Recent Insight and Future Challenges in Theoretical Models of the ISM

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg
Institut für Theoretische Astrophysik
LEBEN
PLANETENSYSTEME

INTERSTELLARE MATERIE

PROTOSTERN

ROTE RIESEN

PLANETARISCHE NEBEL

GAS

STERNENTWÖNSCHUNG

STARDÄTCHUNG

STERNENTWÖNSCHUNG

WEISS ZWERGE

NEUTRONENSUPERNOVEN

SCHWARZE LOCHER

STÄRKE

STÄRKE

RAUMWELT

FRAUEN

MÄNNER

GERECHTigkeit

Ralf Klessen: Rundgespräch, 22.09.2006
Ralf Klessen: Rundgespräch, 22.09.2006
Why study ISM physics?

physical processes
- turbulence theory
- ISM: laboratory for plasm physics
- ISM: laboratory for extreme chemistry

planets
- initial conditions for planet formation (chemical composition)
- diversity of planetary systems
- habitability (life)

extreme environments
- galactic center
- starburst galaxies
- primordial universe

cosmology & galaxy formation
- cooling properties of high-z halos
- primordial star formation
- relation between visible and dark matter

galactic structure & evolution
- chemical enrichment
- global star formation history (Milky Way)
- interrelation between SF and galactic structure

stars & star clusters
- ISM: environment for star formation
- IMF
- feedback from stars (winds, radiation, SN)
- MC turbulence

Ralf Klessen: Rundgespräch, 22.09.2006
What do we need to study ISM?

- magneto-hydrodynamics (multi-phase, non-ideal MHD, turbulence)
- chemistry (gas + dust, heating + cooling)
- radiation (continuum + lines)
- stellar dynamics (collisional: star clusters, collisionless: galaxies, DM)
- stellar evolution (feedback: radiation, winds, SN)
- laboratory work (reaction rates, cross sections, dust coagulation properties, etc.)
What do we need to study ISM?

- **magneto-hydrodynamics**
 (multi-phase, non-ideal MHD, turbulence)
- **chemistry**
 (gas + dust, heating + cooling)
- **radiation**
 (continuum + lines)
- **stellar dynamics**
 (collisional: star clusters, collisionless: galaxies, DM)
- **stellar evolution**
 (feedback: radiation, winds, SN)

- massive parallel codes
- particle-based: SPH with improved algorithms (XSPH with turb. subgrid model, GPM, particle splitting, MHD-SPH?)
- grid-based: AMR (FLASH, ENZO, RAMSES, Nirvana3, etc), subgrid-scale models (FEARLESS)
- BGK methods
What do we need to study ISM?

- ever increasing chemical networks
- working reduced networks for time-dependent chemistry in combination with hydrodynamics
- improved data on reaction rates (laboratory + quantum mechanical calculations)

magneto-hydrodynamics
(multi-phase, non-ideal MHD, turbulence)

chemistry (gas + dust, heating + cooling)

radiation (continuum + lines)

stellar dynamics
(collisional: star clusters, collisionless: galaxies, DM)

stellar evolution
(feedback: radiation, winds, SN)
What do we need to study ISM?

- magneto-hydrodynamics (multi-phase, non-ideal MHD, turbulence)
- chemistry (gas + dust, heating + cooling)
- radiation (continuum + lines)
- stellar dynamics (collisional: star clusters, collisionless: galaxies, DM)
- stellar evolution (feedback: radiation, winds, SN)

- continuum vs. lines
- Monte Carlo, characteristics
- approximative methods
- combine with hydro
What do we need to study ISM?

- **magneto-hydrodynamics**
 - (multi-phase, non-ideal MHD, turbulence)

- **chemistry**
 - (gas + dust, heating + cooling)

- **radiation**
 - (continuum + lines)

- **stellar dynamics**
 - (collisional: star clusters, collisionless: galaxies, DM)

- **stellar evolution**
 - (feedback: radiation, winds, SN)

- **statistics:** number of stars (collisional: 10^6, collisionless: 10^{10})
- transition from gas to stars
- binary orbits
- long-term integration

Ralf Klessen: Rundgespräch, 22.09.2006
What do we need to study ISM?

- magneto-hydrodynamics
 (multi-phase, non-ideal MHD, turbulence)

- chemistry (gas + dust, heating + cooling)

- radiation (continuum + lines)

- stellar dynamics
 (collisional: star clusters, collisionless: galaxies, DM)

- stellar evolution
 (feedback: radiation, winds, SN)

- very early phases (pre main sequence tracks)
- massive stars at late phases
- role of rotation
- primordial star formation
What do we need to study ISM?

- **magneto-hydrodynamics** (multi-phase, non-ideal MHD, turbulence)
- **chemistry** (gas + dust, heating + cooling)
- **radiation** (continuum + lines)
- **stellar dynamics** (collisional: star clusters, collisionless: galaxies, DM)
- **stellar evolution** (feedback: radiation, winds, SN)
- **laboratory work** (reaction rates, cross sections, dust coagulation properties, etc.)

Methods need to be combined!
Three examples

modeling star formation in galactic disk + molecular cloud formation
(hydrodynamics, stellar dynamics, chemistry, feedback [radiation, outflows])
(Schmidt law, star-formation history, relation between global dynamics and SF)

modeling properties of prestellar cores
(MHD, chemistry, radiation)
(initial conditions of star formation, IMF, multiplicity, planet formation, etc.)

modeling extreme environments:
cold, dusty AGN tori
(hydrodynamics, stellar feedback, EOS + cooling)
(AGN properties + evolution, central BH)
Modeling galactic SF

SPH + stars + DM models of isolated disk galaxies with several million particles

→ begin to resolve individual molecular clouds
→ we need to care about „small-scale“ physics (i.e. transition from atomic gas to molecular)

(simple physics: gravity + hydrodynamics (isothermal EOS) + stellar dynamics [stars + DM])

(Li et al 2005, 2006)
Result:
gravitational instability alone leads to the *Schmidt law* (power-law correlation between star formation and surface density)

\[
\Sigma_{\text{SFR}} \propto \Sigma_{\text{gas}}^{1.5}
\]

(Li et al 2005, 2006)
Molecular cloud formation

... in convergent large-scale flows

... setting up the turbulent cascade

- Mach 3 colliding flow
- Vishniac instability + thermal instability
- compressed sheet breaks up and builds up cold, high-density „blobs“ of gas
- --> molecular cloud formation
- cold cloud motions correspond to supersonic turbulence

(e.g. Koyama & Inutsuka 2002, Heitsch et al., 2005, Vazquez-Semadeni et al. 2004; also posters 8577, 8302)
(de Avillez & Breitschwerdt)
consistent models of ISM dynamics require to go beyond the simple models!

- magnetohydrodynamics (account for large-scale dynamics + turbulence)
- time-dependent chemistry (reduced network, focus on few dominant species, e.g. H₂)
- radiation (currently simple assumptions)

H₂ forms rapidly in shocks / transient density fluctuations / H₂ gets destroyed slowly in low density regions / result: turbulence greatly enhances H₂-formation rate

(Glover & Mac Low 2006ab:)

Ralf Klessen: Rundgespräch, 22.09.2006
Reduced chemical network

Table 1. The set of chemical reactions that make up our model of non-equilibrium hydrogen chemistry.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\text{H} + \text{H} + \text{grain} \rightarrow \text{H}_2 + \text{grain}$</td>
<td>Hollenbach & McKee (1979)</td>
</tr>
<tr>
<td>2. $\text{H}_2 + \text{H} \rightarrow 3\text{H}$</td>
<td>Mac Low & Shull (1986) (low density), Lepp & Shull (1983) (high density)</td>
</tr>
<tr>
<td>3. $\text{H}_2 + \text{H}_2 \rightarrow 2\text{H} + \text{H}_2$</td>
<td>Martin, Keogh & Mandy (1968) (low density), Shapiro & Kang (1987) (high density)</td>
</tr>
<tr>
<td>4. $\text{H}_2 + \gamma \rightarrow 2\text{H}$</td>
<td>See § 2.2.1</td>
</tr>
<tr>
<td>5. $\text{H} + \text{e} \rightarrow \text{H}^+ + e$</td>
<td>Liszt (2003)</td>
</tr>
<tr>
<td>6. $\text{H} + e \rightarrow \text{H}^+ + 2e$</td>
<td>Abel et al. (1997)</td>
</tr>
<tr>
<td>7. $\text{H}^+ + e \rightarrow \text{H} + \gamma$</td>
<td>Ferland et al. (1992)</td>
</tr>
<tr>
<td>8. $\text{H}^+ + e + \text{grain} \rightarrow \text{H} + \text{grain}$</td>
<td>Weingartner & Draine (2001)</td>
</tr>
</tbody>
</table>

Here: e^-, H^+, H, H_2

in primordial gas we do:

e^-, H^+, H, H_2, C, C^+, O, O^+

(Glover & Mac Low 2006ab)

Table 2. Processes included in our thermal model.

<table>
<thead>
<tr>
<th>Process</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^+ fine structure lines</td>
<td>Collisional rates (H_2) – Flower & Loa (1977)</td>
</tr>
<tr>
<td>H_2 fine structure lines</td>
<td>Collisional rates (H_2, $T < 2000 \text{ K}$) – Hollenbach & McKee (1989)</td>
</tr>
<tr>
<td>H^+ fine structure lines</td>
<td>Collisional rates (H_2, $T > 2000 \text{ K}$) – Keenan et al. (1986)</td>
</tr>
<tr>
<td>e^- fine structure lines</td>
<td>Collisional rates (e^-) – Wilson & Bell (2002)</td>
</tr>
<tr>
<td>Atomic data – Silva & Viegas (2002)</td>
<td>Collisional rates (H_2, H_2) – Flower, priv. comm.</td>
</tr>
<tr>
<td>Collisional rates (e^-) – Bell, Berrington & Thomas (1998)</td>
<td>Collisional rates (H^+) – Peiquig (1990, 1996)</td>
</tr>
<tr>
<td>Atomic data – Silva & Viegas (2002)</td>
<td>H_2 rovibrational lines</td>
</tr>
<tr>
<td>Collisional rates (H^+) – Roueff (1990)</td>
<td>Recombination on grains</td>
</tr>
<tr>
<td>Collisional rates (H^+) – Dufon & Kingston (1991)</td>
<td>H^+ collisional ionization</td>
</tr>
<tr>
<td>Collisional rates (H^+) – Dufon & Kingston (1991)</td>
<td>H^+ collisional dissociation</td>
</tr>
<tr>
<td>See Table 1</td>
<td>See Table 1</td>
</tr>
</tbody>
</table>

Heating:

<table>
<thead>
<tr>
<th>Process</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectric effect</td>
<td>Bakes & Tielens (1994); Wilf & et al. (2003)</td>
</tr>
<tr>
<td>H_2 photodissociation</td>
<td>Black & Dalgarno (1977)</td>
</tr>
<tr>
<td>UV pumping of H_2</td>
<td>Burton, Hollenbach & Tielens (1990)</td>
</tr>
<tr>
<td>H_2 formation on dust grains</td>
<td>Hollenbach & McKee (1989)</td>
</tr>
<tr>
<td>Cosmic ray ionization</td>
<td>Goldsmith & Langer (1978)</td>
</tr>
</tbody>
</table>
Static collapse

L = 40 pc, \(n_0 = 100\) cm\(^{-3}\), \(B_0 = 5.85\) mG, \(v_{\text{rms}} = 0.0\)

(Glover & Mac Low 2006a)
L = 20 pc, \(B_0 = 5.85 \) mG, \(v_{\text{rms}} = 10 \) km/s

(Glover & Mac Low 2006a)
Gravitational collapse within MCs

state of the art 5 years ago: SPH with $N \leq 10^6$ particles

(Klessen et al.)
Gravitational collapse within MCs

today: SPH with N > 10^7 particles

model for the Orion cloud:
M = 10^4 M_{\text{sun}}, isothermal EOS

still no chemistry, no stellar feedback, no radiation

(Bonnell et al. 2006)
Gravitational collapse within MCs

Gravitational collapse within MCs today: SPH with $N > 10^7$ particles. Model for the Orion cloud: $M = 10^4 M_{\odot}$, isothermal EOS, still no chemistry, no stellar feedback, no radiation (Bonnell et al. 2006).
Gravitational collapse within MCs

immediate future: SPH with radiation feedback (first validation runs)
IRAM Observations
• N_2H^+ and C^{18}O
• 15 arcsecond res.
 • ~ 3000 AU
• N_2H^+ dense gas tracer
 • Most SCUBA
 • Few extinction!

(Perseus: Johnstone et al.)
Barnard 68: a well-studied isolated prestellar core

(Lada et al. 2003)
adaptive mesh refinement:

computational grid gets refined in regions of high interest (e.g. protostellar cores)

formation of 30 M_{\odot} core in turbulent molecular cloud (FLASH with appropriate cooling curve module and turbulent driving)

(Banerjee & Pudritz 2006)
These 2D snapshots show the onset of the **large scale outflow**. After ca. 70.000 years into the collapse a strong toroidal magnetic field builds up whose magnetic pressure reverses the gas flow and drives an outflow (time difference between these snapshots: 1400 years).

(Banerjee & Pudritz 2006)
Initially a magnetic field aligned with the rotation axis of the cloud core threads the entire simulation box. The field strength varies slightly (3.4 – 14 micro Gauss) along the equatorial plane to maintain a constant plasma $b = 8pp/B^2$. In this configuration, prior to the gravitational collapse the sphere loses a considerable amount of angular momentum from ‘magnetic braking’ (Mouschovias & Paleologou, 1980).

(Banerjee & Pudritz 2006)
The 3D structure of the magnetic field line configuration in the jet launching region.

As predicted by analytics the magneto-centrifugally driven disk jet is faster in the inner region (dark red) than further away from the outflow axis (light red).

(Banerjee & Pudritz 2006)
MHD model with proper heating and cooling terms (EOS)

chemical model

line radiative transfer

synthetic images of model cores

(e.g. Semenov & Pavlyuchenkov)
(3D core structure: Steinacker)

compare

observations

theory
cold, dusty AGN tori

(Schartmann, Klahr, Meisenheimer, Camenzind)
cold, dusty AGN tori

(Schartmann, Klahr, Meisenheimer, Camenzind)
What do we need to study ISM?

- **magneto-hydrodynamics**
 (multi-phase, non-ideal MHD, turbulence)

- **chemistry**
 (gas + dust, heating + cooling)

- **radiation**
 (continuum + lines)

- **stellar dynamics**
 (collisional: star clusters, collisionless: galaxies, DM)

- **stellar evolution**
 (feedback: radiation, winds, SN)

- **laboratory work**
 (reaction rates, cross sections, dust coagulation properties, etc.)
What do we need to study ISM?

- **magneto-hydrodynamics**
 (multi-phase, non-ideal MHD, turbulence)
- **chemistry** (gas + dust, heating + cooling)
- **radiation** (continuum + lines)
- **stellar dynamics**
 (collisional: star clusters, collisionless: galaxies, DM)
- **stellar evolution**
 (feedback: radiation, winds, SN)
- **laboratory work**
 (reaction rates, cross sections, dust coagulation properties, etc.)

Methods need to be combined!