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What can we learn from 
present-day star formation 

about the first stars?
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NGC 602 in the LMC: Hubble Heritage Image



stellar mass fuction
stars seem to follow a universal 
mass function at birth --> IMF

(Kroupa 2002) Orion, NGC 3603, 30 Doradus 
(Zinnecker & Yorke 2007)



stellar masses
• distribution of stellar masses depends on

- turbulent initial conditions 
--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores
--> accretion and N-body effects

- thermodynamic properties of gas
--> balance between heating and cooling
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation
ionizing radiation, bipolar outflows, winds, SN

(Kroupa 2002)
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image from Alyssa Goodman: COMPLETE survey



Schmidt et al. (2009, A&A, 494, 127)



example: model of Orion cloud
„model“ of Orion cloud:
15.000.000 SPH particles,
104 Msun in 10 pc, mass resolution 
0,02 Msun, forms ~2.500 
„stars“ (sink particles)

isothermal EOS, top bound, bottom 
unbound

has clustered as well as distributed 
„star“ formation

efficiency varies from 1% to 20%

develops full IMF 
(distribution of sink particle masses)

(Bonnell & Clark 2008)



(Spitzer: Megeath et al.)

example: model of Orion cloud

Bonnell & Clark  2008

„model“ of Orion cloud:
15.000.000 SPH particles,
104 Msun in 10 pc, mass resolution 
0,02 Msun, forms ~2.500 
„stars“ (sink particles)

MASSIVE STARS
- form early in high-density 
  gas clumps (cluster center)
- high accretion rates,   
  maintained for a long time

LOW-MASS STARS
- form later as gas falls into 
  potential well
- high relative velocities
- little subsequent accretion



Dynamics of nascent star cluster

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation 
(from Klessen & Burkert 2000, ApJS, 128, 287)

in dense clusters protostellar interaction may be come important!



Mass accretion 
rates  vary with 
time and are 
strongly 
influenced by the 
cluster 
environment.

accretion rates in clusters

(Klessen 2001, ApJ, 550, L77;
also Schmeja & Klessen,
2004, A&A, 419, 405)



stellar masses
• distribution of stellar masses depends on

- turbulent initial conditions 
--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores
--> accretion and N-body effects

- thermodynamic properties of gas
--> balance between heating and cooling
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation
ionizing radiation, bipolar outflows, winds, SN

application to first star formation

(Kroupa 2002)



thermodynamics & fragmentation

degree of fragmentation depends on EOS!

polytropic EOS: p ∝ργ
γ<1: dense cluster of low-mass stars
γ>1: isolated high-mass stars
(see Li et al. 2003; also Kawachi & Hanawa 1998, Larson 2003)



dependency on EOS

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

γ=0.2 γ=1.0 γ=1.2

for γ<1 fragmentation is enhanced  cluster of low-mass stars
for γ>1 it is suppressed  formation of isolated massive stars



 (1)  p ∝ ργ        ρ ∝ p1/ γ 

 (2)  Mjeans ∝ γ3/2 ρ(3γ-4)/2 

how does that work?

• γ<1:  large density excursion for given pressure 
	

        〈Mjeans〉 becomes small

   number of fluctuations with M > Mjeans is large

• γ>1:   small density excursion for given pressure
   〈Mjeans〉 is large
   only few and massive clumps exceed Mjeans



(Omukai et al. 2005)

τ = 1

102 M0 1 M0

10-2 M0

EOS as function of metallicity



(Omukai et al. 2005, Jappsen et al. 2005, Larson 2005)

Z = 0

τ = 1

present-day star formation



Z = 0

τ = 1

(Larson 1985, Larson 2005)

γ = 1.1

γ = 0.7

This kink in EOS is very insensitive to environmental        
conditions such as ambient radiation field 
--> reason for universal for of the IMF? (Elmegreen et al. 2008)

present-day star formation



IMF in nearby molecular clouds

(Jappsen et al. 2005, A&A, 435, 611)

with ρcrit
 ≈ 2.5×105 cm-3 

at SFE  ≈ 50%

 need appropriate
 EOS in order to get
 low mass IMF right

                           
                



transition: Pop III to Pop II.5

(Omukai et al. 2005)

Z = - 5

τ = 1

indeed 2D and 3D 
simulations show that 
vigorous fragmentation 
occurs with mass spectrum 
peaking below 1 Msun. 

see Omukai (2005), Schneider et al. 
(2006, 2009), Clark et al. (2008), 
Dopcke et al. (2011), and many others



metal-free star formation

(Omukai et al. 2005)

Z = - ∞

τ = 1

• slope of EOS in the density range 
5 cm-3 ≤ n ≤ 16 cm-3 is γ≈1.06.

• with non-zero angular 
momentum, disk forms.

• disk is unstable against frag- 
mentation at high density



• most current numerical 
simulations of Pop III star 
formation predict very 
massive objects
(e.g.  Abel et al. 2002, Yoshida et al. 2008, 

Bromm et al. 2009)

• similar for theoretical 
models (e.g. Tan & McKee 2004)

• there are some first hints 
of fragmentation, however
(Turk et al. 2009, Stacy et al. 2010)

metal-free star formation

(so-called ‘minihaloes’; M8, solar mass). In the standard CDM
model, the minihaloes that were the first sites for star formation
are expected to be in place at redshift z< 20–30, when the age of
the Universe was just a few hundred million years14. These systems
correspond to (3–4)s peaks in the cosmic density field, which is
statistically described as a Gaussian random field. Such high-density
peaks are expected to be strongly clustered15, and thus feedback
effects from the first stars are important in determining the fate of
the surrounding primordial gas clouds. It is very likely that only one
star can be formed within a gas cloud, because the far-ultraviolet
radiation from a single massive star is sufficient to destroy all the
H2 in the parent gas cloud16,17. In principle, a cloud that formed one
of the first stars could fragment into a binary or multiple star sys-
tem18,19, but simulations based on self-consistent cosmological initial
conditions do not show this20. Although the exact number of stars per
cloud cannot be easily determined, the number is expected to be
small, so that minihaloes will not be galaxies (see Box 1).

Primordial gas clouds undergo runaway collapse when sufficient
mass is accumulated at the centre of a minihalo. The minimummass
at the onset of collapse is determined by the Jeans mass (more pre-
cisely, the Bonnor–Ebert mass), which can be written as:

MJ<500M8
T

200

! "3=2 n

104

# ${1=2
ð1Þ

for an atomic gas with temperature T (in K) and particle number
density n (in cm23). The characteristic temperature is set by the
energy separation of the lowest-lying rotational levels of the trace
amounts of H2, and the characteristic density corresponds to the
thermalization of these levels, above which cooling becomes less
efficient12. A number of atomic andmolecular processes are involved
in the subsequent evolution of a gravitationally collapsing gas. It has
been suggested that a complex interplay between chemistry, radiative
cooling and hydrodynamics leads to fragmentation of the cloud21,
but vigorous fragmentation is not observed even in extremely high-
resolution cosmological simulations11–13,20,22. Interestingly, however,
simulations starting from non-cosmological initial conditions have
yielded multiple cloud cores19,23. It appears that a high initial degree
of spin in the gas eventually leads to the formation of a disk and its
subsequent break-up. It remains to be seen whether such conditions
occur from realistic cosmological initial conditions.

Although the mass triggering the first runaway collapse is well-
determined, it provides only a rough estimate of the mass of the star(s)
to be formed. Standard star-formation theory predicts that a tiny proto-
star forms first and subsequently grows by accreting the surrounding gas
to become a massive star. Indeed, the highest-resolution simulations of
first-star formation verify that this also occurs cosmologically20 (Fig. 1).
However, the ultimatemass of the star is determinedbothby themass of
the cloud out of which it forms and by a number of feedback processes
that occur during the evolution of the protostar. In numerical simula-
tions, the finalmass of a population III star is usually estimated from the
density distribution and velocity field of the surrounding gas when the
first protostellar fragment forms, but thismaywell be inaccurate even in
the absence of protostellar feedback. Whereas protostellar feedback
effects are well studied in the context of the formation of contemporary
stars24, they differ in several important respects in primordial stars25.

First, primordial gas does not contain dust grains. As a result,
radiative forces on the gas are much weaker. Second, it is generally
assumed that magnetic fields are not important in primordial gas
because, unless exotic mechanisms are invoked, the amplitudes of
magnetic fields generated in the early Universe are so small that they
never become dynamically significant in primordial star-forming
gas26. Magnetic fields have at least two important effects in contem-
porary star formation: they reduce the angular momentum of the gas
outofwhich stars form, and theydrive powerful outflows that disperse
a significant fraction of the parent cloud. It is likely that the pre-stellar
gas has more angular momentum in the primordial case, and this is
borne out by cosmological simulations. Third, primordial stars are

much hotter than contemporary stars of the same mass, resulting in
significantly greater ionizing luminosities27.

State-of-the-art numerical simulations of the formation of the first
(population III.1) stars represent a computational tour de force, in
which the collapse is followed from cosmological (comoving mega-
parsec) scales down to protostellar (sub-astronomical-unit) scales,
revealing the entire formationprocess of a protostar.However, further
growth of the protostar cannot be followed accurately without imple-
menting additional radiative physics. For now, inferring the sub-
sequent evolution of the protostar requires approximate analytic
calculations. By generalizing a theory for contemporary massive-star
formation28, it is possible to approximately reproduce the initial con-
ditions found in the simulations and to then predict the growth of the
accretion disk around the star29. Several feedback effects determine the
final mass of a first star25: photodissociation of H2 in the accreting gas
reduces the cooling rate, but does not stop accretion. Lyman-a radi-
ation pressure can reverse the infall in the polar regions when the
protostar grows to 20–30 M8, but cannot significantly reduce the
accretion rate. The expansion of the H II region produced by the large
flux of ionizing radiation can significantly reduce the accretion rate
when the protostar reaches 50–100M8, but accretion can continue in
the equatorial plane. Finally, photoevaporation-drivenmass loss from
the disk30 stops the accretion and fixes themass of the star (see Fig. 2).
The finalmass depends on the entropy and angularmomentumof the
pre-stellar gas; for reasonable conditions, themass spans 60–300M8.

A variety of physical processes can affect and possibly substantially
alter thepicture outlined above.Magnetic fields generated through the
magneto-rotational instability may become important in the proto-
stellar disk31, although their strength is uncertain, and may play an
important role in the accretion phase18. Cosmic rays and other
external ionization sources, if they existed in the early Universe, could
significantly affect the evolution of primordial gas32. A partially
ionized gas cools more efficiently because the abundant electrons
promoteH2 formation. Such a gas cools to slightly lower temperatures
than a neutral gas can, accentuating the fractionation of D into HD so
that cooling by HD molecules becomes important33–36.

300 pc 5 pc

10 AU

a  Cosmological halo b  Star-forming cloud

c  Fully molecular partd  New-born protostar

25 R .

Figure 1 | Projected gas distribution around a primordial protostar. Shown
is the gas density (colour-coded so that red denotes highest density) of a
single object on different spatial scales. a, The large-scale gas distribution
around the cosmological minihalo; b, a self-gravitating, star-forming cloud;
c, the central part of the fully molecular core; and d, the final protostar.
Reproduced by permission of the AAAS (from ref. 20).
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(Yoshida et al. 2008, Science, 321, 669) 



turbulence in Pop III halos
• star formation will depend on degree of

turbulence in protogalactic halo

• speculation: differences in 
stellar mass function, just 
like in present-day star 
formation

 (Greif et al. 2008) 



multiple Pop III stars in halo

• parameter study with different strength of 
turbulence using SPH: study Pop III.1 and Pop III.2 
case (Clark et al., 2011a, ApJ, 727, 110)

• 2 very high resolution studies of Pop III star 
formation in cosmological context

- SPH: Clark et al. 2011b, Science, 311, 1040

- Arepo: Greif et al. 2011a, ApJ, in press (arXiv:1101.5491)

- complementary approaches with interesting similarities 
and differences....



(Clark et al. 2011b, Science, 331, 1040)

SPH
 study: face on look at accretion diskFigure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up

of the protostellar disk and its eventual fragmentation. We also see ‘wakes’ in the low-density
regions, produced by the previous passage of the spiral arms.

3



SPH
 study: som

e disk param
eters

Figure 2: Radial profiles of the disk’s physical properties, centered on the first protostellar core
to form. The quantities are mass-weighted and taken from a slice through the midplane of the
disk. In the lower right-hand plot we show the radial distribution of the disk’s Toomre parameter,
Q = csκ/πGΣ, where cs is the sound speed and κ is the epicyclic frequency. Beause our disk
is Keplerian, we adopted the standard simplification, and replaced κ with the orbital frequency.
The molecular fraction is defined as the number density of hydrogen molecules (nH2), divided
by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5

5

(Clark et al. 2011b, Science, 331, 1040)



SPH
 study: m

ass accretion onto disk 
 and onto protostars

Figure 3: The mass transfer rate through the disk is denoted by the solid black line, while
the mass infall rate through spherical shells with the specified radius is shown by the dark
blue dashed line. The latter represents the total amount of material flowing through a given
radius, and is thus a measure of the material flowing through and onto the disk at each ra-
dius. Both are shown at the onset of disk fragmentation. In the case of the disk accretion
we have denoted annuli that are moving towards the protostar with blue dots, and those mov-
ing away in pink (further details can be found in Section 6 of the online material). The light
blue dashed lines show the accretion rates expected from an ‘alpha’ (thin) disk model, where
Ṁ(r) = 3 π α cs(r) Σ(r) H(r), with two global values of alpha and where cs(r), Σ(r), and
H(r) are (respectively) the sound speed, surface density and disk thickness at radius r.

7

(Clark et al. 2011b, Science, 331, 1040)



Figure 7: (a) Dominant heating and cooling processes in the gas that forms the second sink

particle. (b) Upper line: ratio of the thermal timescale, tthermal, to the free-fall timescale, tff ,

for the gas that forms the second sink particle. Periods when the gas is cooling are indicated in

blue, while periods when the gas is heating are indicated in red. Lower line: ratio of tthermal to

the orbital timescale, torbital, for the same set of SPH particles (c) Temperature evolution of the

gas that forms the second sink (d) Density evolution of the gas that forms the second sink

22

SPH
 study: com

parison of all relevant 
heating and cooling processes

(Clark et al. 2011b, Science, 331, 1040)



not, of course, rule out significant feedback effects later in the lifetime of the disk, when the

mass of the central sink will be larger, but these lie beyond the scope of our present study.

As far as the Gammie criterion is concerned, we can see from panel (b) of Figure S17 that

this is satisfied for almost the whole period plotted. Typically, tthermal ∼ 0.1torbital, increasing

above this value only occasionally. Most importantly, tthermal/torbital becomes small once the

gas begins to undergo runaway gravitational collapse, decreasing to roughly tthermal/torbital ∼

0.01 by the end of the simulation. In contrast, we note that the gas in the disk finds the standard

Rees & Ostriker criterion for ongoing gravitational collapse (S37), namely that tff > tthermal,

more difficult to satisfy. It is this condition that helps to maintain the overall global stability in

the disk.

Finally, the results presented here allow us to understand why our conclusions regarding

the stability of Population III accretion disks differ significantly from those of the previous

analytical studies (S20, S38, S39). Figure S17 demonstrates that H2 line cooling plays a hugely

important role in the thermal balance of the disk, allowing the disk material to remain relatively

cold, with a temperature of T ∼ 1000–2000 K. However, this process was not included in any

of these previous analytical studies. They therefore find much higher equilibrium temperatures

for the gas in the disk. Neglect of H2 bound-free opacity means that these studies predict inner

disk temperatures T ∼ 6000 K or more, the temperature at which H− ions first become a major

source of opacity. At a temperature of 6000 K, the molecular content of the gas is negligible, and

so the predicted mean molecular weight of the gas in these models also differs by almost a factor

of two from the value in our cold disks. Together, these effects lead to a significantly higher

predicted sound-speed for the disk, and hence also a higher Toomre parameter Q. Our simulated

disks are already marginally stable, and it is likely that a global increase in Q by a factor of a

few would render them completely stable against fragmentation. The difference between the

results of these earlier analytical studies and our simulations can therefore be understood as a

50 (Clark et al. 2011b, Science, 331, 1040)



Arepo study: surface density at different times

one out of five halos

(Greif et al. 2011a, ApJ, in press, arXiv:1101.5491)
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Arepo study: mass spectrum of fragments 

(Greif et al. 2011a, ApJ, in press, arXiv:1101.5491)



brand-new “sinkless” calculations

(Greif et al. in preparation)

10 years need 1 month on the computer
--> we will never be able to follow full accretion history

halo 1 halo 4 halo 5



primordial star formation

just like in present-day SF, we expect 
turbulence
thermodynamics
feedback
magnetic fields 

to influence Pop III/II star formation.
masses of Pop III stars still uncertain (surprises from new 
generation of high-resolution calculations that go beyond first collapse)

disks unstable: Pop III stars should be binaries or part of 
small clusters
effects of feedback less important than in present-day SF



(plot from Salvadori et al. 2006, data from Frebel et al. 2005)

2 extremely metal deficient stars 
with masses below 1 Msun.

there are many extremely 
metal-poor stars in the halo
(Beers & Christlieb 2005, 
ARA&A)

•mass range can be explained 
by dust-induced fragmentation 
(Clark et al. 2008)

• can use abundance pattern to 
learn about properties (yields) 
of  progenitor stars 

constraints from EMP stars in halo
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Figure 4. Mass abundance of He, O, Si, and Fe in Z = 0 (top) and 10−4 Z" (bottom) 25 M" stars after the end of RT-driven mixing. The snapshots are of the simulation
at 3.1 × 104 s, 6.3 × 104 s, and 2.7 × 104 s for z25B, z25D, and z25G, and 1.4 × 104 s, 5.3 × 104 s, and 1.2 × 105 s for models u25B, u25D, and u25G, respectively.
Red Z = 0 stars again show much more mixing than blue Z = 10−4 Z" stars, although it is not as extreme as in the 15 M" models, in which the difference in outer
radius between the z- and u-series progenitors was greater. Mixing again rises with explosion energy, which is 0.6, 1.2, 2.4 Bethe from left to right across the panels.
Spurious jetting is also visible along the y- and x-axes in the u-series models. Like the 15 M" stars shown in Figure 3, both mixing and the amplitudes of the RT
instabilities clearly increase with explosion energy at both metallicities.

more mixing in the internal layers than higher-mass models.
The z-series SNe have far more mixing than u-series SNe. SNe
with higher explosion energies exhibit more mixing and less
fallback than SNe with lower explosion energies. In particular,
the B series SNe with subnormal explosion energies, 0.6 Bethe
instead of the canonical 1.2 Bethe, eject almost no iron with the
exception of model z15B.

The z-series models all show more mixing than their u-series
counterparts. The 25 M" models show the most mixing of the
models in the u-series, while the 40 M" u-series runs show the
smallest degree of mixing. All the 40 M" models experience a
great deal of fallback, but the u-series models show the most
because they are more compact. The higher explosion energy
models exhibit less fallback.

4.3.5. Comparison with Kepler Estimations of Mixing

The large one-dimensional surveys of SNe derive final esti-
mates of elemental yields by artificially mixing the layers of
the SN after explosive nucleosynthesis is complete. Surveys
employing the KEPLER code estimate mixing by passing a run-

ning boxcar average of width (in mass coordinate) W through
the star, where W is 10% the mass of the helium core. That is,
the abundances at points that fell within a bin of width W were
averaged together and set to this average, the bin was moved for-
ward by one point, and the process repeated, moving outward
through the star. This is done four times, artificially mixing the
mass shells. In Figure 7, we compare KEPLER estimations of
mixing with our two-dimensional CASTRO results. In our two-
dimensional CASTRO simulations, we find that some elemental
shells are more mixed than others. The RT instability typically
forms at the He–H or O–He boundary and advances inward.
This results in the helium and oxygen layers being more mixed
than in KEPLER and the iron, and sometimes silicon, layers being
less mixed than the KEPLER estimations for the z-series models.
Our compact U-series models show less mixing in all elements
than in KEPLER.

4.3.6. Numerical Artifacts and Model Limitations

Numerical artifacts arising from the mesh geometry are most
prominent in the higher explosion energy, u-series models,

The metallicities of extremely metal-
poor stars in the halo are consistent 
with the yields of core-collapse 
supernovae, i.e. progenitor stars with 20 
- 40 M☉
(e.g. Tominaga et al. 2007, Izutani et al. 2009, Joggerst et al. 
2009, 2010)

Fig. 6.—Comparison between the [X/Fe] trends of observed stars (crosses: the previous studies [e.g., Gratton & Sneden 1991; Sneden et al. 1991; Edvardsson et al.
1993; McWilliam et al. 1995a, 1995b; Ryan et al. 1996;McWilliam 1997; Carretta et al. 2000; Primas et al. 2000; Gratton et al. 2003; Bensby et al. 2003]; open circles: CA04;
open squares: HO04) and those of individual starsmodels ( filled circles: normal SNe; filled triangles: HNewith caseA; filled rhombus: HNewith case B) and IMF integration
( filled squares). The parameters are shown in Table 1.

Fig. 7.—Same as Fig. 3, but for MMS ¼ 25 M", E51 ¼ 5.

Fig. 8.—Comparison between the abundance pattern of the C-rich EMP star
(circles with error bars: CS 29498#043; Aoki et al. 2004) and the theoretical
faint SN yields (solid line: 25F). The mixing-fallback parameters are determined
so as to reproduce the abundance pattern of CS 29498#043.

(Joggerst et al. 2009, 2010)

(Tom
inaga et al. 2007)



B fields in the early universe?

• we know the universe is magnetized (now)

• knowledge about B-fields in the high-redshift 
universe is extremely uncertain

- inflation / QCD phase transition / Biermann battery / 
Weibel instability

• they are thought to be extremely small 

• however, THIS MAY BE WRONG!



magnetic field structure density structure

(Sur et al. 2010, ApJ, 721, L734)



Magnetic field amplification by gravity-driven turbulence 7

Fig. 3.— a) Spherical slice of the gas density inside the Jeans volume at τ = 12 for our run with 128 cells per Jeans length. b) Velocity
streamlines on a linear color scale ranging from dark blue (0 km s−1) to light gray (5 km s−1). c) Magnetic field lines, showing a highly
tangled and twisted magnetic field structure typical of the small-scale dynamo; yellow: 0.5mG, red: 1mG. d) Four randomly chosen,
individual field lines. The green one, in particular, is extremely tangled close to the center of the Jeans volume. e) Contours of the vorticity
modulus, |∇ × v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g., Frisch 1995). f) Spherical slice of
the divergence of the velocity field, ∇ · v; white: compression, red: expansion.

(Federrath et al., 2011, ApJ, 731, 62)



(Sur et al. 2010, ApJ, 721, L734)

Field amplification during first 
collapse seems unavoidable.

QUESTIONS:

• Is it really the small scale dynamo? 
• What is the saturation value? 
  Can the field reach dynamically 
  important strength?

radial density profile

radial velocity profile

Mach number profile



analysis of magnetic field spectra

Slope +3/2 of 
Kazantsev theory

initial slope of 
B fluctuations

initial peak of 
B fluctuation 
spectrum

(e.g. Brandenburg & Subramanian, 
2005, Phys. Rep., 417, 1)

(Federrath et al., 2011, ApJ, 731, 62)



analysis of magnetic field spectra

B fluctuation spectrum 
in flat inner core

B fluctuation spectrum 
in 1/r2 fall-off

(Federrath et al., 2011, ApJ, 731, 62)
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FIG. 2. (Color online) Three-dimensional renderings of the density on a logarithmic scale in the range 0.5 ≤ ρ/ρ0 ≤ 50, and

magnetic field lines for solenoidal forcing at M = 0.1 (a) and M = 10 (c), and compressive forcing at M = 0.1 (b) and M = 10

(d). The stretch-twist-fold mechanism of the dynamo [1] is evident in all models, but operates with different efficiency due to

the strongly varying compressibility and flow structure of the plasma. The M = 10 models are dominated by shocks.

FIG. 3. (Color online) Growth rate (top), and saturation level

(bottom) as a function of the Mach number for all runs with

solenoidal (crosses) and compressive forcing (diamonds). The

solid lines show empirical fits with equation (4). The labeled

data points indicate four models (M ≈ 0.4, 2.5 for sol. and

comp. forcing), using ideal MHD on 128
3
grid cells (a), non-

ideal MHD on 256
3
(b), and 512

3
grid cells (c), demonstrating

convergence for the given magnetic Prandtl (Pm = 2) and

kinematic Reynolds number (Re ≈ 1500).

duces more space-filling, tangled field configurations, sug-

gesting that the dynamo is more efficiently excited with

solenoidal forcing. This is quantitatively shown in fig-

ure 3, where we plot the growth rates, Γ, in the relation

Em = Em0 exp(Γt), and the saturation level, (Em/Ek)sat
with the magnetic and kinetic energies Em and Ek as a

function of Mach number for all models. Both Γ and

(Em/Ek)sat depend strongly on M and on the turbu-

lent forcing. Solenoidal forcing gives growth rates and

saturation levels that are always higher than in compres-

sive forcing, as indicted by the different field geometries

shown in figure 2. Both Γ and (Em/Ek)sat change sig-

nificantly at the transition from subsonic to supersonic

turbulence. We conclude that the formation of shocks

at M ≈ 1 is responsible for destroying some of the co-

herent vortical motions necessary to drive the dynamo

[4]. However, as M is increased further, vorticity gener-

ation in oblique, colliding shocks [19] starts to dominate

over the destruction. The very small growth rates of the

subsonic, compressively driven models is due to the fact

that hardly any vorticity is excited. In the absence of the

baroclinic term, (1/ρ2)∇ρ×∇p, the only way to generate

vorticity, ω = ∇×u, with compressive (curl-free) forcing

is via viscous interactions in the vorticity equation [6]:

∂tω = ∇× (u× ω) + ν∇2ω + 2ν∇× (S∇ ln ρ) . (3)

The second term on the right hand side of the last equa-

tion is diffusive. However, even with zero initial vorticity,

the last term generates vorticity via viscous interactions

in the presence of logarithmic density gradients. The

small seeds of vorticity generated this way are exponen-

tially amplified by the non-linear term, ∇ × (u× ω), in

analogy to the induction equation for the magnetic field,

if the Reynolds numbers are high enough [20]. For very

low Mach numbers, however, density gradients start to

vanish, thus explaining the steep drop of dynamo growth

in compressively driven turbulence at low Mach number.

Analytic estimates [21] suggest that Γ ∝ M3
in com-

pressively driven, acoustic turbulence [22], indicated as

dotted line in figure 3. The solid lines are fits with an

empirical model function,

f(x) =

�
p0

xp1 + p2
xp3 + p4

+ p5

�
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compressive turbulence

(Federrath et al., 2011, PRL submitted)
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The turbulent dynamo is the most important process
for generating high magnetic energies from small seeds
of a magnetic field [1]. The growth of the magnetic
field is exponential, which leads to dynamically signif-
icant magnetic energies on short time scales. Dynamo
action ranges from the Earth and the Sun [2], over the
interstellar medium to whole galaxies [3]. Although the
physical conditions (e.g., the different compressibility of
the plasmas) and flow geometries are extremely different
across these objects, dynamo action has been confirmed
in all of them. For instance, in the Earth and the Sun,
the dynamo is driven by subsonic flows. In contrast, in-
terstellar clouds and galaxies are dominated by highly
supersonic, compressible turbulence.

The main objective of this Letter is to investigate
fundamental properties of turbulent dynamo amplifica-
tion of magnetic fields by making systematic numeri-
cal experiments, in which we can control the compress-
ibility of the plasma by varying the Mach number and
the energy injection mechanism (forcing) of the turbu-
lence. We consider flows with Mach numbers ranging
from M = 0.02 to 20, covering a much larger range than
in any previous study. Haugen et al. [4] provided crit-
ical Reynolds numbers for dynamo action, but did not
investigate growth rates or saturation levels, and studied
only 0.1 ≤ M ≤ 2.6. The energy released by e.g. super-
nova explosions, however, drives interstellar and galac-
tic turbulence with Mach numbers up to 100 [5]. Thus,
much higher Mach numbers have to be investigated. It is
furthermore tempting to associate such supernova blast
waves with compressive forcing of turbulence [6–8]. Mee
& Brandenburg [6] concluded that it is very hard to ex-
cite the turbulent dynamo with such curl-free forcing,
because vorticity is not directly injected. In this Letter,
we show that the turbulent dynamo is driven by curl-free
injection mechanisms, and quantify the amplification as a
function of compressibility of the plasma. This is the first
study–to the best of our knowledge–addressing the Mach
number and forcing dependence of the turbulent dynamo
in detail. The main questions addressed are: How does
the turbulent dynamo depend on the Mach number of
the flow? What are the growth rates and saturation lev-
els in the supersonic and subsonic regimes of turbulence?

What is the field geometry and amplification mechanism?
To address these questions, we compute numerical so-

lutions of the compressible, non-ideal, three-dimensional,
magnetohydrodynamical (MHD) equations with the grid
code FLASH [9],

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗u−B⊗B) +∇p� = ∇ · (2νρS) + ρF,

∂tE +∇ · [(E + p�)u− (B · u)B] =

∇ · [2νρu · S +B× (η∇×B)] ,

∂tB = ∇× (u×B) + η∇2B,

∇ ·B = 0,
(1)

where ρ, u, p� = p + (1/2) |B|2, B, and E = ρ�int +
(1/2)ρ |u|2 + (1/2) |B|2 denote density, velocity, pressure
(thermal and magnetic), magnetic field, and total energy
density (internal, kinetic, and magnetic), respectively.
Viscous interactions are included via the traceless rate
of strain tensor, Sij = (1/2)(∂iuj + ∂jui)− (1/3)δij∇ · u
and controlled by the kinematic viscosity, ν. We also
include physical diffusion of the magnetic field, which
is controlled by the magnetic diffusivity, η. The MHD
equations are closed with a polytropic equation of state,
p = c2sρ, such that the gas remains isothermal with
constant sound speed cs. To drive turbulence with a
given Mach number, we apply the forcing term F as a
source term in the momentum equation. The forcing is
modeled with a stochastic Ornstein-Uhlenbeck process
[8, 10], such that F varies smoothly in space and time
with an auto-correlation equal to the eddy-turnover time,
ted = L/(2Mcs) at the largest scales, L/2 in the periodic
simulation domain of size L. M = urms/cs denotes the
root-mean-squared (rms) Mach number, the ratio of rms
velocity and sound speed. The forcing is constructed in
Fourier space such that kinetic energy is injected at the
smallest wave numbers, 1 < |k|L/2π < 3. We decom-
pose the force field into its solenoidal and compressible
parts by applying a projection in Fourier space. In index
notation, the projection operator reads

Pζ
ij (k) = ζ P⊥

ij +(1− ζ)P�
ij = ζ δij +(1− 2ζ)

kikj
|k|2 , (2)
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with



(Peters et al., in prep.)

Jeans mass

ratio of magnetic 
to kinetic energy

We seem to get a saturation level of ~10%

QUESTIONS: • Is this true in a proper cosmological context? 
• What does it mean for the formation of the first stars 

first attempts to calculate the saturation level.

(see, e.g., Subramanian 1997, or
Brandenburg & Subramanian 2005)



questions

• small-scale turbulent dynamo is expected to operate 
during Pop III star formation

• process is fast (104 x tff), so primordial halos may 
collapse with B-field at saturation level!

• simple models indicate saturation levels of ~10% 
--> larger values via αΩ dynamo?

• QUESTIONS:

- does this hold for “proper” halo calculations (with 
chemistry and cosmological context)?

- what is the strength of the seed magnetic field?



conclusions

primordial star formation exhibits the same complexity as 
stellar birth at present days

turbulence
thermodynamics
feedback
magnetic fields 

all influence Pop III and 
Pop II.5 star formation.

⎫
⎬
⎭

NGC 3324 (Hubble, NASA/ESA)


