Being discrete - Star formation on (sub-)galactic scales

Robert Feldmann Fermi National Accelerator Laboratory in collaboration with: N. Gnedin, A. Kravtsov

Fermilab

I. Running on gas: the Σ_{H2} - Σ_{SFR} relation 2. H₂, CO and SF in simulations 3. The H_2 - HI transition and mid-plane pressure 4. Slope and scatter of the Σ_{H2} - Σ_{SFR} relation

The Σ_{H2} - Σ_{SFR} relation

• observations: tight relation on kpc scales relation extends into HI dominated region • relation \sim linear \rightarrow constant gas depletion time (**T**_{dep})~ I-2 Gyr • slightly super-linear(1.1-1.2) when measured over 4 orders of magnitude (e.g. Genzel+10)

In this talk: I will assume n=1 throughout

The Kennicutt-Schmidt ($\Sigma_{tot} - \Sigma_{SFR}$) Follation

 Traditional K-S relation arises naturally from the HI \leftrightarrow H₂ transition (around Σ_c) for given Σ_{tot}

• $\Sigma_{tot} \ll \Sigma_c \rightarrow$ gas predominantly HI \rightarrow little SF

- $\Sigma_{tot} \sim \Sigma_c \rightarrow H_2$ fraction increases \rightarrow steep increase of SF with Σ_{tot}
- $\Sigma_{tot} \gg \Sigma_c \rightarrow gas$ predominantly $H_2 \rightarrow SF \sim \Sigma_{tot}$

- larger $\Sigma_{tot} \rightarrow$ increased shielding
- larger $\Sigma_{tot} \rightarrow$ higher formation rates
- Σ_c changes with dust-to-gas ratio

The Scatter of the Σ_{H2} - Σ_{SFR} relation

Schruba + 2010

- scatter relatively small (~0.1-0.2 dex) on kpc
- but increases rapidly with resolution \rightarrow "break down of SF laws"
- I constant of the sequence o between CO and H α emission
- Different interpretations:
 - Evolution model: CO regions (high τ_{dep}) $\exists evolve into H\alpha regions (low <math>\tau_{dep}$)
 - regional variations₁of **T**_{dep} Median H₂ Surface Density [M_o pc⁻²] 100 • Discreteness of SF (see later)

Why does the Σ_{H2} - Σ_{SFR} relation have a slope ~1.1-1.2 when measured over 4 orders of magnitude ?

What is the origin of the scatter of the Σ_{H2} - Σ_{SFR} relation & can we understand its change with scale?

What is driving the H_2 - HI transition in galaxies?

What role does the $CO-H_2$ conversion factor play?

N-body + AMR hydro code ART*

- non-equilibrium cooling & ionization
- non LTE chemical network
- radiative transfer in the LW bands (OTVET)
- metal enrichment, SN feedback
- H₂ formation & destruction, including dustshielding and self-shielding
- subgrid modeling of stochastic SF based on H₂
- CO, FUV, H α emission in post-processing
 - cosmological, zoom-in simulations
 - $\Delta x \sim 60 \text{ pc}, \text{ m}_{\text{DM}} \sim 1.3 \times 10^6 \text{ M}_{\odot}$

*Adaptive Refinement Tree (Kravtsov+97,02)

- H₂ density is an advected field with source terms
 - formation catalyzed on dust grains
 - dissociation by UV radiation in the LW bands
- Shielding is important: $\Gamma_{LW} = \Gamma_{LW} S_{H_2} S_D$
 - Dust shielding
 - H₂ self-shielding

$$\begin{split} S_{\rm D} &= e^{-D_{\rm MW} \, \sigma_0 \, n_{\rm H} \, L_{\rm Sob}} \\ S_{\rm H_2} &= \begin{cases} 1, & \text{for } N_{\rm H_2} < 10^{14} \, {\rm cm}^{-2}, \\ (N_{\rm H_2}/10^{14} \, {\rm cm}^{-2})^{-3/4}, & \text{for } N_{\rm H_2} > 10^{14} \, {\rm cm}^{-2}, \end{cases} \\ N_{\rm H_2} &\approx n_{\rm H_2} L_c \end{split}$$

Modeling: CO

CO

starting point:

- MHD, driven turbulence ISM simulations (Glover, Mac Low, 2010)
- CO abundance as function of Z & N

added:

- modeled of dependence on U
- virial scaling of CO line width v
- compute CO emission from ea probability formalism

see Feldmann et al. 2012, APJ, 747, 2 arxiv: 1112.1732

SFR tracers ($H\alpha$, FUV)

• use Starburst-99 + ages and metallicities of star particles

R. Feldmann, Heidelberg 2012

$$P_{\text{ext}} = (2G)^{0.5} \Sigma_g v_g \left[\left(\frac{\Sigma_*}{h_*} \right)^{0.5} + \left(\frac{\pi}{4} \frac{\Sigma_g}{h_g} \right)^{0.5} \right]$$

R. Feldmann, Heidelberg 2012

$$= (2G)^{0.5} \Sigma_g v_g \left[\left(\frac{\Sigma_*}{h_*} \right)^{0.5} + \left(\frac{\pi}{4} \frac{\Sigma_g}{h_g} \right)^{0.5} \right]$$

often $R_{mol} > I \longrightarrow H_2$ dominated regime

- Elmegreen '93 formula: $R_{mol} \sim P^{2.2}/j$ derived for $f_{H2} \leq 0.1$!
- no reason to expect it to describe the asymptotic (f_{H2} ~ I) slope

 $\Sigma_* \propto \Sigma_g^{1+lpha} \text{ or } \Sigma_* \ll \Sigma_g$ $P_{\rm ext} \propto \Sigma_q^{1.5+0.5\alpha}$ $R_{\rm mol} \propto \Sigma_g \Longrightarrow R_{\rm mol} \propto P_{\rm ext}^{\overline{3+\alpha}}$

R. Feldmann, Heidelberg 2012

- steep decline of amplitude with Z
- •well explained by model => i.e. by $\Sigma_c(Z)$
- more severe if H2 based on CO (X_{CO} effect)

no strong trend with UV field
not in conflict with observations
(but not confirmed yet either)

Modeling: Star formation

Extremely crude model!

Ansatz: SF = Poisson Process with rate $\Delta t_{\rm SF}^{-1}$

$$\langle {
m SFR}
angle = {M_{{
m H}_2} \over \tau_{
m dep}}$$
 (ensemble avg. S

• draw Poisson distr. random variable with mean and variance $\Delta t / \Delta t_{\rm SF}$

• number of "SF events" in time Δt

$$\mathrm{SFR}_{\Delta t} = \frac{N_{\Delta t}}{\langle N_{\Delta t} \rangle} \langle \mathrm{SFR} \rangle$$
 (observed SF

Feldmann + 2012 (arXiv:1204.3910)

on avg. I SF event per $\Delta t_{\rm SF}$ per volume element! $\Delta t_{\rm SF} \sim$ 10-20 Myr

Modeling: Star formation

Consequences of the stochastic SF model

•observed depletion time given a SF tracer with lifetime Δt

$$M_{\rm H_2}/{\rm SFR}_{\Delta t} = \tau_{\rm dep} \frac{\langle N_{\Delta t} \rangle}{N_{\Delta t}} = \tau_{\rm dep} \frac{\Delta t / \Delta t_{\rm SF}}{N_{\Delta t}}$$

- introduces scatter in the Σ_{H2} Σ_{SFR} relation via
 - Poisson (discreteness) noise in the number of SF events • fluctuations in the avg. SFR due to H₂ variations
 - •their covariance

Modeling: Star formation

MF of young massive clusters $(M^* \sim 2.5 \times 10^5 M_{\odot}, \text{ see Portegies Zwart et al. 2010})$

R. Feldmann, Heidelberg 2012

Arguments for $\Delta t_{\rm SF} \sim 10-20$ Myr on $\sim 100 \text{ pc scales}$

- lower limit: crossing time $L/\sigma \sim 10$ Myr (at I=100 pc)
- upper limit: scatter in the Σ_{H2} Σ_{SFR} relation
- reproduces reasonable cluster mass function
- consistent with observed relation between SFR & maximum embedded star cluster mass (Weidner+04)
 - $\Delta t_{\rm SF}$ fundamentally different from t_{ff}
- time between SF events
 duration of SF event decreases with scale
 increases with scale

The Slope of the Σ_{H2} - Σ_{SFR} relation (reloaded)

/ in observed molecular KS relation explained by: K_{CO} with column density (primarily) K_{CO} with decreasing metallicity of higher z galaxies

The Scatter of the Σ_{H2} - Σ_{SFR} relation (reloaded)

Feldmann + 2012 (arXiv:1204.3910)

R. Feldmann, Heidelberg 2012

g scale dominate bise of SF er lifetime

+ finite

- 1. Σ_{H2} Σ_{SFR} relation clearly important test-bed for SF modeling
- 2. CO-H2 conversion factor can lead to increase in slope of the Σ_{H2} Σ_{SFR} relation at large surface densities
- 3. Scatter in the Σ_{H2} Σ_{SFR} relation
 - potentially caused by discreteness of SF
 - testable predictions for the scatter and τ_{dep} as function of SF tracer lifetime
- 4. Scatter roughly \sim scale^{-0.5}; explained by 2D set-up of the gas disk & width of the density pdf
- 5. Strong Z dependence of the amplitude of the pressure H_2/H_1 relation in selfconsistent H₂ models

Thank you!

R. Feldmann, Heidelberg 2012

