ISM Dynamics and Star Formation

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

thanks to ...

- many thanks to
 - Robi Banerjee (ITA)
 - Paul Clark (ITA)
 - Clare Dobbs (Munich)
 - Christoph Federrath (ITA)
 - Simon Glover (ITA)
 - Thomas Greif (MPA)
 - Patrick Hennebelle (ENS)
 - Mordecai Mac Low (AMNH)
 - Dominik Schleicher (ESO)
 - Enrique Vazquez-Semadeni (UNAM)

Agenda

phenomenology

- what we need to explain
- dynamic star formation theory
 - gravity vs. turbulence (and all the rest)
- examples and predictions
 - formation of molecular clouds in galactic disks (H₂ & CO chemistry)
 - universal IMF: importance of turbulence and thermodynamics

12 -10 -8 -6 x [pc]

phenomenology

correlation between H₂ and HI

⁽Deul & van der Hulst 1987, Blitz et al. 2004)

Star formation in Orion

We see

- *Stars* (in visible light)
- Atomic hydrogen (in Hα -- red)
- Molecular hydrogen H₂ (radio emission --

(radio emission color coded)

Local star forming region: The Trapezium Cluster in Orion

Orion molecular cloud

The Orion molecular cloud is the birth- place of several young embedded star clusters.

The Trapezium cluster is only visible in the IR and contains about 2000 newly born stars.

Trapezium Cluster (detail)

- stars form
 in clusters
- stars form
 in molecular
 clouds
- (proto)stellar
 feedback is important

(color composite J,H,K by M. McCaughrean, VLT, Paranal, Chile)

Trapezium Cluster: Central Region

lonizing radiation from central star Θ **1C Orionis**

Proplyds: Evaporating ``protoplanetary´´ disks around young low-mass protostars

stellar mass fuction

stars seem to follow a universal mass function at birth --> IMF

Orion, NGC 3603, 30 Doradus (Zinnecker & Yorke 2007)

nearby molecular clouds

scales to same scale

-Orion

nearby molecular clouds

scales to same scale

-Orion

LOS Geschwindigkeitsverteilung in Perseus

what we need to consider ...

- correlation between large and small scales in galaxy (stars "know" where to form and when)
- all stars form in *molecular cloud* complexes (star formation linked to molecular cloud formation)
- molecular clouds are *turbulent* (understand turbulence to understand star formation)
- stars form in *clusters* (importance of dynamical interactions during formation)
- star formation has universal characteristics (e.g. initial mass fuction)

dynamical SF in a nutshell

- interstellar gas is highly *inhomogeneous*
 - gravitational instability
 - thermal instability

- *turbulent compression* (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds can form rapidly in high-density regions at stagnation points of convergent large-scale flows
 - chemical phase transition: atomic → molecular
 - process is *modulated* by large-scale *dynamics* in the galaxy
- inside *cold clouds:* turbulence is highly supersonic ($M \approx 1...20$)
 - → turbulence creates large density contrast, gravity selects for collapse

→ GRAVOTUBULENT FRAGMENTATION

turbulent cascade: local compression *within* a cloud provokes collapse
 → formation of individual *stars* and *star clusters*

(e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)

Turbulent cascade

Turbulent cascade

Turbulent cascade in ISM

(supernovae, winds, spiral density waves?) $M_{\rm rms} \le 1$ L ≈ 0.1 pc molecular diffusion?)

Density structure of MC's

molecular clouds are highly inhomogeneous

stars form in the densest and coldest parts of the cloud

 $\rho\text{-Ophiuchus}$ cloud seen in dust emission

let's focus on a cloud core like this one

Evolution of cloud cores

- How does this core evolve?
 Does it form one single massive star or cluster with mass distribution?
- Turbulent cascade "goes through" cloud core
 - --> NO scale separation possible
 - --> NO effective sound speed
- Turbulence is supersonic!
 - --> produces strong density contrasts: $\delta \rho / \rho \approx M^2$
 - --> with typical M \approx 10 --> $\delta \rho / \rho \approx$ 100!
- many of the shock-generated fluctuations are Jeans unstable and go into collapse
- --> expectation: core breaks up and forms a cluster of stars

Evolution of cloud cores

Formation and evolution of cores

What happens to distribution of cloud cores?

Two exteme cases:

(1) turbulence dominates energy budget:

 $\alpha = E_{kin} / |E_{pot}| > 1$

- --> individual cores do not interact
- --> collapse of individual cores dominates stellar mass growth
- --> loose cluster of low-mass stars
- (2) turbulence decays, i.e. gravity dominates: $\alpha = E_{kin} / |E_{pot}| < 1$
 - --> global contraction
 - --> core do interact while collapsing
 - --> competition influences mass growth
 - --> dense cluster with high-mass stars

turbulence creates a hierarchy of clumps

as turbulence decays locally, contraction sets in

as turbulence decays locally, contraction sets in

while region contracts, individual clumps collapse to form stars

while region contracts, individual clumps collapse to form stars

individual clumps collapse to form stars

individual clumps collapse to form stars

--> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, competitive mass growth becomes important

in *dense clusters*, competitive mass growth becomes important

in dense clusters, N-body effects influence mass growth

low-mass objects may become ejected --> accretion stops

feedback terminates star formation

result: star cluster, possibly with HII region

NGC 602 in the LMC: Hubble Heritage Image

result: star cluster with HII region

applications

two examples

- formation of molecular clouds in the disk of the Milky Way
 - timescales
 - dynamic properties
 - x-factor
- formation of star clusters inside these clouds
 IMF

- star formation on galactic scales
 → missing link so far: formation of molecular clouds
- questions
 - where and when do molecular clouds form?
 - what are their properties?
 - how does that correlation to star formation?
 - global correlations? → Schmidt law

⁽Deul & van der Hulst 1987, Blitz et al. 2004)

modeling galactic SF

SPH calculations of self-gravitating disks of stars and (isothermal) gas in dark-matter potential, sink particles measure local collapse --> star formation

We find correlation between star formation rate and gas surface density:

global Schmidt Iaw

observed Schmidt law

correlation with large-scale perturbations

density/temperature fluctuations in warm atomar ISM are caused by thermal/gravitational instability and/or supersonic turbulence

some fluctuations are dense enough to form H₂ within "reasonable time" → molecular cloud

(Glover & Mac Low 2007a,b) external perturbuations (i.e. potential changes) increase likelihood

x(kpc)

(Dobbs & Bonnell 2007)

molecular gas fraction as function of time

molecular gas fraction as function of density

⁽Dobbs et al. 2008)

(Dobbs et al. 2008)

observed timescales

Tamburro et al. (2008)

Fig. 1.— NGC 5194: the 24 μm band image is plotted in color scale; the H I emission map is over-layed with green contours.

observed timescales

Fig. 5.— Histogram of the time scales $t_{\rm HI\mapsto 24\,\mu m}$ derived from the fits in Figure 4 and listed in Table. 2 for the 14 sample galaxies listed in Table. 1. The timescales range between 1 and 4 Myr for almost all galaxies.

calculated timescales

Dobbs et al. (2008)

Figure 16. This histogram gives the distribution of timescales over which the gas reaches certain molecular gas fractions. The timescales denote the time for the H_2 fraction of a particle to increase from 0.001 to 0.01, 0.01 to 0.1 and 0.1 to 0.5, as indicated.

zooming in ...

image from Alyssa Goodman: COMPLETE survey

(movie from Christoph Federrath)

Large-eddy simulations

- We use *LES* to model the large-scale dynamics
- Principal problem: only large scale flow properties
 - Reynolds number: Re = LV/v (Re_{nature} >> Re_{model})
 - dynamic range much smaller than true physical one
 - need *subgrid model* (in our case simple: only dissipation)
 - but what to do for more complex when processes on subgrid scale determine large-scale dynamics (chemical reactions, nuclear burning, etc)
 - Turbulence is "space filling" --> difficulty for AMR (don't know what criterion to use for refinement)
- How *large* a Reynolds number do we need to catch basic dynamics right?

experimental set-up

chemical model 0

32 chemical species

• 17 in instantaneous equilibrium:

 $\mathrm{H^{-},\ H_{2}^{+},\ H_{3}^{+},\ CH^{+},\ CH_{2}^{+},\ OH^{+},\ H_{2}O^{+},\ H_{3}O^{+},\ CO^{+},\ HOC^{+},\ O^{-},\ C^{-}\ and\ O_{2}^{+}}$

19 full non-equilibrium evolution

 $e^{-}, H^{+}, H, H_{2}, He, He^{+}, C, C^{+}, O, O^{+}, OH, H_{2}O, CO,$

 C_2 , O_2 , HCO^+ , CH, CH_2 and CH_3^+

218 reactions

various heating and cooling processes

chemical model 1

Process	
Cooling:	
C fine structure lines	Atomic data – Silva & Viegas (2002) Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007) Collisional rates (H ₂) – Schroder et al. (1991) Collisional rates (e ⁻) – Johnson et al. (1987) Collisional rates (H ⁺) – Roueff & Le Bourlot (1990)
C ⁺ fine structure lines	Atomic data – Silva & Viegas (2002) Collisional rates (H ₂) – Flower & Launay (1977) Collisional rates (H, $T < 2000$ K) – Hollenbach & McKee (1989) Collisional rates (H, $T > 2000$ K) – Keenan et al. (1986) Collisional rates (e ⁻) – Wilson & Bell (2002)
O fine structure lines	Atomic data – Silva & Viegas (2002) Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007) Collisional rates (H ₂) – see Glover & Jappsen (2007) Collisional rates (e ⁻) – Bell, Berrington & Thomas (1998) Collisional rates (H ⁺) – Pequignot (1990, 1996)
H ₂ rovibrational lines	Le Bourlot, Pineau des Forêts & Flower (1999)
CO and H_2O rovibrational lines	Neufeld & Kaufman (1993); Neufeld, Lepp & Melnick (1995)
OH rotational lines	Pavlovski et al. (2002)
Gas-grain energy transfer	Hollenbach & McKee (1989)
Recombination on grains	Wolfire et al. (2003)
Atomic resonance lines	Sutherland & Dopita (1993)
H collisional ionization	Abel et al. (1997)
H ₂ collisional dissociation	See Table B1
Compton cooling	Cen (1992)
Heating:	
Photoelectric effect	Bakes & Tielens (1994); Wolfire et al. (2003)
H ₂ photodissociation	Black & Dalgarno (1977)
UV pumping of H_2	Burton, Hollenbach & Tielens (1990)
H ₂ formation on dust grains	Hollenbach & McKee (1989)
Cosmic ray ionization	Goldsmith & Langer (1978)

No.	Reaction	chemical mo	ode	
1	$\rm H + e^- \rightarrow \rm H^- + \gamma$	$k_1 = \det[-17.845 + 0.762 \log T + 0.1523 (\log T)^2]$		1
		$-0.03274(\log T)^3$	$T \leqslant 6000 \ { m K}$	
		$= dex[-16.420 + 0.1998(log T)^2$		
		$-5.447 \times 10^{-3} (\log T)^4$ + 4.0415 × 10 ⁻⁵ (log T) ⁶]	T > 6000 K	
2	$H^- + H \rightarrow H_2 + e^-$	$k_2 = 1.5 \times 10^{-9}$	$T \le 300 \text{ K}$ $T \le 300 \text{ K}$	2
-	11 111 112 10	$m_2 = 1.0 \times 10^{-9} T^{-0.17}$ = 4.0 × 10 ⁻⁹ T ^{-0.17}	T > 300 K	~
3	${\rm H} + {\rm H}^+ \rightarrow {\rm H}_2^+ + \gamma$	$k_3 = \text{dex}[-19.38 - 1.523 \log T + 1.118(\log T)^2 - 0.1269(\log T)^3]$		3
4	$H + H_2^+ \rightarrow H_2 + H^+$	$k_4 = 6.4 \times 10^{-10}$		4
5	$H^- + H^+ \rightarrow H + H$	$k_5 = 2.4 \times 10^{-6} T^{-1/2} (1.0 + T/20000)$		5
6	$H_2^+ + e^- \rightarrow H + H$	$k_6 = 1.0 \times 10^{-8}$	$T \leqslant 617 \text{ K}$	6
	-	$= 1.32 \times 10^{-6} T^{-0.76}$	$T > 617 \mathrm{K}$	
7	$H_2 + H^+ \rightarrow H_2^+ + H$	$k_7 = [-3.3232183 \times 10^{-7}]$		7
		$+3.3735382 \times 10^{-7} \ln T$		
		$-1.4491368 \times 10^{-7} (\ln T)^2$		
		$+ 3.4172805 \times 10^{-8} (\ln T)^3$		
		$-4.7813720 \times 10^{-9} (\ln T)^4$ + 3.9731542 × 10 ⁻¹⁰ (ln T) ⁵		
		$+ 3.9731342 \times 10^{-11} (\ln T)^{-1}$ - 1.8171411 × 10 ⁻¹¹ (ln T) ⁶		
		$+ 3.5311932 \times 10^{-13} (\ln T)^7$		
		$\times \exp\left(\frac{-21237.15}{T}\right)$		
8	$H_2 + e^- \rightarrow H + H + e^-$	$k_8 = 3.73 \times 10^{-9} T^{0.1121} \exp\left(\frac{-99430}{T}\right)$		8
9	$H_2 + H \rightarrow H + H + H$	$k_{9,1} = 6.67 \times 10^{-12} T^{1/2} \exp\left[-(1 + \frac{63590}{T})\right]$		9
		$k_{9,h} = 3.52 \times 10^{-9} \exp\left(-\frac{43900}{T}\right)$		10
		$n_{cr,H} = dex \left[3.0 - 0.416 log \left(\frac{T}{10000} \right) - 0.327 \left\{ log \left(\frac{T}{10000} \right) \right\}^2 \right]$		10
10	$H_2 + H_2 \rightarrow H_2 + H + H$	$k_{10,1} = rac{5.996 imes 10^{-30} T^{4.1881}}{(1.0+6.761 imes 10^{-6} T)^{5.6881}} \exp\left(-rac{54657.4}{T} ight)$		11
		$k_{10,h} = (1.0+6.761 \times 10^{-5} T)^{5.5581} T$ r T r		12
		$n_{\rm cr,H_2} = \text{dex} \left[4.845 - 1.3 \log \left(\frac{T}{10000} \right) + 1.62 \left\{ \log \left(\frac{T}{10000} \right) \right\}^2 \right]$		12
11	$\mathrm{H} + \mathrm{e^-} \rightarrow \mathrm{H^+} + \mathrm{e^-} + \mathrm{e^-}$	$k_{11} = \exp[-3.271396786 \times 10^{1}]$		13
		$+ 1.35365560 \times 10^{1} \ln T_{e}$		
		$-5.73932875 \times 10^{0} (\ln T_{e})^{2}$ + 1.56315498 × 10 ⁰ (ln $T_{e})^{3}$		
		$-2.87705600 \times 10^{-1} (\ln T_e)^4$		
		$+ 3.48255977 \times 10^{-2} (\ln T_e)^5$		
		$-2.63197617 \times 10^{-3} (\ln T_e)^6$		
		$+ 1.11954395 \times 10^{-4} (\ln T_e)^7$		
		$-2.03914985 \times 10^{-6} (\ln T_e)^8$		
12	$\rm H^+ + e^- \rightarrow \rm H + \gamma$	$k_{12,\Lambda} = 1.269 \times 10^{-13} \left(\frac{315614}{2}\right)^{1.503}$	Case A	14
		$\times [1.0 + \left(\frac{604625}{T}\right)^{0.470}]^{-1.923}$		
		$k_{12,B} = 2.753 \times 10^{-14} \left(\frac{315614}{0.407}\right)^{1.500}$ $\times [1.0 + \left(\frac{115188}{0.407}\right)^{-2.242}$	Case B	14
13	$H^- + e^- \rightarrow H + e^- + e^-$	$\times [1.0 + \left(\frac{115188}{10}\right)^{0.407}]^{-2.242}$ k ₁₃ = exp[-1.801849334 × 10 ¹		13
10	$u + e \rightarrow u + e + e$	$\kappa_{13} = \exp[-1.801849334 \times 10^{\circ} + 2.36085220 \times 10^{\circ} \ln T_e$		10
		$+ 2.30030220 \times 10^{-1} \text{ m } T_e^{-1}$ $- 2.82744300 \times 10^{-1} (\ln T_e)^2$		
		$+ 1.62331664 \times 10^{-2} (\ln T_e)^3$		
		$-3.36501203 \times 10^{-2} (\ln T_e)^4$		
		$+ 1.17832978 \times 10^{-2} (\ln T_e)^5$		
		$-1.65619470 \times 10^{-3} (\ln T_e)^6$		
		+ $1.06827520 \times 10^{-4} (\ln T_e)^7$ - $2.63128581 \times 10^{-6} (\ln T_e)^8$]		

		14	$\rm H^- + \rm H \rightarrow \rm H + \rm H + e^-$	$k_{14} = 2.5634 \times 10^{-9} T_c^{1.78186}$ = exp[-2.0372609 × 10 ¹	$T_{\rm e} \leqslant 0.1 {\rm eV}$	13
	-			$+$ 1.13944933 \times 10 ⁰ ln T _e		
Table	B1. 1			$-1.4210135 \times 10^{-1} (\ln T_e)^2$		
	-		cho	$+8.4644554 \times 10^{-3} (n T_e)^3$	lel 2	
No.	Rea			$= 1.550411 \times 1011e$ $\pm 2.112502 \times 10^{-3} (-7.5)^{-3}$		
1	H +		••••	$+ 8.6639632 \times 10^{-5} (\ln T_e)^6$		
				$-2.5850097 \times 10^{-5} (\ln T_e)^7$		
				$+2.4555012 \times 10^{-6} (\ln T_e)^8$		
			W _ + W _ + W _ + + - =	$-8.0683825 \times 10^{-8} (\ln T_e)^9$	$T_{\rm e} > 0.1 {\rm eV}$	
2	н-	15	$\mathrm{H^-} + \mathrm{H^+} \rightarrow \mathrm{H_2^+} + \mathrm{e^-}$	$ \begin{aligned} k_{15} &= 6.9 \times 10^{-9} T^{-0.35} \\ &= 9.6 \times 10^{-7} T^{-0.90} \end{aligned} $	$T \le 8000 \text{ K}$ T > 8000 K	15
2	n	16	$He + e^- \rightarrow He^+ + e^- + e^-$	$= 9.0 \times 10^{-1}$ $k_{16} = \exp[-4.409864886 \times 10^{1}]$	1 > 0000 K	13
3	H +			$+ 2.391596563 \times 10^{1} \ln T_{e}$		
-				$-1.07532302 \times 10^{1} (\ln T_{e})^{2}$		
4	H +			$+ 3.05803875 \times 10^{0} (\ln T_{e})^{3}$		
5	H^{-}			$-5.6851189 \times 10^{-1} (\ln T_c)^4$		
6	H_2^+			$+ 6.79539123 \times 10^{-2} (\ln T_e)^5$ $- 5.0090561 \times 10^{-3} (\ln T_e)^6$		
7	H_2 -			$+ 2.06723616 \times 10^{-4} (\ln T_e)^7$		
1	n ₂ .			$-3.64916141 \times 10^{-6} (\ln T_e)^8$		
		17	$\mathrm{He^+} + \mathrm{e^-} \rightarrow \mathrm{He} + \gamma$	$k_{17,rr,A} = 10^{-11}T^{-0.5} [12.72 - 1.615 \log T]$	Case A	16
				$-0.3162(\log T)^2 + 0.0493(\log T)^3$		
				$k_{17,\mathrm{rr,B}} = 10^{-11} T^{-0.5} [11.19 - 1.676 \log T]$	Case B	16
				$-0.2852(\log T)^2 + 0.04433(\log T)^3$		
				$k_{17,\text{di}} = 1.9 \times 10^{-3} T^{-1.5} \exp\left(-\frac{473421}{T}\right)$		
				$\times \left[1.0 + 0.3 \exp\left(-\frac{94064}{T}\right)\right]$		17
8	H2 -	18	$He^+ + H \rightarrow He + H^+$	$\times \left[1.0 + 0.3 \exp\left(-\frac{94684}{T}\right) \right] \\ k_{18} = 1.25 \times 10^{-15} \left(\frac{T}{300}\right)^{0.25} $		18
9	H2 -	19	$\mathrm{He} + \mathrm{H^+} \rightarrow \mathrm{He^+} + \mathrm{H}$	$k_{19} = 1.26 \times 10^{-9} T^{-0.75} \exp \left(-\frac{127500}{T}\right)$	$T \leqslant 10000 \text{ K}$	19
				$=4.0 \times 10^{-37} T^{4.74}$	T > 10000 K	
		20	$C^+ + e^- \rightarrow C + \gamma$	$ \begin{aligned} & k_{20} = 4.67 \times 10^{-12} \left(\frac{T}{300}\right)^{-0.6} \\ & = 1.23 \times 10^{-17} \left(\frac{T}{300}\right)^{2.49} \exp\left(\frac{21845.6}{T}\right) \\ & = 9.62 \times 10^{-8} \left(\frac{T}{300}\right)^{-1.37} \exp\left(\frac{-115786.2}{T}\right) \\ & k_{21} = 1.30 \times 10^{-10} T^{-0.64} \end{aligned} $	$T \leqslant 7950 \text{ K}$	20
				$= 1.23 \times 10^{-17} \left(\frac{T}{300}\right)^{2.49} \exp\left(\frac{21845.6}{T}\right)$	$7950 \ \mathrm{K} < T \leqslant 21140 \ \mathrm{K}$	
10	H_2 -			$= 9.62 \times 10^{-8} \left(\frac{T}{300}\right)^{-1.37} \exp\left(\frac{-115786.2}{T}\right)$	T > 21140 K	
		21	$O^+ + e^- \rightarrow O + \gamma$	n ₂₁ = 1.00 × 10 1	$T \leqslant 400 \text{ K}$	21
				$= 1.41 \times 10^{-10} T^{-0.66} + 7.4 \times 10^{-4} T^{-1.5}$		
11	н+			$\times \exp\left(-\frac{175000}{T}\right) [1.0 + 0.062 \times \exp\left(-\frac{145000}{T}\right)]$	$T > 400 { m K}$	
11	n +	22 23	$C + e^- \rightarrow C^+ + e^- + e^-$ $O + e^- \rightarrow O^+ + e^- + e^-$	$ \begin{aligned} &k_{22} = 6.85 \times 10^{-8} (0.193 + u)^{-1} u^{0.25} e^{-u} \\ &k_{23} = 3.59 \times 10^{-8} (0.073 + u)^{-1} u^{0.34} e^{-u} \end{aligned} $	$u = 11.26/T_e$	22 22
		23	$O^+ + H \rightarrow O + H^+$	$k_{23} = 3.59 \times 10^{-10} (0.073 + u) - u^{10} e^{-10} k_{24} = 4.99 \times 10^{-11} T^{0.405} + 7.54 \times 10^{-10} T^{-0.458}$	$u = 13.6/T_{e}$	22
		25	$O + H^+ \rightarrow O^+ + H$	$k_{24} = (1.05 \times 10^{-11} T^{0.517})^{+1.04 \times 10^{-11}}$		24
				$+4.00 \times 10^{-10} T^{0.00669} \exp\left(-\frac{227}{T}\right)$		
		26	$O + He^+ \rightarrow O^+ + He$	$h_{\rm ex} = 4.001 \times 10^{-15} (T_{\rm ex})^{0.3794} {\rm exp} (T_{\rm ex})^{0.1794}$		25
				$+2.780 \times 10^{-15} \left(\frac{T}{T}\right)^{-0.2163} \exp\left(\frac{T}{T}\right)$		-
		27	$C + H^+ \rightarrow C^+ + H$	$ \begin{array}{c} & \exp\left(-\frac{1121000}{1121000}\right) \\ & + 2.780 \times 10^{-15} \left(\frac{T}{10000}\right)^{-0.2163} \exp\left(\frac{T}{815800}\right) \\ & k_{27} = 3.9 \times 10^{-16} T^{0.213} \end{array} $		24
12	H^+		$C^+ + H \rightarrow C + H^+$	$ k_{27} = 3.9 \times 10^{-17} T^{10000} \\ k_{28} = 6.08 \times 10^{-14} \left(\frac{T}{10000}\right)^{1.96} \exp\left(-\frac{170000}{T}\right) \\ k_{29} = 8.58 \times 10^{-17} T^{0.757} \\ m_{27} = 8.58 \times 10^{-17} T^{0.757} $		24
-		29	$C + He^+ \rightarrow C^+ + He$	$k_{29} = 8.58 \times 10^{-17} T^{0.757}$	$T \leqslant 200 \text{ K}$	26
				$= 3.25 \times 10^{-17} T^{0.308}$	$200 < T \leqslant 2000 \text{ K}$	
				$= 2.77 \times 10^{-19} T^{1.597}$	$T > 2000 { m K}$	
10		30	$\rm H_2 + He \rightarrow H + H + He$	$k_{30,1} = \text{dex} \left[-27.029 + 3.801 \log \left(T \right) - 29487/T \right]$		27
13	H-			$k_{30,h} = \text{dex} \left[-2.729 - 1.75 \log (T) - 23474/T \right]$		07
		21	$OH + H \rightarrow O + H + H$	$n_{cr,He} = dex \left[5.0792(1.0 - 1.23 \times 10^{-5}(T - 2000) \right]$ $k_{31} = 6.0 \times 10^{-9} exp \left(-\frac{5090}{T} \right)$		27
		31 32	$OH + H \rightarrow O + H + H$ $HOC^+ + H_2 \rightarrow HCO^+ + H_2$	$k_{31} = 6.0 \times 10^{-5} \exp\left(-\frac{10}{T}\right)$ $k_{32} = 3.8 \times 10^{-10}$		28 29
		32	$HOC^+ + H_2 \rightarrow HCO^+ + H_2$ $HOC^+ + CO \rightarrow HCO^+ + CO$	$k_{32} = 3.8 \times 10^{-10}$ $k_{33} = 4.0 \times 10^{-10}$		29 30
		34	$C + H_2 \rightarrow CH + H$	$k_{34} = 6.64 \times 10^{-10} \exp\left(-\frac{11700}{T}\right)$		31
		35	$CH + H \rightarrow C + H_2$	$k_{35} = 1.31 \times 10^{-10} \exp \left(-\frac{80}{T}\right)$		32
		_				

		14	H-	+ H -	\rightarrow H + H + e ⁻	$k_{14} = 2.56$	$34 \times 10^{-9} T_e^{1.78186}$		$T_{\rm e} \leqslant 0.1 {\rm eV}$		13
				36	$\rm CH + H_2 \rightarrow \rm CH_2$	+H	$k_{36} = 5.46 \times 10^{-10} \exp$	$\left(-\frac{1943}{T}\right)$		33	- 1
Table	B1. 1			37	$CH + C \rightarrow C_2 +$ $CH + C \rightarrow CO +$	H	$k_{37} = 6.59 \times 10^{-11}$ $k_{38} = 6.6 \times 10^{-11}$		TT < 000 1	34	- 1
	-			38	Cartoncon	3m	$k_{32} = 0.0 \times 10^{-10} \text{ e.p}$	nnd	$\begin{array}{c} T \leqslant 000 \text{ K} \\ T & 000 \text{ K} \end{array}$	26	- 1
No.	Rea			39			A 10-11	nou		27	- 1
1	H +			40	$CH_2 + O \rightarrow CO$		$k_{40} = 1.33 \times 10^{-10}$			38	- 1
				41	$CH_2 + O \rightarrow CO$	-	$k_{41} = 8.0 \times 10^{-11}$	x 0.5		39	- 1
				42	$C_2 + O \rightarrow CO +$	С	$k_{42} = 5.0 \times 10^{-11} \left(\frac{T}{300} \right)$ $= 5.0 \times 10^{-11} \left(\frac{T}{300} \right)$	0.757	$T \leqslant 300 \text{ K}$	40	- 1
		15	H^{-}				$= 5.0 \times 10^{-11} \left(\frac{T}{300} \right)$)	T > 300 K	41	- 1
2	Н-			43	$O + H_2 \rightarrow OH +$	н	$k_{43} = 3.14 \times 10^{-13} \left(\frac{T}{30} \\ k_{44} = 6.99 \times 10^{-14} \\ \left(\frac{T}{30} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\left(-\frac{3150}{T}\right)^{2.7} \exp\left(-\frac{3150}{T}\right)$		42	- 1
2	п.	16	He	-44	$\rm OH + H \rightarrow O + H$	H2	$k_{44} = 6.99 \times 10^{-14} \left(\frac{T}{30} \right)$	$\left(\frac{1}{0}\right)^{2.8} \exp\left(-\frac{1950}{T}\right)$		43	- 1
3	н+			45	$OH + H_2 \rightarrow H_2O$	+ H	$k_{45} = 2.05 \times 10^{-12} \left(\frac{1}{30} \right)$	$\left(\frac{1}{0}\right)^{1.52} \exp\left(-\frac{1736}{T}\right)$		44	- 1
4	H +			46	$OH + C \rightarrow CO +$		$\kappa_{46} = 1.0 \times 10^{-10}$			34	- 1
5	H^{-}_{i}			47	$OH + O \rightarrow O_2 +$	н	$k_{47} = 3.50 \times 10^{-11}$	(178)	$T \leq 261 \text{ K}$	45	- 1
6	H_2^+			10			$= 1.77 \times 10^{-11} \exp (1.000 + 10^{-12})$		T > 261 K	33	- 1
7	H_2 -			48	$OH + OH \rightarrow H_2O$		$k_{48} = 1.65 \times 10^{-12} \left(\frac{T}{30} \right)^{-12}$	$\left(\frac{1}{0}\right)^{1.14}_{1.2} \exp\left(-\frac{50}{T}\right)$		34	- 1
				49	$H_2O + H \rightarrow H_2 +$		$k_{49} = 1.59 \times 10^{-11} \begin{pmatrix} 30\\ T\\ 30 \end{pmatrix}$	$(-\frac{1}{T}) = \exp(-\frac{3010}{T})$		46	- 1
		17	He		$O_2 + H \rightarrow OH +$		$k_{50} = 2.61 \times 10^{-10} \exp (k_{50} - 10)$			33	- 1
					$O_2 + H_2 \rightarrow OH -$		$k_{51} = 3.16 \times 10^{-10} \exp (T_{10})$	$\begin{pmatrix} -\frac{11000}{T} \\ -0.34 \end{pmatrix}$		47	- 1
				52	$O_2 + C \rightarrow CO +$	0	$k_{52} = 4.7 \times 10^{-11} \left(\frac{T}{300} \right)$)	$T \leqslant 295 \text{ K}$	34	- 1
							$k_{52} = 4.7 \times 10^{-11} \left(\frac{1}{300} + 2.48 \times 10^{-12} \left(\frac{T}{30} + 10^{-10} \right) \right)$	$\overline{0}$ exp $\left(\frac{613}{T}\right)$	T > 295 K	33	- 1
				53	$CO + H \rightarrow C + C$		$k_{53} = 1.1 \times 10^{-10} \left(\frac{T}{300} \\ k_{54} = 2.24 \times 10^{-9} \left(\frac{T}{300}\right)^{-9} \right)$	$\int_{0.042}^{0.0} \exp\left(-\frac{77700}{T}\right)$		28	- 1
		18	He	54	$H_2^+ + H_2 \rightarrow H_3^+$		$k_{54} = 2.24 \times 10^{-9} \left(\frac{T}{300} \right)$	$\left(-\frac{T}{46600}\right)^{0.04x} \exp\left(-\frac{T}{46600}\right)$		48	- 1
8	$H_2 -$	19	He	55	$H_3^+ + H \rightarrow H_2^+ +$		$k_{55} = 7.7 \times 10^{-9} \exp\left(-\frac{1}{2}\right)$	$-\frac{17560}{T}$		49	- 1
9	H ₂ -			56	$C + H_2^+ \rightarrow CH^+$		$k_{56} = 2.4 \times 10^{-9}$			28	- 1
		20	C^+	57 58	$C + H_3^+ \rightarrow CH^+$ $C^+ + H_2 \rightarrow CH^+$		$k_{57} = 2.0 \times 10^{-9}$ $k_{58} = 1.0 \times 10^{-10} \exp ($	4640		28 50	- 1
				59	$CH^+ + H^- \rightarrow CH^+$		$k_{59} = 7.5 \times 10^{-10}$ exp ($\left(-\frac{T}{T}\right)$		51	- 1
10	H_2 -				$CH^+ + H_2 \rightarrow CH$		$k_{60} = 1.2 \times 10^{-9}$			51	- 1
		21	0+	61	$\rm CH^+ + O \rightarrow \rm CO$		$k_{61} = 3.5 \times 10^{-10}$			52	- 1
				62	$CH_2 + H^+ \rightarrow CH_2$		$k_{62} = 1.4 \times 10^{-9}$	7080 \		28	- 1
11	н+		~	63	$CH_2^+ + H \rightarrow CH^-$		$k_{63} = 1.0 \times 10^{-9} \exp\left(-\frac{1}{2} \exp\left(-\frac$	$-\frac{1000}{T}$)		28	- 1
		22 23	C -		$CH_2^+ + H_2 \rightarrow CH$ $CH_2^+ + O \rightarrow HC$		$k_{64} = 1.6 \times 10^{-9}$ $k_{65} = 7.5 \times 10^{-10}$			53 28	- 1
		24	ŏ+		$CH_3^+ + H \rightarrow CH_3^-$		$k_{66} = 7.0 \times 10^{-10} \exp($	(<u>10560</u>)		28	- 1
		25	0+		$CH_3^+ + O \rightarrow HC$	P	$k_{67} = 4.0 \times 10^{-10}$			54	- 1
				68	$C_2 + O^+ \rightarrow CO^+$		$k_{68} = 4.8 \times 10^{-10}$			28	- 1
		26	0-		$O^+ + H_2 \rightarrow OH^-$		$k_{69} = 1.7 \times 10^{-9}$			55	- 1
				70	$O + H_2^+ \rightarrow OH^+$ $O + H^+ \rightarrow OH^+$		$k_{70} = 1.5 \times 10^{-9}$ $k_{70} = 8.4 \times 10^{-10}$			28 56	
		27	C-	72	$O + H_3^+ \rightarrow OH^+$ $OH + H_3^+ \rightarrow H_2O$		$k_{71} = 8.4 \times 10^{-10}$ $k_{72} = 1.3 \times 10^{-9}$			56 28	
12	H+	28	C+	73	$OH + C^+ \rightarrow CO$		$k_{72} = 1.3 \times 10^{-10}$ $k_{73} = 7.7 \times 10^{-10}$			28	
		29	C-	1.4	$\rm OH^+ + H_2 \rightarrow H_2$		$k_{74} = 1.01 \times 10^{-9}$			57	
				75	$H_2O^+ + H_2 \rightarrow H$		$k_{75} = 6.4 \times 10^{-10}$			58	- 1
		30	H_2	76 77	$H_2O + H_3^+ \rightarrow H_3$ $H_2O + C^+ \rightarrow HO$		$k_{76} = 5.9 \times 10^{-9}$ $k_{77} = 9.0 \times 10^{-10}$			59 60	- 1
13	н-			78	$H_2O + C^+ \rightarrow HO$ $H_2O + C^+ \rightarrow HO$		$k_{78} = 1.8 \times 10^{-9}$			60	
				79	$H_3O^+ + C \rightarrow HO$	$CO^{+} + H_{2}$	$k_{79} = 1.0 \times 10^{-11}$			28	
		31	OH		$O_2 + C^+ \rightarrow CO^+$		$k_{80} = 3.8 \times 10^{-10}$ $k_{80} = 6.2 \times 10^{-10}$			53	
		32 33	HC HC		$O_2 + C^+ \rightarrow CO + O_2 + CH_2^+ \rightarrow HO$		$k_{81} = 6.2 \times 10^{-10}$ $k_{82} = 9.1 \times 10^{-10}$			53 53	
		34	C +		$O_2^+ + C \rightarrow CO^+$		$k_{82} = 5.1 \times 10^{-11}$ $k_{83} = 5.2 \times 10^{-11}$			28	
		35	CH		$CO + H_3^+ \rightarrow HO$	$C^{+} + H_{2}$	$k_{84} = 2.7 \times 10^{-11}$			61	
		_	_	85	$CO + H_3^+ \rightarrow HC$	$O^{+} + H_{2}$	$k_{85} = 1.7 \times 10^{-9}$			61	-
	_			86	$HCO^+ + C \rightarrow C$		$k_{86} = 1.1 \times 10^{-9}$ $k_{87} = 2.5 \times 10^{-9}$			28	- 1
				87	$\rm HCO^+ + H_2O \rightarrow$	$00 + n_30$	$\kappa_{87} = 2.3 \times 10^{-5}$			62	

Ralf Klessen: Spineto 09.07.09

		14	H^{-}	+ H -	$H + H + e^{-2}$	88	$H_2 + He^+ \rightarrow He + H_2^+$	$k_{88} = 7.2 \times 10^{-15}$	63
				36	$CH + H_2$ -	89	$H_2 + He^+ \rightarrow He + H + H^+$	$k_{89} = 3.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$	63
				30	$CH + H_2 =$ $CH + C \rightarrow$	90	$CH + H^+ \rightarrow CH^+ + H$	$k_{90} = 1.9 \times 10^{-9}$	28
lable	B1. 1			38	CH+C-	91	$CH_2 \pm H \rightarrow CH_2^+ \pm H$	1 1 1 10 -9	28
	-			90	Ch	.92			28
No.	Rea			39	Charles -	93	$C_2 + Fe^+ - C^+ + C^-$ Fe	$k_{3} = 1.5 \times 10^{9}$	28
1	H +			40	$CH_{2} + O -$	94	$OH + H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-5}$	28
-				41	$CH_2 + O -$	95	$OH + He^+ \rightarrow O^+ + He + H$	$k_{95} = 1.1 \times 10^{-9}$	28
				42	$C_2 + O \rightarrow$	96	$H_2O + H^+ \rightarrow H_2O^+ + H$	$k_{96} = 6.9 \times 10^{-9}$	64
					0210	97	$H_2O + He^+ \rightarrow OH + He + H^+$	$k_{97} = 2.04 \times 10^{-10}$	65
		15	H^{-}			98 99	$H_2O + He^+ \rightarrow OH^+ + He + H$ $H_2O + He^+ \rightarrow H_2O^+ + He$	$k_{98} = 2.86 \times 10^{-10}$ $k_{99} = 6.05 \times 10^{-11}$	65
2	Н-			43	$O + H_2 \rightarrow$		$H_2O + He^+ \rightarrow H_2O^+ + He^-$ $O_2 + H^+ \rightarrow O_2^+ + H$	$k_{99} = 6.05 \times 10^{-9}$ $k_{100} = 2.0 \times 10^{-9}$	65 64
		16	He	44	$OH + H \rightarrow$	100	$O_2 + H^+ \rightarrow O_2^+ + H^-$ $O_2 + He^+ \rightarrow O_2^+ + He^-$	$k_{100} = 2.0 \times 10^{-11}$ $k_{101} = 3.3 \times 10^{-11}$	66
3	н+			45	$OH + H_2$ -	102	$O_2 + He^+ \rightarrow O_2^+ + O_2^- + He$	$k_{101} = 0.5 \times 10^{-9}$ $k_{102} = 1.1 \times 10^{-9}$	66
4	H +			46	$OH + C \rightarrow$	103	$O_2^+ + C \rightarrow O_2 + C^+$	$k_{103} = 5.2 \times 10^{-11}$	28
5	H-			47	OH + O -	104	$\rm CO + He^+ \rightarrow C^+ + O + He$	$k_{104} = 1.4 \times 10^{-9} \left(\frac{T}{300}\right)^{-0.5}$	67
6	H_2^+							(300)	
0	2			48	OH + OH	105	$CO + He^+ \rightarrow C + O^+ + He$	$k_{105} = 1.4 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.5}$ $k_{106} = 7.5 \times 10^{-10}$	67
7	$H_2 -$					106	$CO^+ + H \rightarrow CO + H^+$	$\kappa_{106} = 7.3 \times 10$	68
				49	$H_2O + H - O_2 + O_2 +$	107	$C^- + H^+ \rightarrow C + H$	$k_{107} = 2.3 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.5}$	28
		17	He.	50	$O_2 + H \rightarrow$	108	$O^- + H^+ \rightarrow O + H$	$k_{108} = 2.3 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	28
				51	$O_2 + H_2 -$	109	$\mathrm{He^+} + \mathrm{H^-} \rightarrow \mathrm{He} + \mathrm{H}$	$k_{109} = 2.32 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.52} \exp\left(\frac{T}{22400} \right)$	69
				52	$O_2 + C \rightarrow$	110	$H_3^+ + e^- \rightarrow H_2 + H$	$k_{110} = 2.34 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.52}_{-0.52}$	70
						111	$H_3^+ + e^- \rightarrow H + H + H$	$k_{110} = 4.26 \times 10^{-8} \left(\frac{T}{T}\right)^{-0.52}$	70
				53	$CO + H \rightarrow$			$k_{111} = 4.36 \times 10^{-8} \left(\frac{300}{300} \right)^{-0.52}$	
				54	$H_2^+ + H_2 -$	112	$\rm CH^+ + e^- \rightarrow \rm C + \rm H$	$k_{112} = 7.0 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	71
8	H_2 -	18	He		$H_2^+ + H_2^-$ $H_3^+ + H \rightarrow$	113	$CH_2^+ + e^- \rightarrow CH + H$	$k_{113} = 1.6 \times 10^{-7} \left(\frac{4}{300}\right)$	72
9	H2 -	19	He	55 56	$H_3 + H \rightarrow H_2^+ \rightarrow H_2^- \rightarrow H_2^+ \rightarrow H_2^+ \rightarrow H_2^- \rightarrow H_$	114	$CH_2^+ + e^- \rightarrow C + H + H$	$k_{114} = 4.03 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.6}$	72
				57	$C + H_2 \rightarrow C + H_3^+ \rightarrow$	115	$CH_2^+ + e^- \rightarrow C + H_2$	$k_{115} = 7.68 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.6}$	72
		20	C^+	58	$C^{+} H_{3} \rightarrow C^{+} H_{2} -$	116	$CH_3^+ + e^- \rightarrow CH_2 + H$	$k_{116} = 7.75 \times 10^{-8} \left(\frac{T}{300} \right)^{-0.5}$	73
				59	$CH^+ + H$				
10	H2 -			60	$CH^+ + H_2$	117	$CH_3^+ + e^- \rightarrow CH + H_2$	$k_{117} = 1.95 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	73
		21	0+	61	$CH^+ + O$	118	$CH_3^+ + e^- \rightarrow CH + H + H$	$k_{118} = 2.0 \times 10^{-7} \left(\frac{1}{300}\right)$	28
				62	$CH_2 + H^+$	119	$OH^+ + e^- \rightarrow O + H$	$k_{119} = 6.3 \times 10^{-9} \left(\frac{T}{300} \right)^{-0.48}$	74
				63	$CH_2^+ + H$	120	$H_2O^+ + e^- \rightarrow O + H + H$	$k_{120} = 3.05 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	75
11	H +	22	C +	64	$CH_{2}^{+} + H_{2}$	121	$H_2O^+ + e^- \rightarrow O + H_2$	$k_{121} = 3.9 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	75
		23	O +	65	$CH_2^+ + O$				
		24	O^+	66	$CH_3^+ + H$	122	$H_2O^+ + e^- \rightarrow OH + H$	$k_{122} = 8.6 \times 10^{-6} \left(\frac{1}{200} \right)$	75
		25	0+	67	$CH_3^+ + O$	123	$H_3O^+ + e^- \rightarrow H + H_2O$	$k_{123} = 1.08 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.5}_{-0.5}$	76
				68	$C_2 + O^+ -$	124	$H_3O^+ + e^- \rightarrow OH + H_2$	$k_{124} = 6.02 \times 10^{-8} \left(\frac{2}{300} \right)$	76
		26	0+	69	$O^{+} + H_{2} -$	125		$k_{125} = 2.58 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.5}$	76
				70	$O + H_2^+ \rightarrow$	126	$\rm H_3O^+ + e^- \rightarrow O + H + H_2$	$k_{126} = 5.6 \times 10^{-9} \left(\frac{T}{T}\right)^{-0.5}$	76
		27	C +	71	$O + H_3^+ \rightarrow$			$(300) = 0.0 \times 10^{-7} (300)$	
12	H^+	28	C^+	72	$OH + H_3^+$	127	$O_2^+ + e^- \rightarrow O + O$	$k_{127} = 1.95 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.7}$	77
		29	C+	73 74	$OH + C^+$ $OH^+ + H_2$	128	$CO^+ + e^- \rightarrow C + O$	$k_{128} = 2.75 \times 10^{-7} \left(\frac{2}{300} \right)$	78
				75	$H_2O^+ + H_2$	129	$\rm HCO^+ + e^- \rightarrow \rm CO + \rm H$	$k_{129} = 2.76 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.64}$	79
				76	$H_2O + H_3^+$ $H_2O + H_3^+$	130	$\rm HCO^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-8} \left(\frac{T}{300} \right)^{-0.64}$	79
		30	H_2	77	$H_2O + C^+$	131	$HOC^+ + e^- \rightarrow CO + H$	$L_{1} = 1 + 1 = 10^{-7} (T)^{-1.0}$	28
13	н-			78	$H_2O + C^+$	131		$k_{131} = 1.1 \times 10^{-9} \left(\frac{300}{300} \right)$ $k_{132} = 1.0 \times 10^{-9}$	28 28
				79	$H_3O^+ + C$	132	$H^- + C \rightarrow CH + e^-$ $H^- + O \rightarrow OH + e^-$	$k_{132} = 1.0 \times 10^{-9}$ $k_{133} = 1.0 \times 10^{-9}$	28
		31	OH	80	$O_2 + C^+$ -	134	$H^- + OH \rightarrow H_2O + e^-$	$k_{133} = 1.0 \times 10^{-10}$ $k_{134} = 1.0 \times 10^{-10}$	28
		32	HO	81	$O_2 + C^+ -$	135	$C^- + H \rightarrow CH + e^-$	$k_{135} = 5.0 \times 10^{-10}$	28
		33	но	82	$O_2 + CH_2^+$	136	$C^- + H_2 \rightarrow CH_2 + e^-$	$k_{136} = 1.0 \times 10^{-13}$	28
		34	C +	83	$O_2^+ + C \rightarrow$	137	$\rm C^- + O \rightarrow \rm CO + e^-$	$k_{137} = 5.0 \times 10^{-10}$	28
		35	CH	84 95	$CO + H_3^+$ $CO + H^+$	138	$O^- + H \rightarrow OH + e^-$	$k_{138} = 5.0 \times 10^{-10}$	28
	-			85 86	$CO + H_3^+$ $HCO^+ + C$	139	$O^- + H_2 \rightarrow H_2O + e^-$	$k_{139} = 7.0 \times 10^{-10}$	28
				86 87		140	$O^- + C \rightarrow CO + e^-$ $O + H_3O^+ - k_{87} = 2.5 \times 10^{-3}$	$k_{140} = 5.0 \times 10^{-10}$ 62	28

(Glover, Federrath, Mac Low, Klessen, in prep)

		14	H^-	+ H -	\rightarrow H + H + e ⁻	88	H_2	$+ \text{He}^+ \rightarrow \text{He} + \text{H}_2^+$	$k_{88} = 7.2 \times 10^{-15}$	63		
				36	$CH + H_2$ -	89		$+ He^+ \rightarrow He + H + H^+$	$k_{89} = 3.7 \times 10^{-14} \exp \left(\frac{35}{7}\right)$	63		Ν.
	-			37	$CH + C \rightarrow$	90	CH	$+ H^+ \rightarrow CH^+ + H$	$k_{90} = 1.9 \times 10^{-9}$	28	Zondrum 637 Antro	ronomie Heid
able	B1. I			38	CH + C	91	CH	$2 \pm H \rightarrow CH_2^+ \pm H$	$k_{91} = 1.4 \times 10^{-9}$	28	ARIHITA	+L SW
	-			00	Ch	.92	Ch	$(\exists H)^+ \rightarrow O^+ + D_2 - H_2$		28		C LON
No.	Rea			39	Charles -	93	C_2	+ He ⁺ - C ⁺ C He	$k_3 = 1.5 \times 0.9$	28	a - 1	
	H +			40	$CH_{2} + O -$	94	OH	$+ H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-5}$	28		
				41	$CH_{2} + O -$	95		$+ \text{He}^+ \rightarrow \text{O}^+ + \text{He} + \text{H}$	$k_{95} = 1.1 \times 10^{-9}$	28		
				42	$C_2 + O \rightarrow$	96		$O + H^+ \rightarrow H_2O^+ + H$	$k_{96} = 6.9 \times 10^{-9}$	64		
				42	$C_2 + 0 \rightarrow$	97		$O + He^+ \rightarrow OH + He + H^+$	$k_{97} = 2.04 \times 10^{-10}$	65		
		15	H^{-}			98	u_($+ u_0 + - Ou + + u_0 + u_0$	h 2 ee ~ 10-10	er		
2	$H^{}$			43	$O + H_2 \rightarrow$	99	142	$C + e^- \rightarrow C^- + \gamma$	$k_{142} = 2.25 \times 10^{-15}$			8
		16	He	44	$OH + H \rightarrow$	10	143	$C + H \rightarrow CH + \gamma$	$k_{143} = 1.0 \times 10^{-17}$			8
3	H +					10.	144	$C + H_2 \rightarrow CH_2 + \gamma$	$k_{144} = 1.0 \times 10^{-17}$			8
				45	$OH + H_2 - OH + OH$	10	145	$C + C \rightarrow C_2 + \gamma$	$k_{145} = 4.36 \times 10^{-18} \left(\frac{T}{200}\right)^{0.35} \exp\left(-\frac{10}{200}\right)^{0.35}$	61.3		8
	H +			46 47	$OH + C \rightarrow OH + O \rightarrow$	10		$C + O \rightarrow CO + \gamma$	$k_{146} = 2.1 \times 10^{-19}$	T)	$T \leqslant 300 \text{ K}$	8
	н-			41	01+0-	10		010 0011	$= 3.09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{10}{100}\right)^{0.33}$	629)	T > 300 K	8
6	H_2^+					10		at an ant a	$= 3.09 \times 10^{-16} (\frac{300}{300}) \exp(-\frac{1}{2}$	T)	1 > 500 K	
,				48	OH + OH	10	147	$\rm C^+ + \rm H \rightarrow \rm CH^+ + \gamma$	$k_{147} = 4.46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{4.93}{T^{2/3}}\right)$)		8
	H2 -			49	$H_{2}O + H -$	10	148	$C^+ + H_2 \rightarrow CH_2^+ + \gamma$	$k_{148} = 4.0 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.2} \left(\frac{T}{10}\right)^{-0.2}$			8
		17	He	50	$O_2 + H \rightarrow$	10	149	$C^+ + O \rightarrow CO^+ + \gamma$			$T \leqslant 300 \text{ K}$	8
				51	$O_2 + H_2 -$					<u>8</u>)	$T > 300 { m K}$	
						10	150	$O + e^- \rightarrow O^- + \gamma$	$k_{150} = 1.5 \times 10^{-15}$	/		- 2
				52	$O_2 + C \rightarrow$	110		$O + H \rightarrow OH + \gamma$	$k_{151} = 9.9 \times 10^{-19} \left(\frac{T}{300}\right)^{-0.38}_{-0.58}$			- 2
						11			$k_{151} = 5.5 \times 10^{-10} \left(\frac{300}{300} \right)_{1.58}$			
				53	$CO + H \rightarrow$		152	$O + O \rightarrow O_2 + \gamma$	$k_{152} = 4.9 \times 10^{-20} \left\langle \frac{T}{300} \right\rangle^{1.58}$			8
				54	$H_2^+ + H_2 -$	11:	153	$OH + H \rightarrow H_2O + \gamma$	$k_{153} = 5.26 \times 10^{-18} \left(\frac{1}{300}\right) \exp \left(-\frac{1}{300}\right)$	· ⁹⁰ 구)		8
L	H2 -	18	He			11:	154	$H + H + H \rightarrow H_2 + H$	$k_{154} = 1.32 \times 10^{-32} \left(\frac{T}{300} \right)^{-0.38}$	- /	$T \leqslant 300 \text{ K}$	8
	H2 -	19	He	55	$H_3^+ + H \rightarrow$	11-	101		$x_{104} = 1.02 \times 10^{-32} (300)$			
·	n ₂ -			56	$C + H_2^+ \rightarrow$	11			$= 1.32 \times 10^{-32} \left(\frac{30}{300} \right)^{-1.0}$		$T > 300 { m K}$	9
		20	C^+	57	$C + H_3^+ \rightarrow$		155	$H + H + H_2 \rightarrow H_2 + H_2$	$k_{155} = 2.8 \times 10^{-31} T^{+0.6}_{-0.6}$ $k_{156} = 6.9 \times 10^{-32} T^{-0.4}$			9
				58	$C^{+} + H_{2} -$	110	156	$H + H + He \rightarrow H_2 + He$	$k_{156} = 0.9 \times 10^{-0.2} I^{-0.1}$			9
0	H2 -			59	$CH^+ + H$	11'	157	$C + C + M \rightarrow C_2 + M$	$k_{157} = 5.99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-1.6}$		$T \leq 5000 \text{ K}$	9
10	H2 -		~	60	$CH^+ + H_2$ $CH^+ + O$	118			$= 5.99 \times 10^{-33} \left(\frac{1}{5000} \right) \exp \left(\frac{1}{5000} \right)$	$\frac{5255}{T}$	$T > 5000 { m K}$	9
		21	0+	61	$CH^+ + O$	119	158	$C + O + M \rightarrow CO + M$	$k_{158} = 6.16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08} \\ = 2.14 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08} \exp\left(\frac{2T}{300}\right)^{-3.08} $		$T \leqslant 2000 \text{ K}$	3
				62	$CH_2 + H^+$		100	010111000111	$x_{138} = 0.10 \times 10^{-20} (300)$	1143		
1	н+			63	$CH_2^+ + H$	12		at a star act of	$= 2.14 \times 10^{-2.5} \left(\frac{1}{300}\right) \exp \left(\frac{1}{2}\right)$	$\frac{1}{T}$	T > 2000 K	6
1	n +	22	C+	64	$CH_2^+ + H_2$	12	159	$C^+ + O + M \rightarrow CO^+ + M$	$k_{159} = 100 \times k_{210}$			6
		23	0+	65	$CH_2^+ + O$	12	160	$C + O^+ + M \rightarrow CO^+ + M$	$k_{160} = 100 \times k_{210}$			6
		24 25	0*	66	$CH_3^+ + H$		161	$O + H + M \rightarrow OH + M$	$k_{161} = 4.33 \times 10^{-32} \left(\frac{T}{300}\right)^{-1.0}$			- 4
		20	0+	67	$CH_3^+ + O$	12:	162	$OH + H + M \rightarrow H_2O + M$	$k_{162} = 2.56 \times 10^{-31} \left(\frac{T}{300}\right)^{-2.0}$ $k_{162} = 2.56 \times 10^{-31} \left(\frac{T}{300}\right)^{-1.0}$			3
				68	$C_2 + O^+ -$	12	163	$O + O + M \rightarrow O_2 + M$	$k_{163} = 9.2 \times 10^{-34} \left(\frac{7}{300} \right)^{-1.0}$			3
		26	0+	69	$O^{+} + H_{2} -$	123	105		$\kappa_{163} = 9.2 \times 10 (\frac{300}{300})$			
				70	$O + H_2^+ \rightarrow$	12	164	$O + CH \rightarrow HCO^+ + e^-$	$k_{164} = 2.0 \times 10^{-11} \left(\frac{30}{300}\right)^{0.44}$			
		27	C+	71	$O + H_3^+ \rightarrow$	12	165	$H + H(s) \rightarrow H_2$	$k_{165} = 3.0 \times 10^{-18} T^{0.5} f_{\rm A} [1.0 + 0.04(T$	$(+T_{\rm d})^{0.5}$	$f_A = \left[1.0 + 10^4 \exp\left(-\frac{600}{T_{c}}\right)\right]^{-1}$	<u>د</u>
2	H^+	28	C^+	72	$OH + H_3^+$				$+ 0.002 T + 8 \times 10^{-6} T^{2}]^{-1}$		· · · · · · · · · · · ·	
		29	C+	73 74	$OH + C^+$ $OH^+ + H_2$	12: -			1000/			
				75	$H_2O^+ + H_2$	129	HC	$O^+ + e^- \rightarrow CO + H$	$k_{129} = 2.76 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.64}$	79		
				76	$H_2O + H_2^+$ $H_2O + H_2^+$	130	HC	$O^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.64}$	79		
		30	H_2	77	$H_2O + H_3$ $H_2O + C^+$				(300)			
3	H^{-}			78	$H_2O + C^+$ $H_2O + C^+$	131		$C^+ + e^- \rightarrow CO + H$	$k_{131} = 1.1 \times 10^{-7} \left(\frac{T}{300}\right)^{-1.0}$	28		
				79	$H_{3}O^{+} + C$	132		$+ C \rightarrow CH + e^-$	$k_{132} = 1.0 \times 10^{-9}$	28		
		31	ОН	80	$O_2 + C^+$ -	133		$+ O \rightarrow OH + e^{-}$	$k_{133} = 1.0 \times 10^{-9}$	28		
		32	но	81	$O_2 + C^+$ -			$+ OH \rightarrow H_2O + e^-$ + H $\rightarrow CH + e^-$	$k_{134} = 1.0 \times 10^{-10}$ $k_{105} = 5.0 \times 10^{-10}$	28		
		33	HO	82	$O_2 + CH_2^+$	135 136		$+ H \rightarrow CH + e^-$ + H ₀ $\rightarrow CH_0 + e^-$	$k_{135} = 5.0 \times 10^{-10}$ $k_{136} = 1.0 \times 10^{-13}$	28 28		
		34	C+	83	$O_2^+ + C \rightarrow$	130		$+ H_2 \rightarrow CH_2 + e^-$ + O $\rightarrow CO + e^-$	$k_{136} = 1.0 \times 10^{-10}$ $k_{137} = 5.0 \times 10^{-10}$	28		
		35	CH	84	$CO + H_3^+$	137		$+ H \rightarrow OH + e^-$	$k_{137} = 5.0 \times 10^{-10}$ $k_{138} = 5.0 \times 10^{-10}$	28		
				85	$CO + H_3^2$	139		$+ H_2 \rightarrow H_2O + e^-$	$k_{139} = 5.0 \times 10^{-10}$ $k_{139} = 7.0 \times 10^{-10}$	28		
				86	$HCO^+ + C$	140	0-	$+ C \rightarrow CO + e^{-}$	$k_{140} = 5.0 \times 10^{-10}$	28		
				87	HCO+ I had			$k_{87} = 2.5 \times 10^{-9}$	62			

(Glover, Federrath, Mac Low, Klessen, in prep)

						0.170100		
	14	Н	+ H	H + H + e	88	$H_2 + He^+ \rightarrow He + H_2^+$	$k_{88} = 7.2 \times 10^{-15}$	63
			36	$CH + H_2$ -	89	$H_2 + He^+ \rightarrow He + H + H^+$	$k_{89} = 3.7 \times 10^{-14} \exp \left(\frac{35}{T}\right)$	63
able B1. l			37	$CH + C \rightarrow$	90	$CH + H^+ \rightarrow CH^+ + H$	$k_{90} = 1.9 \times 10^{-9}$	28
able D1.			38	CH+C-	91	$CH_2 + H \rightarrow CH_2^+ + H$	$k_{91} = 1.4 \times 10^{-9}$	28
No. Rea				CO	92	$\operatorname{Ch}_2 + \operatorname{H}^+ \to \operatorname{C}^+ + \operatorname{he}^- \operatorname{H}_2$		28
NO. Rea			39	C	93			28
H+			40	$CH_2 + O -$	94	$OH + H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-5}$	28
			41	$CH_2 + O$ -	95	$OH + He^+ \rightarrow O^+ + He + H$	$k_{95} = 1.1 \times 10^{-9}$	28
					96	$H_2O + H^+ \rightarrow H_2O^+ + H$	$k_{96} = 6.9 \times 10^{-9}$	64
			42	$C_2 + O \rightarrow$	97	$H_2O + He^+ \rightarrow OH + He + H^+$	$k_{97} = 2.04 \times 10^{-10}$	65
	15	11-			98	$u O + u_0^+ \rightarrow O u^+ + u_0 + u$	b = 0.86 v 10-10	65

No.	Reaction	Optically thin rate (s^{-1})	γ	Ref.	$ \begin{array}{c} 0 \times 10^{-17} \\ 36 \times 10^{-18} \left(\frac{T}{300}\right)^{0.35} \exp\left(-\frac{161.3}{T}\right) \end{array} $
66	$H^- + \gamma \rightarrow H + e^-$	$R_{166} = 7.1 \times 10^{-7}$	0.5	1	1×10^{-10} $T \leq 300 \text{ K}$
67	$H_2^+ + \gamma \rightarrow H + H^+$	$R_{167} = 1.1 \times 10^{-9}$	1.9	2	$09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{1629}{T}\right) \qquad T > 300 \text{ K}$
168	$H_2 + \gamma \rightarrow H + H$	$R_{168} = 5.6 \times 10^{-11}$	See §2.2	3	$46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{4.93}{T^{2/3}}\right)^{-1}$
169	$H_3^+ + \gamma \rightarrow H_2 + H^+$	$R_{169} = 4.9 \times 10^{-13}$	1.8	4	$ \begin{array}{l} 0 \times 10^{-16} \left(\frac{T}{300} \right)^{-0.2} \\ 5 \times 10^{-18} \end{array} \qquad \qquad T \leqslant 300 \text{ K} \end{array} $
170	$H_3^+ + \gamma \rightarrow H_2^+ + H$	$R_{170} = 4.9 \times 10^{-13}$	2.3	4	$5 \times 10^{-18} T \leqslant 300 \text{ K}$ $14 \times 10^{-18} \left(\frac{T}{300}\right)^{-0.15} \exp\left(\frac{68}{T}\right) \qquad T > 300 \text{ K}$ $T > 300 \text{ K}$
171	$C + \gamma \rightarrow C^+ + e^-$	$R_{171} = 3.1 \times 10^{-10}$	3.0	5	5 X 10 10
172	$C^- + \gamma \rightarrow C + e^-$	$R_{172} = 2.4 \times 10^{-7}$	0.9	6	$9 \times 10^{-19} \left(\frac{T}{300}\right)^{-0.38}$
173	$CH + \gamma \rightarrow C + H$	$R_{173} = 8.7 \times 10^{-10}$	1.2	7	$9 \times 10^{-20} \left(\frac{30}{300} \right)^{1.58}$
174	$CH + \gamma \rightarrow CH^+ + e^-$	$R_{174} = 7.7 \times 10^{-10}$	2.8	8	$26 \times 10^{-18} \left(\frac{T}{300}\right)^{-5.22} \exp\left(-\frac{90}{T}\right)$
175	$\rm CH^+ + \gamma \rightarrow \rm C + \rm H^+$	$R_{175} = 2.6 \times 10^{-10}$	2.5	7	$32 \times 10^{-32} \left(\frac{1}{300}\right)^{-0.38} T = T$
176	$CH_2 + \gamma \rightarrow CH + H$	$R_{176} = 7.1 \times 10^{-10}$	1.7	7	$32 \times 10^{-32} \left(\frac{T}{200}\right)^{-1.0}$ $T > 300 \text{ K}$
177	$CH_2 + \gamma \rightarrow CH_2^+ + e^-$	$R_{177} = 5.9 \times 10^{-10}$	2.3	6	$8 \times 10^{-31} T^{-0.6}$
178	$CH_2^+ + \gamma \rightarrow CH^+ + H$	$R_{178} = 4.6 \times 10^{-10}$	1.7	9	$9 \times 10^{-32} T^{-0.4}$
179		$R_{179} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-1.6}$ $T \leq 5000 \text{ K}$
180	$CH_3^+ + \gamma \rightarrow CH^+ + H_2$	$R_{180} = 1.0 \times 10^{-9}$	1.7	6	$\begin{array}{ll} 99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-0.64} \exp\left(\frac{5255}{T}\right) & T \ge 5000 \text{ K} \\ 99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-0.64} \exp\left(\frac{5255}{T}\right) & T > 5000 \text{ K} \\ 16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08} & T \le 2000 \text{ K} \\ 14 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08} & (2114) & T \le 2000 \text{ K} \end{array}$
181	$C_2 + \gamma \rightarrow C + C$	$R_{181} = 1.5 \times 10^{-10}$	2.1	7	$16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08}$ $T \le 2000 \text{ K}$
182	$O^- + \gamma \rightarrow O + e^-$	$R_{182} = 2.4 \times 10^{-7}$	0.5	6	$14 \times 10^{-2.0} \left(\frac{1}{300}\right) \exp \left(\frac{1}{T}\right) T > 2000 \text{ K}$
183	$OH + \gamma \rightarrow O + H$	$R_{183} = 3.7 \times 10^{-10}$	1.7	10	$0 \times k_{210}$ $0 \times k_{210}$
184	$\rm OH + \gamma \rightarrow OH^+ + e^-$	$R_{184} = 1.6 \times 10^{-12}$	3.1	6	$33 \times 10^{-32} \left(\frac{T}{200}\right)^{-1.0}$
185	$OH^+ + \gamma \rightarrow O + H^+$	$R_{185} = 1.0 \times 10^{-12}$	1.8	4	$56 \times 10^{-31} \left(\frac{T}{300}\right)^{-2.0}$
186	$H_2O + \gamma \rightarrow OH + H$	$R_{186} = 6.0 \times 10^{-10}$	1.7	11	$2 \times 10^{-34} \left(\frac{1}{100} \right)$
187	$H_2O + \gamma \rightarrow H_2O^+ + e^-$	$R_{187} = 3.2 \times 10^{-11}$	3.9	8	$0 \times 10^{-11} \left(\frac{300}{300}\right)^{0.44}$
188	$H_2O^+ + \gamma \rightarrow H_2^+ + O$	$R_{188} = 5.0 \times 10^{-11}$	See §2.2	12	$0 \times 10^{-18} T^{0.5} f_{\rm A} [1.0 + 0.04(T + T_{\rm d})^{0.5}] f_{\rm A} = \left[1.0 + 10^4 \exp\left(-\frac{600}{T_{\rm d}}\right)\right]^{-1}$
189	$H_2O^+ + \gamma \rightarrow H^+ + OH$	$R_{189} = 5.0 \times 10^{-11}$	See §2.2	12	$0.002 T + 8 \times 10^{-6} T^2]^{-1}$
190	$H_2O^+ + \gamma \rightarrow O^+ + H_2$	$R_{190} = 5.0 \times 10^{-11}$	See §2.2	12	$T = \frac{1}{T} \left\langle -0.64 \right\rangle$
191	$H_2O^+ + \gamma \rightarrow OH^+ + H$ $H_3O^+ + \gamma \rightarrow H^+ + H_2O$	$R_{191} = 1.5 \times 10^{-10}$ $R_{192} = 2.5 \times 10^{-11}$	See §2.2	12	$5 \times 10^{-7} \left(\frac{7}{300}\right)^{-0.64}$ 79
192		$R_{192} = 2.5 \times 10^{-11}$ $R_{193} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-8} \left(\frac{T}{300}\right)^{-0.64}$ 79
193 194	$H_3O^+ + \gamma \rightarrow H_2^+ + OH$ $H_3O^+ + \gamma \rightarrow H_2O^+ + H$	$R_{193} = 2.5 \times 10^{-11}$ $R_{194} = 7.5 \times 10^{-12}$	See §2.2	12 12	$\times 10^{-7} \left(\frac{T}{300}\right)^{-1.0}$ 28 $\times 10^{-9}$ 28
194 195		$R_{194} = 7.5 \times 10^{-13}$ $R_{195} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-9}$ 28
195 196	$H_3O^+ + \gamma \rightarrow OH^+ + H_2$ $O_2 + \gamma \rightarrow O_2^+ + e^-$	$R_{195} = 2.5 \times 10^{-11}$ $R_{196} = 5.6 \times 10^{-11}$	See §2.2 3.7	7	$\times 10^{-10}$ 28
196	$O_2 + \gamma \rightarrow O_2 + e$ $O_2 + \gamma \rightarrow O + O$		1.8	2	$\times 10^{-10}$ 28 $\times 10^{-13}$ 28
197	$CO + \gamma \rightarrow C + O$	$R_{197} = 7.0 \times 10^{-10}$ $R_{198} = 2.0 \times 10^{-10}$	See §2.2	13	$\times 10^{-10}$ 28
100	00+1-0+0	1198 - 210 × 10	100 3212		$\times 10^{-10}$ 28 $\times 10^{-10}$ 28

(Glover, Federrath, Mac Low, Klessen, in prep)

	Table B1. 1 No. Rea 1 H +	14 H ⁻ -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & & \\ & & \\ & + \rightarrow He + H_2^+ \\ & + \rightarrow He + H + H^+ \\ & + \rightarrow CH^+ + H \\ & + \rightarrow CH^+ + H \\ & + \rightarrow CH^+ + H \\ & + \rightarrow O^+ + He + H \\ & + \rightarrow O^+ + He + H \\ & + \rightarrow H_2O^+ + H \end{array} $	$k_{89} = 3.$ $k_{90} = 1.$ $k_{91} = 1.$ $k_{12} = 7.$ $k_{33} = 1.$ $k_{94} = 2.$ $k_{95} = 1.$ $k_{96} = 6.$	1×10^{-9} 9×10^{-9}	12	63 63 28 28 28 28 28 28 28 28 28 64	Ariinta-LSW
Table	B2. List of r	hotoch	$97 H_2O + H_3O + H_3O$		1 h 0	04×10^{-10} 25×10^{-15}		65 65	
						0×10^{-17} 0×10^{-17}			81 82 82
No.	Reaction		Optically thin rate ($(s^{-1}) \gamma$	Ref.	$36 \times 10^{-18} \left(\frac{T}{300} \right)$ 1×10^{-19}	$^{0.35} \exp \left(-\frac{161.3}{T}\right)$		83
166	$H^- + \gamma \rightarrow I$	$H + e^-$	$R_{166} = 7.1 \times 10^{-7}$	0.5	1	1×10^{-19}	0.33 (1620)	$T \leqslant 300 \text{ K}$	84
167	$H_2^+ + \gamma \rightarrow I$	$H + H^+$	$R_{167} = 1.1 \times 10^{-9}$	1.9	2	$ \begin{array}{l} 0.9 \times 10^{-17} \left(\frac{T}{300}\right) \\ 46 \times 10^{-16} T^{-0.5} \end{array} $	$\exp\left(-\frac{1029}{T}\right)$	T > 300 K	85 86
168	$H_2 + \gamma \rightarrow H_2$		$R_{168} = 5.6 \times 10^{-11}$	See §2.2		$0 \times 10^{-16} \left(\frac{T}{T}\right)$	$-0.2 \left(-\frac{1}{T^{2/3}}\right)$		87
169	$H_3^+ + \gamma \rightarrow I$			1.8	4	$0 \times 10^{-16} \left(\frac{T}{300}\right)$ 5×10^{-18}		$T\leqslant 300~{\rm K}$	84
170	$H_3^+ + \gamma \rightarrow I$	$H_{2}^{+} + H$	$R_{170} = 4.9 \times 10^{-13}$ $R_{170} = 3.1 \times 10^{-10}$	2.3	4	$14 \times 10^{-18} \left(\frac{T}{300}\right)$	$\int_{-0.15}^{-0.15} \exp \left(\frac{68}{T}\right)$	$T > 300 { m K}$	
171	$C + \gamma \rightarrow C$			2.0					28
172 173	$C^- + \gamma \rightarrow$ $CH + \gamma \rightarrow$	Table	B3. List of reactions include	d in our chemics	d model t	that involve cos	mic rays or cos	mic-ray induced U	
173	$CH + \gamma - CH + CH + \gamma - CH + $								32
175	$CH^+ + \gamma$	No.	Reaction	Rate $(s^{-1}\zeta_{H}^{-1})$		Ref.			38
176	$CH_2 + \gamma$	199	$\rm H+c.r.\rightarrow \rm H^++e^-$	$R_{199} = 1.0$					39 30
177	$CH_2 + \gamma$		$He + c.r. \rightarrow He^+ + e^-$	$R_{200} = 1.0$ $R_{200} = 1.1$		1			91
178	$CH_2^+ + \gamma$		$H_2 + c.r. \rightarrow H^+ + H + e^-$	$R_{201} = 0.037$		1			92
179	$CH_3^+ + \gamma$		$H_2 + c.r. \rightarrow H + H$	$R_{202} = 0.22$		1)3
180	$CH_3^+ + \gamma$	203	$H_2 + c.r. \rightarrow H^+ + H^-$	$R_{203} = 6.5 \times 10^{-10}$	0^{-4}	1			3-1
181	$C_2 + \gamma \rightarrow$	204	$H_2 + c.r. \rightarrow H_2^+ + e^-$	$R_{204} = 2.0$		1			35
182	$O^- + \gamma -$	205	$C + c.r. \rightarrow C^+ + e^-$	$R_{205} = 3.8$		1			37
183	$OH + \gamma -$	206	$O + c.r. \rightarrow O^+ + e^-$	$R_{206} = 5.7$		1			37 37
184	$OH + \gamma -$	207	$CO + c.r. \rightarrow CO^+ + e^-$	$R_{207} = 6.5$		1			13
185	$OH^+ + \gamma$	208	$C + \gamma_{c.r.} \rightarrow C^+ + e^-$	$R_{208} = 2800$		2			35
186	$H_2O + \gamma$	209	$CH + \gamma_{c.r.} \rightarrow C + H$	$R_{209} = 4000$		3			37
187	$H_2O + \gamma$	210	$CH^+ + \gamma_{c.r.} \rightarrow C^+ + H$ $CH^+ + \gamma_{c.r.} \rightarrow CH^+ + H$	$R_{210} = 960$		3			95
188	$H_2O^+ + \gamma$ $H_2O^+ + \gamma$	211	$CH_2 + \gamma_{c.r.} \rightarrow CH_2^+ + e^-$ $CH_2 + \gamma_{c.r.} \rightarrow CH_2^+ + H_2^-$	$R_{211} = 2700$ $R_{211} = 2700$		1			96
189 190	$H_2O^+ + \gamma$ $H_2O^+ + \gamma$	212 213	$CH_2 + \gamma_{c.r.} \rightarrow CH + H$ $C_2 + \gamma_{c.r.} \rightarrow C + C$	$R_{212} = 2700$ $R_{213} = 1300$		1 3			
190	$H_2O^+ + \gamma$ $H_2O^+ + \gamma$	213	$O_2 + \gamma_{c.r.} \rightarrow O + O$ $OH + \gamma_{c.r.} \rightarrow O + H$	$R_{213} = 1300$ $R_{214} = 2800$		3			
192	$H_{3}O^{+} + \gamma$	215	$H_2O + \gamma_{c.r.} \rightarrow O + H$ $H_2O + \gamma_{c.r.} \rightarrow OH + H$	$R_{214} = 2300$ $R_{215} = 5300$		3			
193	$H_3O^+ + \gamma$		$O_2 + \gamma_{c.r.} \rightarrow O + O$	$R_{216} = 4100$		3			
194	$H_3O^+ + \gamma$		$O_2 + \gamma_{c.r.} \rightarrow O_2^+ + e^-$	$R_{217} = 640$		3			
195	$H_3O^+ + \gamma$		$CO + \gamma_{c.r.} \rightarrow C + O$	$R_{218} = 0.21T^{1/2}$	$/2 x_{H_0} x_{C_0}^{-1}$	1/2 4			
196	$O_2 + \gamma \rightarrow$				-112-CC				
197	$O_2 + \gamma \rightarrow 0$		$R_{197} = 7.0 \times 10^{-10}$		7	$\times 10^{-13}$ $\times 10^{-10}$		28	
198	$CO + \gamma \rightarrow 0$	C + O	$R_{198} = 2.0 \times 10^{-10}$	See §2.2		$\times 10^{-10}$		28 28	
_	_	_	86 $HCO^+ + C$ 140 $O^- + C$		A139 - 1	$\times 10^{-10}$		28	
		-	$\begin{array}{ccc} 86 & \mathrm{HCO^+} + \mathrm{C} & 140 & \mathrm{O^-} + \mathrm{C} \\ 87 & \mathrm{HCO^+} + \mathrm{H_2O} \rightarrow \mathrm{CO} + \mathrm{H_3O^+} \end{array}$	$\rightarrow CO + e^-$ $k_{87} = 2.5 \times 10^{-s}$	$k_{140} = l$	5.0×10^{-10}	62	28	
		-						Ralf Klessen: S	Spineto 09.07.09

HI to H2 conversion rate

Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

HI to H2 conversion rate

Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

HI to H2 conversion rate

Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

CO, C⁺ formation rates

Figure 5. Time evolution of the mass-weighted abundances of atomic carbon (black lines), CO (red lines), and C^+ (blue lines) in simulations with numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid).

effects of chemistry 1

(Glover, Federrath, Mac Low, Klessen, 2010)

effects of chemistry 2

effects of chemistry 4

- deliverables / predictions:
 - x-factor estimates (as function of environmental conditions)
 - synthetic line emission maps (in combination with line transfer)
 - pdf's of density, velocity, emissivity / structure functions (to directly connect to observational regime)
 - COMMENT: density pdf is NOT lognormal! --> implications for analytical IMF theories

X-factor

Mean visual extinction

from Glover & Mac Low (2010, ApJ, submitted)

Figure 8. Estimate of the CO-to- H_2 conversion factor $X_{CO,est}$, plotted as a function of the mean visual extinction of the gas, $\langle A_{\rm V} \rangle$. The simplifications made in our modelling mean that each value of $X_{\rm CO,est}$ is uncertain by at least a factor of two. At $\langle A_{\rm V} \rangle > 3$, the values we find are consistent with the value of $X_{\rm CO} = 2 \times 10^{20} {\rm cm}^{-2} {\rm K}^{-1} {\rm km}^{-1} {\rm s}$ determined observationally for the Milky Way by Dame et al. (2001), indicated in the plot by the horizontal dashed line. At $\langle A_V \rangle < 3$, we find evidence for a strong dependence of $X_{\rm CO,est}$ on $\langle A_{\rm V} \rangle$. The empirical fit given by Equation 11 is indicated as the dotted line in the Figure, and demonstrates that at low $\langle A_{\rm V} \rangle$, the CO-to-H₂ conversion factor increases roughly as $X_{\rm CO,est} \propto A_{\rm V}^{-2.8}$. It should also be noted that at any particular $\langle A_{\rm V} \rangle$, the dependence of $X_{\rm CO,est}$ on metallicity is relatively small. Previous claims of a strong metallicity dependence likely reflect the fact that there is a strong dependence on the mean extinction, which varies as $\langle A_V \rangle \propto Z$ given fixed mean cloud density and cloud size.

from atomic gas to molecular clouds

Iet's look at the details:

- how does molecular cloud material form in convergent flows, e.g., as triggered by spiral density waves...
- do sequence of idealized numerical experiments
- questions
 - are molecular clouds truly "multi-phase" media?
 - turbulence? dynamical & morphological properties?
 - what is relation to initial & environmental conditions?
 - magnetic field structure?

convergent flows: set-up

from Vazquez-Semadeni et al. (2007)

see studies by Banerjee et al., Heitsch et al., Hennebelle et al., Vazquez-Semadeni et al.

- convergent flow studies
 - atomic flows collide
 - cooling curve (soon chemistry)
 - gravity
 - magnetic fields
 - numerics: AMR, BGK, SPH

convergent flows: set-up

- convergent flow studies
 - atomic flows collide
 - cooling curve (soon chemistry)
 - gravity
 - magnetic fields
 - numerics: AMR, BGK, SPH

from Vazquez-Semadeni et al. (2007)

see studies by Banerjee et al., Heitsch et al., Hennebelle et al., Vazquez-Semadeni et al.

the non-magnetic case

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc

-edge-on view

-face-on view

thermal instability + gravity creates complex molecular cloud structure:

this simple set-up reproduces (and explains!) some of the main properties of MCs:

- highly patchy and clumpy
- high fraction of substructure
- cold dense molecular clumps coexist with warm atomic gas
- not a well bounded entity
- dynamical evolution (different star formation modes: from low mass to high mass SF?)

from Banerjee et al. (2008)

(see also studies by Hennebelle et al. and Vazquez-Semadeni et al. and Heitsch et al.)

the weakly magnetized $(B_x = 1 \mu G)$ case

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc
Boxsize Bo.0 pc	buxsize bu.u pc

edge-on view

face-on view

from Banerjee et al. (2008) (see also studies by Hennebelle et al. and Vazquez-Semadeni et al. and Heitsch et al.)

with random component: $B_x=3\mu G+\delta b=3\mu G$

Banerjee et al. in prep.

Morphology of the molecular cloud and star formation efficiency depends on the strength of the magnetic field

Banerjee et al. in prep.

Influence of Ambipolar Diffusion: $B_x = 3\mu G$ (super-critical)

0.00 Myr	0.00 Myr
Boxsize 80.0 pc	Boxsize 80.0 pc

Influence of Ambipolar Diffusion: $B_x = 4\mu G$ (critical)

Ideal MHD

with AD Banerjee et al. in prep.

Influence of Ambipolar Diffusion

- Ambipolar diffusion is **not** a major player for star formation on molecular cloud scales
- this is different during protostellar collapse (Hennebelle et al.)

Banerjee et al. in prep.

MC formation in convergent flows morphology and clump evolution

t = 22.50 Myr

z [pc]

- MCs are inhomogeneous
- cold clumps embedded in warm atomic gas

- clumps growth by outward propagation of boundary layers and
- coalescence at later times

see studies by Banerjee et al., Heitsch et al., Hennebelle et al., Vazquez-Semadeni et al.

-8

y [pc]

-6

 $\log(\rho [g \text{ cm}^{-3}])$

-23

5 km/sec

some results: growth of cores

Figure 2. Shows the time evolution of a typical clump which initially develops out of the thermally unstable WNM in shock layers of turbulent flows. A small cold condensate grows by outward propagation of its boundary layer. Coalescence and merging with nearby clumps further increases the size and mass of these clumps. The global gravitational potential of the proto-cloud enhances the merging probability with time. The images show 2D slices of the density (logarithmic colour scale) and the gas velocity (indicated as arrows) in the plane perpendicular to the large scale flows.

two phases of core growth:

(1) by *outward propagation* of *boundary layer* \rightarrow Jeans sub-critical phase (2) *core mergers* \rightarrow super-Jeans \rightarrow gravitational collapse & star formation example: *Pipe nebula* ???

- cores roughly in pressure balance with surroudings
- relation between flow and magnetic field: mass flow mostly along field lines

- typical core densities $n \sim 2 5 \times 10^3 \text{ cm}^{-3}$
- typical core temperatures $T \sim 30 50 K$

some results: statistical correlations

• strong correlation of gas streams and magnetic field lines

- large scatter of magnetic field strengths: sub- and super-critical cores exist
- median slope: B ∝ n^{0.5}
 (e.g. Crutcher 1999)

some results: loci of high-mass stars

global contraction phase

center of the cloud → birthplace for massive stars?

(eg. Zinnecker & Yorke 2007)

comparison of core properties with observation of Cygnus X by *Motte et al* 2007

Vazquez-Semadeni et al. 2008

initial mass function

- what is the relation between molecular cloud fragmentation and the distribution of stars?
- important quantity: IMF
- equally important CAVEAT: "everyone" gets the right IMF
 - \rightarrow better look for secondary indicators
 - stellar multiplicity
 - protostellar *spin* (including disk)
 - spatial distribution + kinematics in young clusters
 - magnetic field strength and orientation

• distribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores
 --> competitive accretion and N-body effects
- thermodynamic properties of gas
 - --> balance between heating and cooling
 - --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

Istribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

collapse and interaction of prestellar cores

--> competitive accretion and N-body effects

thermodynamic properties of gas

--> balance between heating and cooling

- --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

example: model of Orion cloud

"model" of Orion cloud: 15.000.000 SPH particles, $10^4 M_{sun}$ in 10 pc, mass resolution 0,02 M_{sun} , forms ~2.500 "stars" (sink particles)

isothermal EOS, top bound, bottom unbound

has clustered as well as distributed "star" formation

efficiency varies from 1% to 20%

develops full IMF (distribution of sink particle masses)

(Bonnell & Clark 2008)

example: model of Orion cloud

dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287)

Istribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

collapse and interaction of prestellar cores

--> competitive accretion and *N*-body effects

thermodynamic properties of gas

--> balance between heating and cooling

--> EOS (determines which cores go into collapse)

 (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

dependency on EOS

- degree of fragmentation depends on EOS!
- polytropic EOS: p ∝ργ
- γ <1: dense cluster of low-mass stars
- γ>1: isolated high-mass stars
- (see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; also Kawachi & Hanawa 1998, Larson 2003)

dependency on EOS

for $\gamma > 1$ it is suppressed \rightarrow formation of *isolated massive stars*

how does that work?

- (1) $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto \mathbf{p}^{1/\gamma}$
- (2) $M_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$
- γ<1: → large density excursion for given pressure
 → ⟨M_{jeans}⟩ becomes small
 → number of fluctuations with M > M_{jeans} is large
- $\gamma > 1: \rightarrow$ small density excursion for given pressure
 - \rightarrow $\langle M_{ieans} \rangle$ is large

only few and massive clumps exceed Mieans

EOS as function of metallicity

EOS as function of metallicity

EOS as function of metallicity

present-day star formation

present-day star formation

present-day star formation

IMF from simple piece-wise polytropic EOS

 $\gamma_1 = 0.7$ $\gamma_2 = 1.1$

EOS and Jeans Mass: $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto \mathbf{p}^{1/\gamma}$ $\mathbf{M}_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$

(Jappsen et al. 2005)

8.0

7.5

7.0

(Jappsen et al. 2005)

4.5

5.0

5.5

6

.0

6. .5

logarithmic critical number density [cm-3]

-1.0

IMF in nearby molecular clouds

(Jappsen et al. 2005, A&A, 435, 611)c

at densities n < 10² cm⁻³ and metallicities Z
 < 10⁻² H₂ cooling dominates behavior.
 (Jappsen et al. 2007)

fragmentation depends on *initial conditions*

- example 1: solid-body rotating top-hat initial conditions with dark matter fluctuations (a la Bromm et al. 1999) fragment no matter what metallicity you take (in regime n ≤ 10⁶ cm⁻³) → because unstable disk builds up (Jappsen et al. 2009a)
- example 2: centrally concentrated halo does not fragment up to densities of n ≈ 10⁶ cm⁻³ up to metallicities Z ≈ -1 (Jappsen et al. 2009b)

implications for Pop III

- star formation will depend on *degree of turbulence* in protogalactic halo
- speculation: differences in stellar mass function?
- speculation:
 - low-mass halos → low level of turbulence → relatively massive stars

(Greif et al. 2008)

 high-mass halos (atomic cooling halos) → high degree of turbulence → wider mass spectrum with peak at lower-masses?

4

x-y plane

log T [K]

z = 40.00 t_н = 64.8 Myr Length: 40 kpc (comoving)

turbulence developing in an atomic cooling halo

(Greif et al. 2008, see also Wise & Abel 2007)

turbulence developing in an atomic cooling halo (Greif et al. 2008)

Pop III.1

Pop III.2

once again: thermodynamics

FIG. 6.— Temperature as a function of number density for the Pop. III.1 (dark blue) and Pop. III.2 (light blue) $\Delta v_{turb} = 0.1 c_s$ simulations. In both cases, the curves denote the state of the cloud at the point just before the formation of the sink particle.

also Pop III.2 gas heats up above the CMB

--> weaker fragmentation!

once again: thermodynamics

comparison of accretion rates...

FIG. 8.— Accretion rates as a function of enclosed gas mass in the Pop. III.1 (upper lines; blue) and Pop. III.2 (lower lines; magenta) simulations, estimated as described in Section 4.1. Note that the sharp decline in the accretion rates for enclosed masses close to the initial cloud mass is an artifact of our problem setup; we would not expect to see this in a realistic Pop. III halo.

transition: Pop III to Pop II.5

transition: Pop III to Pop II.5

dust induced fragmentation at Z=10-5

 $t = t_{SF} - 67 yr$

t = t_{SF} - 20 yr

 $t = t_{SF}$

 $t = t_{SF} + 53 \text{ yr}$

 $t = t_{SF} + 233 \text{ yr}$

t = t_{SF} + 420 yr

(Clark et al. 2007)

dense cluster of lowmass protostars builds up:

- mass spectrum
 peaks below 1 M_{sun}
- cluster VERY dense $n_{stars} = 2.5 \times 10^9 \, pc^{-3}$
- fragmentation at density $n_{gas} = 10^{12} - 10^{13} \text{ cm}^{-3}$

(Clark et al. 2008, ApJ 672, 757)

(plot from Salvadori et al. 2006, data from Frebel et al. 2005)

dense cluster of lowmass protostars builds up:

- mass spectrum peaks below 1 M_{sun}
- cluster VERY dense $n_{stars} = 2.5 \times 10^9 \, pc^{-3}$

- predictions:

- * low-mass stars with [Fe/H] ~ 10⁻⁵
- * high binary fraction

(Clark et al. 2008)

metal-free star formation

more on Z=0 star formation

FIGURE 1. Column density images of the inner 66 au of the simulation, following the formation of the first protostar (sink particle) and the subsequent build-up of the protostellar disc and its eventual fragmentation. Starting from left-hand panel, which shows the gas at 1 yr before the protostar forms (t_{SF}), the next 3 panels show the evolution at times $t_{SF} + 76$ yr, $t_{SF} + 152$ yr and $t_{SF} + 228$ yr. The colour table is stretched from 10^3 g cm⁻² to 10^6 g cm⁻².

more on Z=0 star formation

FIGURE 2. In the left-hand and central plots we show the radial profiles of the disc's surface density and gas temperature, centred on the first protostellar core to form in the simulation. The quantities are mass-weighted and taken from a slice through the midplane of the disc. In the right-hand plot we show the radial distribution of the corresponding Toomre parameter, $Q = c_s \kappa / \pi G \Sigma$, where c_s is the sound speed and κ is the epicyclic frequency. We adopt the standard simplification, and replace κ with the orbital frequency.

more on Z=0 star formation

FIGURE 3. The left-hand plot shows the mass transfer through the disc. The solid black line shows the amount of mass moving inwards through each radial annulus in the disc per unit time. The dashed blue line shows the same quantity for the full spherical infalling envelope. The pink dashed lines show the accretion rates expected from an 'alpha' (thin) disc model, with three values of alpha. The right-hand plot shows the main heating and cooling processes that control the temperature evolution in the collapsing clump in the run-up to its eventual collapse.

SUM

Summary I

- interstellar gas is highly *inhomogeneous*
 - thermal instability
 - gravitational instability

- *turbulent compression* (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds can form rapidly in high-density regions at stagnation points of convergent large-scale flows
 - chemical phase transition: atomic → molecular
 - process is modulated by large-scale dynamics in the galaxy
- inside *cold clouds:* turbulence is highly supersonic ($M \approx 1...20$)
 - → *turbulence* creates density contrast, *gravity* selects for collapse

-> GRAVOTUBULENT FRAGMENTATION

- *turbulent cascade:* local compression *within* a cloud provokes collapse → formation of individual *stars* and *star clusters*
- star cluster: gravity dominates in large region (--> competitive accretion)

Summary II

- thermodynamic response (EOS) determines fragmentation behavior
 - characteristic stellar mass from fundamental atomic and molecular parameters
 --> explanation for guasi-universal IMF?
- *stellar feedback* is important

- accretion heating may reduce degree of fragmentation
- ionizing radiation will set efficiency of star formation
- CAVEATS:
 - star formation is *multi-scale, multi-physics* problem --> VERY difficult to model
 - in simulations: very small turbulent inertial range (Re < 1000)
 - can we use EOS to describe thermodynamics of gas, or do we need timedependent chemical network and radiative transport?
 - stellar feedback requires (at least approximative) radiative transport, most numerical calculations so far have neglected that aspect

5 3.