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| Star formation is intrinsically a multi-scale and multi-physics
% , problem, where it is difficult to single out individual processes.
- % | Simple theoretical approaches usually fail.
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star formation sets in very
early after the big bang

we cannot see the first
generation of stars, but
maybe the second one




How do we know the initial conditions of
first star formation?

From determining the cosmic expansion rate.

From measuring the cosmic microwave
background.

From cosmic nucleosynthesis.
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Planck satellite: total flux
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Element abundances of gas in solar neighborhod
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Z, Atomic number

all those elements have been produced in stars

formed in
big bang



Millernium Similations
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Schematic of first star formation

gas flows into center of halo

gravitational potential of
dark matter halo

First stars form in centers
of dark matter halos.



most simple theoretical approach

e Jeans (1902): Interplay between
self-gravity and thermal pressure

stability of homogeneous spherical
density enhancements against
gravitational collapse

dispersion relation:
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Stellar mass function

Stars of Milky Way follow universal mass function

ONC (HCO00) .

M35

standard

number of stars

Orion, NGC 3603, 30 Doradus
(Zinnecker & Yorke 2007)

logarithm of stellar mass (Msun)
(Kroupa 2002)



Stellar mass function

Stars of Milky Way follow universal mass function
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density [cm™]
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Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up
of the protostellar disk and its eventual fragmentation. We also see ‘wakes’ in the low-density
regions, produced by the previous passage of the spiral arms. (Clark et al. 201 1b, Science, 331, 1040)
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Star formation is intrinsically a multi-scale and multi-physics
problem, where it is difficult to single out individual processes.
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e stars form from the complex interplay of self-gravity and a large number

of competing processes (such as turbulence, B-field, feedback, thermal
pressure)

e detailed studies require the consistent treatment of many different
physical processes (this is a theoretical and computational challenge)

e star formation is regulated by several feedback loops, which are still

poorly understood
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Star formation is intrinsically a multi-scale and multi-physics
problem, where it is difficult to single out individual processes.

stars form from the complex interplay of self-gravity and a large number
of competing processes (such as turbulence, B-field, feedback, thermal
pressure)

detailed studies require the consistent treatment of many different
physical processes (this is a theoretical and computational challenge)

star formation is regulated by several feedback loops, which are still
poorly understood
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PPVI| comes to Heidelberg
in summer 2013




