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Introduction

Why is the formation of massive stars interesting?

Massive stars

@ govern matter cycle in galaxy

@ produce heavy elements

@ release large amounts of energy and momentum into ISM

Formation of massive stars is not understood!

@ begin hydrogen burning while still in main growth phase

@ star has to accrete despite high luminosities

Is the accretion terminated by feedback processes?



Introduction

We want to address the following questions:
* What determines the upper stellar mass limit?
* What is the physics behind the observed HIl regions?
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Feedback Processes

@ radiation pressure on dust particles
@ ionizing radiation
@ stellar wind

@ jets and outflows



Feedback Processes

@ radiation pressure on dust particles
@ ionizing radiation
@ stellar wind

@ jets and outflows

Radiation Pressure

has gained the most attention in the literature, most recent
simulations by Krumholz et al. 2009

lonization

only a few numerical studies so far (eg. Dale et al. 2007,
Gritschneder et al. 2009), but H Il regions around massive
protostars can be observed!

— direct comparison with observations possible




What FLASH can do now
@ raytracing algorithm for ionizing and non-ionizing radiation

Simulation Method Summary
(What FLASH can donow |

rate equation for ionization fraction

relevant heating and cooling processes

o
Q
@ sink particles as sources of radiation
Q

very simple prestellar model

) 4
What we would like to simulate

@ we would like to accrete 1000, on protostar

@ start with 1000M ) core and let it collapse

@ study effects of ionization feedback on disk and envelope

\



Initial Conditions

massive core with M = 1000M

flat core within r = 0.5 pc and p(r) ~ 7~3/2 density fall-off
initial m = 2-perturbation

core is initially rotating with 5 = 0.05

no magnetic fields and turbulence at the moment

sink particle radius is 600 AU
cut-off density is 7 x 10719 gem™
cell size is 100 AU
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Disk Fragmentation
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@ disk is gravitationally unstable and fragments

@ we suppress secondary sink formation by “Jeans heating”
@ H Il region is shielded effectively by dense filaments

@ ionization feedback does not cut off accretion!



Disk Fragmentation
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@ all protostars accrete from common gas reservoir
@ accretion flow suppresses expansion of ionized bubble
@ cluster shows “fragmentation-induced starvation”
@ halting of accretion flow allows bubble to expand



Accretion History
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@ single protostar accretes 72M) in 120kyr (Run A)
@ ionization feedback alone is unable to stop accretion
@ accretion is limited when multiple protostars can form (Run B)
9

no star in multi sink simulation reaches more than BOM@



Accretion History
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compare with control run without radiation feedback
total accretion rate does not change with accretion heating
expansion of ionized bubble causes turn-off

no triggered star formation by expanding bubble



Dynamics of the H Il Region and Outflow
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@ thermal pressure drives bipolar outflow

@ filaments can effectively shield ionizing radiation

@ when thermal support gets lost, outflow gets quenched again
@ no direct relation between mass of star and size of outflow



Dynamics of the H Il Region and Outflow
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@ bipolar outflow during accretion phase

@ when accretion flow stops, ionized bubble can expand
@ expansion is highly anisotropic

@ bubbles around most massive stars merge



Classification of UC H Il Regions

Ultracompact HII Region Morphologies

Core-Halo — 16% Shell — 4%

Cometary — 20%

Intensity

Intensity

Intensity

~—_

Spherical or
Unresolved — 43%

Irregular or
Multiply Peaked — 17% .

@ Wood & Churchwell 1989 classification of UC H Il regions

@ Question: What is the origin of these morphologies?
@ UC H Il lifetime problem: Too many UC H Il regions observed!



Classification of UC H Il Regions

@ comparison with De Pree et al.
2005 classification of UC H I
regions in W49A and Sagittarius
B2

@ “irregular” is any resolved
region which does fall into one
of the other categories
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Simulated Radio Continuum Maps

numerical data can be used to generate continuum maps

calculate free-free absorption coefficient for every cell

)
5
@ integrate radiative transfer equation (neglecting scattering)
@ convolve resulting image with beam width

)

VLA parameters:

distance 2.65 kpc
wavelength 2 cm
FWHM 0”14

Qo
o
o
@ noise 1073 Jy



H |l Region Morphologies
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@ synthetic VLA observations at 2 cm of simulation data

@ interaction of ionizing radiation with accretion flow creates
high variability in time and shape

@ flickering resolves the lifetime paradox!



H |l Region Morphologies
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@ morphologies depend a lot on viewing angle

@ example: shell morphology face-on turns into cometary
morphology edge-on

@ different behavior in each particular case



H |l Region Morphologies

Type WC89 | K94 | single | multiple
Spherical /Unresolved 43 55 19 60 + 5
Cometary 20 16 7 10 £5
Core-halo 16 9 15 4 + 2
Shell-like 4 1 3 5+ 1
Irregular 17 19 57 21 £ 5

WC89: Wood & Churchwell 1989, K94: Kurtz et al. 1994

@ statistics over 25 simulation snapshots and 20 viewing angles
@ statistics can be used to distinguish between different models

@ single sink simulation does not reproduce lifetime problem



Spectral Energy Distribution
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@ typical H |l region SEDs of WC89 reproduced
@ no dust emission in cm to sub-mm regime

@ abnormal SEDs with v = 1 caused by density gradients



Time Variability
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@ correlation between accretion events and H Il region changes

@ time variations in size and flux have been observed

@ changes of size and flux of 5=7%yr—! match observations

Franco-Hernandez et al. 2004, Rodriguez et al. 2007, Galvan-Madrid et al. 2008



Comparison with observations: W51e2

W51e2 H53a velocity
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Conclusions and Outlook

Conclusions

@ lonization feedback cannot stop accretion

lonization drives bipolar outflow

H Il region shows high variability in time and shape

All classified morphologies can be observed in one run
Lifetime of H Il region determined by accretion time scale

Rapid accretion through dense, unstable flows

Fragmentation-induced mass limits of massive stars



Conclusions and Outlook

@ ionization feedback cannot stop accretion
upper mass limit is set by fragmentation-induced starvation
high variability in time and shape of H Il regions

o
)
@ all classified morpholgies can be found in a single simulation
@ flickering resolves the UC H |l lifetime problem

o)

observed size and flux changes are caused by accretion process
o

@ more realistic initial conditions
@ study effects of turbulence and magnetic fields
@ make predictions for ALMA and JWST

@ application to primordial star formation
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