ISM Dynamics and Star Formation

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

thanks to ...

... people in the group in Heidelberg:

Robi Banerjee, Simon Glover, Rahul Shetty, Sharanya Sur, Daniel Seifried, Milica Milosavljevic, Florian Mandl, Christian Baczynski, Rowan Smith, Gustavo Dopcke, Jonathan Downing, Jayanta Dutta, Faviola Molina, Christoph Federrath, Erik Bertram, Lukas Konstandin, Paul Clark, Stefan Schmeja, Ingo Berentzen, Thomas Peters, Hsiang-Hsu Wang

... many collaborators abroad!

decreasing spatial scales

stellar mass fuction

stars seem to follow a universal mass function at birth --> IMF

Orion, NGC 3603, 30 Doradus (Zinnecker & Yorke 2007)

(from A. Goodman)

scales to same scale

(from A. Goodman)

scales to same scale

velocity distribution in Perseus

image from Alyssa Goodman: COMPLETE survey

(movie from Christoph Federrath)

Turbulent cascade

Turbulent cascade

Turbulent cascade in ISM

energy source & scale *NOT known* (supernovae, winds, spiral density waves?)

 $\sigma_{\rm rms} << 1$ km/s M_{rms} ≤ 1 L ≈ 0.1 pc dissipation scale not known (ambipolar diffusion, molecular diffusion?)

decreasing spatial scales

experimental set-up

chemical model 0

• 32 chemical species

•17 in instantaneous equilibrium:

 $\mathrm{H^{-},\ H_{2}^{+},\ H_{3}^{+},\ CH^{+},\ CH_{2}^{+},\ OH^{+},\ H_{2}O^{+},\ H_{3}O^{+},\ CO^{+},\ HOC^{+},\ O^{-},\ C^{-}\ and\ O_{2}^{+}}$

19 full non-equilibrium evolution

 e^{-} , H^{+} , H, H_2 , He, He^{+} , C, C^{+} , O, O^{+} , OH, H_2O , CO,

 C_2 , O_2 , HCO^+ , CH, CH_2 and CH_3^+

218 reactions

various heating and cooling processes

⁽Glover, Federrath, Mac Low, Klessen, 2010, MNRS, 404, 2)

chemical model 1

Process	
Cooling:	
C fine structure lines	Atomic data – Silva & Viegas (2002) Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007) Collisional rates (H ₂) – Schroder et al. (1991)
C^+ fine structure lines	Collisional rates (e ⁻) – Johnson et al. (1987) Collisional rates (H ⁺) – Roueff & Le Bourlot (1990) Atomic data – Silva & Viegas (2002) Collisional rates (H ₂) – Flower & Launay (1977)
	Collisional rates (H, $T < 2000$ K) – Hollenbach & McKee (1989) Collisional rates (H, $T > 2000$ K) – Keenan et al. (1986) Collisional rates (e ⁻) – Wilson & Bell (2002)
O fine structure lines	Atomic data – Silva & Viegas (2002) Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007) Collisional rates (H ₂) – see Glover & Jappsen (2007) Collisional rates (e ⁻) – Bell, Berrington & Thomas (1998) Collisional rates (H ⁺) – Pequignot (1990, 1996)
H ₂ rovibrational lines	Le Bourlot, Pineau des Forêts & Flower (1999)
CO and H ₂ O rovibrational lines OH rotational lines	Neufeld & Kaufman (1993); Neufeld, Lepp & Melnick (1995) Pavlovski et al. (2002)
Gas-grain energy transfer	Hollenbach & McKee (1989)
Recombination on grains	Wolfire et al. (2003)
Atomic resonance lines	Sutherland & Dopita (1993)
H collisional ionization	Abel et al. (1997)
H ₂ collisional dissociation	See Table B1
Compton cooling	Cen (1992)
Heating:	
Photoelectric effect	Bakes & Tielens (1994); Wolfire et al. (2003)
H ₂ photodissociation	Black & Dalgarno (1977)
UV pumping of H_2	Burton, Hollenbach & Tielens (1990)
H ₂ formation on dust grains	Hollenbach & McKee (1989)
Cosmic ray ionization	Goldsmith & Langer (1978)

No.	Reaction		JUE	l ef.
1	$\rm H + e^- \rightarrow \rm H^- + \gamma$	$k_1 = \det[-17.845 + 0.762 \log T + 0.1523 (\log T)^2]$		1
		$= 0.03274(\log T)^{\circ}$ = dov[= 16.420 ± 0.1008(log T)^{2}	$T \leqslant 0000 \text{ K}$	
		$= dex[-10.420 \pm 0.1996(\log T)]$ $= 5.447 \times 10^{-3}(\log T)^4$		
		$+4.0415 \times 10^{-5} (\log T)^{6}$	$T > 6000 { m K}$	
2	$H^- + H \rightarrow H_2 + e^-$	$k_2 = 1.5 \times 10^{-9}$	$T \leqslant 300 \text{ K}$	2
		$= 4.0 \times 10^{-9} T^{-0.17}$	T > 300 K	
3	${\rm H} + {\rm H}^+ \rightarrow {\rm H}_2^+ + \gamma$	$k_3 = dex[-19.38 - 1.523 \log T \\+ 1.118 (\log T)^2 - 0.1269 (\log T)^3]$		3
1	$H + H_2^+ \rightarrow H_2 + H^+$	$k_4 = 6.4 \times 10^{-10}$		4
5	$H^- + H^+ \rightarrow H + H$	$k_5 = 2.4 \times 10^{-6} T^{-1/2} (1.0 + T/20000)$		5
6	$H_2^+ + e^- \rightarrow H + H$	$k_6 = 1.0 \times 10^{-8}$	$T \leqslant 617 \ { m K}$	6
_		$= 1.32 \times 10^{-6} T^{-0.76}$	T > 617 K	_
($H_2 + H^+ \rightarrow H_2^+ + H_2$	$k_7 = [-3.3232183 \times 10^{-7}]$		7
		$+ 3.3733382 \times 10^{-7} \ln T$ - 1.4491368 $\times 10^{-7} (\ln T)^2$		
		$+3.4172805 \times 10^{-8} (\ln T)^3$		
		$-4.7813720 \times 10^{-9} (\ln T)^4$		
		$+3.9731542 \times 10^{-10} (\ln T)^5$		
		$-1.8171411 \times 10^{-11} (\ln T)^{6}$		
		$+ 3.5311932 \times 10^{-13} (\ln T)^{7}$		
		$\times \exp\left(\frac{-T}{T}\right)$		
3	$H_2 + e^- \rightarrow H + H + e^-$	$k_8 = 3.73 \times 10^{-9} T^{0.1121} \exp\left(\frac{-35430}{T}\right)$		8
9	$H_2 + H \rightarrow H + H + H$	$k_{9,1} = 6.67 \times 10^{-12} T^{1/2} \exp\left[-(1 + \frac{0.5390}{T})\right]$		9
		$k_{9,h} = 3.52 \times 10^{-9} \exp\left(-\frac{4.5900}{T}\right)$		10
		$n_{\rm cr,H} = \det \left[3.0 - 0.416 \log \left(\frac{T}{10000} \right) - 0.327 \left\{ \log \left(\frac{T}{10000} \right) \right\}^2 \right]$		10
10	$\rm H_2 + \rm H_2 \rightarrow \rm H_2 + \rm H + \rm H$	$k_{10,1} = \frac{5.996 \times 10^{-30} T^{4.1881}}{(1.0+6.761 \times 10^{-6} T)^{5.6881}} \exp\left(-\frac{54657.4}{T}\right)$		11
		$k_{10,h} = 1.3 \times 10^{-9} \exp\left(-\frac{53300}{T}\right)$		12
		$n_{\rm cr,H_2} = \exp\left[4.845 - 1.3\log\left(\frac{T}{10000}\right) + 1.62\left\{\log\left(\frac{T}{10000}\right)\right\}^2\right]$		12
11	$\rm H + e^- \rightarrow \rm H^+ + e^- + e^-$	$k_{11} = \exp[-3.271396786 \times 10^{1}]$		13
		$+ 1.3330300 \times 10^{-11} T_{e}$ - 5.73932875 $\times 10^{0} (\ln T_{e})^{2}$		
		$+ 1.56315498 \times 10^{0} (\ln T_{e})^{3}$		
		$-2.87705600 \times 10^{-1} (\ln T_e)^4$		
		$+ 3.48255977 \times 10^{-2} (\ln T_e)^5$		
		$-2.63197617 \times 10^{-3} (\ln T_e)^6$ + 1.11054205 × 10 ⁻⁴ (ln T _e) ⁷		
		$+ 1.11954395 \times 10^{-6} (\ln T_e)^{7}$ - 2.03014085 $\times 10^{-6} (\ln T_e)^{8}$		
12	\mathbf{U}^{\pm} , $\mathbf{h} = \mathbf{v}^{\pm}$, $\mathbf{U} = \mathbf{h} \mathbf{v}$	$h_{1,1} = 1.260 \times 10^{-13} (315614)^{1.503}$	Case A	14
12	$n^{+} + e^{-} \rightarrow n + \gamma$	$\kappa_{12,\Lambda} = 1.209 \times 10^{-10} \left(\frac{T}{T}\right) \times [1.0 + \left(\frac{604625}{T}\right)^{0.470}]^{-1.923}$	Case A	14
		$k_{12,B} = 2.753 \times 10^{-14} \left(\frac{315614}{7}\right)^{1.500}$	Case B	14
		$\times [1.0 + (\frac{115188}{115188})^{0.407}]^{-2.242}$		
13	$H^- + e^- \rightarrow H + e^- + e^-$	$k_{13} = \exp[-1.801849334 \times 10^{1}]$		13
		$+ 2.36085220 \times 10^{0} \ln T_{e}$		
		$-2.82744300 \times 10^{-1} (\ln T_e)^2$		
		$+ 1.62331664 \times 10^{-2} (\ln T_e)^3$		
		$-3.36501203 \times 10^{-2} (\ln T_e)^{\alpha}$		
		$+ 1.1(8329/8 \times 10^{-7}(\ln T_e))^6$ - 1.65610470 $\times 10^{-3}/\ln T_e)^6$		
		$+ 1.06827520 \times 10^{-4} (\ln T_{e})^{7}$		
		$-2.62129591 \times 10^{-6} (\ln \pi)^{81}$		

	14	$H^- + H \rightarrow H + H + e^-$	$k_{14} = 2.5634 \times 10^{-9} T_c^{1.78186}$	$T_e \leq 0.1 \text{ eV}$	13
_			$= \exp[-2.0372609 \times 10^{1}]$		
_			$+ 1.13944933 \times 10^{0} \ln T_{e}$		
Table B1.			$-1.4210135 \times 10^{-1} (\ln T_e)^2$		
		oho	$+8.4644554 \times 10^{-3} \ln T_{e})^{3}$	\mathbf{A}	
No. Rea			$-1.37641 imes 10^{-5} \ln T_{ m e}$		
1 11			$+2.1289.017 nT_{e}$		
1 1+			$+ 8.0039032 \times 10^{-5} (\ln T_e)^{-1}$		
			$+ 2.5550197 \times 10^{-6} (\ln T_e)^8$		
_			$- 8.0683825 \times 10^{-8} (\ln T_0)^{9}$	$T_{\rm e} > 0.1 {\rm eV}$	
	15	$H^- + H^+ \rightarrow H^+_a + e^-$	$k_{15} = 6.9 \times 10^{-9} T^{-0.35}$	$T \le 8000 \text{ K}$	15
2 H ⁻			$= 9.6 \times 10^{-7} T^{-0.90}$	T > 8000 K	10
_	16	$He + e^- \rightarrow He^+ + e^- + e^-$	$k_{16} = \exp[-4.409864886 \times 10^{1}]$		13
3 H+			$+ 2.391596563 \times 10^{1} \ln T_{e}$		
_			$-1.07532302 \times 10^{1} (\ln T_{e})^{2}$		
4 H+			$+ 3.05803875 \times 10^{0} (\ln T_{e})^{3}$		
5 H ⁻			$-5.6851189 \times 10^{-1} (\ln T_e)^4$		
6 H ₂ ⁺			$+ 6.79539123 \times 10^{-2} (\ln T_e)^{\circ}$		
			$-5.0090561 \times 10^{-3} (\ln T_e)^6$		
7 H ₂			$+ 2.06723616 \times 10^{-6} (\ln T_e)^{-6}$		
_	17	Hot de la companya de	$= 3.04310141 \times 10^{-7} (\text{m}T_{e})^{-1}$	Core A	16
	11	$ne^{-} + e^{-} \rightarrow ne + \gamma$	$\kappa_{17,rr,A} = 10^{-1} I - [12.72 - 1.013 \log I - 0.2162(\log T)^2 + 0.0402(\log T)^3]$	Case A	10
_			$= 0.3102(\log T) + 0.0433(\log T)$	Case P	16
_			$\kappa_{17,rr,B} = 10^{-1} I^{-1} [11.19 - 1.070 \log I^{-1}]$	Case D	10
			$-0.2852(\log T)^{-} + 0.04433(\log T)^{-}$		
_			$\kappa_{17,di} = 1.9 \times 10^{-6} T^{-10} \exp\left(-\frac{T}{T}\right)$		
_			$\times \left[1.0 + 0.3 \exp\left(-\frac{90000}{T}\right)\right]$		17
8 Ha.	18	$He^+ + H \rightarrow He + H^+$	$k_{18} = 1.25 \times 10^{-15} \left(\frac{T}{300}\right)^{0.80}$		18
0 Ho.	19	$He + H^+ \rightarrow He^+ + H$	$k_{19} = 1.26 \times 10^{-9} T^{-0.75} \exp \left(-\frac{127500}{T}\right)$	$T \leqslant 10000 \text{ K}$	19
5 112			$=4.0 \times 10^{-37} T^{4.74}$	T > 10000 K	
	20	$C^+ + e^- \rightarrow C + \gamma$	$k_{20} = 4.67 \times 10^{-12} \left(\frac{T}{200}\right)^{-0.6}$	$T \le 7950 \text{ K}$	20
			$= 1.23 \times 10^{-17} \left(\frac{300}{T} \right)^{2.49} \exp \left(\frac{21845.6}{21845.6} \right)$	$7950 \text{ K} < T \le 21140 \text{ K}$	
10 Ha.			$= 1.20 \times 10^{-3} \left(\begin{array}{c} 300 \\ \end{array} \right)^{-1.37} = \left(\begin{array}{c} T \\ -1.15786.2 \end{array} \right)$	70 > 01140 K	
10 112	01	0 + 1 0 +	$= 9.62 \times 10^{-5} \left(\frac{300}{300} \right)^{-5} \exp \left(\frac{-1000}{T} \right)^{-5}$	T > 21140 K	01
	21	$0^+ \pm e^- \rightarrow 0 \pm \gamma$	$\kappa_{21} = 1.30 \times 10^{-10} T^{-0.66} + 7.4 \times 10^{-4} T^{-1.5}$	$T \leqslant 400 \text{ K}$	21
			$= 1.41 \times 10^{-1} + 7.4 \times 10^{-1}$	T > 400 V	
11 H+	00	a construction of the state	$x \exp\left(-\frac{T}{T}\right) \left[1.0 \pm 0.002 \times \exp\left(-\frac{T}{T}\right)\right]$	I > 400 K	00
	22	$O + e^- \rightarrow O^+ + e^- + e^-$	$k_{22} = 0.85 \times 10^{-1} (0.195 + u)^{-1} u^{-0.34} e^{-u}$	$u = 11.20/T_0$ $u = 13.6/T_0$	22
	24	$O^+ + H \rightarrow O + H^+$	$k_{24} = 4.99 \times 10^{-11} T^{0.405} + 7.54 \times 10^{-10} T^{-0.458}$	u = 10.0/16	23
_	25	$O + H^+ \rightarrow O^+ + H$	$k_{25} = [1.08 \times 10^{-11} T^{0.517}]$		24
_			$+4.00 \times 10^{-10} T^{0.00669} \exp\left(-\frac{227}{7}\right)$		
	26	$O + He^+ \rightarrow O^+ + He$	$k_{22} = 4.001 \times 10^{-15} \left(T_{-1} \right)^{0.3794} \exp \left(T_{-1} T_{-1} \right)$		25
	20	$0 + \text{He} \rightarrow 0^{\circ} + \text{He}$	$k_{26} = 4.351 \times 10^{-15} \left(\frac{1}{10000} \right)^{-0.2163} \left(\frac{1}{1121000} \right)^{-0.2163}$		20
		a set at set	$+2.780 \times 10^{-13} \left(\frac{1}{10000}\right) \exp\left(\frac{1}{815800}\right)$		
10 11+	27	$C + H^+ \rightarrow C^+ + H$	$k_{27} = 3.9 \times 10^{-10} T^{0.213}$		24
12 H	28	$C^+ + H \rightarrow C + H^+$	$k_{28} = 6.08 \times 10^{-14} \left(\frac{T}{10000} \right)^{100} \exp \left(-\frac{170000}{T} \right)$		24
_	29	$C + He^+ \rightarrow C^+ + He$	$k_{29} = 8.58 \times 10^{-17} T^{0.757}$	$T \leq 200 \text{ K}$	26
_			$= 3.25 \times 10^{-17} T^{0.908}$	$200 < T \le 2000 \text{ K}$	
_	20		$= 2.77 \times 10^{-19} T^{1.59}$	T > 2000 K	07
13 H-	30	$H_2 + He \rightarrow H + H + He$	$\kappa_{30,1} = \text{dex} \left[-27.029 + 3.801 \log \left(T \right) - 29487/T \right]$		27
			$n_{30,h} = \text{dex}\left[-2.129 - 1.10 \log(1) - 20014/1\right]$ $n_{10} = -\text{dex}\left[5.0709(1.0 - 1.09 + 10^{-5}/T - 9000)\right]$		07
		011 1 1 0 1 1 1 1	$n_{cr,H_0} = \text{dex} \left[3.0792(1.0 - 1.23 \times 10^{-5}(T - 2000)) \right]$		21
	31	$OH + H \rightarrow O + H + H$	$\kappa_{31} = 0.0 \times 10^{-9} \exp\left(-\frac{30000}{T}\right)$		28
	32	$HOC^+ + H_2 \rightarrow HCO^+ + H_2$	$\kappa_{32} = 3.8 \times 10^{-10}$		29
	33	$HOC^+ + CO \rightarrow HCO^+ + CO$	$\kappa_{33} = 4.0 \times 10^{-10}$ cm (11700)		30
	34	$0 + H_2 \rightarrow OH + H$	$\kappa_{34} = 0.64 \times 10^{-10} \exp\left(-\frac{T}{T}\right)$		31
			$h_{00} = 1.21 \times 10^{-19} \text{ over } 1 - \frac{99}{29}$		
	30	$CH + H \rightarrow C + H_2$	$k_{35} = 1.51 \times 10^{-1} \exp\left(-\frac{1}{T}\right)$		32

		14	H^{-}	+ H -	\rightarrow H + H + e ⁻	$k_{14} = 2.563$	$34 \times 10^{-9} T_e^{1.78186}$	$T_{\rm e} \leqslant 0.1 \; {\rm eV}$	13
	_			36	$CH + H_2 \rightarrow CH_2 +$	Н	$k_{36} = 5.46 \times 10^{-10} \exp\left(-10^{-10}\right)$	$\frac{1943}{7}$	33
Table	B1.			37	$CH + C \rightarrow C_2 + H$		$k_{37} = 6.59 \times 10^{-11}$		34
				38	$CH + C \rightarrow CO + H$		$k_{22} = 6.6 \times 1^{-11}$	T = 2000	-K 35
No.	Rea				$C: \square \mathbf{e}$		$= 1.02 \times 0^{-10} \text{ xp} (-$	[·] · · · · · · · · · · · · · · · · · ·	K 36
				39		4,	A 2 2 K 0-11		37
1	н+			40	$CH_2 + O \rightarrow CO + O$	H + H	$k_{40} = 1.33 \times 10^{-10}$		38
				41	$Ch_2 + 0 \rightarrow CO + 1$	12	$k_{41} = 8.0 \times 10^{-11} (T)^{0.5}$	(T) < 000 J	39
				42	$C_2 + O \rightarrow CO + C$		$k_{42} = 5.0 \times 10^{-11} \left(\frac{1}{300} \right)$	$T \leq 3001$	X 40
		15	H^{-}				$= 5.0 \times 10^{-11} \left(\frac{1}{300}\right)^{-10}$	T > 300 I	K 41
2	н-			43	$O + H_2 \rightarrow OH + H$		$k_{43} = 3.14 \times 10^{-13} \left(\frac{T}{300} \right)^2$	$\left(\exp \left(-\frac{3150}{T} \right) \right)$	42
3	н+	16	He	44	$OH + H \rightarrow O + H_2$		$k_{44} = 6.99 \times 10^{-14} \left(\frac{T}{300}\right)^{*}$	$\exp\left(-\frac{1950}{T}\right)$	43
				45	$OH + H_2 \rightarrow H_2O +$	·H	$k_{45} = 2.05 \times 10^{-12} \left(\frac{T}{300}\right)^{1.5}$	$exp\left(-\frac{1736}{T}\right)$	44
4	H +			46	$OH + C \rightarrow CO + H$	l .	$k_{46} = 1.0 \times 10^{-10}$		34
5	H_			47	$OH + O \rightarrow O_2 + H$		$k_{47} = 3.50 \times 10^{-11}$	$T \le 2611$	K 45
6	H_2^+						$= 1.77 \times 10^{-11} \exp \left(\frac{2}{T}\right)$	(F) = T > 2611	A 33
7	He			48	$OH + OH \rightarrow H_2O$	+ H	$k_{48} = 1.65 \times 10^{-12} \left(\frac{1}{300} \right)^{-12}$	$\exp\left(-\frac{50}{T}\right)$	34
				49	$H_2O + H \rightarrow H_2 + O$	H	$k_{49} = 1.59 \times 10^{-11} \left(\frac{T}{300}\right)^{1.5}$	$exp(-\frac{9610}{T})$	46
		17	He	50	$O_2 + H \rightarrow OH + O$		$k_{50} = 2.61 \times 10^{-10} \exp \left(-\frac{8}{2}\right)$	$\frac{8156}{T}$	33
				51	$O_2 + H_2 \rightarrow OH + OH$	ЭH	$k_{51} = 3.16 \times 10^{-10} \exp \left(-\frac{2}{3}\right)$	$\frac{21890}{T}$	47
				52	$O_2 + C \rightarrow CO + O$		$k_{52} = 4.7 \times 10^{-11} \left(\frac{T}{300}\right)^{-0}$	$T \le 2951$	K 34
							$= 2.48 \times 10^{-12} \left(\frac{T}{200} \right)^{1.}$	$^{54} \exp \left(\frac{613}{7}\right) \qquad T > 2951$	K 33
				53	$CO + H \rightarrow C + OH$	L	$k_{53} = 1.1 \times 10^{-10} \left(\frac{T}{200}\right)^{0.5}$	$\exp\left(-\frac{77700}{77}\right)$	28
				54	$H_{*}^{+} + H_{2} \rightarrow H_{*}^{+} + 1$	H	$k_{\rm TA} = 2.24 \times 10^{-9} \left(\frac{T}{T}\right)^{0.0}$	42 exp $\left(-\frac{T}{T}\right)$	48
8	H_2 ·	18	He	55	$H_2^+ + H \rightarrow H_2^+ + H$		$k_{22} = 7.7 \times 10^{-9} \exp\left(-\frac{175}{2}\right)$	560)	49
9	H_2 ·	19	He	56	$C + H_{2}^{+} \rightarrow CH^{+} +$	Н	$k_{se} = 2.4 \times 10^{-9}$	r)	28
				57	$C + H_{2}^{+} \rightarrow CH^{+} +$	H ₂	$k_{57} = 2.0 \times 10^{-9}$		28
		20	C^+	58	$C^+ + H_2 \rightarrow CH^+ +$	- H	$k_{58} = 1.0 \times 10^{-10} \exp\left(-\frac{46}{2}\right)$	540 T	50
				59	$\rm CH^+ + \rm H \rightarrow \rm C^+ +$	H_2	$k_{59} = 7.5 \times 10^{-10}$. ,	51
10	H2 -			60	$CH^+ + H_2 \rightarrow CH_2^+$	+ H	$k_{60} = 1.2 \times 10^{-9}$		51
		21	0+	61	$CH^+ + O \rightarrow CO^+$	+ H	$k_{61} = 3.5 \times 10^{-10}$		52
				62	$CH_2 + H^+ \rightarrow CH^+$	$+ H_{2}$	$k_{62} = 1.4 \times 10^{-9}$ (708	90)	28
11	H +			63	$CH_2 + H \rightarrow CH^+$	+ H ₂	$k_{63} = 1.0 \times 10^{-9} \exp\left(-\frac{10}{T}\right)$	÷)	28
		22	61	65	$CH_2^+ + H_2^- \rightarrow UH_3^-$ $CH_2^+ + O \rightarrow HCO^+$	+ n	$k_{64} = 1.6 \times 10^{-10}$		28
		24	Õ+	66	$CH_2^+ + H \rightarrow CH_2^+$	+ H2	$k_{65} = 7.0 \times 10^{-10} \exp\left(-\frac{10}{10}\right)$	0560	28
		25	0+	67	$CH_{+}^{+} + O \rightarrow HCO_{+}^{+}$	$+ H_2$	$k_{e7} = 4.0 \times 10^{-10}$	Τ)	54
				68	$C_2 + O^+ \rightarrow CO^+ +$	C	$k_{68} = 4.8 \times 10^{-10}$		28
		26	0+	69	$O^+ + H_2 \rightarrow OH^+ -$	- H	$k_{69} = 1.7 \times 10^{-9}$		55
				70	$O + H_2^+ \rightarrow OH^+ +$	Н	$k_{70} = 1.5 \times 10^{-9}$		28
		27	C+	71	$O + H_3^+ \rightarrow OH^+ +$	H_2	$k_{71} = 8.4 \times 10^{-10}$		56
12	H^+	28	C^+	72	$OH + H_3^+ \rightarrow H_2O^+$ $OH + C^+ \rightarrow CO^+$	+ H ₂	$k_{72} = 1.3 \times 10^{-5}$ $k_{72} = 7.7 \times 10^{-10}$		28
		29	C+	74	$OH^+ + H_2 \rightarrow H_2O$	+ H + + H	$k_{73} = 7.7 \times 10^{-9}$ $k_{74} = 1.01 \times 10^{-9}$		28
				75	$H_2O^+ + H_2 \rightarrow H_3O^+$	$D^{+} + H$	$k_{75} = 6.4 \times 10^{-10}$		58
		20		76	$H_2O + H_3^+ \rightarrow H_3O$	$^{+} + H_{2}$	$k_{76} = 5.9 \times 10^{-9}$		59
13	н-	30	H ₂	77	$H_2O + C^+ \rightarrow HCO$	$^{+} + H$	$k_{77} = 9.0 \times 10^{-10}$		60
				78	$H_2O + C^+ \rightarrow HOO$	+ + H	$k_{78} = 1.8 \times 10^{-9}$		60
		31	OH	79	$H_3O^+ + C \rightarrow HCO^+$	$+ H_2$	$\kappa_{79} = 1.0 \times 10^{-11}$ $k_{80} = 3.8 \times 10^{-10}$		28
		32	но	81	$O_2 + C^+ \rightarrow CO + 0$	0+	$k_{81} = 6.2 \times 10^{-10}$		53
		33	но	82	$O_2 + CH_2^+ \rightarrow HCO$	$^{+} + OH$	$k_{82} = 9.1 \times 10^{-10}$		53
		34	C+	83	$O_2^+ + C \rightarrow CO^+ +$	0	$k_{83} = 5.2 \times 10^{-11}$		28
		35	CH	84	$CO + H_3^+ \rightarrow HOC^+$	$+ H_2$	$k_{84} = 2.7 \times 10^{-11}$		61
	-	_	-	85	$CO + H_3^+ \rightarrow HCO^+$	$+ H_2$	$k_{85} = 1.7 \times 10^{-9}$		61
_				80	$HCO^+ + H_{2}O \rightarrow CO^-$	+ OH	$\kappa_{86} = 1.1 \times 10^{-9}$ $k_{87} = 2.5 \times 10^{-9}$		28

		14	н-	+ H -	H + H + e		6.1#010e		_
						88	$H_2 + He^+ \rightarrow He + H_2^+$	$k_{88} = 7.2 \times 10^{-15}$	63
	-			36	$CH + H_2 -$	89	$H_2 + He^+ \rightarrow He + H + H^+$	$k_{89} = 3.7 \times 10^{-14} \exp\left(\frac{32}{T}\right)$	63
Table	B1. 1			37	$CH + C \rightarrow$	90	$CH_2 + H^+ \rightarrow CH^+ + H$	$k_{90} = 1.9 \times 10^{-9}$	28
				99		92	$O_1 = H_1^+ \rightarrow H_2^+ + H_2^-$	madal 7	28
No.	Rea			39	C	93	C; + Lie → C† ⊂C + Le	$93 = 6 \times 1^{-9}$	28
1	H +			40	$CH_2 + O -$	94	$OH + H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-5}$	28
				41	$CH_{2} + O -$	95	$OH + He^+ \rightarrow O^+ + He + H$	$k_{95} = 1.1 \times 10^{-9}$ $k_{25} = 6.0 \times 10^{-9}$	28
				42	$C_2 + O \rightarrow$	97	$H_2O + H^0 \rightarrow H_2O + H^0$ $H_2O + He^+ \rightarrow OH + He + H^+$	$k_{96} = 0.5 \times 10^{-10}$ $k_{97} = 2.04 \times 10^{-10}$	65
		15	н-			98	$H_2O + He^+ \rightarrow OH^+ + He + H$	$k_{98} = 2.86 \times 10^{-10}$	65
2	H^{-}			43	$O + H_2 \rightarrow$	99	$H_2O + He^+ \rightarrow H_2O^+ + He$	$k_{99} = 6.05 \times 10^{-11}$	65
		16	He	44	$OH + H \rightarrow$	100	$O_2 + H^+ \rightarrow O_2^+ + H$	$k_{100} = 2.0 \times 10^{-9}$	64
3	н+			45	OH + Ha	101	$O_2 + He^+ \rightarrow O_2^+ + He$	$k_{101} = 3.3 \times 10^{-11}$	66 ee
4	н			46	$OH + C \rightarrow$	102	$O_2^+ + C \rightarrow O_2^+ + C^+$	$k_{102} = 1.1 \times 10^{-11}$ $k_{102} = 5.2 \times 10^{-11}$	28
5	н-			47	$OH + O \rightarrow$	104	$C_2 + C \rightarrow C_2 + C$	$h_{103} = 0.2 \times 10^{-9} \left(\frac{T}{T}\right)^{-0.5}$	67
6	H_2^+					101	$CO + He^+ \rightarrow C + O^+ + He$	$k_{104} = 1.4 \times 10^{-16} \left(\begin{array}{c} 300 \end{array} \right)^{-0.5}$	07
	-			48	OH + OH	105	$CO^+ He^- \rightarrow C^+ O^- + He^-$	$k_{105} = 1.4 \times 10^{-10} (300)$	69
7	H_2 ·			49	$H_2O + H -$	107	$C^- + H^+ \rightarrow C + H$	$k_{105} = 2.3 \times 10^{-7} \left(\frac{T}{T} \right)^{-0.5}$	28
		17	He	50	$O_2 + H \rightarrow$	100	$O^- + H^+ \rightarrow O + H$	$k_{107} = 2.3 \times 10^{-7} \begin{pmatrix} 300 \\ T \end{pmatrix}^{-0.5}$	20
		-		51	$O_2 + H_2 =$	108	$O + H^{+} \rightarrow O + H$	$\kappa_{108} = 2.5 \times 10^{-7} \left(\frac{300}{300} \right)^{-0.52} (T)^{-0.52}$	20
				52	$O_2 + C \rightarrow$	109	$He^+ + H^- \rightarrow He + H$	$k_{109} = 2.32 \times 10^{-7} \left(\frac{1}{300} \right) \exp \left(\frac{1}{22400} \right)$	69
					0.10	110	$H_3^+ + e^- \rightarrow H_2 + H$	$k_{110} = 2.34 \times 10^{-6} \left(\frac{4}{300}\right)_{-0.52}$	70
				50	CO 1 11	111	$H_3^+ + e^- \rightarrow H + H + H$	$k_{111} = 4.36 \times 10^{-8} \left(\frac{T}{300}\right)_{0.5}^{-6.02}$	70
				53	$CO + H \rightarrow$	112	$CH^+ + e^- \rightarrow C + H$	$k_{112} = 7.0 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	71
8	Ha	18	He	54	$H_2^+ + H_2 -$	113	$CH_2^+ + e^- \rightarrow CH + H$	$k_{113} = 1.6 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.6}$	72
9	Ha.	19	He	55	$H_3^+ + H \rightarrow$	114	$CH_2^+ + e^- \rightarrow C + H + H$	$k_{114} = 4.03 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.6}$	72
				50	$C + H_2 \rightarrow C + H_2^+ \rightarrow C$	115	$CH_2^+ + e^- \rightarrow C + H_2$	$k_{115} = 7.68 \times 10^{-8} \left(\frac{T}{200}\right)^{-0.6}$	72
		20	C^+	58	$C + H_3 \rightarrow$ $C^+ + H_2 -$	116	$CH_{+}^{+} + e^{-} \rightarrow CH_{2} + H$	$k_{116} = 7.75 \times 10^{-8} \left(\frac{T}{T}\right)^{-0.5}$	73
				59	$CH^+ + H$	117	$CH^+ + e^- \rightarrow CH + H_0$	$k_{117} = 1.95 \times 10^{-7} \left(\frac{T}{T}\right)^{-0.5}$	73
10	H_2 -			60	$CH^+ + H_2$	119	$CH_3^+ + c^- \rightarrow CH_1^+ + H_2^-$	$k_{117} = 1.50 \times 10^{-7} \left(\frac{300}{300}\right)^{-0.4}$	10
		21	0+	61	$CH^+ + O$	110	$CH_3 + e^- \rightarrow CH + H + H$	$\kappa_{118} = 2.0 \times 10^{-9} \begin{pmatrix} 300 \\ T \end{pmatrix}^{-0.48}$	20
				62	$CH_2 + H^+$	119	OH +e → O + H	$k_{119} = 6.3 \times 10^{-1} \left(\frac{300}{300} \right)^{-0.5}$	74
11	H +	00	<u> </u>	63	$CH_2 + H - CH_2 + H - H_2$	120	$H_2O^+ + e^- \rightarrow O + H + H$	$k_{120} = 3.05 \times 10^{-7} \left(\frac{300}{300} \right)$	75
		22	01	65	$CH_{2}^{+} + H_{2}^{-}$ $CH_{2}^{+} + O_{2}^{-}$	121	$H_2O^+ + e^- \rightarrow O + H_2$	$k_{121} = 3.9 \times 10^{-8} \left(\frac{1}{300} \right)^{-0.5}$	75
		24	0+	66	$CH_{2}^{+} + H$	122	$H_2O^+ + e^- \rightarrow OH + H$	$k_{122} = 8.6 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	75
		25	0+	67	$CH_{2}^{+} + O$	123	$H_3O^+ + e^- \rightarrow H + H_2O$	$k_{123} = 1.08 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	76
				68	$C_2 + O^+ -$	124	$H_3O^+ + e^- \rightarrow OH + H_2$	$k_{124} = 6.02 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	76
		26	0+	69	$O^{+} + H_{2} -$	125	$H_3O^+ + e^- \rightarrow OH + H + H$	$k_{125} = 2.58 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	76
				70	$O + H_2^+ \rightarrow$	126	$H_3O^+ + e^- \rightarrow O + H + H_2$	$k_{126} = 5.6 \times 10^{-9} \left(\frac{T}{200}\right)^{-0.5}$	76
		27	C +	72	$O + H_3 \rightarrow OH + H^+$	127	$O_{0}^{+} + e^{-} \rightarrow O + O$	$k_{127} = 1.95 \times 10^{-7} \left(\frac{T}{T}\right)^{-0.7}$	77
12	H^+	28	C^+	73	$OH + C^+$	128	$CO^+ + e^- \rightarrow C + O$	$k_{100} = 2.75 \times 10^{-7} \left(\frac{T}{T}\right)^{-0.55}$	78
		29	C +	74	$OH^+ + H_2$	100		$h_{120} = 2.76 \times 10^{-7} \left(\frac{300}{T}\right)^{-0.64}$	70
				75	$H_2O^+ + H$	129	HCO ⁺ + e [−] → CO + H	$\kappa_{129} = 2.76 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.64}$	19
		30	H_2	76	$H_2O + H_3^+$	130	$HCO^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-5} \left(\frac{3}{300} \right)^{-1.0}$	79
13	H^{-}		_	78	$H_2O + C^+$ $H_2O + C^+$	131	$HOC^+ + e^- \rightarrow CO + H$	$k_{131} = 1.1 \times 10^{-7} \left(\frac{1}{300}\right)$	28
				79	$H_3O^+ + C$	132	$H^- + C \rightarrow CH + e^-$ $H^- + O \rightarrow OH + e^-$	$\kappa_{132} = 1.0 \times 10^{-9}$ $\kappa_{132} = 1.0 \times 10^{-9}$	28
		31	ОН	80	$O_2 + C^+ -$	134	$H^- + OH \rightarrow H_2O + e^-$	$k_{134} = 1.0 \times 10^{-10}$	28
		32	HO	81	$O_2 + C^+ -$	135	$\rm C^- + H \rightarrow CH + e^-$	$k_{135} = 5.0 \times 10^{-10}$	28
		33	HO	82	$O_2 + CH_2$	136	$C^- + H_2 \rightarrow CH_2 + e^-$	$k_{136} = 1.0 \times 10^{-13}$	28
		25	CP	83 84	$CO + H^+$	137	$C^- + O \rightarrow CO + e^-$ $O^- + H \rightarrow OH + e^-$	$k_{137} = 5.0 \times 10^{-10}$ $k_{100} = 5.0 \times 10^{-10}$	28
			On	85	$CO + H_3^+$	139	$O^- + H_2 \rightarrow H_2O + e^-$	$k_{138} = 7.0 \times 10^{-10}$	28
				86	$HCO^+ + C$	140	$O^- + C \rightarrow CO + e^-$	$k_{140} = 5.0 \times 10^{-10}$	28
_	-	-	-	87	$HCO^+ + H_2$	$0 \rightarrow CO$	$0 + H_3O^+$ $k_{87} = 2.5 \times 10^{-9}$	62	_

		14	н-	+ H -	H + H + el			0_170100				
						88	H ₂	$+ \text{He}^+ \rightarrow \text{He} + \text{H}_2^+$	$k_{88} = 7.2 \times 10^{-10}$	63		
				36	$CH + H_2 -$	89	H2 CU	$+ He^+ \rightarrow He + H + H^+$	$k_{89} = 3.7 \times 10^{-9} \exp\left(\frac{\pi}{T}\right)$	03		
Table	B1.	1		37	$CH + C \rightarrow$	90	CH	$+H^{+} \rightarrow CH^{+} + H$	$k_{90} = 1.9 \times 10^{-9}$	20		
	-			38	Children	92	0	$2 - H_0^+ \rightarrow 2^+ + I_0 + H_2$	nadal 7	28	ARI+ITA+	LSW
No.	Rea			20	A	93	C	+ le - C+ C+ le	$93 = 6 \times 1^{-9}$	28		
1	H+			40	$CH_2 + O =$	94	OH	$+ H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-3}$	28		
				41	$CH_2 + O -$	95	OH	$+ He^+ \rightarrow O^+ + He + H$	$k_{95} = 1.1 \times 10^{-9}$	28		
				42	$C_2 + 0 \rightarrow$	96	H_2	$O + H^+ \rightarrow H_2O^+ + H$	$k_{96} = 6.9 \times 10^{-9}$	64		
						97	H ₂ ($J + He^+ \rightarrow OH + He + H^+$	$k_{97} = 2.04 \times 10^{-10}$	65		
	u-	15	H-		0.17	99 -	1.40	a	1 0.05 - 10-15			
2	n	16	Но	43	$O + H_2 \rightarrow$	10	142	$C + e^- \rightarrow C^- + \gamma$	$k_{142} = 2.25 \times 10^{-10}$			81
3	н+	- 10	110	44	$OH + H \rightarrow$	10	143	$C + H_2 \rightarrow CH_2 + \gamma$	$k_{143} = 1.0 \times 10^{-17}$			82
				45	$OH + H_2 -$	10	145	$C + G \rightarrow C_2 + \gamma$	$k_{144} = 1.0 \times 10^{-18} \left(\frac{T}{T}\right)^{0.35} \exp\left(-\frac{161.3}{10}\right)^{0.35}$	0		82
4	H +			46	$OH + C \rightarrow$	10	146	$C + C \rightarrow C_2 + \gamma$ $C + O \rightarrow CO + \gamma$	$k_{145} = 4.50 \times 10^{-10} (\frac{300}{300}) \exp\left(-\frac{1}{T}\right)$	-)	$T < 300 { m K}$	84
5	Н_			47	$OH + O \rightarrow$	10	140	$C + O \rightarrow CO + \gamma$	$\kappa_{146} = 2.1 \times 10^{-17} (T)^{0.33} \dots (1629)$	\	1 ≤ 300 K	01
6	H_2^+					10		at an art	$= 3.09 \times 10^{-10} \left(\frac{300}{300}\right) \exp\left(-\frac{1}{T}\right)$)	T > 300 K	85
7				48	OH + OH	10	147	$C^+ + H \rightarrow CH^+ + \gamma$	$k_{147} = 4.46 \times 10^{-10} T^{-0.0} \exp\left(-\frac{400}{T^{2/3}}\right)$			86
1	H2 ·			49	$H_2O + H -$	10	148	$C^+ + H_2 \rightarrow CH_2^+ + \gamma$	$k_{148} = 4.0 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.2}$			87
		17	He	50	$O_2 + H \rightarrow$	10	149	$C^+ + O \rightarrow CO^+ + \gamma$	$k_{149} = 2.5 \times 10^{-18}$		$T \leqslant 300 \text{ K}$	84
				51	$O_2 + H_2 -$	10			$= 3.14 \times 10^{-18} \left(\frac{T}{300}\right)^{-0.13} \exp \left(\frac{68}{T}\right)$		$T > 300 { m K}$	
				52	$O_2 + C \rightarrow$	10	150	$O + e^- \rightarrow O^- + \gamma$	$k_{150} = 1.5 \times 10^{-15}$			28
						11	151	$O + H \rightarrow OH + \gamma$	$k_{151} = 9.9 \times 10^{-19} \left(\frac{T}{300}\right)^{-0.38}$			28
						11	152	$O + O \rightarrow O_2 + \gamma$	$k_{152} = 4.9 \times 10^{-20} \left(\frac{T}{200}\right)^{1.58}$			82
				53	$CO + H \rightarrow$	11	153	$OH + H \rightarrow H_{2}O + \infty$	$k_{122} = 5.26 \times 10^{-18} \left(\frac{T}{T}\right)^{-5.22} \exp\left(-\frac{90}{2}\right)$	\		88
		18	He	54	$H_2^+ + H_2 -$	11	154		$k_{103} = 0.20 \times 10^{-32} \begin{pmatrix} 300 \\ T \\ -0.38 \end{pmatrix} = 0.20 \times 10^{-32} \begin{pmatrix} 300 \\ T \\ -0.38 \end{pmatrix}$,	77 < 200 K	80
8	H2 ·	19	He	55	$H_3^+ + H \rightarrow$	11	134	$H + H + H \rightarrow H_2 + H$	$k_{154} = 1.32 \times 10^{-0.0} \left(\frac{300}{300}\right)^{-1.0}$		T ≤ 300 K	89
9	H ₂			56	$C + H_2^+ \rightarrow$	11			$= 1.32 \times 10^{-32} \left(\frac{1}{300} \right)$		$T > 300 { m K}$	90
		20	C^+	57	$C + H_3^+ \rightarrow$	11	155	$H + H + H_2 \rightarrow H_2 + H_2$	$k_{155} = 2.8 \times 10^{-31} T^{-0.6}$			91
				58	$C^{+} + H_{2} -$	11	130	$H + H + He \rightarrow H_2 + He$	$\kappa_{156} = 6.9 \times 10^{-32} (T_{-1.6})^{-1.6}$			92
10	Ha.			59	$CH^+ + H^-$	11	157	$C + C + M \rightarrow C_2 + M$	$k_{157} = 5.99 \times 10^{-33} \left(\frac{1}{5000}\right) = 0.64$		$T \leqslant 5000 \text{ K}$	93
		21	0+	61	$CH^+ + H_2$ $CH^+ + O_1$	11			$= 5.99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-0.03} \exp \left(\frac{5255}{T}\right)^{-0.03}$	²)	T > 5000 K	94
		21	0	62	$CH_2 + H^+$	11	158	$\rm C+O+M \rightarrow \rm CO+M$	$k_{158} = 6.16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08}$		$T \leqslant 2000 \text{ K}$	35
				63	$CH_{2}^{+} + H$	12			$= 2.14 \times 10^{-29} \left(\frac{T}{200}\right)^{-3.08} \exp\left(\frac{2114}{\pi}\right)^{-3.08}$)	T > 2000 K	67
11	Н+	22	C +	64	$CH_2^+ + H_2$	19	159	$C^+ + O + M \rightarrow CO^+ + M$	$k_{159} = 100 \times k_{210}$	/		67
		23	0+	65	$CH_{2}^{+} + O$	12	160	$\rm C + O^+ + M \rightarrow \rm CO^+ + M$	$k_{160} = 100 \times k_{210}$			67
		24	O^+	66	$CH_3^+ + H -$	12	161	$O + H + M \rightarrow OH + M$	$k_{161} = 4.33 \times 10^{-32} \left(\frac{T}{300}\right)^{-1.0}$			43
		25	0+	67	$CH_{3}^{+} + O$	12	162	$OH + H + M \rightarrow H_2O + M$	$k_{162} = 2.56 \times 10^{-31} \left(\frac{T}{T}\right)^{-2.0}$			35
				68	$C_2 + O^+ -$	12	162	$0 + 0 + M \rightarrow 0 + M$	$h_{102} = 0.2 \times 10^{-34} \left(\frac{T}{T}\right)^{-1.0}$			27
		26	0+	69	$O^{+} + H_{2} -$	12	105	$0 + 0 + M \rightarrow 0_2 + M$	$\kappa_{163} = 9.2 \times 10^{-11} \left(\frac{300}{300}\right)^{-1}$			51
				70	$O + H_2 \rightarrow$	12	164	$O + CH \rightarrow HCO^+ + e^-$	$k_{164} = 2.0 \times 10^{-11} \left(\frac{1}{300}\right)$			95
		27	C +	71	$O + H_3 \rightarrow$	12	165	$H + H(s) \rightarrow H_2$	$k_{165} = 3.0 \times 10^{-18} T^{0.5} f_{\rm A} [1.0 + 0.04(T + 2)]$	$T_{\rm d})^{0.5}$	$f_A = \left[1.0 + 10^4 \exp\left(-\frac{600}{T_d}\right)\right]^{-1}$	96
12	H^+	28	C^+	73	$OH + C^+$	10			$+ 0.002 T + 8 \times 10^{-6} T^{2}]^{-1}$			
		29	C +	74	$OH^+ + H_2$	12 -			τ T $\langle -0.64$			
				75	$H_2O^+ + H$	129	HC	$O^+ + e^- \rightarrow CO + H$	$k_{129} = 2.76 \times 10^{-7} \left(\frac{4}{300} \right)_{-0.64}$	79		
		20	п.	76	$H_2O + H_3^+$	130	HC	$O^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.04}$	79		
13	н-		112	77	$H_2O + C^+$	131	HO	$C^+ + e^- \rightarrow CO + H$	$k_{131} = 1.1 \times 10^{-7} \left(\frac{T}{300}\right)^{-1.0}$	28		
				78	$H_2O + C^+$	132	H^{-}	$+ C \rightarrow CH + e^{-}$	$k_{132} = 1.0 \times 10^{-9}$	28		
		31	OH	79	$H_3O^+ + O^+$	133	H^{-}	$+ O \rightarrow OH + e^{-}$	$k_{133} = 1.0 \times 10^{-9}$	28		
		32	HO	81	$O_2 + C^+$	134	H-	$+ OH \rightarrow H_2O + e^-$	$k_{134} = 1.0 \times 10^{-10}$	28		
		33	HO	82	$O_2 + CH_2^+$	135	C-	$+ H \rightarrow CH + e^-$ + He $\rightarrow CHe + e^-$	$\kappa_{135} = 5.0 \times 10^{-13}$	28		
		34	C +	83	$O_2^+ + C \rightarrow$	137	č-	$+ 0 \rightarrow C0 + e^{-}$	$k_{137} = 5.0 \times 10^{-10}$	28		
		35	CH	84	$CO + H_3^+$	138	ŏ-	$+ H \rightarrow OH + e^{-}$	$k_{138} = 5.0 \times 10^{-10}$	28		
			-	85	$CO + H_3^+$	139	0-	$+ H_2 \rightarrow H_2O + e^-$	$k_{139} = 7.0 \times 10^{-10}$	28		
	_			86	$HCO^+ + C$	140	0-	$+ C \rightarrow CO + e^-$	$k_{140} = 5.0 \times 10^{-10}$	28		
				87	$HCO^+ + H_2$	$_{2}O \rightarrow CO$	$J + H_{i}$	$k_{87} = 2.5 \times 10^{-9}$	62			

	$14 H^- + H$ 36	\rightarrow H + H + e β CH + H ₂ - CH + H ₂ -	88 89 90	$H_2 + He^+ \rightarrow He + H_2^+$ $H_2 + He^+ \rightarrow He + H + H^+$ $CH + H^+ \rightarrow CH^+ + H$	$k_{88} = 7.2 \times 10^{-15}$ $k_{89} = 3.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$ $k_{99} = 1.9 \times 10^{-9}$	63 63 28
No. Rea	38		91 92 93 94	$\begin{array}{c} CH_2 + H^+ \rightarrow CH_2^+ + H\\ O_2^+ - H^+ \rightarrow OH^+ + H\\ C_1^+ + e\\ OH^+ + H^+ \rightarrow OH^+ + H \end{array}$	$k_{91} = 1.4 \times 10^{-9}$ $k_{91} = 1.4 \times 10^{-9}$ $k_{93} = 6.6$ $k_{94} = 2.1 \times 10^{-9}$	2^{28} 28 28 28 28 28
1 H+	40 41 42	$\begin{array}{ccc} & CH_2 + O - \\ I & CH_2 + O - \\ 2 & C_2 + O \rightarrow \end{array}$	95 96 97 98	$\begin{array}{l} OH + He^+ \rightarrow O^+ + He + H \\ H_2O + H^+ \rightarrow H_2O^+ + H \\ H_2O + He^+ \rightarrow OH + He + H^+ \\ H \rightarrow OH + He^+ - OH^+ + He^- \\ H \rightarrow He^- \\ H \rightarrow He^ OH^+ + He^- \\ H \rightarrow H \rightarrow He^- \\ H \rightarrow He^- \\ H \rightarrow H \rightarrow He^- \\ H \rightarrow He^- \\ H \rightarrow H \rightarrow H \rightarrow H \rightarrow He^- \\ H \rightarrow H$	$k_{95} = 1.1 \times 10^{-9} k_{96} = 6.9 \times 10^{-9} k_{97} = 2.04 \times 10^{-10} k_{97} = 0.04 \times 10^{-10} $	28 64 65

Table	B2. List of photochemical	reactions included in our che	emical mod	el	25×10^{-15} 0 $\times 10^{-17}$	81 82
No.	Reaction	Optically thin rate (s ⁻¹)	γ	Ref.	0×10^{-17} $0 \times 10^{-18} (T)^{0.35} \exp(-161.3)$	82
100		D 71			1×10^{-19} $T \leq 300 \text{ K}$	84
166	$H^- + \gamma \rightarrow H + e^-$	$R_{166} = 7.1 \times 10^{-1}$	0.5	1	$09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{1629}{T}\right)$ T > 300 K	85
167	$H_2^+ + \gamma \rightarrow H + H^+$	$R_{167} = 1.1 \times 10^{-9}$	1.9	2	$46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{4.93}{\pi^{2/3}}\right)^{1}$	86
168	$H_2 + \gamma \rightarrow H + H$	$R_{168} = 5.6 \times 10^{-11}$	See §2.2	3	$0 \times 10^{-16} \left(\frac{T}{200}\right)^{-0.2} \left(\frac{T}{1000}\right)^{-0.2}$	87
169	$H_3^+ + \gamma \rightarrow H_2 + H^+$	$R_{169} = 4.9 \times 10^{-13}$	1.8	4	5×10^{-18} $T \leq 300 \text{ K}$	84
170	$H_3^+ + \gamma \rightarrow H_2^+ + H$	$R_{170} = 4.9 \times 10^{-13}$	2.3	4	$14 \times 10^{-18} \left(\frac{T}{300}\right)^{-0.15} \exp\left(\frac{68}{T}\right)$ $T > 300 \text{ K}$	
171	$C + \gamma \rightarrow C^+ + e^-$	$R_{171} = 3.1 \times 10^{-10}$	3.0	5	5×10^{-15}	28
172	$C^- + \gamma \rightarrow C + e^-$	$R_{172} = 2.4 \times 10^{-7}$	0.9	6	$9 \times 10^{-19} \left(\frac{T}{300}\right)^{-0.38}_{-0.50}$	28
173	$CH + \gamma \rightarrow C + H$	$R_{173} = 8.7 \times 10^{-10}$	1.2	7	$9 \times 10^{-20} \left(\frac{T}{300}\right)^{1.58}$	82
174	$CH + \gamma \rightarrow CH^+ + e^-$	$R_{174} = 7.7 \times 10^{-10}$	2.8	8	$26 \times 10^{-18} \left(\frac{T}{300}\right)^{-5.22} \exp\left(-\frac{90}{T}\right)$	88
175	$CH^+ + \gamma \rightarrow C + H^+$	$R_{175} = 2.6 \times 10^{-10}$	2.5	7	$32 \times 10^{-32} \left(\frac{T}{300}\right)^{-0.38}$ $T \leq 300 \text{ K}$	89
176	$CH_2 + \gamma \rightarrow CH + H$	$R_{176} = 7.1 \times 10^{-10}$	1.7	7	$32 \times 10^{-32} \left(\frac{T}{300}\right)^{-1.0}$ T > 300 K	90
177	$CH_2 + \gamma \rightarrow CH_2^+ + e^-$	$R_{177} = 5.9 \times 10^{-10}$	2.3	6	$8 \times 10^{-31} T^{-0.6}$	91
178	$CH_2^+ + \gamma \rightarrow CH^+ + H$	$R_{178} = 4.6 \times 10^{-10}$	1.7	9	$9 \times 10^{-32} T^{-0.4}$	92
179	$CH_3^+ + \gamma \rightarrow CH_2^+ + H$	$R_{179} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-55} \left(\frac{5000}{5000}\right) = 0.64$ (5055) $T \leq 5000 \text{ K}$	93
180	$CH_3^+ + \gamma \rightarrow CH^+ + H_2$	$R_{180} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-33} \left(\frac{T}{5000}\right) \exp\left(\frac{5235}{T}\right) \qquad T > 5000 \text{ K}$	94
181	$C_2 + \gamma \rightarrow C + C$	$R_{181} = 1.5 \times 10^{-10}$	2.1	7	$16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08}$ $T \leq 2000 \text{ K}$	35
182	$O^- + \gamma \rightarrow O + e^-$	$R_{182} = 2.4 \times 10^{-7}$	0.5	6	$14 \times 10^{-29} \left(\frac{T}{300}\right)^{-5.06} \exp\left(\frac{2114}{T}\right)$ T > 2000 K	67
183	$OH + \gamma \rightarrow O + H$	$R_{183} = 3.7 \times 10^{-10}$	1.7	10	$10 \times k_{210}$	67 67
184	$OH + \gamma \rightarrow OH^+ + e^-$	$R_{184} = 1.6 \times 10^{-12}$	3.1	6	$10 \times \kappa_{210}^{-32} (T)^{-1.0}$	42
185	$OH^+ + \gamma \rightarrow O + H^+$	$R_{185} = 1.0 \times 10^{-12}$	1.8	4	$33 \times 10^{-1} \left(\frac{300}{300}\right)^{-2.0}$	40
186	$H_2O + \gamma \rightarrow OH + H$	$R_{186} = 6.0 \times 10^{-10}$	1.7	11	$36 \times 10^{-34} \left(\frac{1}{300}\right)^{-1.0}$	30
187	$H_2O + \gamma \rightarrow H_2O^+ + e^-$	$R_{187} = 3.2 \times 10^{-11}$	3.9	8	$2 \times 10^{-50} \left(\frac{300}{300}\right)^{0.44}$	37
188	$H_2O^+ + \gamma \rightarrow H_2^+ + O$	$R_{188} = 5.0 \times 10^{-11}$	See \$2.2	12	$0 \times 10^{-11} \left(\frac{300}{300}\right)$	95
189	$H_2O^+ + \gamma \rightarrow H^+ + OH$	$R_{189} = 5.0 \times 10^{-11}$	See \$2.2	12	$0 \times 10^{-30} T_{\rm c}^{3.0} f_{\rm A} [1.0 + 0.04(T + T_{\rm d})^{0.0}] f_{\rm A} = \begin{bmatrix} 1.0 + 10^{*} \exp\left(-\frac{300}{T_{\rm d}}\right) \end{bmatrix}$	96
190	$H_2O^+ + \gamma \rightarrow O^+ + H_2$	$R_{190} = 5.0 \times 10^{-11}$	See §2.2	12	0.0021+8×10 (12)	
191	$H_2O^+ + \gamma \rightarrow OH^+ + H$	$R_{191} = 1.5 \times 10^{-10}$	See §2.2	12	$6 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.64}$ 79	
192	$H_3O^+ + \gamma \rightarrow H^+ + H_2O$	$R_{192} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-8} \left(\frac{T}{200} \right)^{-0.64}$ 79	
193	$H_3O^+ + \gamma \rightarrow H_0^+ + OH$	$R_{193} = 2.5 \times 10^{-11}$	See \$2.2	12	$\times 10^{-7} \left(\frac{T}{200} \right)^{-1.0}$ 28	
194	$H_3O^+ + \gamma \rightarrow H_2O^+ + H_1$	$R_{104} = 7.5 \times 10^{-12}$	See \$2.2	12	× 10 ⁻⁹ 28	
195	$H_2O^+ + \gamma \rightarrow OH^+ + H_2$	$R_{105} = 2.5 \times 10^{-11}$	See \$2.2	12	× 10 ⁻⁹ 28	
196	$Q_2 + \gamma \rightarrow Q_2^+ + e^-$	$R_{196} = 5.6 \times 10^{-11}$	3.7	7	× 10 ⁻¹⁰ 28	
197	$0_2 + \gamma \rightarrow 0 + 0$	$B_{107} = 7.0 \times 10^{-10}$	1.8	7	× 10 ⁻¹³ 28	
198	$CO + \gamma \rightarrow C + O$	$R_{108} = 2.0 \times 10^{-10}$	See \$2.2	13	× 10 ⁻¹⁰ 28	
			200 2010		× 10 ⁻¹⁰ 28	
_	86 H	$CO^+ + C$ 140 $O^- + C \rightarrow CO + CO^+$	+ e	$k_{140} = 1$	5.0×10^{-10} 28	
	87 H	$CO^+ + H_2O \rightarrow CO + H_3O^+$ $k_{87} =$	2.5×10^{-9}		62	

	Table B1. 1 No. Rea 1 H +	14 H ⁻ +	$\begin{array}{c} \mathrm{H} \rightarrow \mathrm{H} + \mathrm{H} + \mathrm{e} \\ 36 \mathrm{CH} + \mathrm{H}_2 - \\ 37 \mathrm{CH} + \mathrm{C} \rightarrow \\ 38 \mathrm{CH} + \mathrm{C} \rightarrow \\ 39 \mathrm{C} - \\ 40 \mathrm{CH}_2 + \mathrm{O} - \\ 41 \mathrm{CH}_2 + \mathrm{O} - \\ 42 \mathrm{C}_2 + \mathrm{O} \rightarrow \\ 94 \mathrm{OH} + \mathrm{H} \\ 95 \mathrm{OH} + \mathrm{H} \\ 96 \mathrm{H}_2 \mathrm{OH} + \mathrm{H} \\ 98 \mathrm{H}_2 + \mathrm{OH} \\ 98 \mathrm{H}_2 + \mathrm{OH} \\ 98 \mathrm{H}_2 + \mathrm{H} \\ 99 \mathrm{H}_2 + \mathrm{H} \\ 98 \mathrm{H}_2 + \mathrm{H} \\ 99 \mathrm{H}_2 + \mathrm{H} \\ 98 \mathrm{H}_2 + \mathrm{H} \\ 98 \mathrm{H}_2 + \mathrm{H} \\ 98 \mathrm{H}_2 + \mathrm{H} \\ \mathrm{H}_2 $	$\begin{array}{c} \overset{\circ}{} $	$k_{88} = 7$ $k_{89} = 3$ $k_{90} = 1$ $k_{91} = 1$ $g_{3} = 2$ $k_{94} = 2$ $k_{95} = 1$ $k_{96} = 6$ $k_{97} = 2$ $k_{97} = 2$	$\begin{array}{c} 2 \times 10^{-15} \\ 7 \times 10^{-14} \exp\left(\frac{35}{T}\right) \\ 9 \times 10^{-9} \\ 4 \times 10^{-9} \\ 5 \\ 1 \times 10^{-9} \\ 1 \times 10^{-9} \\ 9 \times 10^{-9} \\ 9 \times 10^{-9} \\ 0.4 \times 10^{-10} \\ ee = 10^{-10} \end{array}$	63 63 28 28 28 28 28 28 28 28 64 65 65	ZAL
No. 166 167 168 169 170 171	Reaction $H^{-} + \gamma \rightarrow H$ $H_{2}^{+} + \gamma \rightarrow H$ $H_{2}^{+} + \gamma \rightarrow H$ $H_{3}^{+} + \gamma \rightarrow H$ $H_{3}^{+} + \gamma \rightarrow H$ $C + \gamma \rightarrow C^{+}$	$H + e^{-}$ $H + H^{+}$ $H + H^{+}$ $H_{2} + H^{+}$ $H_{2}^{+} + H$		(s^{-1}) γ 0.5 1.9 See §2.2 1.8 2.3 2.0	Ref. 1 2 3 4 4 5	$\begin{array}{c} 25 \times 10^{-15} \\ 0 \times 10^{-17} \\ 0 \times 10^{-17} \\ 36 \times 10^{-18} \left(\frac{T}{300}\right)^{0.35} \exp\left(-\frac{1}{1000}\right)^{0.35} \exp\left(-\frac{1}{1000}$	$-\frac{161.3}{T}$) $T \leqslant 3$ $-\frac{1629}{T}$) $T > 3$ $\frac{3}{3}$) $T \leqslant 3$ $(\frac{68}{T})$ $T > 3$	81 82 82 83 00 K 84 00 K 85 86 87 00 K 84 00 K 28
172 173 174 175 176 177 178 179 180 181 182 183 184	$\begin{array}{c} C^- + \gamma \rightarrow \\ CH + \gamma \rightarrow \\ CH + \gamma \rightarrow \\ CH^+ + \gamma \rightarrow \\ CH_2 + \gamma \rightarrow \\ CH_2 + \gamma \rightarrow \\ CH_2^+ + \gamma \rightarrow \\ CH_3^+ + \gamma \rightarrow \\ OH_3^+ + \gamma \rightarrow \\ OH_3^- + \gamma \rightarrow \\ O$	Table 1 No. 199 200 201 202 203 204 205 206 207	B3. List of reactions include Reaction $H + c.r. \rightarrow H^+ + e^-$ $He + c.r. \rightarrow He^+ + e^-$ $H_2 + c.r. \rightarrow H^+ + H + e^-$ $H_2 + c.r. \rightarrow H^+ + H^-$ $H_2 + c.r. \rightarrow H^+ + H^-$ $H_2 + c.r. \rightarrow H^+ + e^-$ $C + c.r. \rightarrow C^+ + e^-$ $O + c.r. \rightarrow O^+ + e^-$ $CO + c.r. \rightarrow CO^+ + e^-$	d in our chemical Rate $(s^{-1}\zeta_{\rm H}^{-1})$ $R_{199} = 1.0$ $R_{200} = 1.1$ $R_{201} = 0.037$ $R_{202} = 0.22$ $R_{203} = 6.5 \times 10$ $R_{204} = 2.0$ $R_{205} = 3.8$ $R_{206} = 5.7$ $R_{207} = 6.5$	model n	Ref.	s or cosmic-ray i	nduced UV emission 12 13 19 10 11 12 13 14 15 17 17 17 13 13 14 15 15 17 13 14 15 15 17 13 14 15 15 17 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
185 186 187 188 189 190 191 192 193 194 195 196	$\begin{array}{c} {\rm OH}^{+} + \gamma \\ {\rm H}_2 {\rm O} + \gamma \\ {\rm H}_2 {\rm O} + \gamma \\ {\rm H}_2 {\rm O}^{+} + \gamma \\ {\rm H}_2 {\rm O}^{+} + \gamma \\ {\rm H}_2 {\rm O}^{+} + \gamma \\ {\rm H}_3 {\rm O}^{+} + \gamma \end{array}$	208 209 210 211 212 213 214 215 216 217 218	$\begin{array}{c} C + \gamma_{c.r.} \rightarrow C^+ + e^- \\ CH + \gamma_{c.r.} \rightarrow C + H \\ CH^+ + \gamma_{c.r.} \rightarrow C^+ + H \\ CH_2 + \gamma_{c.r.} \rightarrow CH_2^+ + e^- \\ CH_2 + \gamma_{c.r.} \rightarrow CH + H \\ C_2 + \gamma_{c.r.} \rightarrow C + C \\ OH + \gamma_{c.r.} \rightarrow O + H \\ H_2O + \gamma_{c.r.} \rightarrow O + H \\ H_2O + \gamma_{c.r.} \rightarrow O + O \\ O_2 + \gamma_{c.r.} \rightarrow O_2^+ + e^- \\ CO + \gamma_{c.r.} \rightarrow C + O \end{array}$	$\begin{array}{l} R_{208} = 2800 \\ R_{209} = 4000 \\ R_{210} = 960 \\ R_{211} = 2700 \\ R_{212} = 2700 \\ R_{213} = 1300 \\ R_{214} = 2800 \\ R_{215} = 5300 \\ R_{216} = 4100 \\ R_{217} = 640 \\ R_{218} = 0.21T^{1/2} \end{array}$	$^{2}x_{H_{2}}x_{C_{1}}^{-}$	2 3 3 1 1 3 3 3 3 3 3 3 3 3 3 1/2 4	28	35 37 35 36
197 198	$O_2 + \gamma \rightarrow O$ $CO + \gamma \rightarrow O$	0+0 C+0	$\begin{array}{c} R_{197} = 7.0 \times 10^{-10} \\ R_{198} = 2.0 \times 10^{-10} \\ \hline \\ 86 & \text{HCO}^+ + \text{C} & 140 & \text{O}^- + \text{C} \\ 87 & \text{HCO}^+ + \text{H}_2\text{O} \rightarrow \text{CO} + \text{H}_3\text{O}^+ \end{array}$	1.8 See §2.2 \rightarrow CO + e ⁻ $k_{87} = 2.5 \times 10^{-9}$	7 13 $k_{140} = 1$	$\times 10^{-10}$ × 10^{-10} × 10^{-10} × 10^{-10} 5.0 × 10^{-10}	28 28 28 28 28 62	

HI to H2 conversion rate

Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

HI to H2 conversion rate

Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

HI to H2 conversion rate

Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

CO, C⁺ formation rates

Figure 5. Time evolution of the mass-weighted abundances of atomic carbon (black lines), CO (red lines), and C^+ (blue lines) in simulations with numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid).

effects of chemistry 1

effects of chemistry 2

effects of chemistry 4

- deliverables / predictions:
 - x-factor estimates (as function of environmental conditions)
 - synthetic line emission maps (in combination with line transfer)
 - pdf's of density, velocity, emissivity / structure functions (to directly connect to observational regime)
 - COMMENT: density pdf is NOT lognormal! --> implications for analytical IMF theories

the x-factor

Images of A_v (left) and the X factor (right) of model n300-Z03.

(Shetty, Glover, Dullemond, Klessen 2011)

-3

-2

b) log(W) (K km s⁻¹)

0

2

a) $log(N_{co})$ (cm⁻²)

14

16

18

12

 $log(N_{CO}) = 12$, 14 and log(W) = -3, -1; dashed contours are $log(N_{CO}) = 16.5$ and log(W) = 1.5 (see the text and Fig. 2d).

the x-factor

(Shetty, Glover, Dullemond, Klessen 2011)

different metallicities

Figure 5. X factor for four models. $N_{\rm CO}$ is plotted as a function of $N_{\rm H_2}$. The colour of each point indicates the X factor. Inset figures show the colour scale and PDF of the X factor. The corresponding maps of $N_{\rm H_2}$, $N_{\rm CO}$ and the X factor from model n300-Z03 are shown in Fig. 4.

(Shetty, Glover, Dullemond, Klessen, in prep.)

line ratios

⁽Shetty, Glover, Dullemond, Klessen, in prep.)

X-factor

Mean visual extinction

from Glover & Mac Low (2010, ApJ, submitted)

Figure 8. Estimate of the CO-to- H_2 conversion factor $X_{CO,est}$, plotted as a function of the mean visual extinction of the gas, $\langle A_{\rm V} \rangle$. The simplifications made in our modelling mean that each value of $X_{\rm CO,est}$ is uncertain by at least a factor of two. At $\langle A_{\rm V} \rangle > 3$, the values we find are consistent with the value of $X_{\rm CO} = 2 \times 10^{20} {\rm cm}^{-2} {\rm K}^{-1} {\rm km}^{-1} {\rm s}$ determined observationally for the Milky Way by Dame et al. (2001), indicated in the plot by the horizontal dashed line. At $\langle A_V \rangle < 3$, we find evidence for a strong dependence of $X_{\rm CO,est}$ on $\langle A_{\rm V} \rangle$. The empirical fit given by Equation 11 is indicated as the dotted line in the Figure, and demonstrates that at low $\langle A_V \rangle$, the CO-to-H₂ conversion factor increases roughly as $X_{\rm CO,est} \propto A_{\rm V}^{-2.8}$. It should also be noted that at any particular $\langle A_V \rangle$, the dependence of $X_{CO,est}$ on metallicity is relatively small. Previous claims of a strong metallicity dependence likely reflect the fact that there is a strong dependence on the mean extinction, which varies as $\langle A_V \rangle \propto Z$ given fixed mean cloud density and cloud size.

decreasing spatial scales

We want to address the following questions:

- how do massive stars (and their associated clusters) form?
- what determines the upper stellar mass limit?
- what is the physics behind observed HII regions?

(proto)stellar feedback processes

- radiation pressure on dust particles
- ionizing radiation
- stellar winds
- jets and outflows

- radiation pressure on dust particles
 - has gained most attention in the literature (see e.g. Krumholz et al. 2007, 2008, 2009)
- ionization
 - few numerical studies so far (e.g. Dale 2007, Gritschneder et al. 2009), detailed collapse calculations with ionizing and non-ionizing feedback still missing
 - HII regions around massive stars are directly observable
 --> direct comparison between theory and observations

our (numerical) approach

- focus on collapse of individual high-mass cores...
 - massive core with 1,000 M_{\odot}
 - Bonnor-Ebert type density profile (flat inner core with 0.5 pc and rho ~ r^{-3/2} further out)
 - initial m=2 perturbation, rotation with $\beta = 0.05$
 - sink particle with radius 600 AU and threshold density of 7 x 10^{-16} g cm⁻³
 - cell size I00 AU

our (numerical) approach

• method:

- FLASH with ionizing and non-ionizing radiation using raytracing based on hybrid-characteristics
- protostellar model from Hosokawa & Omukai
- rate equation for ionization fraction
- relevant heating and cooling processes
- some models include magnetic fields
- first 3D MHD calculations that consistently treat both ionizing and non-ionizing radiation in the context of highmass star formation

model of high mass star formation

Disk edge on

Disk plane

ray tracing method (hydrid characteristics)

Monte Carlo: full RT (with scattered radiation)

mass load onto the disk exceeds inward transport --> becomes gravitationally

unstable (see also Kratter & Matzner 2006, Kratter et al. 2010)

fragments to form multiple stars --> explains why highmass stars are seen in clusters

Peters et al. (2010a, ApJ, 711, 1017), Peters et al. (2010b, ApJ, 719, 831), Peters et al. (2010c, ApJ, 725, 134)

mass load onto the disk exceeds inward transport

--> becomes gravitationally unstable (see also Kratter & Matzner 2006, Kratter et al. 2010)

fragments to form multiple stars --> explains why highmass stars are seen in clusters

Peters et al. (2010a, ApJ, 711, 1017), Peters et al. (2010b, ApJ, 719, 831), Peters et al. (2010c, ApJ, 725, 134)

- compare with control run without radiation feedback
- total accretion rate does not change with accretion heating
- expansion of ionized bubble causes turn-off
- no triggered star formation by expanding bubble

- magnetic fields lead to weaker fragmentation
- central star becomes more massive (magnetic breaking

= 14.5 kyr

t = t = 14.9 kyr,

$M_{\rm mm} = 6.22 \ M_{\odot}$

Fragmentation-induced starvation in a complex cluster

numerical data can be used to generate continuum maps

- calculate free-free absorption coefficient for every cell
- integrate radiative transfer equation (neglecting scattering)
- convolve resulting image with beam width
- VLA parameters:
 - distance $2.65 \, \mathrm{kpc}$
 - wavelength $2\,\mathrm{cm}$
 - FWHM 0".14
 - noise 10^{-3} Jy

Disk face on

Disk edge on

Ultracompact HII Region Morphologies

- Wood & Churchwell 1989 classification of UC H II regions
- Question: What is the origin of these morphologies?
- UC H II lifetime problem: Too many UC H II regions observed!

- ${ullet}$ synthetic VLA observations at $2\,cm$ of simulation data
- interaction of ionizing radiation with accretion flow creates high variability in time and shape
- flickering resolves the lifetime paradox!

Morphology of HII region depends on viewing angle

Туре	WC89	K94	single	multiple
Spherical/Unresolved	43	55	19	60 ± 5
Cometary	20	16	7	$10~\pm~5$
Core-halo	16	9	15	4 ± 2
Shell-like	4	1	3	5 ± 1
Irregular	17	19	57	21 ± 5

WC89: Wood & Churchwell 1989, K94: Kurtz et al. 1994

- statistics over 25 simulation snapshots and 20 viewing angles
- statistics can be used to distinguish between different models
- single sink simulation does not reproduce lifetime problem

time variability

- correlation between accretion events and H II region changes
- time variations in size and flux have been observed
- changes of size and flux of $5-7\% yr^{-1}$ match observations Franco-Hernández et al. 2004, Rodríguez et al. 2007, Galván-Madrid et al. 2008

Some results

- Ionization feedback cannot stop accretion
- Ionization drives bipolar outflow
- H II region shows high variability in time and shape
- All classified morphologies can be observed in one run
- Lifetime of H II region determined by accretion time scale
- Rapid accretion through dense, unstable flows
- Fragmentation-induced mass limits of massive stars

decreasing spatial scales

stellar masses

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

stellar masses

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

example: model of Orion cloud

"model" of Orion cloud: 15.000.000 SPH particles, $10^4 M_{sun}$ in 10 pc, mass resolution 0,02 M_{sun} , forms ~2.500 "stars" (sink particles)

isothermal EOS, top bound, bottom unbound

has clustered as well as distributed "star" formation

efficiency varies from 1% to 20%

develops full IMF (distribution of sink particle masses)

(Bonnell & Clark 2008)

example: model of Orion cloud

dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287)

Dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287)

stellar masses

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

stellar masses

(Kroupa 2002)

ONC (HCOO

standard

-1

0 log₁₀m [M₀]

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

application to first star formation

EOS as function of metallicity

EOS as function of metallicity

EOS as function of metallicity

present-day star formation

⁽Omukai et al. 2005, Jappsen et al. 2005, Larson 2005)

present-day star formation

present-day star formation

IMF in nearby molecular clouds

transition: Pop III to Pop II.5

transition: Pop III to Pop II.5

FIG. 2.— Number density maps for a slice through the high density region. The image shows a sequence of zooms in the density structure in the gas immediately before the formation of the first protostar.

Dopcke et al. (2011, ApJ 729, L3)

FIG. 3.— Number density map showing a slice in the densest clump, and the sink formation time evolution, for the 40 million particles simulation, and $Z = 10^{-4} Z_{\odot}$. The box is 100AU x 100AU and the time is measured from the formation of the first sink particle.

Fig. 4.— Sink particle mass function at the end of the simulations. High and low resolution results and corresponding resolution limits are shown. To resolve the fragmentation, the mass resolution should be smaller than the Jeans mass at the point in the temperature-density diagram where dust and gas couple and the compressional heating starts to dominate over the dust cooling. At the time shown, around 5 M_{\odot} of gas had been accreted by the sink particles in each simulation.

red / blue: turbulence and rotation dark red / green: simple collapse

Dopcke et al. (2011, ApJ 729, L3)

dust induced fragmentation at $Z=10^{-5}$

dense cluster of low-mass protostars builds up:

- mass spectrum peaks below 1 M_{sun}
- cluster VERY dense $n_{stars} = 2.5 \times 10^9 \,\text{pc}^{-3}$
- fragmentation at density $n_{gas} = 10^{12} - 10^{13} \text{ cm}^{-3}$

(Clark et al. 2008, ApJ 672, 757)

dust induced fragmentation at $Z=10^{-5}$

dust induced fragmentation at $Z=10^{-5}$

dense cluster of low-mass protostars builds up:

- mass spectrum peaks below I M_{sun}
- cluster VERY dense $n_{stars} = 2.5 \times 10^9 \, pc^{-3}$

(plot from Salvadori et al. 2006, data from Frebel et al. 2005)

(Clark et al. 2008)

metal-free star formation

turbulence in Pop III halos

- star formation will depend on degree of turbulence in protogalactic halo
- speculation: differences in stellar mass function, just like in present-day star formation

(Greif et al. 2008)

turbulence in Pop III halos

- star formation will depend on degree of turbulence in protogalactic halo
- speculation: differences in stellar mass function, just like in present-day star formation

turbulence developing in an atomic cooling halo

multiple Pop III stars in halo

- parameter study with different strength of turbulence using SPH: study Pop III.1 and Pop III.2 case (Clark et al., 2011a, ApJ, 727, 110)
- 2 very high resolution studies of Pop III star formation in cosmological context
 - SPH: Clark et al. 2011b, Science, 311, 1040
 - Arepo: Greif et al. 2011a, ApJ, submitted (arXiv:1101.5491)
 - complementary approaches with interesting similarities and differences....

Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up of the protostellar disk and its eventual fragmentation. We also see 'wakes' in the low-density regions, produced by the previous passage of the spiral arms.

Figure 2: Radial profiles of the disk's physical properties, centered on the first protostellar core to form. The quantities are mass-weighted and taken from a slice through the midplane of the disk. In the lower right-hand plot we show the radial distribution of the disk's Toomre parameter, $Q = c_s \kappa / \pi G \Sigma$, where c_s is the sound speed and κ is the epicyclic frequency. Beause our disk is Keplerian, we adopted the standard simplification, and replaced κ with the orbital frequency. The molecular fraction is defined as the number density of hydrogen molecules $(n_{\rm H_2})$, divided by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5

Figure 3: The mass transfer rate through the disk is denoted by the solid black line, while the mass infall rate through spherical shells with the specified radius is shown by the dark blue dashed line. The latter represents the total amount of material flowing through a given radius, and is thus a measure of the material flowing through *and onto* the disk at each radius. Both are shown at the onset of disk fragmentation. In the case of the disk accretion we have denoted annuli that are moving towards the protostar with blue dots, and those moving away in pink (further details can be found in Section 6 of the online material). The light blue dashed lines show the accretion rates expected from an 'alpha' (thin) disk model, where $\dot{M}(r) = 3\pi \alpha c_s(r) \Sigma(r) H(r)$, with two global values of alpha and where $c_s(r)$, $\Sigma(r)$, and H(r) are (respectively) the sound speed, surface density and disk thickness at radius r.

Figure 7: (a) Dominant heating and cooling processes in the gas that forms the second sink particle. (b) Upper line: ratio of the thermal timescale, t_{thermal} , to the free-fall timescale, t_{ff} , for the gas that forms the second sink particle. Periods when the gas is cooling are indicated in blue, while periods when the gas is heating are indicated in red. Lower line: ratio of t_{thermal} to the orbital timescale, t_{orbital} , for the same set of SPH particles (c) Temperature evolution of the gas that forms the second sink (d) Density evolution of the gas that forms the second sink

Arepo study: surface density at different times

one out of five halos

Arepo study: mass spectrum of fragments

primordial star formation

- - turbulence
 - thermodynamics
 - feedback
 - magnetic fields

to influence Pop III/II star formation.

- masses of Pop III stars still uncertain (surprises from new generation of high-resolution calculations that go beyond first collapse)
- disks unstable: Pop III stars should be binaries or part of small clusters

questions

- is claim of Pop III stars with $M \sim 0.5 M_{\odot}$ really justified?
 - stellar collisions
 - magnetic fields
 - radiative feedback
- how would we find them?
 - spectral features
- where should we look?
- what about magnetic fields?

decreasing spatial scales

B fields in the early universe?

- we know the universe is magnetized (now)
- knowledge about B-fields in the high-redshift universe is extremely uncertain
 - inflation / QCD phase transition / Biermann battery / Weibel instability
- they are thought to be extremely small
- however, THIS MAY BE WRONG!

small-scale turbulent dynamo

- *idea*: the small-scale turbulent dynamo can generate strong magnetic fields from very small seed fields
- approach: model collapse of primordial gas ---> formation of the first stars in low-mass halo at redshift z ~ 20
- method: solve ideal MHD equations with very high resolution
 - grid-based AMR code FLASH (effective resolution 65536³)

magnetic field structure

density structure

Field amplification during first collapse seems unavoidable.

QUESTIONS:

- Is it really the small scale dynamo?
- What is the saturation value? Can the field reach dynamically important strength?
analysis of magnetic field spectra

P(B)

analysis of magnetic field spectra

first attempts to calculate the saturation level.

Brandenburg & Subramanian 2005)

QUESTIONS: • Is this true in a proper cosmological context? • What does it mean for the formation of the first stars

questions

- small-scale turbulent dynamo is expected to operate during Pop III star formation
- process is fast (10⁴ x t_{ff}), so primordial halos may collapse with B-field at saturation level!
- simple models indicate saturation levels of ~10%
 --> larger values via αΩ dynamo?
- QUESTIONS:
 - does this hold for "proper" halo calculations (with chemistry and cosmological context)?
 - what is the strength of the seed magnetic field?

decreasing spatial scales

summary

decreasing spatial scales

early universe

Molecular cloud formation What are the initial conditions for MC formation? How do star clusters form inside?

High-mass star formation: What set upper stellar mass limit? Can we see UC HII regions flicker?

First star formation: Are there still Pop III stars around? How can we see them? And where?

Magnetic fields in the primordial universe: Is there a minimum primordial field? What is the influence of B on Pop III star?

