Introduction into Smoothed Particle Hydrodynamics Ralf Klessen Astrophysikalisches Institut Potsdam ## **Overview** - Some words about hydrodynamics - SPH The Standard Implementation - Modifications and Extensions - Some Caveats #### text books on hydrodynamics - Landau & Lifshitz, Volume VI Hydrodynamics - o Landau & Lifshitz, Volume X Kinetic theory - o Reichl, A modern course in statistical physics, Wiley, New York (1998) - o Shu, The physics of astrophysics 2, Univ. Sc. Books, Mill Valley (1992) #### derivation - \circ gases and fluids are large ensembles of interacting particles - \longrightarrow state of system is described by location in 6N dimensional phase space $f^{(N)}(\vec{q}_1...\vec{q}_N, \vec{p}_1...\vec{p}_N)d\vec{q}_1...d\vec{q}_Nd\vec{p}_1...d\vec{p}_N$ - o time evolution governed by 'equation of motion' for 6N-dim probability distribution function $f^{(N)}$ - o $f^{(N)} \to f^{(n)}$ by integrating over all but n coordinates \longrightarrow BBGKY hierarchy of equations of motion (after Born, Bogoliubov, Green, Kirkwood and Yvon) - o physical observables are typically associated with 1- or 2-body probability density $f^{(1)}$ or $f^{(2)}$ - o at lowest level of hierarchy: 1-body distribution function describes the probability of finding a particle at time t in the volume element $d\vec{q}$ at \vec{q} with momenta in the range $d\vec{p}$ at \vec{p} . - \circ Boltzmann equation equation of motion for $f^{(1)}$ - derivation - Boltzmann equation - → first line: transformation from comoving to spatially fixed coordinate system. - \rightarrow second line: velocity $\vec{v}=\dot{\vec{q}}$ and force $\vec{F}=\dot{\vec{p}}$ - ightarrow all higher order terms are 'hidden' in the collision term $f_{ m c}$ - observable quantities are typically (velocity) moments of the Boltzmann equation, e.g. - → density: $$\rho = \int \mathbf{m} f(\vec{q}, \vec{p}, t) d\vec{p}$$ → momentum: $$\rho \vec{v} = \int \mathbf{m} \vec{v} f(\vec{q}, \vec{p}, t) d\vec{p}$$ → kinetic energy density: $$\rho \vec{v}^2 = \int \mathbf{m} \vec{v}^2 f(\vec{q}, \vec{p}, t) d\vec{p}$$ #### derivation o in general: the *i*-th velocity moment $\langle \xi_i \rangle$ (of $\xi_i = m\vec{v}^i$) is $$\langle \xi_i \rangle = \frac{1}{n} \int \xi_i f(\vec{q}, \vec{p}, t) d\vec{p}$$ with the mean particle number density n defined as $$n = \int f(\vec{q}, \vec{p}, t) d\vec{p}$$ • the equation of motion for $\langle \xi_i \rangle$ is $$\int \xi_i \left\{ \frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla}_{\!\!\scriptscriptstyle \mathrm{q}} f + \vec{F} \cdot \vec{\nabla}_{\!\!\scriptscriptstyle \mathrm{p}} f \right\} d\vec{p} = \int \xi_i \left\{ f_{\mathbf{c}} \right\} \; d\vec{p} \,,$$ which after some complicated rearrangement becomes - \circ if the RHS is zero, then ξ_i is a conserved quantity. This is only the case for first three moments, mass $\xi_0 = m$, momentum $\vec{\xi_1} = m\vec{v}$, and kinetic energy $\xi_2 = m\vec{v}^{\,2}/2$. - MB equations build a hierarically nested set of equations, as $\langle \xi_i \rangle$ depends on $\langle \xi_{i+1} \rangle$ via $\vec{\nabla}_{\!\scriptscriptstyle q} (n \langle \xi_i \vec{v} \rangle)$ and because the collision term cannot be reduced to depend on ξ_i only. - → need for a closure equation - --- in hydrodynamics this is typically the equation of state. #### assumptions #### o continuum limit: - \rightarrow distribution function f must be a 'smoothly' varying function on the scales of interest \longrightarrow local average possible - → stated differently: the averaging scale (i.e. scale of interest) must be larger than the mean free path of individual particles - → stated differently: microscopic behavior of particles can be neglected - → concept of fluid element must be meaningful #### only 'short range forces': - → forces between particles are short range or saturate → collective effects can be neglected - → stated differently: correlation length of particles in the system is finite (and smaller than the scales of interest) #### limitations - o shocks (scales of interest become smaller than mean free path) - phase transitions (correlation length may become infinite) - description of self-gravitating systems - o description of fully fractal systems - the equations of hydrodynamics - hydrodynamics book keeping problem One must keep track of the 'change' of a fluid element due to various physical processes acting on it. How do its 'properties' evolve under the influence of compression, heat sources, cooling, etc.? - Eulerian vs. Lagrangian point of view consider spatially fixed volume element following motion of fluid element o hydrodynamic equations = set of equations for the five conserved quantities $(\rho, \rho \vec{v}, \rho \vec{v}^2/2)$ plus closure equation (plus transport equations for 'external' forces if present, e.g. gravity, magnetic field, heat sources, etc.) - the equations of hydrodynamics - o equations of hydrodynamics $$\begin{split} \frac{d\rho}{dt} &= \frac{\partial\rho}{\partial t} + \vec{v}\cdot\vec{\nabla}\rho = -\rho\vec{\nabla}\cdot\vec{v} & \text{(continuity equation)} \\ \frac{d\vec{v}}{dt} &= \frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot\vec{\nabla})\vec{v} = -\frac{1}{\rho}\vec{\nabla}p - \vec{\nabla}\phi + \eta\vec{\nabla}^2\vec{v} + \left(\zeta + \frac{\eta}{3}\right)\vec{\nabla}(\vec{\nabla}\cdot\vec{v}) \\ & \text{(Navier-Stokes equation)} \\ \frac{d\epsilon}{dt} &= \frac{\partial\epsilon}{\partial t} + \vec{v}\cdot\vec{\nabla}\epsilon = T\frac{ds}{dt} - \frac{p}{\rho}\vec{\nabla}\cdot\vec{v} & \text{(energy equation)} \\ \vec{\nabla}^2\phi &= 4\pi G\rho & \text{(Poisson's equation)} \\ p &= \mathcal{R}\rho T & \text{(equation of state)} \end{split}$$ $$\vec{F}_B = -\vec{\nabla} \, \frac{\vec{B}^2}{8\pi} + \frac{1}{4\pi} (\vec{B} \cdot \vec{\nabla}) \vec{B} \quad \text{(magnetic force)}$$ $$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{B}) \quad \text{(Lorentz equation)}$$ $\rho=$ density, $\vec{v}=$ velocity, p= pressure, $\phi=$ gravitational potential, ζ and η viscosity coefficients, $\epsilon=\rho\vec{v}^{\,2}/2=$ kinetic energy density, T= temperature, s= entropy, $\mathcal{R}=$ gas constant, $\vec{B}=$ magnetic field (cgs units) - the equations of hydrodynamics - mass transport continuity equation $$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \vec{v} \cdot \vec{\nabla}\rho = -\rho \vec{\nabla} \cdot \vec{v}$$ (conservation of mass) o transport equation for momentum - Navier Stokes equation $$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho} \vec{\nabla} p - \vec{\nabla} \phi + \eta \vec{\nabla}^2 \vec{v} + \left(\zeta + \frac{\eta}{3}\right) \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$$ momentum change due to - \rightarrow pressure gradients: $(-\rho^{-1} \vec{\nabla} p)$ - \rightarrow (self) gravity: $-\vec{\nabla}\phi$ - ightharpoonup viscous forces (internal friction, contains $\operatorname{div}(\partial v_i/\partial x_j)$ terms): $\eta \vec{\nabla}^2 \vec{v} + \left(\zeta + \frac{\eta}{3}\right) \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$ (conservation of momentum, general form of momentum transport: $\partial_t(\rho v_i) = -\partial_j \Pi_{ij}$) transport equation for internal energy $$\frac{d\epsilon}{dt} = \frac{\partial \epsilon}{\partial t} + \vec{v} \cdot \vec{\nabla} \epsilon = T \frac{ds}{dt} - \frac{p}{\rho} \vec{\nabla} \cdot \vec{v}$$ - \rightarrow follows from the thermodynamic relation $d\epsilon = T\,ds p\,dV = T\,ds + p/\rho^2d\rho$ which described changes in ϵ due to entropy changed and to volume changes (compression, expansion) - \rightarrow for adiabatic gas the first term vanishes (s = constant) - \rightarrow heating sources, cooling processes can be incorporated in ds (conservation of energy) - the equations of hydrodynamics - o closure equation equation of state - $\ensuremath{\rightarrow}$ general form of equation of state $p=p(T,\rho,\ldots)$ - \rightarrow ideal gas: $p = \mathcal{R} \rho T$ - ightarrow special case isothermal gas: $p=c_{ m s}^2T$ (as ${\cal R}T=c_{ m s}^2$) #### literature - Benz, W., SPH, in 'The Numerical Modeling of Nonlinear Stellar Pulsations' ed. J. R. Buchler, Kluwer (1990) - Monaghan, J. J., Particle Methods for Hydrodynamics, Comp. Phys. Reports (1985) - o Monaghan, J. J., SPH, ARA&A (1992) #### concept of SPH - 'invented' independently by Lucy (1977) and Gingold & Monaghan (1977) - originally proposed as Monte Carlo approach to calculate the time evolution of gaseous systems - o more intuitively understood as interpolation scheme: The fluid is represented by an ensemble of particles i, each carrying mass m_i , momentum $m_i \vec{v_i}$, and hydrodynamic properties (like pressure p_i , temperature T_i , internal energy ϵ_i , entropy s_i , etc.). The time evolution is governed by the equation of motion plus additional equations to modify the hydrodynamic properties of the particles. Hydrodynamic observables are obtained by a local averaging process. - properties of local averaging processes - o local averages $\langle f(\vec{r}) \rangle$ for any quantity $f(\vec{r})$ can be obtained by convolution with an appropriate smoothing function $W(\vec{r}, \vec{h})$: $$\langle f(\vec{r}) \rangle \equiv \int f(\vec{r}') W(\vec{r} - \vec{r}', \vec{h}) d^3r'$$. the function $W(\vec{r}, \vec{h})$ is called smoothing kernel • the kernel must satisfy the following two conditions: $$\int W(\vec{r}, \vec{h}) d^3r = 1$$ and $\langle f(\vec{r}) \rangle \longrightarrow f(\vec{r})$ for $\vec{h} \to 0$ the kernel W therefore follows the same definitions as Dirac's delta function $\delta(\vec{r})$: $\lim_{h\to 0} W(\vec{r},h) = \delta(\vec{r})$. most SPH implementations use spherical kernel functions $$W(\vec{r},\vec{h}) \equiv W(r,h) \quad \text{ with } \quad r = |\vec{r}| \quad \text{and} \quad h = |\vec{h}|.$$ (one could also use triaxial kernels, e.g. Martel et al. 1995) o as the kernel function W can be seen as approximation to the δ -function for small but finite h we can expand the averaged function $\langle f(\vec{r}) \rangle$ into a Taylor series for h to obtain an estimate for $f(\vec{r})$; if W is an even function, the first order term vanishes and the errors are second order in h $$\langle f(\vec{r}) \rangle = f(\vec{r}) + \mathcal{O}(h^2)$$ this holds for functions f that are smooth and do not exhibit steep gradients over the size of W (\rightarrow problems in shocks). (more specifically the expansion is $\langle f(\vec{r}) \rangle = f(\vec{r}) + \kappa h^2 \vec{\nabla}^2 f(\vec{r}) + \mathcal{O}(h^3)$) - properties of local averaging processes - within its intrinsic accuracy, the smoothing process therefore is a linear function with respect to summation and multiplication: $$\langle f(\vec{r}) + g(\vec{r}) \rangle = \langle f(\vec{r}) \rangle + \langle g(\vec{r}) \rangle$$ $$\langle f(\vec{r}) \cdot g(\vec{r}) \rangle = \langle f(\vec{r}) \rangle \cdot \langle g(\vec{r}) \rangle$$ (one follows from the linearity of integration with respect to summation, and two is true to $\mathcal{O}(h^2)$) o derivatives can be 'drawn into' the averaging process: $$\frac{d}{dt}\langle f(\vec{r})\rangle = \left\langle \frac{d}{dt}f(\vec{r})\right\rangle$$ $$\vec{\nabla}\langle f(\vec{r})\rangle = \langle \vec{\nabla}f(\vec{r})\rangle$$ Furthermore, the spatial derivative of f can be transformed into a spatial derivative of W (no need for finite differences or grid): $$\vec{\nabla} \langle f(\vec{r}) \rangle = \langle \vec{\nabla} f(\vec{r}) \rangle = \int f(\vec{r}') \vec{\nabla} W(|\vec{r} - \vec{r}'|, h) d^3 r'.$$ (shown by integrating by parts and assuming that the surface term vanishes; if the solution space is extended far enough, either the function f itself or the kernel approach zero) basic concept of SPH is a particle representation of the fluid — integration transforms into summation over discrete set of particles; example density ρ: $$\langle \rho(\vec{r}_i) \rangle = \sum_j m_j W(|\vec{r}_i - \vec{r}_j|, h)$$. in this picture, the mass of each particle is smeared out over its kernel region; the density at each location is obtained by summing over the contributions of the various particles —> smoothed particle hydrodynamics! - properties of local averaging processes - o 'scatter' versus 'gather' approach: $$\langle \rho(\vec{r}_i) \rangle = \sum_j m_j W(|\vec{r}_i - \vec{r}_j|, h)$$. allows for two different interpretations... - 1. particle i collects the contributions from all other particles j which smoothing volumes h_j scatter onto location \vec{r}_i $h \to h_j$, i.e. use $W(|\vec{r}_i \vec{r}_j|, h_j)$ in the summation - 2. particle i gathers the contributions from all particles which centers fall within the smoothing volume of i $h \rightarrow h_i$, i.e. use $W(|\vec{r_i} \vec{r_j}|, h_i)$ in the summation if all particles have the same smoothing length $h=h_i=h_j$ both approaches are equivalent; otherwise different j contribute to the sum \longrightarrow violation of Newton's 3. law!! therefore, enforce force anti-symmetry by using the (arithmetic) average of the smoothing lengths for all particle pairs $$h \longrightarrow h_{ij} = \frac{h_i + h_j}{2}$$. #### the kernel function - o different functions meet the requirement $\int W(|\vec{r}|, h) d^3r = 1$ and $\lim_{h\to 0} \int W(|\vec{r}-\vec{r}'|, h) f(\vec{r}') d^3r' = f(\vec{r})$: - \rightarrow Gaussian kernel: $$W(r,h) = \frac{1}{\pi^{3/2}h^3} \exp\left(-\frac{r^2}{h^2}\right)$$ - · pro: mathematically sound - · pro: derivatives exist to all orders and are smooth - · contra: all particles contribute to a location - → spline functions with compact support - \rightarrow the standard kernel: cubic spline with $\xi = r/h$ it is defined as $$W(r,h) \equiv \frac{1}{\pi h^3} \begin{cases} 1 - \frac{3}{2}\xi^2 + \frac{3}{4}\xi^3, & \text{for } 0 \le \xi \le 1; \\ \frac{1}{4}(2 - \xi)^3, & \text{for } 1 \le \xi \le 2; \\ 0, & \text{otherwise.} \end{cases}$$ - \cdot pro: compact support \longrightarrow all interactions are zero for $r>2h\longrightarrow$ number of particles involved in the average remains small (typically between 30 and 80) - · pro: second derivative is continuous - \cdot pro: dominant error term is second order in h - → in principle different kernel functions could be used for different equations (but it brings no obvious advantage, except maybe in the case of XSPH) - → specialized kernels can be constructed for different types of problems ## ullet variable smoothing length h - \circ spatial resolution of SPH is limited by h, the scale over which forces and physical properties are smeared out - \circ to make optimum use of the Lagrangian nature of SPH one has to allow for variations of h: in high-density regions h should be small, in regions of low density h should be large - o the optimum value of h is such that every particle has ~ 50 neighbors within the smoothing volume #### o caveats: - \rightarrow introduction of additional errors (the Taylor series now contains contributions from $\vec{\nabla} h$, furthermore time derivatives $\partial h/\partial t$ occur); however, these errors are of second or higher order and thus the same as the one inherent to SPH anyway - → modification of the kernel gradient $$\vec{\nabla}W(|\vec{r}-\vec{r}'|,h) = \vec{\nabla}W(|\vec{r}-\vec{r}'|,h)\Big|_h + \frac{\partial}{\partial h}W(|\vec{r}-\vec{r}'|,h)\vec{\nabla}h\Big|_{\vec{r}}$$ the new term is $\propto \vec{\nabla} h$ and becomes important only if the smoothing length varies on scales less than the smoothing lengths itself \longrightarrow it is generally *neglected* (see Nelson & Papaloizou 1994). o equation of 'motion' for h can be coupled to the density: from $h=h_0\left(\rho_0/\rho\right)^3$ it follows from using the continuity equation $$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{3}\frac{h}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{1}{3}h\,\vec{\nabla}\cdot\vec{v} \tag{1}$$ alternative methods exist (see e.g. Steinmetz & Müller 1993) ## • the fluid equations in SPH - there is an infinite number of possible SPH implementations of the hydrodynamic equations! - o some notation: $h_{ij} = (h_i + h_j)/2$, $\vec{r}_{ij} = \vec{r}_i \vec{r}_j$, $\vec{v}_{ij} = \vec{v}_i \vec{v}_j$, and $\vec{\nabla}_i$ is the gradient with respect to the coordinates of particle i; all measurements are taken at particle positions (e.g. $\rho_i = \rho(\vec{r}_i)$) - o general form of SPH equations: $$\langle f_i \rangle = \sum_{j=1}^{N_i} \frac{m_j}{\rho_j} f_j W(r_{ij}, h_{ij})$$ o density — continuity equation (conservation of mass) $$ho_i = \sum\limits_{j=1}^{N_i} m_j W(r_{ij}, h_{ij})$$ or $$\frac{\mathrm{d}\rho_i}{\mathrm{d}t} = \sum\limits_{i=1}^{N_i} m_j \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij})$$ (the second implementation is almost never used, see however Monaghan 1991 for an application to water waves) #### important density is needed for ALL particles BEFORE computing other averaged quantities \longrightarrow at each timestep, SPH computations consist of TWO loops, first the density is obtained for each particle, and then in a second round, all other particle properties are updated. o *pressure* is defined via the equation of state (for example for isothermal gas $p_i=c_{\rm s}^2\rho_i$) ## • the fluid equations in SPH - velocity Navier Stokes equation (conservation of momentum) - → consider for now *only* pressure contributions: Euler's equation $$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\partial\vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho}\vec{\nabla}p = -\vec{\nabla}\left(\frac{p}{\rho}\right) - \frac{p}{\rho^2}\vec{\nabla}\rho \qquad (*)$$ here, the identity $\vec{\nabla}(p\rho^{-1}) = \rho^{-1}\vec{\nabla}p - p\rho^{-2}\vec{\nabla}\rho$ is used → in the SPH formalism this reads as $$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^{N_i} m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_i^2} \right) \vec{\nabla}_i W(r_{ij}, h_{ij})$$ where the first term in (*) is neglected because it leads to surface terms in the averaging procedure; it is assumed that either the pressure or the kernel becomes zero at the integration border; if this is not the case *correction terms* need to be added above. the equation is anti-symmetric in i and j and conserves momentum locally and globally. → if self-gravity is taken into account, the gravitational force needs to be added on the RHS $$\vec{F}_{\mathrm{G}} = -\vec{\nabla}\phi_i = -G\sum_{j=1}^N \frac{m_j}{r_{ij}^2} \frac{r_{ij}}{r_{ij}}$$ note that the sum needs to be taken over *ALL* particles Computationally expensive ## the fluid equations in SPH - velocity Navier Stokes equation (conservation of momentum) - → the contribution of viscosity: - · converts ordered kinetic energy into random kinetic energy (heat) - molecular viscosity in most astrophysical problems is small (except maybe in shocks) SPH normally has NO explicit treatment of physical viscosity. - however, artificial viscosity is needed to prevent particle interpenetration. - this is achieved by smearing out shocks and by introducing dissipation in regions with strong velocity divergence - · there are MANY ways to formulate artificial viscosity!! - → the standard formulation of viscous pressures is $$p_{\alpha} = \Pi_{\alpha} \rho^2 = -\alpha \rho \ell c_{\rm s}(\vec{\nabla} \cdot \vec{v}) ,$$ and $$p_{\beta} = \Pi_{\beta} \rho^2 = -\beta \rho \ell^2 (\vec{\nabla} \cdot \vec{v})^2$$. α and β are free parameters and control the strength of the viscous terms (typical values are $\alpha=1$ and $\beta=2$); ℓ is the scale over which shocks are smeared out (typically $\ell\approx 2h$). - \cdot p_{lpha} is a combined *shear* and *bulk* viscosity it dampens post-shock oscillations - p_{β} is a von Neumann-Richtmyer viscosity necessary to prevent interpenetration in high Mach number shocks #### the fluid equations in SPH - velocity Navier Stokes equation (conservation of momentum) - → the SPH implementation of the standard artificial viscosity is $$\vec{F}_i^{\mathrm{visc}} = -\sum_{j=1}^{N_i} m_j \Pi_{ij} \vec{\nabla}_i W(r_{ij}, h_{ij}),$$ where the viscosity tensor Π_{ij} is defined by $$\Pi_{ij} = \begin{cases} (-\alpha c_{ij}\mu_{ij} + \beta \mu_{ij}^2)/\rho_{ij} & \text{for } \vec{v}_{ij} \cdot \vec{r}_{ij} \leq 0, \\ 0 & \text{for } \vec{v}_{ij} \cdot \vec{r}_{ij} > 0, \end{cases}$$ where $$\mu_{ij} = \frac{h\vec{v}_{ij} \cdot \vec{r}_{ij}}{\vec{r}_{ij}^2 + 0.01h^2} .$$ with $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$, $\vec{v}_{ij} = \vec{v}_i - \vec{v}_j$, mean density $\rho_{ij} = (\rho_i + \rho_j)/2$, and mean sound speed $c_{ij} = (c_i + c_j)/2$. - → Advantages of the standard artificial viscosity - · Galilean invariant - vanishes for rigid body rotation (but not for differential rotation!!!) - · conserved linear and angular momenta - → Disadvantages of the standard formula - \cdot generates entropy in shear flows \longrightarrow Balsara viscosity - leads to strong dissipation (one simulates 'honey' instead of interstellar gas) time-dependent viscosity & XSPH - arbitrariness (no physical motivation) → Flebbe-type viscosities - → many alternative formulations exist - → set together, the momentum equation is $$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^{N_i} m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} + \Pi_{ij} \right) \vec{\nabla}_i W(r_{ij}, h_{ij}) - \nabla \phi_i$$ - the fluid equations in SPH - energy equation (conservation of momentum) - → recall the hydrodynamic energy equation: $$\frac{d\epsilon}{dt} = \frac{\partial \epsilon}{\partial t} + \vec{v} \cdot \vec{\nabla} \epsilon = \frac{ds}{dt} - \frac{p}{\rho} \vec{\nabla} \cdot \vec{v}$$ \rightarrow for adiabatic systems (c = const) the SPH form follows as $$\frac{d\epsilon_i}{dt} = \frac{p_i}{\rho_i^2} \sum_{j=1}^{N_i} m_j \, \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij}) \,,$$ (note that the alternative form $$\frac{d\epsilon_i}{dt} = \frac{1}{2} \sum_{j=1}^{N_i} m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij})$$ can lead to unphysical solutions, like negative internal energy) → dissipation due to (artificial) viscosity leads to a term $$\frac{d\epsilon_i}{dt} = \frac{1}{2} \sum_{i=1}^{N_i} m_j \Pi_{ij} \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}.h_{ij})$$ - \rightarrow the presence of *heating* sources or *cooling* processes can be incorporated into a function Γ_i . - → altogether: $$\frac{d\epsilon_i}{dt} = \frac{p_i}{\rho_i^2} \sum_{j=1}^{N_i} m_j \vec{v}_{ij} \cdot \vec{\nabla}_i W_{ij} + \frac{1}{2} \sum_{j=1}^{N_i} m_j \Pi_{ij} \vec{v}_{ij} \cdot \vec{\nabla}_i W_{ij} + \Gamma_i$$ #### the fluid equations in SPH - entropy equation - → alternatively to the energy equation one can integrate an equation for the 'entropy' - \rightarrow the *entropic function* A(s) is defined by $$p = A(s)\rho^{\gamma}$$. the internal energy follows as $$\epsilon = \frac{A(s)}{\gamma - 1} \rho^{\gamma - 1} \tag{*}$$ \to the time evolution of A(s) depends on the emissivity per unit volume Γ (heat sources and sinks) and on the viscosity; one possible SPH implementation is $$\frac{\mathrm{d}A_i}{\mathrm{d}t} = -\frac{\gamma - 1}{\rho_i} \Gamma_i + \frac{1}{2} \frac{\gamma - 1}{\rho_i^{\gamma - 1}} \sum_{j=1}^{N_i} m_j \Pi_{ij} \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij}) .$$ \rightarrow the time evolution of ϵ_i is then derived from this equation via (*), the temperature T_i of particle i is directly proportional to ϵ_i . #### • time integration - \circ time integration is done similar to N-body methods - there are two main schemes: leap-frog and predictor-corrector methods - variable timesteps - → efficient use of CPU power in strongly inhomogeneous systems - \rightarrow typically, the lengths of timestep bins differ by factor 2 - → criteria for chosing the timestep - · Courant-Friedrichs-Lewy plus viscosity criterion $$\delta t_{\rm cv} = \frac{0.3 h}{c_{\rm s} + h |\vec{\nabla} \cdot \vec{v}| + 1.2(\alpha c_{\rm s} + \beta h |\vec{\nabla} \cdot \vec{v}|)}.$$ · force criterion $$\delta t_{\rm f} = 0.3 \sqrt{\frac{h}{|\vec{F}|}} \,,$$ global error tolerance criteria are possible in Runge-Kutta schemes ## boundary conditions - closed (or periodic) boundaries can be handled by introducing 'ghost' particles - open boundaries are difficult, because of large pressure gradients (e.g. water surface on air) ## alternative ways to force anti-symmetry \circ instead of using one kernel and take a mean value for h, average of the kernel contributions of each particle: $$W\left(|\vec{r}_{i}-\vec{r}_{j}|,\frac{h_{i}+h_{j}}{2}\right) \rightarrow \frac{1}{2}\left\{W(|\vec{r}_{i}-\vec{r}_{j}|,h_{i})+W(|\vec{r}_{i}-\vec{r}_{j}|,h_{j})\right\}$$ o instead of the artithmetic mean for the quantity p/ρ^2 use the geometric one: $$\frac{1}{2} \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \longrightarrow \frac{\sqrt{p_i p_j}}{\rho_i \rho_j}$$ ### • XSPH (Monaghan 1989) in the standard formulation the particle is advanced by integrating $$\frac{d\vec{r}_i}{dt} = \vec{v}_i$$ it may be more physical (and in the spirit of SPH) when moving the particle with the smoothed flow velocity $$\frac{d\vec{r}_i}{dt} = \hat{\vec{v}}_i \quad \text{with} \quad \hat{\vec{v}}_i = \vec{v}_i + \eta \sum_{j=1}^{N_i} \frac{m_j}{\rho_{ij}} (\vec{v}_i - \vec{v}_j) W(|\vec{r}_i - \vec{r}_j|, h_{ij})$$ where $\eta \approx 0.5$. - \circ this allows for a strongly reduced artificial viscosity term \longrightarrow reach higher Reynolds numbers when modeling interstellar turbulence - XSPH also allows for the introduction of the Cassama-Holm subgrid model of turbulence (Monaghan 2002 – astro-ph/0204118) #### alternative formulations of viscosity - Balsara viscosity: - → standard viscosity generates entropy in shear flows (Balsara 1989) - ightarrow add a correction term $\propto \vec{\nabla} \times \vec{v}$ - → new viscosity: $$\Pi_{ij} = \begin{cases} (-\alpha c_{ij}\mu_{ij} + \beta \mu_{ij}^2)/\rho_{ij} & \text{for } \vec{v}_{ij} \cdot \vec{r}_{ij} \leq 0, \\ 0 & \text{for } \vec{v}_{ij} \cdot \vec{r}_{ij} > 0, \end{cases}$$ where now $$\mu_{ij} = \frac{h\vec{v}_{ij} \cdot \vec{r}_{ij}}{\vec{r}_{ij}^2 + 0.01h^2} \frac{f_i + f_j}{2}$$ with $$f_i = \frac{|\vec{\nabla} \cdot \vec{v}|_i}{|\vec{\nabla} \cdot \vec{v}|_i + |\vec{\nabla} \times \vec{v}|_i + 0.0001c_i/h}$$ - → this representation vanishes in pure shear flows, but is identical to the standard version in purely compressional flows - o for more physically motivated viscosity see - → Flebbe et al., ApJ, 431, 754 (1994) - → Watkins et al., ApJS, 119, 177 (1996) - \rightarrow etc #### alternative formulations of viscosity - switch to reduce viscosity (Morris & Monaghan 1997) - → artificial viscosity is a strongly *undesired quantity*, as it leads to dissipation that is much higher than in astrophysical gases - → for realistic models one wants as little artificial viscosity as possible (e.g. important for turbulence simulations — we model 'honey' instead of interstellar gas) - → in priciple, artificial viscosity is only needed in regions of strong compression (shocks) - \rightarrow introduce a switch which leads to high Π_{ij} when $\vec{\nabla} \cdot \vec{v}$ becomes strongly negative and then let Π_{ij} 'decay' to zero afterwards - → implementation: - each particle i carries its own value α_i (and β_i , e.g. with $\beta_i = 2\alpha_i$) - · time evolution $$\alpha_i = \alpha_{\min} + A \exp(-t/\tau)$$ with decay time $\tau \approx 10 h/c_{\rm s}$. - fully conservative formulation using Lagrange multipliers - Springel & Hernquist (2002, astro-ph/0111016) - Monaghan (2002, astro-ph/0204118) - the Lagrangian for compressible flows which are generated by the thermal energy $\epsilon(\rho,s)$ acts as effective potential is $$\mathcal{L} = \int \rho \left\{ \frac{1}{2} v^2 - u(\rho, s) \right\} d^3 r.$$ equations of motion follow with s = const from $$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \vec{v}} - \frac{\partial \mathcal{L}}{\partial \vec{r}} = 0$$ \circ after some SPH arithmetics, one can derive the following acceleration equation for particle i $$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^{N_i} m_j \left\{ \frac{1}{f_i} \frac{p_i}{\rho_i^2} \vec{\nabla}_i W(r_{ij}, h_i) + \frac{1}{f_j} \frac{p_j}{\rho_j^2} \vec{\nabla}_i W(r_{ij}, h_j) \right\}$$ where $$f_i = \left[1 + \frac{h_i}{3\rho_i} \frac{\partial \rho_i}{\partial h_i}\right]$$ - \circ the Lagrange multiplier used here is the constraint that h_i is adjusted such that each smoothing volume contains a fixed amount of mass - under this contraint, the formulation conserves energy, entropy, linear and angular momentum ($\vec{\nabla}h$ terms are taken into account implicitely) # **Properties of SPH:** - no clear mathematical convergence study reliability of method needs to rely on comparison with analytic solutions and on empirical tests (e.g. comparing results obtained with different particle numbers) - SPH is more *dissipative* than most grid-based methods - SPH is *Lagrangian*, it can resolve large density contrasts whereever needed (regions of interest need not to be defined in advance) - SPH provides good resolution in high-density regions, however, only poorly resolves low-density regions - SPH generally performes poorly when handling shocks (but see GPH) - SPH is a particle scheme → good for describing the transition from gaseous to stellar-dynamical systems (i.e. good for describing the formation of stellar clusters) - SPH cannot (yet) handle magnetic field satisfactory (problems with stability and with $\vec{\nabla} \cdot \vec{B} = 0$ requirement) - SPH can be combined with the special purpose hardware GRAPE