# Star Formation in Extreme ISM Cycle 0 ALMA results -- unfortunately not

spiral arm SF

Sgr A\* and Arp 220

non-extreme : for MW , SFR ~ 3 
$$M_{\odot}$$
 yr<sup>-1</sup>  $M_{H2}$  ~  $3 \times 10^9$   $M_{\odot}$   $\rightarrow$   $\tau \sim 10^9$  yr  $_{\rm SFR/M_{H2}} \sim 10^{-9}$   $M_{\odot}$  yr<sup>-1</sup>/  $M_{\odot}$ 

```
provocative ??'s
```

lifetime of GMCs (actually H2 lifetime) – 10, 100 1000 Myr??

```
how can u use opt. thick line to measure mass?? which line is best: CO, 13CO, HCN??
```

mid-plane pressure → H2/HI ??

```
is gas consumption time (H2) constant ?? why ??
```

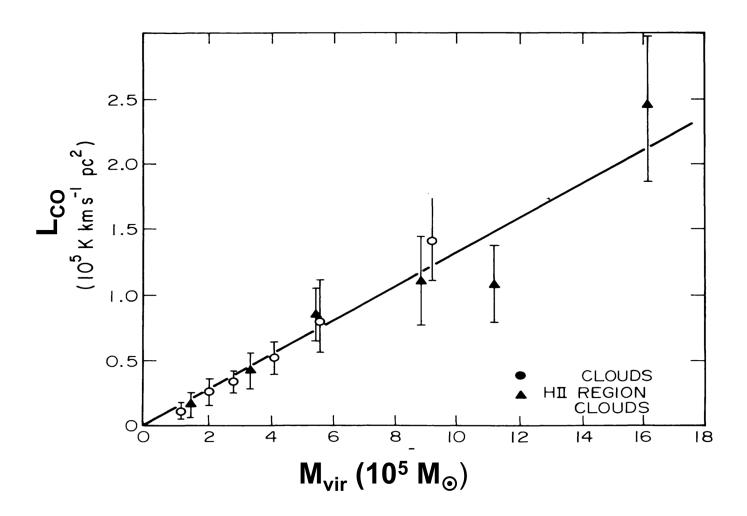
```
effects, of metalicity ? can go both ways less H2 and cooling ? but less feedback (heating and P_{rad})
```

#### Galactic H<sub>2</sub> from CO surveys:

**~3000 GMCs (only ~200 HII region > M42)** 

#### MW GMCs:

 $< M > \sim 2-4 \times 10^5 M_{\odot}$   $< D > \sim 40 pc$  $< n_{H2} > = 180 (D/40 pc)^{-0.9} cm^{-3}$ 


NB:  $\langle n_{H2} \rangle$  ~ 0.1  $n_{crit}$  but  $\tau_{CO}$  ~ 10 → CO thermalized

large CO linewidths ~ 10 x thermal at 10-20K

- → supersonic turbulent press. ~ 100 x P<sub>ISM</sub>
- → disturbance in external medium can't affect clouds

**GMCs** self-gravitating (not thermal press. support)

# estimating H2 masses – for resolved clouds $M_{vir}$ correlated with $L_{CO}$ (= area $T_{CO}\Delta v$ )



How can an optically thick CO line measure mass??

How can an optically thick CO line measure mass??

$$L_{CO} = \pi R^2 T_k \Delta v$$

= 
$$(3\pi G/4\varrho)^{1/2}$$
 T<sub>k</sub> M<sub>GMC</sub> for self-gravit. GMCs

 $L_{CO}$  varies as  $(T_k / \varrho^{1/2}) M_{GMC}$ 

$$\rightarrow$$
 if T &  $\varrho$  ~ constant,  $M_{GMC}$  = constant x  $L_{CO}$ 

CO levels thermalized due to photon trapping  $\rightarrow T_x \sim T_k$ 

note: for  $\tau > 1$  photon trapping

 $T_x$  varies as (abundance)<sup>0.4</sup> => constant varies slowly with metalicity (z) & mass density

what about 13CO and HCN??

# intuition : internal state of GMC not affected by external disturbances in diffuse ISM ( $P_{turb} \sim 100\ P_{ISM}$ )

once formed, very hard to disrupt GMC

i.e. GMCs have large 'inertia'

**→** internal SFE ~ constant

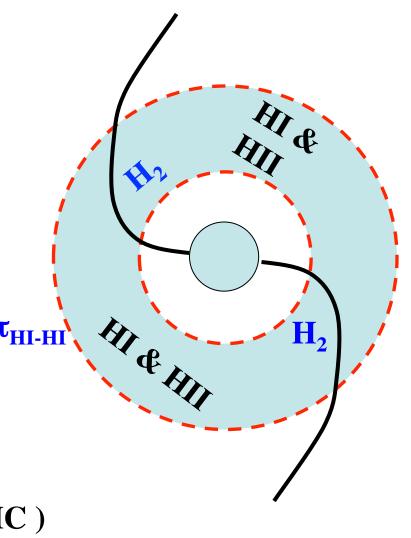
how long do the GMCs last ??

## GMCs / H<sub>2</sub> can't be confined to arms

continuity (mass cons.) =>

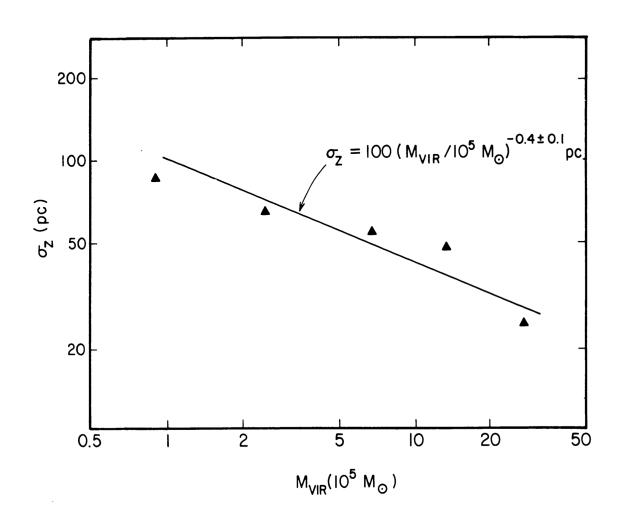
$$M_{H2} / \tau_{H2} = (M_{HI} + M_{HII}) / \tau_{HI-HII}$$

gas fraction ~80% molecular


$$\rightarrow$$
  $M_{H2} \sim 4 \times M_{HI} + M_{HII}$ 

$$\tau_{\rm H2} = \tau_{\rm HI-HII} \, \rm M_{\rm H2} \, / \, (M_{\rm HI} + M_{\rm HII}) \sim \, 4 \, \rm x \, \tau_{\rm HI-HI}$$

$$=> \tau_{H2} >> \tau_{HI-HII} \ge 3 \times 10^7 \, yrs$$


$$\Rightarrow$$
typical H<sub>2</sub> lifetime >> 10<sup>8</sup> yrs !! ( lifetime of H<sub>2</sub>, not necessarily GMC )

cloud assoc. w/i arms shear apart upon leaving arms



## equipartition of cloud KE

 $\rightarrow$  massive clouds w/ lowest  $\sigma_{\rm v}$ 

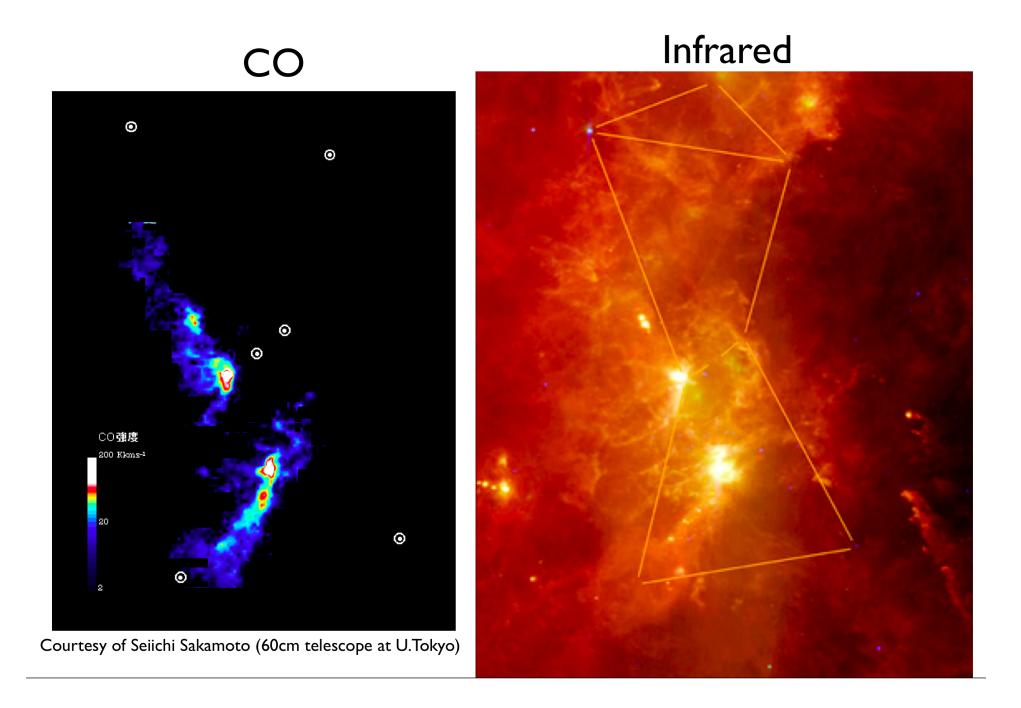


requires cloud last several GMC-GMC collision times

 $\tau_{\rm GMC\text{-}GMC} > \sim 10^8 \, \rm yrs$ 

#### M51 spiral arms

??? why are HII regions concentrated in arms / spurs if H2 clouds also are in interarm regions


high surface density of H2 in arms -> cloud-cloud collisions

$$\Sigma_{\rm H2}({\rm arms}) \sim 500 - 1000 \ {\rm M_{\odot}pc^{-2}}$$

for  $4x10^5M_{☉}$  40 pc diam. GMC,  $Σ_{H2} = 300 M_{☉}pc^{-2}$ →area filling ~0.5 in spiral arms

- $\rightarrow$  collision times ,  $\tau_{cl-cl} \sim 1/n\sigma v \sim 40$  Myr in arms
  - → ~ ¼ of clouds suffer collision during 10 Myr arm transit time

# **Orion GMCs – possible collision?**



#### destruction of GMCs

#### supernova:

1 per 50 yr w/i MW

 $10^7 \text{ yr } → 2x10^5 \text{ SN w/i gal.}$ 

2000 GMCs → max of 100 SN per cloud per 10<sup>7</sup> yrs

in reality most SN not near birthsites

→ ~1 per 10<sup>7</sup> yrs since 1% of vol. filled by GMCs

most likely dominant effect is: shear breakup into smaller units after arms

## SFR in MW gal. center

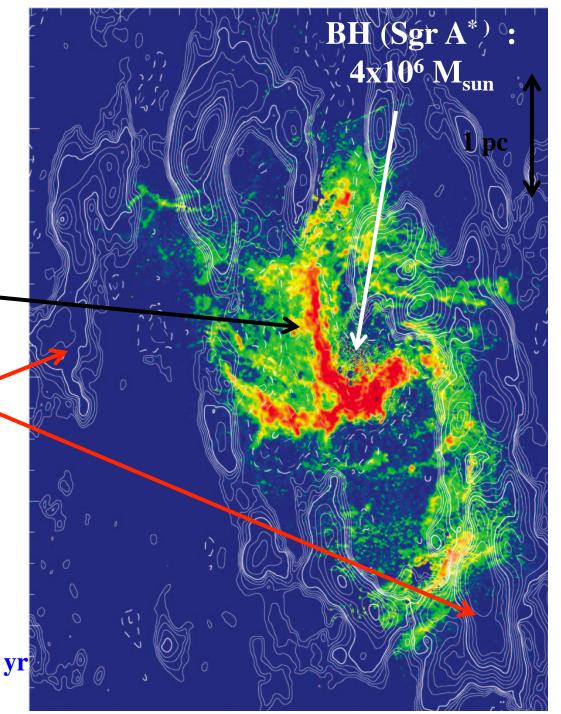
SUMMARY OF IR PROPERTIES FOR SELECTED REGIONS<sup>a</sup>

| Region                       | Diameter (pc) | ${M_{ m H_2}}^{ m b} \ ({M}_{\odot})$      | $L_{ m IR}^{} (L_{\odot})$             | $L_{ m IR}/M_{ m H2} \ (L_{\odot}/M_{\odot})$ | IRE <sup>b</sup> | $T_{d}$ (K) |
|------------------------------|---------------|--------------------------------------------|----------------------------------------|-----------------------------------------------|------------------|-------------|
| M17 (No. 8 Table 1)          | 18<br>105     | 9 × 10 <sup>4</sup><br>8 × 10 <sup>5</sup> | $3.4 \times 10^{6}$ $4 \times 10^{6}$  | 37<br>5                                       | 3.0<br>3.5       | 48          |
| W51 (No. 35 Table 1)         | 50<br>98      | $8.7 \times 10^5$<br>$3.2 \times 10^6$     | $1.3 \times 10^7$<br>$1.8 \times 10^7$ | 15 5.6                                        | 5<br>7           | 42          |
| Galactic center <sup>c</sup> | 740           | $2 \times 10^8$                            | $6.8 \times 10^8$                      | 3.5                                           |                  | 31          |
| Galactic disk <sup>d</sup>   |               | $2.2 \times 10^9$                          | $6 \times 10^9$                        | 2.8                                           |                  | 29          |

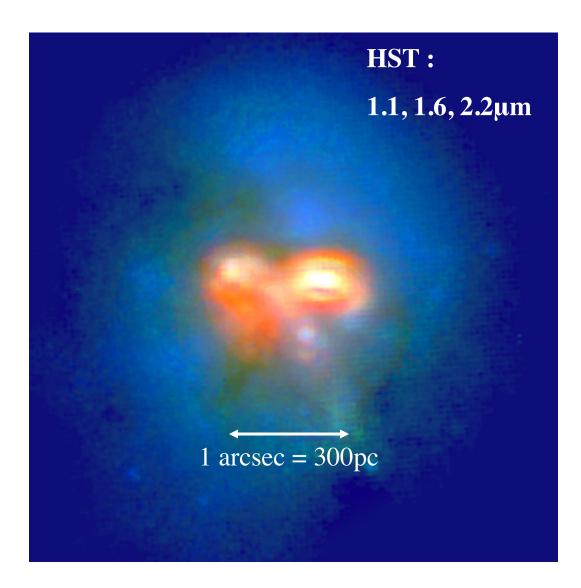
Scoville & Good '89

SFR/M<sub>H2</sub> varies but <u>not low</u> overall in Gal. Center

on the other hand ...


#### circumnuclear disk:

r ~ 2 pc


ionized spiral (Paschen α)

dense H<sub>2</sub> clumps (HCN)

CND: 1-3 pc radius  $M_{H2} \sim 5 \times 10^5 \ (\sim GMC)$  but ring w/  $10^{7-8}$  cm<sup>-3</sup> (tidally stable)  $\tau_{orbit} = 10^5 \ yr \ , \tau_{dyn} = 10^4 \ yr$ 



Arp 220 (@77 Mpc) -- L =  $2x10^{12}$  L<sub>sun</sub> double nuclei – 300 pc apart  $3x10^9$  M<sub>sun</sub> H<sub>2</sub> on each, counter-rot.



Arp 220 --- inner dust source :  $10^9$  M<sub>sun</sub> w/i r = 35 pc  $10^{25}$  cm<sup>-2</sup> ==>  $A_V = 10^4$  mag,  $\tau_{1mm} \sim 1$   $10^5$  cm<sup>-3</sup>, not cloudy

$$\tau_{\rm orbit} = 10^5 \ \rm yr$$
 ,  $\tau_{\rm dyn} = 3 \rm x 10^5 \ \rm yr$ 

why is SFR so low??

#### Krumholz etal advocate SFR law,

$$SFR = \frac{\epsilon_{\rm free-fall} M_{\rm H2}}{\tau_{\rm free-fall}}$$

$$\tau_{\text{free-fall}} = \sqrt{\frac{3\pi}{32G\rho}} = 2.3 \text{ Myr} \left(\frac{300}{n_{\text{H}2}}\right)^{1/2}$$

$$n_{H2}$$
  $\tau_{free-fall}$  SgrA CND  $3x10^{7}$  7,500 yr Arp 220  $3x10^{5}$  75,000 yr

for 
$$\varepsilon = 0.02$$
,  
SFR = 1.3  $M_{\odot}$ yr<sup>-1</sup> in SgrA CND  
 $8000 M_{\odot}$ yr<sup>-1</sup> in Arp 220

gas is dusty, therefore not standard accret. rad. press. much greater

$$F_{rad}/g > 1$$
 for  $\Sigma_L/\Sigma_M > 500 L_{sun}/M_{sun}$ 

Arp 220 -- 
$$\Sigma_{L} / \Sigma_{M} = 10^{12} / 10^{9} = 10^{3} L_{sun} / M_{sun}$$

Sgr A CND – tidal shear ?? high vel. disp. lifetime of GMCs (actually H2 lifetime) – ~100 Myr ??

how can u use opt. thick line to measure mass?? which line is best: CO, 13CO, HCN??

mid-plane pressure → H2/HI ?? X

gas consumption time (H2) varies 10-20x mostly due to dynamical driving

effects, of metalicity ? can go both ways less H2 and cooling ? but less feedback (heating and  $P_{\rm rad}$ )