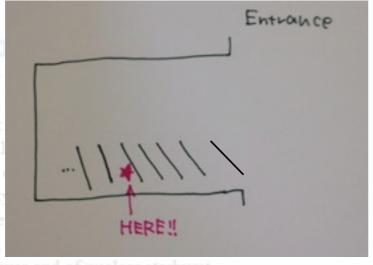
The Resolved Kennicutt-Schmidt Law in Nearby Galaxies

Rieko Momose^{1,2,3} (momo@icrr.u-tokyo.ac.jp)

Jin Koda⁴, Robert C. Kennicutt, Jr⁵, Fumi Egusa⁶, Sachiko K. Okumura^{3,7}, Daniela Calzetti⁸, Guilin Liu^{8,9}, Jennifer Donovan Meyer⁴, Nick Z. Scoville¹⁰, Tsuyoshi Sawada³, Nario Kuno³

¹Institute for Cosmic Ray Research, University of Tokyo, ²University of Tokyo, ³NAOJ, ⁴Stony Brook University, ⁵ University of Cambridge, ⁶JAXA, ⁷Japan Women's University, ⁸University of Massachusetts, ⁹Johns Hopkins University, ¹⁰California Institute of Technology

Abstract


liscriminator of the mechanisms that regulate star

- Studying the K-S law
 - at 750/500 pc scale
 - using CO(J=1-0)
 - also examined DIG subtractions
- Obtained super-linear slope (N =
 - 1.3-1.8)
- Discussing
 - the difference to previous studies
 - star formation process

The K-S Law

We derive the K-S law procedure as B08, but with super-linear correlation with $\log (\Sigma_{SFR}) = -3.5 \pm 0.04 + ($ where Σ_{SFR} is the surface molecular gas surface densiting Kennicutt (1998a,b)'s (here

The K-S Law on 500 pc Scale

We verify the K-S law on 500 pc scale (Figure 2). DIG subtraction is als examined on this scale as an example. The best fit linear regressions are: $+DIG = log(\Sigma_{SPP}) = -3.5\pm0.08 \pm (1.2\pm0.05) \times log(\Sigma_{PP})$