Schmidt-Kennicutt relations in SPH simulations of disc galaxies with effective SN thermal feedback

Pierluigi Monaco

Università di Trieste & INAF-Osservatorio Astronomico di Trieste

In collaboration with: G. Murante, S. Borgani, L. Tornatore, K. Dolag, A. Fabris, D. Goz

Paper: P.M., Murante, Borgani, Dolag, 2011, MNRAS, 421, 2485

Aim: simulating spiral galaxies in a cosmological context at moderate (~I kpc) resolution

MUlti-Phase Particle Integrator (MUPPI):

a new sub-resolution model for star formation and feedback in SPH simulations with Gadget-3 (Springel 2005)

Murante, P.M., Giovalli, Borgani, Diaferio, 2010, MNRAS 405, 1491

- gas in multi-phase particles is composed by two phases in thermal pressure equilibrium, plus a stellar component;
- gas molecular fraction is scaled with pressure;
- the evolution of the multi-phase ISM is described by a system of ODEs;
- the system of ODEs is numerically integrated within the SPH time-step (NO equilibrium solutions);
- energy from SNe is injected into the hot diluted phase;
 SPH hydro is done on this phase
 - ...entrainment of the cold phase...
- particles respond immediately to energy injection

Molecular fraction f_{mol}

Inspired by Blitz & Rosolowsky, we scale the molecular fraction with SPH pressure - NOT the same quantity the observers use!

$$f_{mol} = I/(I+P_0/P)$$

Isolated galaxy tests: thermal feedback, primordial cooling

Initial conditions have been kindly provided by Lucio Mayer, Simone Callegari and Volker Springel

Name	softening (kpc)	$M_{ m dm}$ $({ m M}_{\odot})$	$m_{ m dm} \ ({ m M}_{\odot})$	$M_{\star}^{(1)}$ (M_{\odot})	$m_{\star}^{(2)}$ (M $_{\odot}$)	R⋆ (kpc)	$M_{ m cold} \ ({ m M}_{\odot})$	$m_{ m gas} \ ({ m M}_{\odot})$	R _{cold} (kpc)	gas fraction
MW	0.69	$9.4\cdot 10^{11}$	$3.5 \cdot 10^6$	$4.2\cdot 10^{10}$	$1.3 \cdot 10^{6}$	4.8	$3.3 \cdot 10^{9}$	$7.4 \cdot 10^{4}$	5.6	7.3%
$MW_{-}HR$	0.41	$9.4 \cdot 10^{11}$	$6.9 \cdot 10^{5}$	$4.2 \cdot 10^{10}$	$2.6 \cdot 10^{5}$	4.4	$3.2 \cdot 10^{9}$	$1.5 \cdot 10^{4}$	5.4	7.1%
DW	0.42	$1.6 \cdot 10^{11}$	$8.1 \cdot 10^{5}$	$7.8 \cdot 10^{9}$	$1.6 \cdot 10^{5}$	8.5	$1.9 \cdot 10^{9}$	$3.9 \cdot 10^{4}$	8.3	20%
SH	0.042	$1.4\cdot10^{10}$	_(3)	$1.4 \cdot 10^7$	$2.2 \cdot 10^3$	0.77	$1.4 \cdot 10^9$	$8.7 \cdot 10^3$	5.2	99%

Milky Way galaxy

images made with SPLOTCH code by Dolag et al. 09 Galactic Scale Star Formation, Heidelberg 2012

Velocity profiles of gas

consistent with Tamburro et al (2008), lanjamasimanana et al. (2012) - talk by de Block

Galactic Scale Star Formation, Heidelberg 2012

Data from Bigiel et al. (2008)

Elmegreen (1989)

"external" pressure on a molecular cloud for a disc in vertical hydrostatic equilibrium:

$$P_{\rm ext} \simeq \frac{\pi}{2} G \Sigma_{\rm cold} \left(\Sigma_{\rm cold} + R \Sigma_{\star} \right)$$

$$R = \sigma_{\rm cold}/\sigma_{\star}$$

Elmegreen (1989)

"external" pressure on a molecular cloud for a disc in vertical hydrostatic equilibrium:

$$P_{\rm ext} \simeq \frac{\pi}{2} G \Sigma_{\rm cold} \left(\Sigma_{\rm cold} + R \Sigma_{\star} \right)$$

$$R = \sigma_{\rm cold}/\sigma_{\star}$$

$$P_{\rm fit} = P_{\rm ext} \times \frac{Q_{\rm tot}}{3} = \frac{1}{6} \Sigma_{\rm cold} \sigma_{\rm cold} \kappa$$

NB: vertical pressure profiles P(z) are rather flat, like in Tasker & Bryan (2008)

A double relation at high redshift?

Proposed explanation:

$$H_{\rm eff} = \Sigma_{\rm cold}/2\rho_{\rm cold}$$

$$P = \rho_{\text{cold}} \sigma_{\text{cold}}^2 = \frac{1}{6} \Sigma_{\text{cold}} \sigma_{\text{cold}} \kappa$$

$$t_{\rm cross} = H_{\rm eff}/\sigma_{\rm cold}$$

$$t_{\rm cross} = \frac{3}{\kappa} \simeq \frac{3}{\sqrt{2}} \tau_{\rm orb}$$

Conclusions

- MUPPI attempts to model the sub-grid physics through a two-phase model of the ISM
- scaling molecular fraction with pressure leads to a standard SK relation that depends on gas fraction
 - it mimics a metallicity dependence
- disc pressure is well reproduced by

$$P_{\rm fit} = P_{\rm ext} \times \frac{Q_{\rm tot}}{3} = \frac{1}{6} \Sigma_{\rm cold} \sigma_{\rm cold} \kappa$$

- all galaxies stay on the same "dynamical" SK
- this may be the result of energy balance