional
computational cost low. The proposed method has proven to be numerically stable and
inexpensive in terms of computer time. Thus the special-purpose hardware device GRAPE
can be applied successfully to astrophysical problems that require the correct treatment
of periodic boundary conditions.
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Chapter 4

Scaling Properties

The numerical models discussed in this thesis describe self-gravitating, isothermal gas.
This determines the equation of state and the physical processes invoked. The dynamical
evolution of the gas is scale-free and depends only on the ratio between internal and grav-
itational energy (Sec. 4.1). All calculations are performed and presented in normalized,
dimensional units. The conversion between normalized and physical units is introduced in
Sec. 4.2. The next section (4.3) describes the appropriate scaling of the simulations to ob-
served star-forming regions. Section 4.4, finally, discusses the conversion of the Jeans mass
and the speed of sound, both important quantities determining the dynamical behavior
of the system.

4.1 Scaling Properties of Isothermal, Self-Gravitating
Gas

For isothermal gas, the energy density is a function of temperature only and the equation
of state (3.6) reduces to p = 2 p, with ¢? being the thermal sound speed (Eqn. 3.7). This
approximation is valid for physical regimes where the heating and cooling time scales are
much less than the dynamical ones. In molecular clouds, this is the case for gas densities
n(Hs) $ 10 cm 3, where the gas is optically thin for the dominant cooling processes and
energy is radiated away very efficiently (e.g. Tohline, 1982). Average densities in star
forming regions typical are in the range 10 cm™ < n(H,) < 10°cm™ and these are the
regions we aim to model. Even when resolving a density contrast of 10%, the isothermal
equation of state is still appropriate throughout the entire simulation.

The self-gravitating, isothermal model studies the interplay between gravity and gas pres-
sure, it is therefore scale free. Besides on the initial conditions, the dynamical evolution

73
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of the system depends only on one parameter, namely the ratio between internal and
potential energy. This ratio can be interpreted as dimensionless temperature,

T = €t/ |€pot] - (4.1)

Line widths in molecular clouds are super-thermal, implying the presence of supersonic
turbulent motions (Sec. 2.1.2). In case of isotropic turbulence, these non-thermal (turbu-
lent) contributions can be accounted for by setting €in; = €iherm + €rurb = 7+ (2 + 02,4,) /2
This introduces a second parameter which can be absorbed by defining an effective tem-
perature, Tog = T + 02, /R. The turbulent velocity dispersion is denoted oy, and the
factor v depends on the degree of freedom. In case of anisotropic turbulent motions, the
system has (locally) preferred axes and the concept of one single effective temperature is
no longer valid.

4.2 Conversion between Normalized and Physical Units

Analogous to the temperature, we adopt dimensionless and normalized units throughout
the entire dissertation work. If physical scaling is used, it is always stated explicitely and
given in the appropriate units'. To distinguish between physical and normalized units,
for the remainder of this chapter the latter ones are labeled by a tilde. In the isothermal
models, the mass M of the molecular cloud region studied and the length scale L are set
to one. The numerically simulated area is a cube [~L,+L]* = [~1,+1]> with periodic
boundary conditions. Its volume is (Qi)?’ = §, therefore, the density of the homogeneous
cubeis p= M / [?=1 /8. Analogously, the gravitational constant G and the gas constant
R are normalized. In summary,

M=L=G=1 and R=1/y, (4.2)

with v = 3/2 for an ideal gas having three degrees of freedom. The following list gives
an overview of the definition and the conversion between normalized and physical units
of the most important model parameters. Since the model is scale-free, first the physical
mass and physical size of the simulated region have to be determined:

e Mass: In normalized units, the total mass in the system is defined as one: M = 1.
Physical values are given in solar masses, M. Having determined the physical mass
m of the simulated gas, the conversion between both units is fixed as,

m Mgy = 1M . (4.3)

!For physical units, a combination of the ‘cgs’-system and astrophysical units is used. For values and
conversion factors see App. B.
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e Length: Also the unit length is defined as being one, L = 1. The physical length
unit is parsec, pc. Once the size of the simulated region is chosen as ¢, the conversion
is given as,

(pc=1L. (4.4)

These choices determine the conversion of dependent quantities and of the independent
scaling parameter 7"

e Time: The code time unit ¢ is determined from the normalization (4.2) as { =
L32M-Y2G 12, Thus, the conversion into years is

|03 -
1.50 x 107 yr -/ — = 1% . (4.5)
m

e Density: Density is computed from p = M/L? in the simulation. Plugging in
physical values, the conversion follows as

6.77><10*23gcm*3.£@3 = 15 (4.6.2)
1 s m N
40.5~;-Cm3~£—3 = 1p. (4.6.b)

The first line gives the mass density. In the last line, the dimensional density p cor-
responds to the number density of Ho-molecules per cm?®. Typically, the interstellar
medium has a helium abundance of 10%. Therefore, the mean molecular weight? in
molecular clouds is p ~ 2.36. For atomic gas, this value is pu ~ 1.30.

e Energy: The energy unit is determined from E = ML?* 2 = M2G/L. The con-
version into erg is

2
8.57 x 10" erg - m7 = 1E. (4.7)

2A helium abundance of 10% implies that the ratio of H atoms to He atoms is 9:1. In atomic gas, the
mean mass per particle is therefore (9x 1+1x4) : (9+1) = 1.3. For molecular gas there are two He atoms
per nine Hy molecules. Hence, p = (9 x 2+ 2 x 4) : (9 + 2) = 2.36. However, there is also a dependence
on the metallicity of the gas: typically, gas with solar metallicity contains ~ 2% heavier elements with
an atomic number Z = 15 on average. In this case, p = (22 x2+5x4+1x15): (22+5+1) =2.8, or
in general p = 2.28 + 0.035 Z.
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e Specific Energy and Energy Density: The conversion into ergg ! and ergcm 3

1S

4.30 x 107 ergg - % = 1B/M (4.8.a)
2
2.91 x 10 1% ergem 3 - 7?—4 = 1EB/L. (4.8.b)

e Temperature and Internal Energy: The normalized units are defined such that
the internal energy € and the scale parameter T are identical: ¢ = T. Expressed
in physical terms, the internal energy per gram is given as ¢ = v R/u T. With
Eqn. 4.8.a and v = 3/2 for ideal gas, the physical temperature is

0.35K-u-% = 1T (4.9)

4.3 Scaling to Observed Star-Forming Regions

Typical quantities to characterize physical regimes in molecular clouds are temperature
T and density n(Hy). Canonical values are T ~ 10K and densities between n(Hy) ~
10?2 cm~? in dark quiescent clouds like Taurus and n(Hy) ~ 10°cm ™ in dense high-mass
star-forming clouds like Orion (see Sec. 2.1).

For a given dimensionless scale parameter T, selecting a physical temperature and density
determines the size and the mass of the simulated region. Given p and 7', Eqn.’s 4.6.b
and 4.9 can be transformed to specify m and ¢ as,

40.5cm=3 T 1\ 1
A\ wmy P ok 7)) e d 4.10.
" ( n(Hz) p) (0.351{ T) z (4.10.a)
40.5cm=3 T 1 1
( n(H,) p) (0.351{ T) p (4.10.b)

For molecular clouds with ¢ = 2.36 and with the average density of the homogeneous
distribution being fixed to p = 1/8 by the normalization (4.2), the mass and size scales
are

T 3
m = 1.95 | ——— (-) and (4.11.2)
2) \T

=
as

T
a 4.11.b
T ( )
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with densities n(Hy) being the number of Hs molecules per cubic centimeter and the
physical temperature 7" given in Kelvin.

The model discussed in detail in Chap. 6, with dimensionless temperature T = 0.01,
corresponds in the case of a dark cloud like Taurus, with n(Hy) ~ 102¢cm™ and T =~
10K, to a total mass of 6300 M, and a volume of (10.4pc)3. For this scaling, the time
unit is equivalent to t = 2.24 x 10°years and the average Jeans mass transforms to
M; = 28 M, (see Sec. 4.4). When the model is applied to a dense, massively star-forming
cloud with n(Hy) ~ 10° cm ™ and again T =~ 10 K, similar to the BN region in Orion, the
simulated cube translates into a mass of 200 M, and a size of (0.32pc)®. The time unit

converts to t = 7.0 x 10* years. The mean Jeans mass for the homogeneous distribution
is My =0.9Mg.
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Figure 4.1: Plot of (a) the mass conversion factor m and (b) the physical length scale £ as function of
average number density n(Hs) in the molecular cloud region to study. The relations are given for different
ratios ¢ between the physical temperature 7' in Kelvin and the normalized temperature 7" adopted for
the simulation.

For generalization, Fig. 4.1 specifies the dependence of the physical mass and size of the
simulated region on the adopted physical density. The different lines are for different
values of the ratio between physical temperature in Kelvin and the dimensionless scaling
parameter T: £ = T'(K)/T. The above values for Taurus and Orion can be directly read
off the figure for £ = 10/0.01 = 1000.
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Figure 4.2: Plot of (a) the normalized Jeans mass Mj and of (b) the number of Jeans masses Nj
contained in the simulated volume as function of the scale parameter T.

4.4 Jeans Mass and Sound Speed

The dynamical behavior of the system is determined by the scaling parameter T. This
parameter determines the critical mass for gravitational collapse and can be interpreted
in terms of the mean Jeans mass in the system. As derived in Sec. 3.2, the Jeans mass is a
function of the temperature T and of the density p. In normalized units, the mean density
(p) = 1/8. Hence, increasing the temperature 7" implies a larger critical Jeans mass. Since
the total mass of the system is defined as M= 1, the number of Jeans masses modeled in
the numerical simulation decreases. On the other hand, decreasing T decreases the Jeans
mass and M = 1 corresponds to a greater number of Jeans masses. Therefore, for a given
density, varying T is equivalent to zooming in or out of the molecular cloud region. A
larger T leads to smaller physical mass and size scale of the simulated cube. It acts as a
magnifying glass, looking more closely into the evolving volume. Decreasing the scaling
parameter 7' means increasing the mass and volume of the modeled region.

This can be quantified, using Eqn. 3.18, which defines the critical mass for gravitational
collapse to set in. The Jeans mass can be expressed in normalized units as

My=16-p"21T3%?. (4.12)

With the average density being p = 1/8, the mean Jeans mass in the computation scales
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with temperature T as
My=4.5-T%2. (4.13)

Figure 4.2 illustrates this relation graphically. On the right hand side, the number of Jeans
masses Nj contained in the modeled volume is given. Since the total mass is normalized
to one, it follows that Ny = 1/Mj. The smaller the scale parameter T, the more unstable
the system will be against gravitational collapse and the more fragments will form during
the dynamical evolution (see Chap. 7).

Again from using Eqn. 3.18, the physical Jeans mass can be expressed in terms of the
number density n(Hz) and the temperature 7T,

1
My = 49.5 M, - (—2> -n(Hy) V2137 (4.14)
1
With 1 = 2.36 being the typical mean molecular weight in molecular clouds, this reads as

My = 8.9M, -n(Hy) V2 T%2% . (4.15)

The following table summarizes the critical Jeans mass for different molecular cloud
regimes.

I'=>5K T=10K T'=20K T=50K T =100K

n(Hy) = 10cm 3 | 31.5My  89.0Mg 251.7Mg  995.1M, 2814.4M,
Hy) =10%2cm® | 10.0Mg  28.1M, 79.6M, 314.7M,  890.0 M,
=10%cm™3 | 31M, 89M, 252M, 99.5M, 281.4M,
=10'¢cm™3 | 1.0M, 28M, 80M, 315M,  89.0M,
Hy) =10°cm | 03Mgy  09M,  25M, 10.0My  28.1M,

HQ = ]_06 Cl’ni3 0.1 M@ 0.3 M@ 0.8 M@ 3.1 M@ 8.9 M@

Table 4.1: Table of Jeans masses for different physical regimes.

Like the number of Jeans masses N; contained in a region, which determines the dynamical
behavior of the system, also the sound speed is an important physical parameter. It
determines the time scales on which sound waves can transverse the region. Together
with the dynamical time scale it determines the speed at which the system evolves.
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In normalized units, the isothermal sound speed is

EC=RT==. (4.16)

=2 |~

For an ideal gas having three degrees of freedom, v = 3/2 and the sound speed in nor-

malized units scales as ¢, = 0.82 - TY/2. Since ¢, x T2, even large variations in the

temperature T cause only minor changes in the sound speed. The sound speed in phys-
ical units also depends on the mean molecular weight, ¢ = RT/u. Using p = 2.36,
Tab. 4.4 gives a list of sound speeds appropriate for molecular clouds.

T: oK 10K 20K 50K 100 K 10K

¢s: 0.13kms™' 0.19kms™! 0.27kms™' 0.42kms™' 0.60kms™" 6.0kms™!

Table 4.2: Table of sound speeds appropriate for molecular clouds.



Chapter 5

Initial Conditions

This chapter introduces the initial conditions adopted for the numerical SPH simulations
in this thesis. It describes their statistical properties, the method with which they are
generated and its validity. One of the goals of this thesis work is to study the dependence
of the dynamical evolution and the fragmentation process in molecular clouds given certain
initial cloud properties and to examine how these influence the (proto)stellar cluster that
subsequently forms. Therefore, the parameter range that is scanned has to conform with
conditions in observed star forming regions. The dynamical evolution in the molecular
cloud region is determined by the initial density and velocity distribution. In a self-
consistent model, both are related via Poisson’s equation (3.5). For the work presented
here, we adopt random Gaussian fluctuations for the density field as starting condition
for the SPH simulations. We use this approach, because these distributions have well
determined statistical properties and can easily be generated by the Zel’dovich approach.
Furthermore, their properties are well suited to mimic observed features of molecular
clouds.

5.1 Gaussian Random Fields

A Gaussian random field p(r) is completely characterized by its first two moments, its
mean value py = (p(7)) and its standard deviation S(r) = (p()p*(* + 7)), which
is equivalent to the power spectrum P(k) in Fourier space. All higher moments can be
expressed in terms of the 2-point correlation function S(r).

It is of advantage to describe the density field p(r) as a Fourier expansion,

p(r) = Re | (;i’; Pk (5.1)
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Here, p(k) is the Fourier transform of p(7). The equivalence between the 2-point corre-
lation function and the power spectrum follows as

S(r) = (p(r)p" (7' +7))w

d*k . d3k’ .
= /d3 l</ A(k)ezkﬂ> </ (2 )3ﬁ*(k/)ezk(ﬂ+r)>
™
_/ d’k /d3k’ (k) (k) [ oyttt ik

d3k d3kl ~ ~x (1] N —ik'r
—/ / (k)i ()5 (k — K)o

_/ dak |2 —ikr

_ / d3’f o ik (5.2)

Each function is the Fourier transform of the other. For an isotropic fluctuation spectrum
P(k) = P(|k|), the 2-point correlation degrades to a function of the distance between two
points, S(r). By defining a normalization py and power spectrum P(k) in Fourier space,
all statistical properties of the field p(r) are determined.

The values P(k) specify the contribution of waves with wave number k to the statistical
fluctuation spectrum. In Gaussian random fields, the phases are arbitrarily chosen from
a uniform distribution in the interval [0,27[, and the amplitudes for each mode k are
randomly drawn from a Gaussian distribution with width P(k) centered on zero. Since
waves are generated from random processes, only the properties of an ensemble of fluc-
tuation fields are determined in a statistical sense. Individual realizations may deviate
considerably from this mean value, especially at small wave numbers k, i.e. at long wave
lengths, where only a few modes (k;, ky, k,) contribute to a wave number k = |k|.

In this thesis, we consider a simple power-law functional form for the fluctuation spectrum,
P(k) oc kN, with —3 < N < 0. For negative N, most power is in large-scale modes.
With decreasing N the fluctuation fields becomes increasingly patchy and inhomogeneous.
Figure 5.1 compares four different Gaussian random fields with (a) N =0, (b) N = —1,
(c) N =—2and (d) N = —3. The shown images are projections of the 3-dimensional
particle distribution into the zy-plane. The increasing degree on inhomogeneity is clearly
visible in the sequence.

In Fig. 5.2, (a) the 2-point correlation function S(r) and (b) the power spectrum P(k)
for the fields described before are plotted. The dotted function in both plots denotes the
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Figure 5.1: Sequence of Gaussian random fields with power spectra P(k) o< kY with (a) N = 0, (b)
N = -1, (c) N =—-2and (d) N = —3. Each distribution consists of 50 000 particles and is projected into
the zy-plane. It is created using the Zel’dovich approximation (see Sec. 5.2) with a time interval ¢ = 2.

random homogeneous starting distribution; the error bars are given to illustrate the sta-
tistical uncertainties for different distances r and wave numbers k. The errors bars apply
to all fields in the same way. For the homogeneous field, the two functions are essentially
flat. All graphs are normalized such that S(r) ~ 1 and P(k) ~ 1 for the homogeneous
distribution. Comparing the correlation functions S(r) of the different fluctuation fields
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shows that with decreasing N the correlation strength and scale grows. Furthermore, it
reproduces the power spectra P(k) that have been used to generate the fields initially.
Note, that for large wave numbers, the spectra become flat. With particle numbers of
50 000, the typical interparticle distance becomes larger than the wave lengths of modes
with k 2 30. For these wave numbers one basically measures white noise, which results in
a flat spectrum.
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Figure 5.2: (a) 2-point correlation function S(r) and (b) power spectrum P(k) of the density fields
discussed before. To compute the functions, the cube has been subdivided into (128)3 cells. The random
homogeneous starting distribution is plotted with dotted lines. The statistical errors for different distances
r and wave numbers k apply to all fields equally. All other fields are characterized by the index N of the
power spectrum they are generated from.

The next figure 5.3 shows the probability distribution functions (pdf) for the four density
fields introduced in the previous figure. As reference, the density histogram for a random
homogeneous field is denoted by the dotted curve. It is a narrow Gaussian that peaks
at the mean density (dashed vertical line). This distribution is starting condition for
the Zel’dovich shift (see Sec. 5.2). As expected from looking at Fig. 5.1, the density
distribution gets broader with decreasing power-law index N and the deviations from the
(Gaussian) starting distribution become more extreme. In the non-linear regime, i.e. for
density contrasts dp 2 1, the structure is dominated by dense peaks and large voids.
Complementary to specifying density histograms (pdf’s) is plotting the spatial distribution
of densities. In the SPH formalism, each particle carries a density which is derived via the
averaging process over all neighboring particles within one smoothing radius (see Sec. 3.3),
and intimately reflects the spatial structure of the particle distribution. Fig. 5.4, which
plots the density of each particle in the previously discussed distributions as function of
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Figure 5.3: Probability distribution function (pdf) for the four density fields in Fig. 5.1. The dotted
line denotes the random homogeneous field that is the starting distribution for the Zel’dovich shifts.
Its density distribution is a Gaussian and peaks at a value of 1/8 which is the average density in the
homogeneous cube (dashed vertical line). In the non-linear regime considerable deviations from the
(Gaussian) initial pdf occur.

its location along the z-axis, describes the distribution and shapes of high density peaks
more clearly than Fig. 5.1. Furthermore, the density contrasts dp = (p — po)/po resulting
from the Zel’dovich shifts can be directly measured from the plot. As reference, the initial
mean density is indicated by the straight line at p = 1/8. The density contrasts range
from 6p S5 for N =0 to dp S 100 for N = —3.

5.2 The Zel’dovich Approximation

In 1970, Zel’dovich proposed for cosmological simulations a method to extrapolate the
linear theory into the non-linear regime. For a idealized, self-gravitating and pressure-free
continuous medium, the dynamics can be expressed in terms of a function f(ry,t). Its
value is the position 7 of a fluid element at time ¢, whose original position was 7y at ¢t = 0:
r(t) = f(ro,t). If the original density field was p(ry), then the density field at ¢ is given
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Figure 5.4: Density p of each particle as function of its location along the z-axis. (a) — (d) denote the
particle distributions described before. The figure illustrates the density contrast dp = (p — po)/po for
each particle. As orientation, the average density previous to the Zel’dovich shift, pp = 1/8, is plotted
by a straight line.
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Here, f;; denotes the partial derivative of the ¢-th component of f in r;. The time
evolution of f(ry,t) is given by the Poisson equation (3.5). The linearized equation then
follows as

r(t) = f(ro,t) = o+ v(mo) L, (5.4)

with V. -v(ry) o< p(ry). This assumes that the velocity field is rotation-free, because then
the existence of a potential ¢(ry) with v(ry) = V,,¢(ry) is guaranteed and is connected
to the density field via A, ¢ (1) o p(19).

Zel’dovich (1970) suggested to use this method to extrapolate the field into the non-linear
regime, i.e. into regions where the density contrast exceeds one. It is not clear, in how
far this is mathematically and physically appropriate. For |detf; ;| being very small or
zero, the inclusion of pressure forces becomes important and prevents infinite densities.
If trajectories along which |detf; ;| vanishes are followed, the density decreases again.
At the same time the solution is no longer unique. However, for practical purposes the
appropriate choice of the shift time ¢ can minimize these problems and the Zel’dovich
(1970) approximation is valid, as will be shown in the next section. The method is well
suited for advancing the system in one large time interval without solving the complete
set of equations and computing the time evolution of individual particles by integrating
over many small time steps.

When computing random Gaussian fields, the method is applied as follows: One chooses
a power spectrum P(k) and computes a hypothetical density field by determining the
phases and amplitudes of all contributing modes in Fourier space (according to Sec. 5.1).
This field is transformed back into real space and Poisson’s equation (3.5) is solved in
order to obtain the velocities which would generate the density field self-consistently.
Starting from a homogeneous initial distribution, this velocity field is used to advance the
particles in the system in one single large time step. As illustration, Fig. 5.5 plots the
2-dimensional projection of a homogeneous starting condition (a) and of the system after
the Zel’dovich shift has been applied for various shift intervals ¢ (b — h). Note that the
method assumes periodic boundary conditions. Therefore, the images have to be seen
periodically replicated in all directions.

5.3 Validity of the Zel’dovich Approach

In this section, the validity of the Zel’dovich approximation and its parameter dependence
is discussed. This is done by comparing the state of systems which have been generated
using the Zel’dovich method with different sets of parameters ¢ and N. Furthermore,
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these distributions are compared with systems that have been advanced in time using the
full SPH formalism.

First, the influence of the shift interval ¢ in the Zel’dovich approximation shall be exam-
ined. As discussed in the previous section, each particle is advanced in one large time step
via Eqn. 5.4. If particles move along trajectories on which |det f; ;| vanishes, the solution
is no longer unique, i.e. different paths may lead to the same location. For converging
flows, the density increases before reaching the singularity in |detf; ;| and decreases after-
wards, particles have ‘interpenetrated’. This is unphysical. Depending on the size and the
strength of individual fluctuations, the time interval ¢ to reach this point may differ. As-
suming comparable amplitudes, for small perturbations ¢ will be short and for large-scale
modes ¢ will be longer. This has to be taken into account when determining the optimum
choice of the shift interval ¢. The effect of varying ¢ is addressed in Fig. 5.5 which shows
a sequence of particle distributions generated by the Zel’dovich method from a power
spectrum P(k) oc k=2 with 0 < ¢ < 30. The homogeneous starting field is identical to a
shift of ¢ = 0. With increasing ¢ the density contrast starts to grow and the distribution
becomes more structured. However, at ¢t & 3 the small-scale fluctuations begin to disperse
and the density contrast starts to diminish. At ¢ &~ 30 the system appears homogeneous
again. The same is true for different slopes N of the power spectrum. Figure 5.5i illus-
trates the dependence of the average (open circles) and maximum (solid circles) particle
density on the time shift ¢ graphically. The dashed line denotes the average density of
the homogeneous cube.

Figure 5.6 describes the influence of different shift intervals ¢ on (a) the 2-point correlation
function S(r) and on (b) the measured power spectrum P(k). In analogy to the above,
the correlation strength and length increase with shift interval ¢ for systems generated
with ¢ $ 3 and decrease again for larger shifts. Similar conclusions apply to the power
spectrum. For ¢ 22 the initial slope of N = —2 is best reproduced. Shorter shifts ¢ do not
establish the mode spectrum sufficiently, the spectrum is too flat. Longer intervals produce
overshooting on small scales, i.e. perturbations with short wave lengths are smeared out,
whereas large modes are still amplified. Therefore the spectrum gets steeper. For ¢ > 10,
overshooting occurs for the largest modes as well and the entire power spectrum flattens
again.

Finally, we compare systems which have been generated by the Zel‘dovich method with
systems that have been advanced in time entirely with SPH. The Zel‘dovich shift gen-
erates fluctuations on all scales, since only gravitational forces are considered. Large
perturbations are Jeans unstable and start to collapse. Most small ones are Jeans stable
and pressure forces smear them out in the subsequent evolution with the SPH method.
However, also some low-mass fluctuations may have been generated with sufficiently high
density to be gravitationally unstable, since the Jeans mass is inversely proportional to
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a) | | b)

Figure 5.5: Projections of the particle distribution generated by the Zel’dovich method from a power
spectrum P(k) oc k2. (a) Homogeneous starting distribution. The distribution after applying the
Zel’dovich method with (b) t =1/2,(c)t=1,(d)t =2, (e) t =3, (f) t =5, (g) t = 10, and (h) t = 30.
(i) The dependence of the average and maximum particle density on the time shift ¢ is plotted in open
and filled circles, respectively. The dashed line denotes the average density of the homogeneous cube.

the square root of the density, M; o p~ /2. These clumps will collapse as well. Further-
more, while flowing towards a common center of gravity small clumps may merge to form
more massive clumps, which again may exceed the Jeans limit. The probability for that
to happen depends on the time scale for the collapse and dispersal of individual clumps
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Figure 5.6: (a) 2-point correlation function S(r) and (b) power spectrum P(k) for different shift intervals
t, analogous to Fig. 5.2.

relative to the time scale for clumps to merge or fragment. The dynamical evolution of
the entire system is extremely complex and can only be determined in a statistical sense.

If we advance the system from the homogeneous state with the full SPH formalism, we
compute the self-consistent velocity field for a hypothetical fluctuation field, as for the
Zel’dovich method, but use the velocities as input for the SPH simulation instead of
doing one Zel’dovich shift. Pressure forces are included from the beginning and small
perturbations have no possibility to grow unless their mass exceeds the Jeans limit of
the homogeneous system, which is determined by the mean density. Therefore, only high
mass clumps can form. This is different from the Zel’dovich case, where perturbations
are created on all scales and also some low-mass clumps may have large enough densities
such that their local Jeans mass is smaller than the clump mass. Therefore, slightly
smaller and more fragments are expected in systems that have been generated using the
Zel’dovich method. The detailed discrimination of two systems subtly depends on the
desired inhomogeneity and density contrast in the system, i.e. on the choice of N and
t. These small-scale differences decrease, the more homogeneous the distribution and the
smaller the Zel’dovich shift is chosen. On large scales, the statistical properties are not
affected regardless of the choice of N and ¢.

This is exemplified, using a distribution of 50 000 particles with a power spectrum P (k) o
k2. The temperature is T = 0.01 and hence the simulation cube contains roughly 222
Jeans masses computed from the average density of the homogeneous starting condition
(see Sec. 4.4). Figure 5.7 shows snapshots of the time evolution of the system initially
generated applying a Zel’dovich shift with ¢ = 2 and subsequently advanced with SPH. On
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a) D)

Figure 5.7: Snapshots of the evolution of a system generated by the Zel’dovich method from a power
spectrum P(k) o< k=2 and shift interval + = 2. After applying the Zel’dovich shift, the subsequent
evolution is calculated using SPH. The figures show projections of the 3-dimensional distribution into the
zy-plane in intervals of At = 0.3: (a) initially at ¢ = 0.0, (b) at ¢ = 0.3, (c) at t = 0.6, (d) at t = 0.9, (e)
at t = 1.2, and (f) at t = 1.5. Time is measured from the begin of the SPH simulation.

the other hand, Fig. 5.8 describes the evolution of the system that was evolved from the
homogeneous state using SPH without applying the Zel’dovich method. Confirming the
above considerations, the large-scale behavior of the two systems is very similar, whereas
differences on small scales occur. The distribution initially evolved with the Zel’dovich
approximation is patchier at comparable times'. However, with the progression of the
SPH calculation the higher degree of irregularity is reduced. Small perturbations are
smoothed by pressure.

In summary, the Zel’dovich approximation is very well suited to generate fluctuation
fields with well defined statistical properties determined by the power spectrum P(k).
With the appropriate choice of the shift interval ¢, every spectrum can be generated.

INote, that time is measured from the begin of the evolution with SPH. To compare both systems at
equal times, the Zel’dovich shift interval ¢ = 2 has to be added to the numbers in Fig. 5.7.



92 CHAPTER 5. INITIAL CONDITIONS

Figure 5.8: Analogous to Fig. 5.7, but describing a system that is entirely evolved in time using SPH.
No Zel’dovich shift is applied. The system is projected into the zy-plane at (a) ¢ = 0.0, showing the
homogeneous starting condition, at (b) ¢ = 1.0, (c) t = 1.7, (d)t = 2.0, (e) t = 2.3, (f) at t = 2.6, (g) at
t =29, (h) at t = 3.2, and (i) at ¢ = 3.5. Again, time is measured from the begin of the SPH simulation.

When applying the Zel’dovich method to gaseous systems, one has to take the effect of
neglecting pressure forces into account. On small scales, deviations from the fully self-
consistent time evolution may occur which can influence the detailed dynamical behavior
of the system. These deviations cannot be described in the context of Gaussian random
fields; they cannot be accounted for in this simple statistical theory. However, for the
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purpose of this thesis we want to follow the evolution of density fields that have well
defined and reproducable statistical properties, therefore applying the Zel’dovich method
is fully appropriate.
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Chapter 6

A Case Study:
T=0.01 and P(k) x 1/k?

This chapter discusses in detail the time evolution of one particular set of models, thereby
introducing the statistical tools used to analyze all simulations. It concentrates on com-
putations with a dimensionless temperature 7" = 0.01 and an initial fluctuation spectrum
of P(k) < 1/k*. We present results from nine different statistical realizations of that
initial conditions, using different particle numbers to address the issue of numerical res-
olution: six models with 50 000 SPH particles, two with 200 000 and one with 500 000
particles, respectively. Their properties are summarized in Tab. 6.1. The results and
conclusions derived for these calculations will be compared in Chap. 7 with models which
have deviating initial conditions.

The quantities derived and analyzed in the current chapter include, the clumping prop-
erties of the gas at various stages of its dynamical evolution, the kinematical and spatial
properties of the protostellar cluster that forms as the system advances in time and the
mass spectrum of protostellar cores. We discusse the boundedness of the cluster and the
rotational properties of protostellar cores. Finally we speculate about the implications of
our results for understanding the IMF. We compare the numerically calculated core mass
spectrum with the IMF for multiple stellar systems and derive constraints for the overall
star-formation efficiency.

6.1 Model Properties and Initial Conditions

The nine models discussed in this chapter have a temperature 7' = 0.01 and are generated
from a power law P(k) oc 1/k* using the Zel’dovich approximation (see Sec. 5). The

95
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Table 6.1: The models described in this chapter: T = 0.01 and P(k) o< 1/k>.

Temperature | Exponent® | Particles | Initial’ | Zel’dovich® | Identification

T =0.01 N=2 50000 random ot = 2.0 TOIN2-A
T =0.01 N=2 50000 random ot = 2.0 TOIN2-B
T =0.01 N =2 50000 random ot =2.0 TO1IN2-C
T =0.01 N =2 50000 random ot =2.0 TOIN2-D
T =0.01 N=2 50000 random ot =1.0 TOIN2-E
T =0.01 N =2 50000 grid ot = 2.0 TOIN2-F
T =0.01 N =2 200000 random ot = 2.0 TOIN2-G
T =0.01 N =2 200000 random ot=1.5 TO1IN2-H
T =0.01 N =2 500000 random ot=1.5 TOIN2-I

“Exponent of the power law, P(k) oc 1/k~. ’Initial distribution for the Zel’dovich shift. A homogeneous
random distribution is denoted by ‘random’, whereas ‘grid’ means that the particles have initially been

placed on a regular grid. ¢Shift interval §t for the Zel’dovich approach.

projection into the xy-plane of the initial particle distribution in each model at the start
of the dynamical evolution with SPH is presented in Fig. 6.1.

The global statistical properties of all nine models are identical, all reproduce the implied
power law P (k) oc 1/k*. However, each realization is different since varying sets of random
numbers are used to generate the fluctuation spectrum. This variance is more important
on large scales (or equivalently at small wave numbers k) since only few modes contribute
to the power spectrum. Statistical deviations of individual modes more strongly influence
the average values. The visual appearance of each particle distribution is therefore dom-
inated by the effect of statistical variance on large-scales; every initial density field looks
different.

All but one model assume a random uniform particle distribution before applying the
Zel'dovich shift. Placing particles randomly into a given volume produces an overall
distribution that is homogeneous on large scales, but is subject to statistical fluctuations
on small scales which introduce white noise into the correlation function. The scale at
which this effect becomes important is of the order of the mean interparticle distance.
These undesired small-scale fluctuations may influence the fragmentation behavior of the
gas. However, with the adopted temperature, the mass of small-scale regions of enhanced
density is much less than the local Jeans mass. Therefore, these fluctuations are quickly
damped and dynamically unimportant. As alternative to the random distribution, in
model TOIN2-F particles are placed on a regular grid before applying the Zel’dovich
approximation. This distribution is force-free and has exactly uniform density. On the
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Figure 6.1: Initial particle distribution for the nine SPH simulations with 7' = 0.01 and P(k) oc 1/k?
projected into the zy-plane. The six models with 50000 particles: a) TOIN2-A, b) TOIN2-B, ¢) TOIN2-C,
d) TOIN2-D, e) TOIN2-E, f) TOIN2-F. Models with 200000 particles: g) TOIN2-G, h) TOIN2-H. The
high-resolution model with 500000 particles: i) TOIN2-I. Every figure contains 50000 particles. In case
of a larger total number, the plotted particles are selected randomly. Model TOIN2-F (f) is generated
from particles placed on a grid, which is still visible in the figure. All other ones use random uniform
particle distributions. The Zel’dovich shift applied to generate model TOIN2-E is §t = 1.0, the shift for
models TOIN2-H and TOIN2-T is §t = 1.5. Otherwise, 6t = 2.0 is used. Therefore these distributions
exhibit more structure and larger density contrasts. For a summary see Tab. 6.1.
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other hand, the grid has preferred axes which introduce anisotropies in the neighbor
list of each particle. This fact may again influence the small-scale behavior. On larger
scales, the system is increasingly isotropic and this effect becomes negligible. In the
hydrodynamical evolution phase, after the Zel’dovich shift, traces of the grid are quickly
erased. Comparing the dynamical evolution, the model with the particles placed on a grid
is statistically indistinguishable from the models generated from a random distribution,
which we use as standard.

As discussed in Sec. 5, the Zel’dovich shift interval ¢ determines the density contrast in
the particle distribution. Typically, larger 0t leads to higher peak densities, which may
influence the fragmentation behavior of the system. On the other hand, smaller §¢ implies
that a larger fraction of the total time evolution of the gas has to be computed with the
SPH method and pressure forces, which are not included in the Zel’dovich approximation,
have more time to act on the gas. In general, 6t should be chosen small enough so that
the subsequent evolution is not dependent on the choice of 6t which is indeed the case
for 6t S 2.0 as is shown in Sec. 5.3. To address this issue again and to examine how
a variation of the Zel’dovich shift interval influences the properties of the protostellar
cluster that forms during the dynamical evolution and collapse of the gas, two models
are generated with smaller shift intervals d¢: model TOIN2-E with 6t = 1.0, and model
TOIN2-H together with the high-resolution model TO1N2-I having 6t = 1.5. Within the
statistical variance between different models, this effect is negligible.

Most simulations introduced in this chapter use 50 000 SPH particles. To address the
issue of numerical resolution and how the particle number in the simulation effects the
dynamical evolution and fragmentation of the gas, we performed computations with four
times (TO1IN2-G and TOIN2-H) and ten times more particles (model TOIN2-I). As long
as the minimum Jeans mass in the system is larger than about hundred particle masses
(see Sec. 3.4.5) the dynamical behavior of the system is well resolved and the results do
not depend on the particle number.

6.2 Time Evolution

This section discusses the time evolution of the simulations with 7" = 0.01 and a power-law
index N = 2. As discussed in Chap. 4, a dimensionless temperature 7" = 0.01 corresponds
to 222 Jeans masses in the computed volume. This number determines the dynamical
behavior of the system. The gravitational energy outweighs the internal energy by far and
the system is highly unstable to gravitational collapse and fragmentation. As a result,
typically about sixty collapsed cores form during the dynamical evolution. The complete
time evolution is illustrated in Fig. 6.2. Representative for all nine models with 7" = 0.01
and N = 2, it shows snapshots of the model TOIN2-A at twelve different stages of its
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t=0.0 ' t=0.2
M, = 0% M, = 0%

t=0.5 t=0.7
M, = 5% M, = 10%

Figure 6.2: Snapshots of the model TOIN2-A at ¢ = 0.0 (initial condition at the start of the SPH
simulation), at t = 0.2, at ¢ = 0.5 and at ¢ = 0.7. During the dynamical evolution, small-scale fluctuations
are damped, whereas Jeans unstable clumps start to collapse. At ¢t = 0.5, the first compact cores (‘sink
particles’ in terms of the SPH code) have formed in the centers of the densest clumps and have accreted
5% of the total gas mass. At ¢t = 0.7 the protostellar cores altogether gained 10% of the available mass.
Gas particles are plotted by small dots and collapsed cores are denoted by thick dots. Note that the
figures do not give information about the smoothing volume of individual particles. Its size is such that
it contains typically 50 neighbor particles.
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t=1.0 t=1.2
M, =20% M, =30%

t=14 t=1.6
M, = 40% M, =50%

Figure 6.2 — continued: Snapshots of the model TOIN2-A at ¢t = 1.0, ¢t = 1.2, t = 1.4 and ¢t = 1.6.
The total gas mass accreted onto protostellar cores is M, = 20%, M, = 30%, M, = 40% and M, = 50%,
respectively.

dynamical evolution. Note that the cube has to be seen periodically replicated in all
directions. With the start of the SPH simulation, pressure forces begin to act on the gas
and smear out small-scale fluctuations which are Jeans stable. On the other hand, large
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t=18 t=21
M, = 60% M, = 70%

t=25 t=3.3
M, = 80% M, =90%

Figure 6.2 — continued: Snapshots of the model TOIN2-A at ¢t = 1.8, t = 2.1, t = 2.5 and ¢t = 3.3.
The total gas mass accreted onto protostellar cores is M, = 60%, M, = 70%, M, = 80% and M, = 90%,
respectively.

modes are unstable against gravitational collapse and start to contract. At ¢t = 0.4 the
first highly-condensed cores form in the centers of the most massive and densest Jeans-
unstable gas clumps and are replaced by sink particles (see Sec. 3.4.4). Soon, clumps of
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lower initial mass and density follow. The density threshold for the formation of sink
particles is chosen to be p. = 5000 and the diameter of sink particles is 1/100 of the linear
size of the simulated cube. It is visible in Fig. 6.2 that the system evolves into a network
of intersecting sheets and filaments. The gas density is highest along filaments and at
their intersections. These are the locations where dense cores form predominantly and
soon a hierarchically-structured cluster of accreting protostellar cores is built up. Whereas
the overall dynamical evolution of the system is initially dominated by hydrodynamical
effects (all the mass is in the gas phase), the later evolution is increasingly determined
by the gravitational N-body interaction between protostellar cores and between cores
and their environment because more and more gas is accreted onto dense cores. These
only interact with each other gravitationally. The final result is a bound dense cluster
of protostars. After a few cluster crossing times, core motions have been randomized
by close encounters and the protostars have lost knowledge of their initial conditions.
The dynamical evolution of the entire system is extremely complex. Its influence on the
properties of individual protostars shall be discussed in Sec. 6.4.

At this stage it is necessary to draw attention to one caveat: The gas in the models is
treated isothermal. This implies that there exists no feedback mechanism which may
prevent the complete collapse. During the dynamical evolution of the system, all the
gas finally becomes accreted onto protostellar cores: the global core-formation efficiency’,
defined by the percentage of gas that is converted into dense cores, is of order unity. This
is unphysical and not observed in star-forming regions (see Sec. 2.1.4). At some stage
during the protostellar evolution phase, feedback processes from nascending stars inside
protostellar cores or from already existing massive stars in their vicinity must become
relevant and terminate the accretion onto cores and protostars. These effects cannot be
treated in an isothermal model. However, the early (isothermal) phases of the dynamical
evolution and collapse in molecular clouds are well described. The time at which these
assumptions break down is difficult to estimate. We are therefore hesitant to interpret
the models beyond the phase at which more than ~ 60 % of the gas has been accreted
onto protostellar cores.

In Fig. 6.3, four stages of the evolution of the high-resolution model TO1N2-I are presented.
Figure 6.3 plots the system initially, at time ¢t = 1.4, when 10% of the gas is condensed into
protostellar cores, at 2.0 and at t = 2.8. At those times, the mass in protostellar cores has
grown to 30% and 60% of the total mass in the system, respectively. Instead of placing
individual SPH particles, Fig. 6.3 plots the distribution of the gas density. The density
field is scaled logarithmically with darker areas denoting higher densities. Hence, dark
dots identify the location of dense collapsed cores. When comparing the time scales for
core formation and subsequent accretion with the previous model, the different Zel’dovich

'We use the word core-formation efficiency to distinguish from the commonly quoted star-formation
efficiency. Both are connected via the ability and effectiveness of individual cores to form stars.
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Figure 6.3: Density distribution of the high-
resolution model TO1N2-T at four different times: Ini- _
tially, at t = 1.5, at ¢ = 2.0, and at t = 2.8. The total ) 4 0 1 2 3 4
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shift intervals have to be taken into account. In the high-resolution calculation TO1N2-I
it is chosen to be 6t = 1.5 instead of 6t = 2.0 for model TOIN2-A. Furthermore, the
adopted accretion radius of sink particles in the code was reduced by a factor of two, it
is 1/200 of the linear size of the simulation box. This delays the formation and accretion
onto sink particles by At =~ 0.3. Altogether, the state of the system where the mass
fraction accumulated in collapsed cores exceeds a certain percentage is reached later by
At ~ 0.8 in simulation TOIN2-I. Besides this timing issue, the dynamical behavior of the
system is very similar, again a cluster of protostellar cores develops which grows in mass
by accretion from its surrounding gas reservoir.

6.3 Clumping Properties of the Evolving Gas

As is discussed in Sec. 2.1.1, the structure of molecular clouds is extremely complex and
observations reveal a network of intersecting filaments and clumps on all scales. Molecular
clouds may be fractal and various studies of the mass spectrum of molecular clouds and
of the gas clumps inside of clouds indicate that their distribution may be approximated
by a power law of the form dN/dm o m® with exponent o & —1.5 (see Tab. 2.1.1). This
universal clump mass spectrum is an important constraint and test for the modeling
of molecular cloud evolution. Numerical simulations must be able to reproduce this
structural feature of observed clouds. In the isothermal gas model presented in this
thesis, the power-law clump mass spectrum is a result of the interaction between gravity
and gas pressure. The dynamical evolution of strongly self-gravitating gas naturally leads
to a hierarchical density structure with a power-law mass distribution. This is discussed
in detail in Sec. 6.3.1, followed by a study of the statistical properties of individual clumps
in Sec. 6.3.2.

6.3.1 Clump Mass Spectrum

Figures 6.4 and 6.5 characterize the distribution of clumps and of condensed cores at four
different stages of the dynamical evolution of the isothermal models TOIN2-A and TO1N2-
I, namely initially and when 10%, 30% and 60% of the available gas has been accreted
onto protostellar cores. For each of these times the upper panels compare the mass
distribution of detected gas clumps (thin line) with the observed clump mass distribution
dN/dm oc m~'* which translates into a slope of —0.5 when plotting log,, N versus log;, m
(dashed line). To identify individual clumps, we have developed a clump-finding algorithm
similar to that of Williams et al. (1994), but based on the framework of SPH. For details
see App. A. The thick line depicts the mass distribution of condensed protostellar cores
that have formed within the more massive gas clumps (a detailed analysis of this process
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Figure 6.4: Properties of identified clumps and condensed cores in the standard simulation TO1N2-A
at times ¢ = 0.0, 0.7, 1.2 and 1.8, when 0%, 10%, 30% and 60% of the total gas mass is collapsed onto
protostellar cores. For each point in time the upper panel shows the distribution of gas clump masses
(thin lines) and core masses (thick lines). The lower panel shows the location of each identified clump in
a density-—mass diagram. A detailed explanation is given in the main text.
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Figure 6.5: Properties of identified clumps and condensed cores in the high-resolution simulation TO1N2-
I at times ¢ = 0.0, 1.5, 2.0 and 2.8, i.e. when 0%, 10%, 30% and 60% of the total gas mass is collapsed
onto protostellar cores. The notation is analogous to Fig. 6.4. Note, however, that model TO1N2-I uses
ten times more particles. Therefore the mass resolution is better by one order of magnitude.
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is given in Sec. 6.4). The lower panels show the position of each gas clump in a mass—
density diagram. Clumps containing one single core are denoted by open circles, those with
multiple cores by filled circles. The unresolved cores are plotted as stars with the density
of cores being defined as the core mass divided by the volume within the fixed accretion
radius. Therefore, they all fall along a straight line with slope 1/3. The isothermal Jeans
mass as function of density is indicated by the diagonal line which separates the diagram
into two regions. Clumps that lie to the right of the line exceed their Jeans mass and are
due to collapse, whereas clumps to the left are stabilized by gas pressure. The vertical
line indicates the SPH resolution limit (Sec. 3.4.5). Clumps to the right of this line are
well resolved, objects to the left are ill-defined and may be spurious results of the clump
find algorithm. Note that Fig. 6.5 describes the high-resolution simulation and therefore
the mass resolution is better by one order of magnitude.

The clumping properties in both simulations, the standard model TOIN2-A and the
high-resolution model TO1N2-I, are remarkable similar, regardless of the fact that model
TOIN2-I consists of ten times more particles. This suggests that the dominant dynam-
ical processes are well treated and resolved. In both simulations, the clump spectrum
of the initial gas distribution cannot be described by a simple power-law, it reflects the
structural properties of the Gaussian random field from which the initial conditions are
generated. The linear approach is not able to generate a hierarchical structure on all
scales. This requires considerable non-linear gravitational evolution to take place. Hence,
in the subsequent self-consistent dynamical evolution with SPH, the clump distribution
quickly achieves a universal mass distribution with a power-law slope which is in excellent
agreement with the observed exponent o &~ —1.5 (dashed line). The core distribution, on
the other hand, deviates significantly from a power-law distribution for smaller masses.
Note, that the relative underabundance of low-mass cores with respect to low-mass clumps
is not a resolution effect (see the vertical thin lines). Whereas some cores in model TO1N2-
A may be only marginally resolved, clearly all are well resolved in the high-resolution case
TO1N2-I. Considerable deviations from a simple power-law spectrum of clump masses oc-
cur again in the very late phases of the evolution when most material is accreted onto
dense cores and the gas reservoir becomes depleted significantly. Then, huge voids of very
low density open up and the entire system resembles more strongly a (proto)star cluster
than a molecular cloud. Within these two extrema of the isothermal gas evolution, from
the linear initial gas distribution to the final star cluster, the complex interplay between
gravity and gas pressure naturally creates a hierarchical structure best described by a
simple power-law.

The lower panels in Fig.’s 6.4 and 6.5 indicate that initially only very few high-mass
clumps exist which exceed the local Jeans mass. The average density of clumps is close
to the mean density (p) = 1/8. These clumps will collapse rapidly and form the first
condensed cores in their central region (see also Sec. 6.4). On the other hand, the whole
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gas distribution evolves, clumps begin to stream towards a common center of gravity, and
a complex network of intersecting sheets and filaments builds up. At the intersections of
filaments clumps are likely to merge and may form larger clumps. The density grows and
once enough mass is accumulated, the new clumps will undergo rapid collapse to form
new protostellar cores. Therefore, with progression of time the number of Jeans-unstable
clumps and subsequently of protostellar cores increases, populating a larger region to the
right of the diagonal line. If clumps merge which already contain protostellar cores, the
new more massive clump suddenly contains multiple cores in its interior. Within this
protostellar cluster, cores now compete with each other for the surrounding gas envelope.
This competitive accretion and the direct gravitational interaction between the members
of the cluster has important consequences for the further evolution. It influences the mass
growth of individual cores and thus determines the final mass spectrum (more details are
discussed in Sec. 6.4). These unpredictable probabilistic phenomena are responsible for
the difference between the distribution of clump masses and of core masses. Whereas gas
clumps only evolve according to the laws of hydrodynamics, cores are subject to direct
gravitational interaction, they behave like an N-body system. This inevitably alters their
mass distribution. The mass spectrum of protostellar cores is well approximated by a
log-normal functional form, being comparable to the stellar IMF. A detailed comparison
is discussed in Sec. 6.5.

6.3.2 Properties of Individual Clumps

Whereas the previous section discussed global features of the clump and core distribution,
this section looks in detail into the properties of individual clumps. This is important
if one wants to study the collapse and fragmentation of single clumps with very high
resolution. Asindicated before, the simulations presented here are no longer able to resolve
the collapse and sub-fragmentation of protostellar cores once they have been substituted
by sink particles in our code (a detailed description of how this is handled is given in
Sec. 3.4.4). To study this subsequent evolution, a new simulation just concentrating
on the collapse of one single core becomes necessary (see Sec. 2.2.2). To connect the
final stages of the larger-scale simulations discussed here and the initial conditions for
detailed collapse calculations, statistical knowledge about the properties of individual
cores is necessary. Important parameters entering individual collapse scenarios are the
mass distribution of clumps (this was discussed in the previous section), their density
structure (this is discussed in this section) and their rotational properties (the angular
momentum evolution of cores will be examined in Sec. 6.4.3). However, gas clumps are
never in isolation, the progenitors of protostellar cores interact with each other and may
merge or fragment. This has very important consequences for the mass spectrum, the
spatial distribution and the geometrical shape of clumps and cores. In a very crude
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Figure 6.6: Typical shapes of identified clumps in the high-resolution model TOIN2-I at time ¢ = 1.2,
i.e. when four collapsed cores have formed and accreted 1% of the total gas mass. This first part of the
figure projects the clumps containing the four protostellar cores into the zy-, zz- and yz-plane. Density
is scaled logarithmically. Two contour lines span one decade (log;; Ap = 1/2) with the lowest contour
level being 10'/? above the mean density (p) = 1/8. The black dots indicate the positions of the dense
protostellar cores.
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Figure 6.6 — continued: Typical shapes of identified clumps in the high-resolution model TOIN2-T at
time ¢ = 1.2. This second part of the figure shows contour plots of clumps that have not yet collapsed
to high enough densities to contain dense cores. Note that clumps are numbered accoring to their peak
density. The plot is centered on the center-of-mass of each clump, as indicated by the two intersecting
lines.
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fashion this is included in the collapse calculation of single, isolated cores by assuming
some kind of external perturbation, e.g. random noise or an m = 2 mode (see Sec. 2.2).

Typically, the overall density distribution of identified clumps in our simulations follows
a power law and the density increases from the outer regions inwards to the central part
as p(r) oc 1/r2. For clumps that contain collapsed cores, this gradient continues towards
the central protostellar object. However, for clumps that have not yet formed a collapsed
core in their center, the central density gradient becomes flat. This is in accordance with
the theory for isothermal collapse (see Sec. 2.2) and with the observational data for dense
cores in dark molecular clouds (see Sec. 2.1.5). However, the clumps generally are highly
distorted and are by no means spherical. Typically they are triaxial with high axis ra-
tios. Depending on the projection angle, they often appear extremely elongated, being
part of a filamentary structure which may be identified as chain of connected elongated
individual clumps. Also more complicated shapes are common which may result from
recent clump mergers at the intersections of filaments. A selection of clump shapes is
presented in Fig. 6.6 which plots the contour lines for eight high-density clumps in sim-
ulation TOIN2-T at time ¢t = 1.2 projected into the zy-, z2- and yz-plane. At this state
of the dynamical evolution, four collapsed cores have formed which accreted 1% of the
total gas mass. This time is most appropriate to determine clump properties, because
the system has already undergone substantial evolution (the power-law clump spectrum
is well established) but is not yet influenced by the dynamical interaction between dense
protostellar cores. Their mass is negligible and there are no clumps with multiple cores
yet. The clumps that already formed dense cores in their interior are plotted in the first
part of the figure, the second part describes clumps whose central densities are not yet
high enough to be identified as condensed core. The clumps are numbered according to
their peak density, i.e. clump #1 has the highest central density. The density contours are
spaced logarithmically with two contour levels spanning one decade, log,, Ap = 1/2. The
lowest, contour is therefore by a factor of 102 above the mean density (p) = 1/8. The
black dots indicate the positions of the dense protostellar cores. Note the similarity to
the appearance of observed dense (pre-stellar) clumps (Fig. 2.5). It is clearly visible that
the clumps are very elongated. The ratios between the semi-major and the semi-minor
axis measured at the second contour level are typically between 2:1 and 4:1. However,
there may be significant deviations from simple triaxial shapes, see e.g. clump #4 which
is located at the intersection of two filaments. This clump is distorted by infalling ma-
terial along the filaments and appears ‘y’-shaped when projected into the zz-plane. As
a general trend, high contour levels typically are regular and smooth, because they are
mostly influenced by self-gravity. On the other hand, the lowest level is strongly influ-
enced by environmental effects. Hence, it appears patchy and irregular. The location of
the condensed core within a clump is not necessarily identical with the center-of-mass of
the clump. This is due to the irregular shape of the clump caused by dynamical evolu-
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tion. All these properties of the clumps identified in the numerical simulations are in good
agreement with the features of observed clumps (see Sec. 2.1.5), suggesting that gravity
and gas pressure are dominant agents in shaping molecular cloud structure.

6.4 The Formation and Properties of Protostellar Clus-
ters

The location and the time at which protostellar cores form, is determined by the dynamical
evolution of their parental gas clouds. Besides collapsing individually, clumps stream
towards a common center of attraction, where they may merge with each other or undergo
further fragmentation. As can be seen in Fig.’s 6.2 and 6.3, isothermal models evolve into
a network of intersecting sheets and filaments. The gas density is highest along filaments
and at their intersections. These are the locations where dense cores form predominantly.
The time of their formation in the centers of unstable clumps depends strongly on the
relation between the timescales for individual collapse, streaming motion along filaments,
merging and sub-fragmentation. Individual clumps may become Jeans unstable and start
to collapse to form condensed cores in their centers. While collapsing, these clumps
also interact with each other. When clumps merge, the larger new clump continues to
collapse, but contains now a multiple system of cores in its center. Now sharing a common
environment, these cores compete with each other for the limited reservoir of gas in their
surrounding (see e.g. Price & Podsiadlowski, 1995; Bonnell et al., 1997). Furthermore,
the protostellar cores interact gravitationally with each other. As in dense stellar clusters,
close encounters lead to the formation of unstable triple or higher order systems and alter
the orbital parameters of the cluster members. As a result, a considerable fraction of
protostellar cores get expelled from their parental clump. Suddenly bereft of the massive
gas inflow from their collapsing surrounding, they effectively stop accreting and their final
mass is determined. Ejected objects can travel quite far and resemble the weak line T
Tauri stars found via X-ray observation in the vicinities of star-forming molecular clouds
(e.g. Neuhduser et al., 1995; Wichmann et al., 1997). All these effects act together to shape
the formation and accretion history of individual cores and determine the kinematical and
spatial properties of the entire cluster of protostars.

6.4.1 Formation and Growth of Protostellar Cores
As stated before, the formation and accretion history of protostellar cores is extremely

complex and influenced by a variety of effects. As illustration, we specify in Fig. 6.7 the
accretion history for a number of selected protostellar cores (a) from model TOIN2-A and
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(b) from model TOIN2-I. The objects are numbered chronologically according to their
time of formation. Model TOIN2-A forms altogether 60 cores and model TOIN2-I 55.
The figure reveals the following trends:

(a) The cores which form first tend to have the largest final masses. They emerge from
the initial clumps with the largest masses and highest densities which are identified with
the most significant peaks in the fluctuation field. Jeans unstable clumps with these
qualities have very short collapse time scales. Hence, these clumps are the first ones in
the simulation to satisfy in their central region the conditions to convert a dense group of
SPH particles into a single sink particle (see Sec. 3.4.4). These first sink particles are likely
to swallow a mass large fraction of their parental clumps before the dynamical evolution
of their environment changes the clump properties too much, i.e. before the clumps get
dispersed or merge with other clumps. If a clump which already contains a core merges
with a non-collapsed gas clump, for example when streaming along a filament towards
a common center of attraction, then also the new clump is likely to become completely
accreted onto the protostellar core. Since the first cores form in the highest-density regions
more or less independent of each other, their mass growth rate is dominated by the matter
originating from their vicinity.

(b) On the other hand, matter that contracts into dense cores at later times (say ¢ 2, 2)
has already undergone considerable dynamical evolution. Clumps that were initially not
massive enough to collapse onto themselves follow the large-scale flow towards the global
minimum of the gravitational potential. They stream along filaments and may merge at
the intersections. Once enough mass is accumulated, they undergo rapid collapse and
build up a new protostellar core. This accumulation procedure needs time. It forms
cores predominantly in the late stages of the dynamical evolution. In a closed system,
the available gas is already depleted considerably. Therefore, their average mass is very
small. The final masses of the protostellar cores for the high-resolution model TO1N2-I
(i.e. at the time when 90% of the available gas mass has been accreted) are plotted in
Fig. 6.8.

Another aspect of the accretion process onto individual cores is discussed in Fig. 6.9. For
the (a) first nine cores and for the (b) last nine cores that form in the high-resolution
model TOIN2-I, it plots the initial (at ¢ = 0.0) distances between the accreted SPH
particles and the particle that gets converted into the sink particle during the course of
the simulation. This defines a volume from which particles accrete onto protostellar cores.
As indicated above, the cores in Fig. 6.9a accrete most particles and the bulk of their final
mass from their vicinity, i.e. from a distances less than ~ 0.5. With the total size of the
simulated cube being 23, this corresponds to roughly 1/64 of the total volume. In the
case, the material would be randomly sampled from a homogeneous cube of size 23, the
most material would come from a distance of ~ 1.3. On the other hand, the cores in
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Fig. 6.9b are much smaller (note the diffent scale at the ordinate) and consist of matter
that originates from a larger volume, much closer to the value for random sampling. This
indicates that these clumps accrete from matter that already has undergone considerable
dynamical evolution and is well mixed.

Further information about the processes determining the formation of and accretion onto
dense cores is given in Fig. 6.10. It plots the contributions from individual clumps to
the final mass of selected cores. As a general trend, cores that form very early can
accrete a large fraction of their parental and neighboring clumps before clump interaction
and merging becomes important. On the other hand, matter that builds up protostellar
cores at the late stages of the dynamical evolution has participated in large-scale motions
and successive clump merging. It is well mixed and the initial clump assignment is no
longer significant. Furthermore, the competition amongst groups of cores in the interior
of multiple merged clumps for the accretion from the surrounding gas reservoir becomes
more important with the progression of time. This phenomenon also contributes to the
distribution of available gas mass onto a larger number of cores. Therefore, the fraction
(fj) of material of individual clumps that gets accreted onto the cores decreases again
with time. Since the cores that form early gain most of their mass rapid-Ely and from
their vicinity, (f;) is larger than the values for cores that form later form well mixed
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2000

Figure 6.9: Initial distance distribution of matter that gets accreted onto protostellar cores. For (a) the
first nine cores to form and for (b) the last nine ones, the number N of SPH particles that get accreted
onto a condensed core are plotted as function of their initial distance r to the particle that is converted
into the accreting core particle (see Sec. 3.4.4). The cores that form first accrete more mass than the
later ones and this mass is accumulated from a smaller volume.
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material.

6.4.2 The Importance of Dynamical Interaction

Besides the effects discussed in the previous section, the growth rate of protostellar masses
is strongly affected by the dynamical interaction between the cores themselves. This
phenomenon is closely related to the competitive accretion of multiple cores within one
common gas envelope (Price & Podsiadlowski, 1995; Bonnell et al., 1997) and becomes
important when clumps merge that already contain dense cores. In the protostellar cluster
in the center of the larger merged clump, protostellar cores interact gravitationally with
each other. As in dense stellar clusters, close encounters may lead to the formation of un-
stable triple or higher-order systems and alter the orbital parameters of cluster members.
During the decay of unstable subsystems, protostellar cores can get accelerated to very
high velocities and may leave the cluster. During this process, the less massive cores are
more likely to become ejected. Protostellar cores that get expelled from their parental
clump are suddenly bereft of the massive gas inflow from their still collapsing surround-
ing. They effectively stop accreting and their final mass is determined. The dynamical
interaction between cores is an important agent in shaping the mass distribution.

For example, looking at the accretion history of protostellar cores in the standard model,
Fig. 6.7a, it is evident that core #b5 stops accreting at ¢ ~ 0.8, long before the overall
gas reservoir is depleted. The same applies to core #7 at t =~ 0.9. In both cases, the
objects were involved in a 3-body encounter that resulted in the expulsion from their gas
rich parental clumps. Fig. 6.11 depicts the trajectories of the cores #3, #5, #11, #31,
and #46. At ¢t ~ 0.3 core #3 forms within an overdense region and slightly later cores
#5 and #11 form in its vicinity from other Jeans-unstable density fluctuations. Their
parental gas clumps merge and the whole systems flows towards a local minimum of the
gravitational potential. The three cores soon build an unstable triple system, continuing
to accrete from the converging gas flow they are embedded in (the detailed trajectories
are shown in Fig. 6.11b, note the larger scale). At ¢t & 0.8, core #5 is expelled and the
remaining two cores form a wide binary, which at ¢ ~ 1.6 suddenly hardens due to the
gravitational encounter with core #46 (see Fig. 6.11c). Also this hard binary is transient,
the interaction with core #31 pumps energy in its orbit, and in the subsequent evolution,
the orbital period increases further during the encounter with a dense gas filament whose
tidal influence finally disrupts the binary at ¢ ~ 2.4. At that time, accretion stops.

Also the high-resolution simulation is subject to these unpredictable and chaotic kinemat-
ical effects. In Fig. 6.7b, at ¢ ~ 1.8, core #19 stops accreting. It is expelled from a dense
clump at the intersection of two massive filaments by a triple interaction with cores #1
and #17. However, it still is bound to the gas knot which grows in mass due to continuous
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Figure 6.10: Contribution m; of individual clumps ¢ identified in the initial density field to the final
mass of core particles j, denoted by crosses: for (a) core j =1, (b) core j = 2, (c) core j = 10, (d) core
j =40 and (e) core j = 55. The total mass of the gas clumps 4 is indicated by dots. Plot (f) gives the
mass-weighted mean of the fraction of clump material (f;) that gets accreted onto individual cores j.
Cores that form early tend to accrete nearby clumps more completely, whereas material that builds up
cores at later stages has already undergone sufficient dynamical evolution to be well mixed. The initial
association with certain clumps becomes irrelevant.
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infall. It falls back onto the clump of gas and resumes accreting at ¢ &~ 2.0. Cores #9 and
#41 are also expelled from their parental clumps but, unlike core #17, their accretion is
terminated completely. These dynamical interactions between protostellar cores influence
their mass distribution significantly. In reality, ejected protostars may travel quite far
and could cause the extended distribution of weak-line T Tauri stars found via X-ray
observations in the vicinities of star-forming molecular clouds (e.g. see Neuhduser et al.,
1995; Sterzik et al., 1995; Krautter et al., 1997; Wichmann et al., 1996, 1997).
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6.4.3 Rotational Properties of Protostellar Cores

A very important parameter for the further collapse and possible sub-fragmentation of
individual protostellar cores is their rotational. If a rotating gas clump begins to collapse,
the conservation of angular momentum prevents material from the envelope to directly
accrete onto the central protostar. Only the inner part of the clump is able to immediately
fall onto the star, the bulk of the infalling envelope accumulates in a rotationally supported
disk around the central object. Angular momentum is removed outward on the viscosity
time scale Tys (see Sec. 2.2). Only the viscous transport processes within the accretion
disk or global instabilities are able to transfer matter further towards the central star. The
time scale 7.5 on which viscous transport takes place is typically by a factor of 10 — 100
larger than the rotational time scale, which is comparable to the free-fall time scale 7
(see e.g. Pringle, 1981).

These processes take place deep inside the protostellar cores, hence they cannot be resolved
by our numerical scheme. However, we can keep track of the the total angular momentum
accreted onto each condensed core in our simulation. Figure 6.12 plots the time evolution
of the angular momentum vector L of all protostellar cores in the high-resolution model
TO1N2-I. The left panel describes the evolution of each individual component of the vector.
The right panel plots the distribution of L,, L, and L, at the end of the simulation at ¢t =
3.9. For comparison, we overlay the final distribution (at ¢ = 5.6) of the angular momenta
of the cores in the standard model TOIN2-A with dashed lines. Both distributions are
statistically indistinguishable. From the plots, we see that the evolution of the angular
momentum of individual cores can be very complex and intimately reflects the rotational
properties of the environment they are embedded in: the angular momentum of the
protostellar core is determined by the angular momentum of the clump it forms in. Clumps
that merge at the intersection of two filaments can accumulated considerable angular
momentum which is transfered onto the core by accretion. The angular momentum vector
of cores may even change its sign if material is accreted which rotates counterclockwise
with respect to the core.

The distribution of the absolute values of angular momenta |L| of the protostellar cores
in simulation TO1N2-I is plotted in Fig. 6.13a. It gives these values at ¢ = 2.8 (solid line),
i.e. when 60% of the gas is converted into dense cores, and at the final stage, t = 3.9
(dashed line). As already indicated in Fig. 6.12, the angular momenta are very broadly
distributed and peak at ~ 107°. Note again that these values are given in dimensionless
units with length and mass scales set to one. Figure 6.13b plots the distribution of the
specific angular momenta |L|/m of the cores, again at ¢t = 2.8 (solid line) and at ¢t = 3.9
(dashed line). The mass dependence of |L |/m is specified in Fig. 6.13c. There are no
massive cores with low specific angular momentum. However, there is no clear correlation
between both quantities.
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Figure 6.12: Time evolution of the angular momentum L of protostellar cores. The left column plots
(a) the z-component L, (c) the y-component L, and (e) the z-component L. of each condensed core in
the high-resolution simulation TOIN2-I as function of time ¢. The right column plots the distribution of
every component at the end of the SPH simulation, i.e. at ¢ = 3.9 for model TOIN2-I (solid lines) and
also for the standard model TOIN2-A at ¢t = 5.6 (dashed lines): (b) L,, (d) L, and (f) L..
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When looking at the spatial distribution of the angular momentum vectors of protostellar
cores, there is a correlation between the location and the orientation. As is visible in
Fig. 6.14, the angular momentum vectors of cores that form in the same region tend to be
aligned. These cores form from gas that has similar global flow patterns. When clumps
follow the same flow and also when clumps stream towards each other, they tend to have
comparable rotational properties. Furthermore, in clumps which contain multiple cores as
the result of merging, all cores accrete from the same environment with a certain angular
momentum. As a result, the rotational properties of these cores tend to be similar. In
some star-forming regions, molecular outflows from young stellar objects indeed appear
to be correlated and aligned (e.g. in the northern part of the L1641 cloud, see Fig. 14
in the review article by Reipurth, 1989). Assuming that the protostellar outflows are
associated with the rotational properties of the protostellar object they emerge from, this
implies a correlation between the angular momenta of the protostellar cores similar to the
one found in our numerical models. On the other hand, in other regions no correlation is
found at all. Taking all together, the observational data are not conclusive.
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Figure 6.14: Projection of the angular momenta L of protostellar cores in simulation TOIN2-I into the
xy-, vz- and yz-plane at ¢t = 1.5 (upper panel), t = 2.0 (middle panel) and ¢t = 2.8 (lower panel), i.e. when
10%, 30% and 60%, respectively, of the gas mass is accreted onto the cores. The length of the lines is
proportional to |L|; note that for better legibility the scaling factor in the bottom row is reduced by a
factor of 1/3 compared to the upper two panels.

6.4.4 Clustering Properties of Protostellar Cores

When studying the spatial properties of (proto)stellar clusters, the typical statistical quan-
tity derived from observational data is the 2-point correlation function of the cluster or
equivalently the mean surface density of companion stars £ as function of separation r.
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Larson (1995) found that in the Taurus star-forming region the mean surface density of
companions follows a power law as function of separation with a break in the slope at
the transition from the binary to the large-scale clustering regime. This analysis has also
been applied to other star-forming regions (Simon, 1997; Bate et al., 1998). Larson iden-
tified the transition separation with the typical Jeans length in the molecular cloud. For
Taurus this may be true, but is is probably a coincidence; in Orion this conclusion fails.
In general, it can be shown that the transition separation depends on the volume density
of stars, the extent of the star-forming regions along the line-of-sight, the volume-filling
nature of the stellar distribution and on the details of the binary distribution (Bate et al.,
1998). Additionally, the transition separation evolves in time due to dynamical inter-
actions amongst the cluster members. Note that the 2-point correlation function is not
unique. It cannot differentiate between hierarchical (fractal) and non-hierarchical struc-
ture, and different stellar distributions may lead to the same 2-point correlation function.
Therefore, the analysis of the spatial distribution by eye is very important for a mean-
ingful interpretation of £&. Alternatively, to obtain quantitative results, the calculation of
higher-order correlation functions may be useful, which is common in studying the large-
scale structure of the universe (Peebles, 1993). Unfortunately, the stellar distributions in
star-forming regions typically have been analyzed in terms of correlation functions only
to the lowest order. Hence, in the comparison with observational data we also restrict
our analysis of the spatial distribution of protostars in our models to calculating the
lowest-order correlation function.

Figure 6.15 plots the mean surface density of companions ¢ as function of separation r
for the protostellar cluster that forms in the standard model TOIN2-A at five different
times of its evolution. At each point in time, the left panel gives the spatial distribution
of the protostellar clusters projected in the xy, x2- and yz-plane. The resulting functions
¢ for each projection are shown in the right panel. Figure 6.16 gives the same information
for the high-resolution simulation TOIN2-I. The two figures reveal the following trend:
The first cores form relatively homogeneously distributed with large separations and a
small binary fraction. Note, that if altogether 50 protostellar cores would form and if
they were distributed randomly throughout the entire region, the projected number of
companions per unit area would 50/4 = 12.5. The value of the plateau of the mean
surface density of companions describing the large-scale clustering at separation between
0.1 and 0.5 is approximately of this order. At the intersections of filaments clumps which
already contain one or more cores may merge, forming larger clumps which subsequently
contain a cluster of cores. As a result of this process, in Fig. 6.15b one sees several
small aggregates distributed throughout the simulated volume. Within these small, dense
clusters close encounters between protostars are very frequent and dominate the dynamical
evolution (see Sec. 6.4.2). Binary and higher-order multiple systems form and determine
the function £ at very small separations. During the progression of the evolution, the small
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Figure 6.15: Clustering properties of the protostellar cluster.
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The left panel plots the location of

protostellar cores projected into the xy-, the zz- and yz-plane, respectively, for the model TOIN2-A at
(a) t = 1.0, (b) t = 2.0 and (c) t = 3.0. The right panel shows the projected mean surface density of
companions ¢ for protostellar cores as function of separation r. (The figure is continued on the next

page.)
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xy-, the zz- and yz-plane, respectively (left panel) at (d) ¢ = 4.0 and (e) ¢t = 5.0. Projected mean surface
density of companions £ as function of separation r (right panel).

protostellar aggregates follow the streaming motion of their surrounding gas envelopes and
merge, thereby forming a single bound cluster (see Fig. 6.15¢), the protostellar system has
reached a state of minimum spatial extent. At that stage about 90% of the available gas
has been accreted and the subsequent evolution of the cluster is almost entirely determined
by gravitational interaction. It behaves like a pure N-body system: it expands again and
rapidly develops the core/halo structure typical for collision-dominated self-gravitating
N-body systems (see e.g. Binney & Tremaine, 1987). This process is expedited by the
fact that cores which have been accelerated to high velocities by close encounters with
hard binaries cannot leave the simulation box due to the periodic boundary conditions.
Once they have trespassed the boundaries of the cube, they are reinserted at the opposite
side with the same velocity and may again interact with other cluster members to transfer
energy to more slowly moving cores. In reality they would be ejected from the cluster
and leave the star-forming cloud. At these late stages of the evolution, a clear change
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Figure 6.16: Clustering properties if the protostellar cluster in the high-resolution model TO1N2-I.
Again, the left panel plots the location of protostellar cores projected into the zy-, the xz- and yz-plane,
respectively, at (a) t = 1.5, (b) ¢ = 2.5 and (c¢) ¢ = 3.5. The right panel shows the projected mean surface
density of companions ¢ for protostellar cores as function of separation r.
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in the slope of the function £ can be seen at the break between the binary regime and
the large-scale clustering (see Fig. 6.15e). This trend is not so clearly visible in Fig. 6.16.
However, this model was not evolved far enough in time. Furthermore, due to the larger
particle number in simulation TO1N2-I, the gravitational softening and the smoothing
radius are smaller by a factor of 2 2 and the cluster becomes more compact. The break
between the binary and the clustering regime will occur at somewhat smaller separations
and higher densities.

Like in observed stellar clusters, the mean surface density of binary companions on average
decreases with separation as 1/r2. This behavior is a result of the distribution of binary
separations being approximately flat in logarithm. Duquennoy & Mayor (1991) analyzed
a sample of nearby G-dwarfs and found that the distribution of orbital periods of binary
stars in their sample follows approximately a broad Gaussian with a peak at ~ 10*8
days'. We have shown in Fig. 6.13 that also in our models the logarithmic distribution
of angular momenta is relatively flat and very broad as well, spanning at least three
orders of magnitude. If we assume that rotating protostellar cores typically break up into
binary systems (see Sec. 2.2) we also would expect the distribution of orbital periods to be
very broad without significant peaks. Similar to the mass distribution which also is very
broad and relatively flat (see Sec. 6.5), this may follow as the result of the stochastical
processes which determine the formation and evolution of protostellar cores, and therefore
the distribution of their angular momenta as well. However, we cannot follow the detailed
evolution and subfragmentation of individual condensed cores and this picture may be
highly speculative. For the same reason, our model is not able to describe the formation
of close binaries. The binary systems of protostellar cores in our simulations could only
correspond to the very wide binaries in the observed distribution.

6.4.5 Boundedness of Protostellar Clusters

In every simulation described in this chapter, the dynamical evolution of the gas results
in the formation of a dense cluster of protostars (see Fig.’s 6.2 and 6.3, and the left pan-
els of Fig.’s 6.15 and 6.16). These clusters are bound throughout their entire evolution.

!The sample of Duquennoy & Mayor (1991) comprises 164 G-dwarfs or equivalently 82 binary systems.
The distribution of orbital periods P can be approximated by a broad Gaussian-type relation, f(log;,)
exp [—1/2 (logo P — (logi P))* /ot P], which centers at (log;o P) = 4.8 and has a width of o105, p =
2.3. The period P is given in days. The mass ratio ¢ between secondary and primary star in each system
is ¢ ~ 0.2. Since the typical mass of G-dwarfs is ~ 1 M, Keplers 3" law implies that an orbital period of
P = 10*8 days corresponds to semi-major axis of ~ 32 AU. From the broad distribution of orbital periods
(in log,o P) follows immediately a broad distribution of binary separations log,, r, which to the lowest
order can be approximated as being flat, i.e. dN/dlog,,r = K. Then, dN = K/r dr is the number of
binary companions with separations in the range r to r + dr and the mean surface density of companions
in the 2-dimensional projection follows as £(r) = N~™'dN/(2rxrdr) = N7'K/(2nr?) oc 1/72.
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Figure 6.17: For the protostellar clusters that form in model TO1N2-A (dashed lines) and model TO1N2-I
(solid lines): Time evolution of (a) the total kinetic energy, subdivided into the contribution from random
motions Ei, (thick lines) and from the center-of-mass motion Ee, (thin lines at the bottom of the plot),
(b) the potential energy FEpor, (¢) the virial coefficient nyir = 2Eint/|Epos|, and (d) the cumulative mass
Mt of the cluster.

To specify this in more detail, Fig. 6.17a plots for the protostellar clusters forming in
simulation TOIN2-A (dashed lines) and TOIN2-I (solid lines) the time evolution of the
total kinetic energy subdivided into the contribution from the internal velocity dispersion
(thick line) and from the center-of-mass motion (thin line). The kinetic energy is almost
entirely dominated by the internal random motions of the cluster members. In Fig. 6.17b,
the evolution of the potential energy is given. The cluster in the high-resolution model
TO1IN2-I (solid lines) is still in its contraction phase when the simulation stops at ¢ = 3.9.
The cluster in TOIN2-A does evolve further, it develops the typical core/halo structure of
collisional N-body systems. The global virial coefficient 7y, = 2Ein/|Epot| is plotted in
Fig. 6.17c. Once the clusters has formed it always is marginally bound, i.e. 1y, S 1. These
conclusions do not change when taking into account only the cores that lie within the half-
mass radius of the clusters. The cumulative mass of the clusters is given in Fig. 6.17d.
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During the formation of the cluster, the conversion of gas into dense protostellar cores is
such that the decrease of potential energy is always more or less balanced by the increase
of kinetic energy, even at very early times when the gravitational potential is strongly
dominated by the gas. If the gas suddenly were removed, the cluster of protostellar cores
would still remain bound. This is an intrinsic feature of the larger-scale isothermal col-
lapse. The 3-dimensional velocity dispersion and the line-of-sight velocity dispersion of the
two clusters at any time of their evolution are described in Fig.6.18, again the dashed line
denotes model TOIN-A and the solid line model TOIN1-I. The line-of-sight velocity dis-
persion of young stellar clusters is an important observable containing information about
their dynamical state and future evolution. The fact that in our models the line-of-sight
measurements along the different axes are almost identical to each other indicates again
that the cluster is kinematically well mixed and isotropic. When scaled to low-density
star-forming regions like Taurus, a dimensionless value of o = 1 corresponds to 2.2 km s,
In the case of a high-density region, this corresponds to 3.0kms™! (see Chap. 4). The
values calculated from our simulations are in agreement with the measurements in Taurus
and in the Trapezium cluster in Orion which both have comparable velocity dispersions
of 0 &~ 2.5kms™" (for Taurus see Frink et al. 1997, and for Orion Jones & Walker 1988).
However, for very high core-formation efficiencies, say when more than 60% of the gas
has been converted into condensed cores, the derived velocity dispersions appear to be
too high. This may be used to constrain the core-formation efficiency in our models.

6.5 Implications for the IMF

In this section, the time evolution and the properties of the mass distribution of proto-
stellar cores in our simulations and their relation to the initial stellar mass function are
discussed. As analyzed in the previous sections, protostellar cores form in the centers
of Jeans-unstable massive gas clumps and grow in mass via competitive accretion. This
process is strongly influenced by the presence of unpredictable dynamical events which
determine the shape of the mass spectrum. In Fig. 6.5 the mass distribution of identified
gas clumps and protostellar cores in the high-resolution model TOIN2-I has been intro-
duced at four different stages of the dynamical evolution of the system, i.e. initially and
when 10%, 30% and 60% of the available gas has been converted into condensed cores.
Whereas the mass spectrum of gas clumps is best described by a power-law function,
the distribution of core masses follows a Gaussian. Again for the high-resolution model,
Fig. 6.19 concentrates on protostellar cores only and plots their mass distribution at times
when the cluster of cores has accreted a total mass fraction of (a) M, = 5%, (b) 15%,
(c) 30%, (d) 45%, (e) 60%, and (f) 85%. Spanning two orders of magnitude, the mass
distribution of protostellar cores is very broad and peaks approximately at the overall
Jeans mass of the system, (M;) = 1/222 = 10723 (see Chap. 4).
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o2}

Figure 6.18: Time evolution of the total (3-dimensional) velocity dispersion ¢ (thick lines), of the
line-of-sight velocity dispersion along the z-, y- and z-axis (thin lines) and of the center-of-mass velocity
(thin lines at low velocities) of the protostellar cluster that forms during the dynamical evolution of the
standard model TOIN2-A (dashed curves) and the high-resolution model TOIN2-I (solid curves).

This is somewhat surprising, given the complexity of the overall dynamical evolution.
The Jeans mass is a function of density and may vary strongly for different clumps. In
a statistical sense, the system retains ‘knowledge’ of its (initial) average properties: the
‘typical’ core mass is identical with the ‘typical’ Jeans mass. In the initial conditions the
density contrast is relatively small, there was no time for non-linear growth. Hence, the
gravitationally unstable clumps (in Fig.’s 6.4 or 6.5 these are located to the right of the
tilted line indicating the Jeans limit as function of density) all have densities comparable
to the mean density of the system, i.e. their Jeans mass is ~ (M;). These clumps form
the first generation of cores which will become very massive and populate the upper end
of the mass spectrum. At later stages, smaller clumps may have gained densities high
enough to become Jeans unstable. They too begin to collapse and due to their small
masses they will form cores preferably at the low-mass part of the spectrum. As long
as there is enough gaseous material available, the growth rate of already existing cores
to larger masses and the formation rate of new low-mass cores are comparable and the
mass distribution evolves symmetrically (Fig. 6.19a — e). However, at very late stages of
the evolution, the distribution gets skewed towards higher masses which is an effect of
the depletion of the gas reservoir. There is still mass available for accretion, but it is not
sufficient to form new cores (see Fig. 6.19a — f). The fact that the total gas reservoir is
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Figure 6.19: Mass distribution of protostellar cores in the high-resolution model TOIN2-I at different
stages of the dynamical evolution. In the upper right corner of each plot, the time ¢ and the fraction of
the total gas mass converted into protostellar cores M, is indicated. Analogous to Fig. 6.3, the vertical
line indicates the resolution limit of the simulation.

limited not only modifies the shape of the distribution, it also influences its peak value. At
early stages, the median core mass is slightly below the average Jeans mass, at late stages
it lies above (see also Tab. 6.2). Competitive accretion and the dynamical interaction of
protostellar cores as members of dense clusters (see Sec. 6.4.2) do not alter the shape of
the mass distribution, but may widen it further.

Figure 6.20 presents the mass spectra of protostellar cores for all simulations discussed in
this chapter (see Tab. 6.1) at the time at which roughly 60% of the gas is accumulated
in protostellar cores. The distributions are very similar and the variations in widths
and centroid are small. Since the data for observed protostellar cores are not sufficiently
accurate to determinate their mass distribution?, we have to go one step further and
compare the core mass spectrum with the initial mass function of stars (IMF) when
applying the results of our simulations to star-forming regions. The present simulations
cannot resolve the conversion of individual protostellar cores into stars. Since detailed
collapse simulations show that perturbed cores tend to break up into multiple systems
(typically binaries, see Sec. 2.2.2), we can only make predictions about the mass function of

20ne of the most detailed determinations of the masses of pre-stellar cores is by Motte et al. (1998),
who studied a sample of ~ 60 objects in the p-Ophiuchus cloud (see their Fig. 5).
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Figure 6.20: Distribution of protostellar core masses for all models described in this chapter (Tab. 6.1)
at the stage when roughly 60% of the gas mass is accumulated in condensed cores: (a) corresponds to
model TOIN2-A, (b) to model TOIN2-B, and so forth.

multiple systems. We adopt the IMF for multiple stellar systems (i.e. without corrections
for binary stars and higher-order systems) from Kroupa et al. (1990) — see Sec. 2.3, Eqn.’s
2.4 and 2.5 — which we compare with our numerically obtained core mass distribution.
For this comparison, we assume that the mass of the multiple stellar system that forms
within a condensed core is roughly proportional to the core mass, Mgiar = 7core —s star X
Meores Where Neore s star 1S the core star-formation efficiency. Its value is determined by the
subfragmentation of cores, the physical processes in the accretion disk, and the subsequent
dispersion of the protostellar envelope through the action of stellar radiation, winds and
outflows (e.g. Adams & Fatuzzo, 1996). Besides through internal evolution, ncre s star Mmay
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also be influenced by environmental effects, e.g. by the UV radiation of nearby massive O
or B stars. Taking the best-fitting log-normal functional form of Kroupa et al. (1990) with
the peak of the distribution located at my = 0.23 M, and the width being o = 0.42 M,
we can estimate the core star-formation efficiency 7core s star fOor our numerical models. In
order to do this, we have to determine a physical scaling for the simulations. Since we are
interested in a mass scale, we determine the Jeans mass Mj. The Jeans mass in ‘typical’
star-forming molecular clouds is roughly 1 M, which for example corresponds to a density
of n(Hy) = 10°cm™ and a temperature of T = 11 K, assuming a mean molecular weight
p = 2.26 (see Chap. 4). For a given Jeans mass, we obtain the peak of the core mass
spectrum by fitting a log-normal function to the distribution, i.e. we calculate the centroid
and the width of the appropriate Gaussian in log;, m. The correct core star-formation
efficiency 7core s star 1S the factor necessary for the peak of this distribution to overlap with
the observed distribution derived by Kroupa et al. (1990).

60 F ‘ E

E M, = 30% 1

S0

z z
log,, m/M,

Figure 6.21: Combined distribution of
core masses in all simulations with T' =
0.01 and P(k) o 1/k?® at times when
30%, 60% and 90% of the total gas mass
. has been converted into protostellar cores.

The open circles denote the best fit Gaus-
sian (see Tab. 6.2) and the dashed curve
in each plot specifies the distribution im-
plied by the IMF for multiple stellar sys-
tems inversely scaled with the appropriate
core star-formation efficiency.

log,, m/M,

To allow for a statistically significant comparison with observational data, before applying
the above scheme we merge together the mass spectra of all nine models with 7" = 0.01
and P(k) oc 1/k%. This is done in Fig. 6.21 at three stages of the evolution, when the frac-
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tion of mass in protostellar cores is M, = 30%, M, = 60%, and M, = 90%, respectively.
The histogram in each plot shows the combined distribution of all protostellar cores at
the appropriate times. The masses on the abscissa are scaled logarithmically, whereas the
ordinate is scaled linearly. Denoted by open circles are the best-fit Gaussian functions.
The optimal values for the location of the center and the width are specified in Tab. 6.2.
Using a y?-estimator for the quality of the fit (last line of Tab. 6.2), the Gaussian fit
function for the M, = 30% mass distribution has to be rejected on the basis of the com-
monly used 95% significance level, whereas at the later stages of the dynamical evolution
the core mass spectrum is well approximated by a Gaussian. We convert, the log-normal

Optimum fit parameters

KTG90 M, =30% M, =60% M, =90%
a) logy, mo —0.068 0.147 0.319
b) logy, o 0.537 0.435 0.491
) Tcore—» star 0.27 0.16 0.11

X1 XNeore sstar | X1 XTeore sstar | X1 XTcore - star

d) pinM, | 0.23 |0.86 0.23 1.40 0.23 2.08 0.23
e) o in Mg 0.42 3.44 0.93 2.72 0.44 3.03 0.34
f) P(>x? <107° 0.22 0.15

Table 6.2: Estimated values for the core star-formation efficiency and parameters of the optimum
Gaussian fits for the combined core mass distribution in Fig. 6.21: (a) The locations of the centroids
and (b) of the full width at half maximum of the Gaussian fit curves given in units normalized to the
average Jeans mass of the system. (c) Core star-formation efficiency 7core — star necessary for the peaks
of the observed IMF for multiple stellar systems (from Kroupa et al., 1990) and the best-fit Gaussian
curve to agree, assuming a physical Jeans mass of My = 1Mg. (d) Peak location and (e) width of the
Gaussian fit curves converted in solar masses (again assuming My = 1 Mg). The column denoted KTG90
lists the values from (Kroupa et al., 1990). For each of the simulated distributions, the column denoted
by ‘x1’ gives values for the core mass spectrum itself and the column indicated by ‘Xncore — star’ the
corresponding (multiple) stellar mass spectrum adopting the appropriate core star-formation efficiency
XNecore — star- Lhe quantities emphasized by bold face have to be compared with each other. Finally,
(f) specifies the quality of the Gaussian fit for the numerically obtained core mass spectrum. Using a
x2-test, the quantity P(> x?) specifies the probability to obtain fit residuals x> = Y, x7 larger than
the computed value, assuming that the errors follow a normal distribution. The very low probability
for the case M, = 30% indicates that the distribution is very badly described by a simple Gaussian
curve. However, at later stages of the dynamical evolution the high values P(> x2) suggest an excellent
agreement.
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IMF for multiple systems (Kroupa et al., 1990) into a mass distribution of protostellar
cores (dashed lines), by scaling with the inverse of the appropriate core star formation
efficiency 7core s star Such that its peak agrees with the numerical distribution (denoted
by open circles): m — Tore —sstar X M and & — Noore s star X 0. For the distribution
M, = 30%, the numerically calculated mass distribution is clearly wider than the mass
spectrum implied by the observed IMF. However, for M, = 60%, the agreement in width
is excellent: assuming the appropriate efficiency, the numerically calculated core spectrum
would convert into a stellar mass spectrum that is indistinguishable form the observed
one. For the case M, = 90%, this procedure would lead to a stellar mass spectrum that is
slightly too narrow in width. However, given the uncertainties involved in obtaining the
IMF (see Sec. 2.3) this deviation is too small to be significant. In summary, at their late
evolutionary stages our models of self-gravitating isothermal gas predict a universal initial
mass function with a log-normal functional form which agrees well with the observational
data.
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Figure 6.22: Comparison of the cumulated core mass spectrum at the stage M, ~ 60% with different
observationally based models for the IMF. Masses are scaled to the overall Jeans mass of the system. The
open circles denote the best-fit Gaussian curve. It agrees very well with the core mass spectrum implied
by the observed IMF of multiple stellar systems using 7core s star = 0.16. For comparison, the IMF for
single stars (Kroupa et al., 1993) is given by the thin solid line, and the Salpeter (1955) IMF by the thin
dotted line. These functions are scaled such that they fit the high-mass end of the mass distribution.

The best fit is reached at stages of the evolution at which roughly M, =~ 60%, i.e. for a
core-formation efficiency 7gas 5 core = 0.6. This is described in detail in Fig. 6.22, which
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shows the distribution log,, N(log,,m) and overlays the best-fit Gaussian curve (open
circles) and the core mass spectrum implied by the observed IMF of multiple stellar
systems using Neore s star = 0.16. As reference, also values for the multiple power-law IMF
for single stars (Kroupa et al. 1993; solid thin line) and the mass function from Salpeter
(1955) (dotted thin line) are given. These curves are scaled such that they fit the high-
mass end of the distribution. As expected, neither of the latter two mass functions agrees
with the numerically obtained distribution.

As discussed in Sec. 2.3, the star formation process probably can only be understood in the
frame work of a probabilistic theory, where a sequence of statistical events may naturally
lead to a log-normal IMF. Since the final mass distribution of protostellar cores in our
self-gravitating, isothermal models is a consequence of the chaotic kinematical evolution
during the accretion phase, our simulations strongly support this hypothesis.

For a physical Jeans mass My = 1 Mg, our dynamical models of isothermal, self-gravitating
gas predict an overall star-formation efficiency 7y = 7gas— core X 7core > star Of roughly
10%. For M, = 60% we obtain 7, = 0.16 x 0.6 = 0.096 and for M, = 90% follows
Mot = 0.11 x 0.9 = 0.099. If we assume different values for the physical Jeans mass, the
efficiencies have to be scaled accordingly. For example, in regions with My = 0.5 M, the
overall star-formation efficiency would be twice as large (11 &~ 0.2) and for clouds with
Mj; = 2Mg we obtain 1, ~ 0.05. These values agree well with observationally derived
numbers and with theoretical derivations. Adams & Fatuzzo (1996) for example, predict
efficiencies nyo; & 0.07 (see also Sec. 2.3).

6.6 Summary

In this chapter, results from altogether nine isothermal SPH simulations with 7" = 0.01
and initial fluctuation spectra P(k) o< 1/k? have been presented. In every model for the
dynamical evolution and fragmentation of molecular clouds, the interplay between self-
gravity and gas pressure leads to the formation of a complex network of filaments and
clumps, some of which are gravitationally unstable and collapse to form protostellar cores.
Gravitational action alone can produce clump-mass spectra and clump shapes that agree
well with the observed data. Once protostellar cores have formed, they grow in mass via
accretion from their gaseous environment and build up a hierarchically structured cluster.
The evolution of this cluster and the properties of individual cores are determined by
highly unpredictable statistical events. In the calculations presented here, we find several
trends. The protostellar cores that form first are generally formed in the clumps with the
highest initial density, and tend to have the highest final masses. Cores that form later,
form from gas that was initially in low-density clumps or distributed gas which streamed
towards a common center of gravity where enough mass could accumulate to exceed
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the Jeans limit. Overlaid on these general trends are dynamical interactions between
individual cores which can terminate the accretion onto a core by ejecting it from its
parental clump, thus setting its final mass.

The excellent agreement between the numerically-calculated mass function and the ob-
served IMF for multiple stellar systems predicts an overall star-formation efficiency of
about 10% and suggests that gravitational fragmentation and accretion processes domi-
nate the origin of stellar masses. It strongly supports the hypothesis that the stellar initial
mass function is resulting from a sequence of statistical events which may naturally lead
to a log-normal IMF (see Sec. 2.3). Using numerical simulations, it is possible to identify
some of the underlying processes which contribute to the form of the stellar initial mass
function.



Chapter 7

A Parameter Study

One of the goals of this dissertation is to understand how the formation of protostellar
clusters is influenced by environmental and initial conditions. To address this issue, we
perform computations for a large number of different initial density distributions (Sec. 7.1)
and a wide range of temperatures (Sec. 7.2). Within the framework of isothermal gas
physics, these are the parameters that determine the dynamical behavior of the system.
The results of this parameter study are sumarized in Sec. 7.3.

7.1 Dependence on the Power Spectrum

In this section we analyze the dependence of the fragmentation of a region inside a molecu-
lar cloud and of the properties of the protostellar cluster that forms during the dynamical
evolution on the choice of the initial fluctuation spectrum P(k) oc 1/kY. Again for models
with 7" = 0.01 which contain 222 Jeans masses, we compare the evolution of the system
for different values of N, ranging from N = 0 which means that fluctuations of all wave
lengths k£ have statistically the same amplitude, to the very steep power spectrum N = 3
which implies strong dominance of the large-scale modes. For N = 0, the initial density
distribution looks quite homogeneous, whereas it is strongly biased towards having one
dominant density peak in the case of N = 3. Additionally, for N = 1 we study the case
of a truncated spectrum where fluctuations on scales k£ < 4 have been removed. For a
comparison of the initial density fields with different power spectra see Fig. 7.1. The
parameters of all models discussed in this section are listed in Tab. 7.1.

139
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Table 7.1: Models with T = 0.01 and different initial power spectra P(k) oc 1/k" with N =0, 1, 2, or
3.

Temperature | Exponent | Particles | Initial® | Zel’dovich® | Identification
T =0.01 N=0 200000 random ot=1.5 TOINO-A
T =0.01 N=1 200000 random ot=1.5 TO1N1-B
T =0.01 N =1° 500000 random ot =1.0 TO1IN1-C
T =0.01 N =24 200000 random ot=1.5 TO1IN2-H
T =10.01 N =21 500000 random ot=1.5 TO1IN2-I
T =0.01 N=3 200000 random ot=1.5 TOIN3-A

®Initial distribution for the Zel’dovich shift. A homogeneous random distribution is denoted by ‘random’.
bShift interval 6t for the Zel’dovich approach. ¢The fluctuation spectrum used to generate model TOIN1-C
has been truncated at small wave numbers, i.e. the initial density field contains no large-scale fluctuations.
The wave length of the largest mode is 1/4 of the linear size of the volume (it contains modes with
4 <k <32). 9For a complete list of simulations with 7' = 0.01 and N = 2 see Tab. 6.1. Here, only the

two models used for this chapter are listed.

7.1.1 Dependence on the Slope of the Power Spectrum

To generate the initial density distribution for all models, we use the Zel’dovich approx-
imation as discussed in Sec. 5. The fluctuation spectrum is chosen to be a power law
P(k) < 1/kY. Hence, the main parameter that determines the statistical properties of
the initial distribution is the slope N of the fluctuation spectrum.

To examine how the variation of the slope of the initial fluctuation spectrum influences
the dynamical evolution of the gas system, we generated four models with almost identi-
cal properties, but with different N: models TOINO-A, TOIN1-B, TOIN2-H and TOIN3-A
consist of 200000 SPH particles and have been generated via the Zel’dovich method from
the same initial random particle distribution applying the same shift interval 0t = 1.5.
However, their fluctuation spectra have slopes in Fourier space N =0, N =1, N = 2 and
N = 3, respectively. The similarity between models TOIN0-A, TOIN1-B and TOIN3-A
is even closer. To exclude the variance effects inevitable when comparing different re-
alizations of a fluctuation field with given statistical properties, we apply the same set
of random numbers to generate the fluctuation spectrum for these three models . This
means, that individual modes k in each of the three fields have identical phases. How-
ever, they differ in amplitude, since these are drawn from Gaussians with different width
P(k) o< 1/EN, where N = 0, 1 or 3, respectively. For this reason, at comparable stages of
their dynamical evolution, the three models look remarkably similar. On the other hand,
for the generation of the initial particle distribution in model TOIN2-H, a different set
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of random numbers has been used and statistical variance leads to a different appear-
ance. This can be seen in Fig. 7.1, which plots the 3-dimensional particle distribution for
each model at different stages of the dynamical evolution. The first row denotes model
TOINO-A, the second row model TOIN1-B, the third one model TOIN2-H and finally the
fourth row model TOIN3-A. Each column in the figure shows the distributions at compa-
rable evolutionary phases, typically characterized by the mass fraction M, accreted onto
protostellar cores, as indicated at the top of each column. The first column shows the
initial density distribution, the second column describes the state of the system when the
maximum density contrast has reached half the value necessary for a collapsing object to
be identified as protostellar core (i.e. to be converted into a sink particle — see Sec. 3.4.4),
the third column shows the system when 2% of the gas mass is contained in condensed
cores, and so forth.

As described earlier, the steeper the slope NV of the fluctuation spectrum, the more struc-
ture has the system and the higher is its degree of inhomogeneity. The density fields of
the models with N 2 2 are dominated by the largest-scale modes. On the other hand, for
N 51, fluctuations on smaller scales have sufficient amplitudes to compensate the large-
scale fluctuations when the whole spectrum is added up. As a result, model TOINO-A
appears more or less homogeneous and smooth initially, and its maximum density con-
trast is small, p S 3 (with a Zel’dovich shift interval 6t = 1.5). On the other extreme,
the initial particle distribution of model TO1N3-A is highly structured and dominated by
one large and massive high-density region in the center'. With §t = 1.5, its maximum
density contrast is very large, dp 2 50. The models TOIN1-B with N = 1 and TOIN2-H
with V = 2 lie in between these extreme cases (compare also with Fig.’s 5.3 and 5.4)

Since models which are generated from fluctuation spectra with steep power-law slope
are strongly structured and since their initial conditions contain already high density
contrasts, their subsequent dynamical evolution with SPH, using the full set of hydrody-
namical equations, proceeds faster than for models which are initially more homogeneous.
This can be seen when looking at the times at which each snapshot in Fig. 7.1 is taken
as indicated at the lower left corner of each cube. In the case of model TOINO-A, the
dynamical evolution requires a time interval ¢ &~ 2.4 to create the first condensed core.
For model TOIN1-B, this is the case at ¢ ~ 1.5 and for TOIN2-H at ¢ ~ 0.9. In model
TOIN3-A, the central region of the dominant fluctuation initially has already a sufficiently
high density so that immediately after the start of the evolution with SPH it begins to
collapse and rapidly?forms a protostellar core within ¢ = 0.1. For this reason the second
column contains no entry for model TO1N3-A: the formation time of the first protostellar

1 As allowed by the periodic boundary conditions, the cube has been shifted such that it is centered
on the region of highest density.

2Note again that the free-fall time scales with density as 7 o p~'/2. A difference in initial density
contrast of ~ 100 translates into a time difference of ~ 10.
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M, = 0% M, = 0% M, ~ 2%

t=0.0

Figure 7.1: Comparison of the time evolution of four models with different initial power spectra P (k) o
1/kYN, initially (first column), after the first protostellar cores have formed (second column) and when
M, ~ 2% of the gas is converted into condensed cores. The first row plots model TOINO-A with N = 0,
the second row model TOIN1-B with N = 1, the third row model TOIN2-G with N = 2, the fourth row
model TOIN3-A with NV = 3.
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M, ~ 10%, M, ~ 30% M, ~ 45%

Figure 7.1 — continued: Comparison of the time evolution of four models with different initial power
spectra P(k) oc 1/kN: the distribution is plotted when M, ~ 10% (first column), when M, ~ 30%
(center column) and when M, = 45 % of the available gas is accreted onto protostellar cores.
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M, 2 90%

Figure 7.1 — continued: Comparison of the time evolution of four models with different initial power
spectra P(k) oc 1/kV: the distribution is plotted when M, ~ 60 % (first column), when M, ~ 75%
(center column) and when M, 290 % of the available gas is accreted onto protostellar cores.
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core in the simulation is shorter than the interval adopted for writing the state of the
system onto disk.

This sequence of evolutionary delays relative to the fastest developing model, TOIN3-
A, remains approximately constant throughout the entire simulation. When comparing
similar evolutionary stages as defined by the total mass fraction converted into protostellar
cores, M,, model TOINO-A lags behind by At ~ 2.5, model TOIN1-B by At ~ 1.5 and
model TOIN2-H by At &~ 1. These time delays are the result of the different time intervals
necessary for the large-scale modes to reach a certain density level. This is different for
different values of N when applying the Zel’dovich method with a fixed shift interval
ot (see Fig. 5.3 in Sec. 5). For N = 0, the density of the bulk of matter in the large-
scale modes is close to the average density in the system: (p) ~ 1/8. Deviations from
homogeneity are small. Models with N = 3, on the other hand, contain large regions
with p > 1/8, this cannot be compensated by voids which have p S 1/8. Therefore, most
matter is in a density regime (p) > 1/8, and the system reaches a given evolutionary
stage earlier than the previous one. The fact that a large fraction of mass has relatively
high densities initially also affects the total number of protostellar cores that form during
the evolution. Since the local Jeans mass of individual gas clumps decreases with density
(see Eqn. 3.18), the number of (small-scale) density fluctuations whose mass exceeds
the local Jeans limit is larger in the case where they are superposed onto a large-scale
mode of increased background density. In the case in which fluctuations rise from a
homogeneous background of low density, this number is low. In summary, the larger the
initial density contrast of the large-scale mode, the more condensed cores one expects.
Indeed, in our simulations the model with the steepest fluctuation spectrum TOIN3-A
has formed 130 sinks altogether, roughly three times more than model TOINO-A which
has a flat fluctuation spectrum and forms 45 protostellar cores. For comparison, model
TO1IN1-B forms 49 and model TOIN2-H 59 cores.

However, besides these details, the overall dynamical evolution of all models is remarkable
similar. They all form a cluster of protostellar cores which grows in mass via competitive
accretion from the common gas reservoir, as discussed in detail in the last chapter. Also
the mass distribution of identified gas clumps and protostellar cores at various stages of
the evolution are very similar. This can be seen in Fig. 7.2, which plots the number of
gas clumps (thin lines) and of protostellar cores (thick lines) as function of their mass.
Individual masses are scaled relative to the Jeans mass of the homogeneous cube which
is My = 1/222. Analogous to Fig. 7.1, each row denotes an individual model (from
N =0 to N = 3) and each column indicates a certain stage of the evolution characterized
by the mass fraction contained in protostellar cores. The vertical line denotes the SPH
resolution limit, below which a local Jeans mass is not resolved properly (see Sec. 3.4.5).
The dashed line indicates the observed slope of the clump-mass spectrum dN/dm oc m~"?>
(see Sec.2.1.1).
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Figure 7.2: Mass spectrum of gaseous clumps (thin lines) and protostellar cores (thick) lines in models
TOINO-A (first row), TOIN1-B (second row), TOIN2-I (third row), and TOIN3-A (fourth row). Each
column describes a different evolutionary stage of the models as indicated by the fraction of mass converted
into condensed cores M,. The time is indicated separately in each plot. The horizontal line indicates the
spatial resolution limit which constrains the clump-mass resolution: if the Jeans mass of a clump falls
below that value its time evolution is no longer treated properly.
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Figure 7.2 — continued: Mass spectrum of gaseous clumps (thin lines) and protostellar cores (thick)

lines in models TOINO-A (first row), TOIN1-B (second row), TOIN2-I (third row), and TOIN3-A (fourth

row) at phases of the evolution when M, ~ 10%, M, ~ 30%, and M, ~ 45%.
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Figure 7.2 — continued: Mass spectrum of gaseous clumps (thin lines) and protostellar cores (thick)

lines in models TOINO-A (first row), TOIN1-B (second row), TOIN2-I (third row), and TOIN3-A (fourth
row) at evolutionary phases when M, ~ 60%, M, ~ 75%, and M, 2 90%.
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Clearly, the initial conditions fail to reproduce the observed clump-mass distribution. Our
clump-finding algorithm detects the initial Gaussian fluctuation spectrum and the clump
spectra for the different models appear identical since the algorithm is biased towards
small scale fluctuations: if a variety of small-scale peaks are superposed on a large-scale
mode, it breaks the latter one up into the contributions of the smaller fluctuations. The
large mode is identified only if it is sufficiently ‘smooth’, i.e. if it cannot be identified as
the sum of an ensemble of smaller clumps. For details on the clump-finding scheme see
App. A. However, gas pressure causes the desintegration of small clumps with masses
below a Jeans mass, and as soon as the system begins to evolve in time, gravitational
attraction leads to clump merging thus creating clumps with increasingly larger mass. As
a result, for models TOINO-A and TOIN1-B, the clump spectrum becomes approximately
flat in the interval M, ~ 1% to M, ~ 30%. At later stages, additional low-mass clumps
are identified which may result from irregularities or sub-fragmentation in the converging
gas flows at the intersection of two filaments along which gas streams towards a common
center of attraction. At very late stages of the evolution, when almost all mass is con-
tained in protostellar cores, fitting a single power-law slope to the mass spectrum becomes
completely meaningless. Since the models TOIN2-H and TO1N3-A pass through all evo-
lutionary stages at earlier times, self-gravity and gas pressure have less time to shape the
clump-mass spectrum. Therefore, these system contain more low-mass clumps compared
to the other two and their clump-mass spectrum is on average steeper. Again at late
stages the distribution can no longer be fitted by a simple power law. In summary, the
clump-mass spectrum of self-gravitating isothermal gas evolves in time and exhibits a well
defined power-law behavior only during a limited period of its dynamical evolution. This
fact may explain the variety of different slopes that are quoted for observed clump-mass
spectra and the uncertainty in their determination (see e.g. Tab. 2.1.1).

In agreement with the results of Sec. 6, the mass distribution of protostellar cores is
very broad and peaks roughly at the mean Jeans mass of the system. As discussed in
Sec. 6.4.1, this results from the fact that the formation of new low-mass protostellar cores
and the accretion onto already existing ones are approximately in balance; they populate
the low-mass and high-mass side of the distribution more or less equally. The peak of the
distribution moves away from the Jeans mass only at late stages of the evolution, when
the formation of new cores has stopped, but the already existing ones are still able to
grow in mass. This effect is largest for model TO1NO-A, since it forms the lowest total
number of condensed cores. Model TO1N3-A builds up three times more cores. Therefore,
each protostellar core is on average three times lighter than in the other cases and the
distribution peaks at smaller masses. Only towards the end of the simulation, when almost
all gas is accreted onto the protostellar cores the peak reaches values of the average Jeans
mass.

Figure 7.3 specifies the energy and kinematical properties of the protostellar cluster that
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Figure 7.3: Time evolution of (a) the kinetic energy in random motions Ej,, (b) the potential energy
Epot, (c) the velocity dispersion o, and (d) the cumulative mass M, in condensed cores for the protostellar
clusters that form during the dynamical evolution of the models with different initial power-law fluctuation
spectra P(k) oc 1/k™V. The open diamonds denote model TOINO-A with N = 0. There are two models
with N = 1: TOIN1-B which is denoted by the open triangles and the high-resolution model TO1N1-
C which is plotted with filled triangles (its initial fluctuation spectrum is truncated and contains only
modes with k& > 4). The circles denote models with N = 2: TOIN2-H (open circles) and the high-
resolution model TOIN2-I (closed circles). Finally, model TOIN3-A with the steepest spectrum, N = 3,
is characterized by open squares.

forms in each of the above models. First, it plots the time evolution of the kinetic energy
of the random motions of the protostellar cores, Ei = 1/23; mi(v; — vem)?, where m;
and v; are the masses and velocities of individual cores i, and v, = 3; m;v;/M, is the
center-of-mass velocity of the protostellar cluster. Second, the potential energy of the
cluster is given: Epop = > Gm;m;/r;j, where the gravitational constant G = 1, and
rij = |ri — 7;| is the distance between two cores 7 and j. Each pair-wise potential is
counted once. Third, the velocity dispersion® o and finally the total mass accumulated

3Note, that here we follow the observers and define the velocity dispersion as 02 = Y ,(v; — vem)?.
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Figure 7.4: Time evolution of the virial coefficient nyiy: (a) for model TOINO-A, (b) for models TOIN1-B
and TOIN1-C, (c) for models TOIN2-H and TOIN2-I, and (d) for model TOIN3-A. The correspondence
between each plotting symbol and model is analogous to Fig. 7.3. Plot of 7,;, as function of the total
mass fraction M, accreted onto protostellar cores (e) for each model individually and (f) averaged over
all models (thick solid line with error bars indicating the statistical deviations) and averaged over the
four models with 200000 particles (dashed line).

Theoretically, o should be mass weighted: Y, m;(v; — vem)? /M.
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in protostellar cores M, = >, m; are specified. In Fig. 7.3 and also in Fig. 7.4, open
diamonds denote model TOINO-A with N = 0 and triangles the models with N = 1:
TO01N1-B (open symbols) and the high-resolution model TO1IN1-C (filled symbols), whose
initial fluctuation spectrum has been truncated at large scales, i.e. contains only modes
with 4 < k. The two models with N = 2, TOIN2-H and TO1N2-I are plotted with open
and filled circles, respectively. Finally, the model with the steepest initial fluctuation
spectrum (N = 3) is given by open squares. From Fig. 7.3, one immediately can read
off the time delay between identical evolutionary stages for models due to the different
values of N. Furthermore, one sees that the evolution of the energetical and kinematical
properties of the cluster in model TOIN2-H and TO1N2-I is almost identical, independent
of their different particle number: both systems are well resolved. The delay between
model TOIN1-B and TO1N1-C is due to the truncation of the fluctuation spectrum of the
latter, which will be discussed in Sec. 7.1.2.

Figure 7.4, specifies the time evolution of the virial coefficient, nyi; = 2Eiy /| Epot |, for each
of the models. A value 7y;, = 1 suggests the cluster is in virial equilibrium; 7, < 1 indi-
cates that gravitational attraction outweighs kinetic energy and the cluster is contracting.
In the opposite case, i > 1, the cluster as a whole will be expanding. To compare the
virial coefficient of each model at comparable evolutionary stages, Fig.7.4e plots 7y, as
function of the total fraction of gas converted into protostellar cores M,. Finally, Fig. 7.4f
specifies the average value and its uncertainty. The scatter at early times or equivalently
at very low values of M, is due to low number of protostellar cores at that stage of the
evolution and the fact that these first cores typically are well dispersed throughout the
entire volume. In the subsequent evolution, the number of protostellar cores increases,
and altogether the cores follow the global gas flow pattern towards the common center of
gravity. There, a dense protostellar cluster builds up. Analogous to the results of Sec. 6,
the protostellar clusters are bound, typically with moderately low values of 7,;, indicating
that their kinematical evolution is strongly influenced by the presence of gas that has not
yet accreted onto protostellar cores: the conversion of gas into dense cores is such that the
overall gain of potential energy is more or less balanced by the increase of kinetic energy.
However, this ratio slowly increases with time due to the decrease of the available gas
reservoir, as is best visible in Fig. 7.4f. Once the gas reservoir is completely depleted, the
clusters behave like collision-dominated N-body systems and quickly develop the typical
core/halo structure, approaching 7, ~ 1. The overall velocity dispersion ¢ and the en-
ergies By and |Epq| decrease again (see model TOIN2-H; and compare with Sec. 6.4.4).
The situation is even more complicated, when the conversion of cores into individual stars
is considered. Whereas the cluster of protostellar cores is a bound entity, this may no
longer be true for the subsequent stellar cluster. If the star-formation efficiency of cores is
very low (10 — 20%, as indicated by the results of Sec. 6), a large fraction of the gas from
protostellar cores gets lost and will not end up in stars. If the conversion of protostellar
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cores into stars and the accompanying mass-loss occur rapidely, the resulting star cluster
retains the velocity dispersion of the protostellar, but its potential well becomes shallower
since the cluster has lost a considerable fraction of the mass. This may be sufficient for the
cluster to dissolve. Only, if the mass loss takes place gradually, the system may have time
to adjust to the change and remain bound. Therefore, even if the cluster of protostars is
bound, we cannot predict the dynamical evolution of the resulting stellar cluster without
detailed knowledge of the mass loss process.

7.1.2 Dependence on the Wave Number

The initial conditions for the SPH simulations depend on the slope of the initial fluctuation
spectrum. Furthermore, they depend on the number of modes that contribute to the
overall fluctuation field. The models discussed so far are all generated such that the entire
spectrum of modes is activated, i.e. fluctuations range from waves with £ = 1, where the
wave length is equal to the total size of the considered volume, down to k& = 32, where
the wave fits 32 times into the cube. For steep power spectra, the overall appearance of
the fluctuation field is strongly dominated by the presence of the large-scale modes (see
Fig. 7.1). To relax this constraint, we generate a model with N = 1 using the Zel’dovich
method with shift time ¢ = 1.0 and a fluctuation spectrum which is truncated for modes
k < 4. Since the largest active mode is £ = 4, when neglecting the fluctuations present
from generating a homogeneous random field, this increases the periodicity by a factor
of four: the density distribution is equivalent to generating a fluctuation field on a sub-
cube of size (L/2)? and replicating it 64 times to fill in the entire volume. However, as
exerted by the periodic boundary conditions for the whole volume, the real periodicity
is on the scale 2L and the intrinsic periodicity present in the initial distribution quickly
disappears during the dynamical evolution. The time evolution of the system is displayed
in Fig. 7.5, which shows the particle distribution at different stages of the dynamical
evolution characterized by the total mass fraction M, accumulated in protostellar cores.
Since the Zel’dovich shift interval is relatively small and the initial fluctuation field lacks
the presence of large-scale modes, the particle distribution appears very smooth and
homogeneous. Its evolution is most comparable to model TOINO-A, which also is very
homogeneous and smooth at the beginning of the evolution. The initial density contrast
in model TOIN1-C is even less than in model TO1NO-A, which implies that it needs even
longer to reach comparable evolutionary stages, e.g. it takes t ~ 3.9 to form the first
highly-collapsed protostellar object. However, as in all other models, a bound cluster of
protostellar cores builds up whose mass distribution is very broad, spanning two orders
of magnitude, and peaks slightly above the mean Jeans mass as defined for a completely
homogeneous distribution; the mass spectrum of protostellar cores is indistinguishable
from the one of model TOINO-A.
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t=25.7 t=06.3 t=06.7

Figure 7.5: Time evolution of model TO1IN1-C. It contains 500000 SPH particles and the initial distri-
bution is generated from a fluctuation spectrum with N = 1 which is truncated for modes k£ < 4. The
snapshots correspond to the following stages of the dynamical evolution: ¢ = 0.0 — initial particle distri-
bution, t = 2.9 — the maximum density contrast has reached half the value required to identify compact
objects as protostellar cores, t = 3.9 — the first protostellar cores have formed and contain altogether
M, = 2% of the total gas mass, t = 4.5 — M, = 10%,t=5.1- M, = 30%,t =5.5- M, =50%,t=5.7—
M, =60%,t=6.3—- M, ="75%, and t = 6.7 — M, = 85%. For legibility, only every tenth non-accreted
gas particle is displayed (small gray dots). Protostellar cores are denoted by large dark dots.

In summary, removing the large-scale modes is equivalent to flattening the overall spectral
slope. The details depend on the slope of the initial spectrum and the wave number up
to which fluctuations are deactivated. For example, removing all modes with £ < 4 in a
model with N = 1 produces a system that behaves like a model with N = 0.
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Table 7.2: Models with initial power spectra P(k) oc 1/k", where N = 0 and N = 2, but different
temperatures 7T'.

Temperature | Exponent | Particles | Initial® | Zel’dovich®’ | Identification
T =0.010 N =1 50000 random ot=1.5 TOIN1-A
T =0.025 N =1 50000 random ot=1.5 TO25N1-A
T =0.075 N =1 50000 random ot=1.5 TO75N1-A
T =0.100 N =1 50000 random ot =1.0 T10N1-A
T = 0.500 N =1 50000 random ot =1.0 TH0N1-A
T =0.010 N =2 50000 random ot =2.0 TOIN2-A
T =0.025 N =2 50000 random ot=1.5 T025N2-A
T = 0.050 N =2 50000 random ot=1.5 TO75N2-A
T = 0.250 N =2 50000 random ot=1.5 T10N2-A
T = 0.500 N =2 50000 random ot=1.5 TH0N2-A

®Initial distribution for the Zel’dovich shift. A homogeneous random distribution is denoted by ‘random’,
whereas ‘grid’ means that the particles have initially been placed on a regular grid. ®Shift interval 6¢ for

the Zel’dovich approach.

7.2 Dependence on the Temperature

For a given density, the Jeans mass is a function of temperature only (Eqn. 3.18). There-
fore, changing the temperature in an isothermal model is equivalent to modifying the
number of Jeans masses contained in the simulated volume. Since isothermal models are
scale-free, increasing the dimensionless temperature but keeping the physical gas temper-
ature constant (say at 10K) can also be seen as zooming in more closely onto a physical
region of interest and decreasing the temperature is equivalent to studying a larger volume
of molecular cloud material. This means, for example the behavior of a system with a
temperature of 7" = 0.04 should be comparable to the evolution within a sub-volume of a
model with 7" = 0.01 which is eight times smaller that the entire box, say in one octant
of the simulation cube. However, this neglects the presence of large-scale modes. As we
see in all simulations, the growth of the largest possible mode determines the final matter
distribution: there always is one global minimum of the potential, towards which the bulk
of matter flows. The final outcome of the dynamical evolution is always the formation
of one protostellar cluster. Basically, this is the result of the given periodicity of the
simulated cube. The (periodic) boundary conditions for a model with high temperature
are not identical to the boundary conditions for a subregion within a model with lower
temperature, which contains a comparable number of Jeans masses. The more the evolu-
tion of the system depends on the boundary conditions, the stronger are the deviations
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Figure 7.6: Total number NV of protostellar cores that form during the dynamical evolution of the
isothermal models listed in Tab. 7.2 as function of the temperature T. Open diamonds denote the set
of models with N = 1 and open squares denote models with N = 2; temperatures are given on a
logarithmic scale. The upper axis indicates the number of Jeans masses Ny contained in the considered
volume corresponding the temperature. The inlay gives IV scaled logarithmically to indicate that the
number of protostellar cores declines with increasing temperature roughly proportional to T—3/2.

between both models and the less meaningful is a detailed comparison. Properties of the
system that are strongly influenced by large-scale flows and are the result of considerable
dynamical evolution, e.g. the spatial properties of the forming protostellar clusters, are
vastly different, whereas properties that are less sensitive to this processes, say the overall
slope of the clump-mass spectrum, are be quite similar. The latter is the result of the
interplay of non-linear gravitational action and gas pressure whenever it occurs.

To quantify the above, we have performed a number of simulations with varying tem-
perature, see Tab. 7.2. All models contained 50 000 particles and can be divided into
two groups with initial slope of the power spectrum N = 1 and N = 2. The covered
temperatures range from 7" = 0.01, corresponding to 222 Jeans masses in the simulation,
to T" = 0.5, which means the Jeans mass is larger than the mass contained in the cube.
With the above caveats in mind, consider Fig. 7.6. It specifies the total number N of pro-
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tostellar cores that form during the dynamical evolution as function of the temperature T°
(lower abscissa) of equivalently the number Nj of Jeans masses in the system (upper ab-
scissa). The temperature is scaled logarithmically. To indicate the power-law behavior of
the dependence of N on T, the inlay repeats the plot but with N scaled logarithmically as
well. No fluctuations in models with temperatures 7' 2 0.25 are massive enough to exceed
the Jeans limit, they are quickly smeared out by pressure and the system reaches a state
of maximum homogeneity. Collapse takes place for models with lower temperatures and
the number of protostellar cores scales roughly linearly with the number of Jeans masses
in the system N oc Nj or equivalently N oc T-3/2; typically one core forms per every 4 to
5 Jeans masses.

7.3 Summary

The dynamical evolution and fragmentation of self-gravitating isothermal gas is relatively
insensitive to the adopted initial configurations. It is determined by the interplay between
self-gravity and gas pressure. For strongly self-gravitating systems, this leads to the
formation of a network of intersecting filaments and clumps. Some clumps may become
Jeans unstable and collapse individually to form protostellar cores. Their subsequent
dynamical evolution and mass growth is dominated by highly statistical events which
quickly wipe out the memory of the initial configuration. The evolution of isothermal
models depends mainly on one global parameter: the gas temperature, or equivalently
the ratio between gravitational and internal energy. Therefore, the evolution of all models
with identical temperatures is very similar, regardless of the initial conditions.

Variations of the temperature are equivalent to changing the number of Jeans masses
treated in the system. Converted to physical conditions in molecular clouds which typi-
cally have (physical) temperature of ~ 10K, this is equivalent to zooming in or out onto
different regions of the cloud. Hence, the number of protostellar cores that form during the
course of the evolution is roughly proportional to the number of Jeans masses contained
in the system.
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Chapter 8

Summary and Future Prospects

In this dissertation we discussed the dynamical evolution and fragmentation of molecu-
lar clouds. We studied the interplay between gravity and gas pressure and showed that
even the simple isothermal model of self-gravitating gas is able to explain many of the ob-
served features of star-forming regions. Within the framework of these isothermal models,
we identified the processes that dominate the formation and evolution of (proto)stellar
clusters and determined their properties. Furthermore, varying the gas temperature and
initial density distribution, we addressed the issue of how sensitively the dynamical behav-
ior of the gas depends on environmental and initial conditions. We sumarize our results
in Sec. 8.1 and, starting from the current paradigm, in Sec. 8.2 we suggest further steps
to deepen our knowledge of the star-formation process.

8.1 Summary

Our simulations show that, in general, the formation of a cluster of condensed cores and
protostars through gravitational collapse and fragmentation of a molecular cloud region
is extremely complex. The dynamical evolution of molecular gas is determined by the
interplay between self-gravity and gas pressure. This creates an intricate network of
filaments, sheets and dense clumps. Some clumps will become gravitationally unstable
and undergo rapid collapse. While contracting individually to form protostellar cores in
their interior, gas clumps stream towards a common center of attraction: the dynamical
evolution of molecular clouds involves processes acting on largely different time scales.
While following the large-scale flow pattern, gas clumps can undergo further fragmentation
or merge at the intersections of filaments. At that stage, the central regions of some clumps
will have already collapsed to sufficiently high densities to be identified as protostellar
cores. These cores rapidly grow in mass via accretion from their parental gas envelope.

159
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In the case of clumps merging, the newly formed merged clump may contain a multiple
system of protostellar cores which subsequently compete with each other for accretion
from the same limited and rapidly changing reservoir of contracting gas in which they are
embedded. Since the cores are dragged along with the global gas flow, quickly a dense
cluster of accreting protostellar cores builds up. Analogous to dense stellar clusters,
its dynamical evolution is subject to the complex gravitational interaction between the
cluster members: close encounters occur frequently and will drastically alter the orbital
parameters of cores. This leads to the formation of unstable triple or higher-order systems,
and consequently a considerable fraction of protostellar cores becomes expelled from the
cloud. These cores effectively stop accreting and their final mass is determined.

The presence of unpredictable dynamical events in the overall gas flow and the evolu-
tion of the nascending protostellar cluster very efficiently erases the memory of the initial
fluctuation spectrum. For this reason, we cannot predict the detailed evolution of indi-
vidual objects from knowing the initial status of the system. Only the properties of an
ensemble of protostellar cores, for example their kinematics and mass distribution, can be
determined in a probabilistic sense. A comprehensive theory of star formation needs to
be a statistical theory. Some first attempts to formulate a statistical model of the star-
formation process appear very promising (see Sec. 2.3) and are supported by the results of
our numerical study. Taken together, our simulations strongly suggest that gravitational
fragmentation and accretion processes dominate the early phases of star formation.

We extend the above overview by giving a detailed list of the features and results of our
calculations derived from the comparison of our numerical models with specific observa-
tional properties of molecular clouds and young stellar clusters:

e Scaling Properties of Isothermal Gas: In the physical regime we study, molec-
ular gas can be well approximated as being isothermal. The dynamical behavior of
self-gravitating isothermal gas is entirely determined by one scale parameter: the
dimensionless temperature as defined by the ratio between internal energy and po-
tential energy. To apply our models to observed star-forming regions, they have to
be scaled to physical units. This is derived in Sec. 4.

e Clump mass spectrum: During the central phase of the dynamical evolution,
our simulations of self-gravitating isothermal gas are able to reproduce the observed
power-law clump-mass spectrum of molecular clouds. This is due to the progression
of non-linear gravitational attraction and the disintegration of small clumps by gas
pressure. The observed spectrum is best fit at times between the formation of the
first condensed objects to the time when depletion of the gas reservoir becomes
considerable. Neither the initial Gaussian fluctuation spectrum, nor the final stages
of the evolution when most of the gas is condensed into protostellar cores, give a
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clump-mass distribution with the observed features. This is discussed in Sec. 6.3.1.
The masses of protostellar cores, however, follow a log-normal distribution.

The Shapes of Individual Clumps: Dense Jeans-unstable gas clumps are the
precursors of protostellar cores. As being part of a complex network of filaments,
individual clumps are typically very elongated objects with ratios between semi-
major and semi-minor axis of 2:1 to 4:1. However, in many cases (especially at the
intersection of two filaments) they may be quite irregularly shaped. These features
are in agreement with observed dense pre-stellar cores in dark clouds (see Sec. 6.3.2).

Formation and Growth of Protostellar Cores: As stated above, the formation
and growth of protostellar cores is subject to a progression of statistical events.
However, we can identify the following trends in our models: (a) The protostellar
cores that form first are generally formed in the clumps with the highest initial
density, and tend to have the highest final masses. They accrete the bulk of their
final mass from their close vicinity. (b) On the other hand, matter that forms
cores at later times has already undergone considerable dynamical evolution; these
cores form from gas that was initially in widely distributed low-density clumps.
Along filaments, they stream towards a common center of gravity and may merge
at the intersections. Once enough mass is accumulated, these clumps undergo rapid
collapse and build up new protostellar cores. The cores which form a late stages
tend to have very low final masses.

Competitive Accretion and the Importance of Dynamical Interaction:
Once a gas clump becomes Jeans unstable it collapses and forms a condensed core.
This core grows in mass via accretion from the infalling envelope. Merging may
lead to clumps that contain multiple cores. These compete with each other for the
material of a common gas reservoir. The succession of clump mergers leads to the
formation of an embedded, dense protostellar cluster, whose dynamical behavior
is dominated by close encounters between cluster members. Competitive accretion
and collisional dynamics determine the kinematical and spatial properties of the
cluster and the mass distribution of protostellar cores.

Rotational Properties of Protostellar Cores: The rotation of a protostellar
core is an important parameter for its late collapse phase. It determines the stability
of the accretion disk and its tendency for subfragmentation. Within the complex
network of intersecting filaments and dense clumps, the clumps can gain angular mo-
mentum from tidal torque and shear which is transferred onto the embedded cores.
Since the angular momentum is gained from large-scale motion, the orientation of
the spin vectors of individual protostellar cores is correlated with their location (see
Sec. 6.4.3). A similar correlation is often found in observed star-forming regions
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between the orientation of the molecular outflows from young stellar objects and
their location. However, the observational data are not conclusive.

Clustering Properties of Protostellar Cores: The time evolution of a highly
Jeans-unstable region within a molecular cloud leads to the formation of a dense
cluster of protostellar cores. The final dynamical state of the system closely re-
sembles the properties of observed stellar clusters: it exhibits the typical core/halo
structure of collision-dominated N-body systems, and when calculating its 2-point
correlation function, or equivalently the mean surface density of companions as func-
tion of separation, one can clearly distinguish between the binary regime and the
large-scale clustering regime (see Sec. 6.4.4).

Boundedness of Protostellar Clusters: The clusters of protostellar cores in our
simulations form as bound entities: the conversion of gas into condensed cores is
such that the decrease of potential energy is always balanced by the increase of
kinetic energy (Sec.’s 6.4.5 and 7.1.1). Whereas the protostellar cluster is bound,
this may not be true for the resulting stellar cluster. Its kinematical properties
depend strongly on the details of the conversion of individual cores into stars: on
the speed and the overall efficiency of the process. However, this cannot be treated
in our simulations and needs to be addressed in detailed calculations of individual
core collapse.

Mass Spectrum of Protostellar Cores — The Star Formation Efficiency
and Implications for the IMF: The distribution of stellar masses is one of the
most important properties of the star-formation process. Any comprehensive model
of star formation must be able to derive this quantity or at least address this issue.
In our isothermal models the masses of protostellar cores are the result of a sequence
of unpredictable statistical events. In a natural way this leads to a log-normal mass
spectrum which peaks roughly at the average Jeans mass of the sytem.

Detailed collapse calculations show that perturbed rotating cores tend to break up
into multiple stellar systems, which cannot be resolved in the larger-scale simulations
presented here. Therefore, we have to compare the numerical mass function of
protostellar cores with the IMF derived for multiple stellar systems. The latter
is well approximated by a log-normal mass spectrum centered on my = 0.23 M,
with width o = 0.42 M, (see Sec. 2.3). When we scale our isothermal models to
typical Jeans masses of M; =~ 1 Mg, the numerically calculated mass function and
the IMF are in excellent agreement, if we assume a efficiency of 7ga5 s core 2 0.6
for the conversion of molecular gas into dense protostellar cores and additionally
an efficiency of neore s star = 0.15 for the conversion of individual cores into stars.
Altogether we predict a total star-formation efficiency 7yt = 7gas - core X 7ecore - star
which is of the order of 10%.
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e Dependence on the Initial Conditions: The dynamical evolution of self-gravi-
tating isothermal gas is determined by a sequence of unpredictable statistical events.
Therefore, these systems quickly lose memory of their initial density distribution and
the global behavior is relatively insensitive to the properties of the initial density
distribution. Systems with different slopes of the initial fluctuation spectrum evolve
very similarly. The major difference is the time at which the systems pass through
comparable stages of the evolution after the start of the SPH simulation (Sec. 7.1).

e Dependence on the Temperature: Our isothermal models of self-gravitating gas
are scale-free. Their dynamical evolution is determined by the dimensionless tem-
perature defined as the ratio between internal and potential energy. This specifies
the number of Jeans masses contained in the simulated volume, and hence the de-
gree of instability towards gravitational collapse. From varying the temperature, we
find that the number of collapsed objects (protostellar cores) is roughly proportional
to the number of Jeans masses contained in the simulation (Sec. 7.2).

At this stage it is necessary to add some caveats. Our approach to the dynamical evolution
of molecular clouds involves very simple physics: we treat the gas isothermally and include
self-gravity. For the physical regime we are interested in, this is certainly a very good
approximation. However, at some stages of the evolution, additional physical phenomena
may become important.

(a) The collapse process leads to gas densities at which energy can no longer be radiated
away efficiently, so the gas heats up and the equation of state becomes adiabatic. We
do not include this effect, since it will happen ‘inside’ the condensed cores that form
during the dynamical evolution of the system we study and we cannot properly resolve
that stage of the evolution anyway. Furthermore, at the very late stages of protostellar
accretion, when stars remove their parental gas cocoon, additional physical phenomena
will become important. These processes determine the efficiency 7core s star for the con-
version of individual protostellar cores into stars, which we have to determine indirectly
in our models. For a direct derivation, detailed collapse calculations of individual cores
including all physical effects are necessary.

(b) Furthermore, our approach does not include the effects of magnetic fields. As is
known from polarisation measurements and observations of the Zeeman effect, magnetic
fields are present in molecular clouds. Contrary to the common belief, recent studies
have shown that magnetic fields are not capable of stabilizing molecular clouds on large
scales. Not only do the observational data suggest that the typical field strength is
not sufficient to prevent global collapse, but also magnetic fields are unable to prevent
turbulent velocity fields from decaying quickly. Therefore, they have been neglected in
the current study. However, magnetic fields may play an crucial role in the late phases
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of protostellar accretion, for example bipolar outflows may be intimately related with
magnetic phenomena. At the level at which we identify protostellar cores in our models,
magnetic fields may already start to modify their further collapse behavior. We cannot
resolve this. Additionally and more important, magnetic fields may be a necessary agent
for distributing energy and momentum from stellar feedback throughout a molecular
cloud. This will become important when studying interstellar turbulence.

(c) In star-forming regions feedback processes from newly formed stars may be important
for an additional reason. Bipolar outflows, winds and the radiation from young stars are
able to deposit large amounts of energy and momentum into the surrounding molecular
cloud. These processes may remove the remaining gas of an entire protostellar cluster
and terminate the mass accretion of all cores together. Hence, this effect may strongly
influence the time scale and efficiency of star formation. On the other hand, stellar
feedback processes may compress large regions of a molecular cloud material to make
them Jeans supercritical. This may induce a new cycle of star formation. The inclusion
and correct treatment of these phenomena in the current models are the next steps towards
a better understanding and more complete theory of star formation.

8.2 Future Prospects

The caveats listed on the previous page immediately lead to the next steps to improve the
current numerical models of the early stages of the star-formation process. This involves
the inclusion and proper treatment of stellar feedback processes and attempts to better
understand of the phenomenon of interstellar turbulence.

8.2.1 Introduction of Stellar Feedback Processes

As discussed extensively in this dissertation, the self-gravitating, isothermal fragmentation
model is able to treat the most dominant physical phenomena of the early formation
phases of protostellar cores correctly. However, in the late stages of accretion, feedback
processes from the young stellar object in the center become important, since stellar wind
and radiation finally will blow away the protostellar envelope as the star approaches the
main sequence. This is an important effect for determining the efficiency with which
protostellar cores are converted into stars. Furthermore, feedback processes from massive
stars strongly influence the environment and are able to modify the global properties of
star-forming regions. Their winds and bipolar outflows deposit momentum and energy
into the interstellar medium, while strong UV radiation is capable of creating extended
ionized regions. A famous and well-studied example of a star forming region in which
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these effects are important is the Trapezium Cluster in Orion, a very dense, young stellar
cluster.

Therefore, to improve the current description of the early phases of young stellar clusters,
feedback effects and energy input from young stars need to be taken into account. Ra-
diation transfer processes have already been successfully incorporated into the numerical
models (see Kessel & Burkert, 1998). The immediate next step is thus the introduction of
stellar winds and outflows. With this more elaborate physical description we will be able
to derive star-formation efficiencies and time scales in a more realistic and quantitative
way, and be one step closer towards a general statistical theory of star formation.

8.2.2 Turbulence in Molecular Clouds

There are further important aspects of stellar feedback. The observed supersonic linewidths
in molecular clouds strongly suggest that the clouds are stabilized against global collapse
by turbulent internal motions. Since turbulent energy dissipates away too fast to explain
the observed cloud life times, it must be constantly driven. Stellar winds and bipolar
outflows are obvious candidates for turbulent energy input, as they influence their sur-
rounding over large distances. Including these effects in the numerical scheme will make
this hypothesis testable, and will enable us to discriminate between this and other possible
sources of turbulent energy, such as large-scale shear (see Sec. 2.1.2).

Studying interstellar turbulence is essential for understanding the global parameters of
molecular clouds, e.g. their life times, their spatial and velocity structure, and their ability
to form stars. One of the key questions untouched in the current work is about the
physical processes which produce to the initial conditions adopted for the collapse and
fragmentation simulations presented in this dissertation. In other words, what will cause
a sufficiently large region within a molecular cloud complex suddenly to become Jeans
supercritical and form a cluster of stars. One possible scenario involves stellar feedback
processes as indicated before: stars may deposit energy and momentum into a moleclular
cloud region to compress it to densities high enough for the entire region to become
Jeans unstable. Another possibility involves the supersonic turbulence ubiquitous on
all scales in molecular clouds. The action of highly supersonic converging shocks may
again create a region of molecular cloud material with high enough density to form a
cluster of stars. Since we expect stellar feedback phenomena to drive turbulent motions
in molecular clouds, both scenarios may be closely interrelated. Certainly from studying
the properties and sources of interstellar turbulence, we will gain important insight into
the overall process of star formation.
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Appendix A

The Clump Finding Method

This appendix describes the method used to identify the clumping properties of the nu-
merical calculations. It is applies a scheme similar to the one introduced by Williams
et al. (1994), but is fully integrated into the SPH formalism.

In SPH, the densities p; of individual particles ¢ are obtained in a local averaging process
over a list of neighbors within distances less than twice the smoothing length h; (see
Sec. 3.3). To identify clumps, the resulting 3-dimensional density field is subdivided into
ten bins equally spaced in the logarithm of the density. Starting with the highest density
level, the particles are sorted by decreasing density, i.e. the first particle in the list is the
one with the highest density. Going through this list, for each particle ¢ it is checked
whether the particles in its neighbor list are already assigned to a clump. If this not
the case, then particle ¢ is assigned to a new gas clump, together with all particles in its
neighbor list. Then all further particles at that level which are connected to the particles
of the new clump by means of overlapping smoothing volumes are identified and assigned
to the same clump. The assigned particles are finally removed from the density list. On
the other hand, does the neighbor list of the tested particle ¢ already contain contribution
from identified clumps, then the particle ¢ will be assigned to that clump that contributes
the largest fraction of particles in the neighbor list, only particle ¢ will be removed from
the sorted list. This scheme is repeated until all particles are removed from the sorted
list. If all particles within one density level are assigned, then the procedure is repeated
at the next level, down to the lowest one. Finally all SPH particles in the system are
assigned to individual clumps (see Fig. A.1).

As described here, the scheme is free of assumptions about the geometrical shape of the
clumps!. This is of great advantage when dealing with highly irregular and filamen-

L An alternative approach to determine clump properties in (observed) molecular clouds was introduced
by Stutzki & Giisten (1990). These autors explicitely assume clumps of Gaussian shape and decompose
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tary structure as in the numerical simulations of gravitational fragmentation and collapse
performed for this dissertation. However, the scheme by which neighboring clumps are
distinguished is important: two clumps that may at a high level of density be well sepa-
rated entities, may at lower levels have common contour lines. In our scheme, they are
still separated even at these lower levels by introducing an artificial ‘interface’ between
the two clouds. Individual particles are always assigned to the clump that contributes
most neighbors. This sets a clear division line between two competing clumps and enables
their separation. Besides this basic separation criterion, the method is free of independent
parameters and uses only intrinsic properties of the SPH scheme.

logip

X

Figure A.1: Illustration of the clump finding algorithm in a 1-dimensional sample case: At the highest
contour level one clump is identified and all particles get assigned to it. At the third level a new separate
clump is detected. At the sixth highest level, a third new clump is identified. Clumps #1 and #2 now
have overlapping contour lines and are separated as described above. This is indicated by an arrow. At
level eight the last clump is detected and separeted from the other at the lowest level (again indicated

by arrows).

the density field into peaks of this shape by minimizing the residual



Appendix B

Physical Units and Constants

The physical unit system applied throughout this dissertation work is a combination of the
‘cgs’-system and ‘astrophysical’ units. In the ‘cgs’-convention, the basic units for length,
mass and time are centimeter, gramm and second. Other physical units are expressed
as combination of these primary ones. The ‘astrophysical’ unit system is derived from
properties of our solar system. The conversion between both systems is

Length: Ipc = 3.085678 x 10" cm (parsec)
1AU = 1.495979 x 10" cm (astronomical unit)
Mass: 1My = 1.989x10% g (solar mass)
Time: la = 3.155815x 10" s (year)
Luminosity: 1L, = 3.826 x 10% ergs™* (solar luminosity)

The conversion between the two commonly used length units is 1 pc = 206265 AU.

Velocities in the interstellar medium are typically given in kms™!.

The physical constants relevant for the dynamics of self-gravitating gas are

Grav. constant: G = 6 . 672 59 x 108
cm? g1 572
Gas constant: R = 8.314510x107 erg K tg !

It

Boltzmann constant: & 1.380658 x 10 ¢ erg K1 .

The mass of a hydrogen atom is

[

my 1.672623 x 10724 g .
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