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ABSTRACT

Compressible turbulence shapes the structure of the interstellar medium of our Galaxy
and likely plays an important role also during structure formation in the early Uni-
verse. The density probability distribution function (PDF) and the power spectrum
of such compressible, supersonic turbulence are the key ingredients for theories of star
formation. However, both the PDF and the spectrum are still a matter of debate,
because theoretical predictions are limited and simulations of supersonic turbulence
require enormous resolutions to capture the inertial-range scaling. To advance our lim-
ited knowledge of compressible turbulence, we here present and analyse the world’s
largest simulations of supersonic turbulence. We compare hydrodynamic models with
numerical resolutions of 2563-40963 mesh points and with two distinct driving mecha-
nisms, solenoidal (divergence-free) driving and compressive (curl-free) driving. We find
convergence of the density PDF, with compressive driving exhibiting a much wider
and more intermittent density distribution than solenoidal driving by fitting to a re-
cent theoretical model for intermittent density PDFs. Analysing the power spectrum
of the turbulence, we find a pure velocity scaling close to Burgers turbulence with
P(v) o< k=2 for both driving modes in our hydrodynamical simulations with Mach
number M = 17. The spectrum of the density-weighted velocity p!/3v, however, does
not provide the previously suggested universal scaling for supersonic turbulence. We
find that the power spectrum P(pl/ 3v) scales with wavenumber as k=17 for solenoidal
driving, close to incompressible Kolmogorov turbulence (k‘5/ 3), but is significantly
steeper with k=219 for compressive driving. We show that this is consistent with a
recent theoretical model for compressible turbulence that predicts P(p'/3v) oc k=19/9
in the presence of a strong V - v component as is produced by compressive driving
and remains remarkably constant throughout the supersonic turbulent cascade.

Key words: hydrodynamics — turbulence — methods: numerical — ISM: clouds — ISM:
kinematics and dynamics — ISM: structure.

1 INTRODUCTION

The aim of this study is to pin down the properties and
statistics of supersonic, compressible turbulence. This kind
of turbulence is relevant for the highly compressible inter-
stellar medium (Mac Low & Klessen 2004; Elmegreen &
Scalo 2004; McKee & Ostriker 2007), because it controls
the rate of star formation triggered by gas compression in
shocks (Krumholz & McKee 2005; Padoan & Nordlund 2011;
Hennebelle & Chabrier 2011; Federrath & Klessen 2012),
affects the star formation efficiency (Elmegreen 2008; Fed-
errath & Klessen 2013; Kainulainen et al. 2013), and de-
termines the mass distribution of stars when they are born
(Padoan & Nordlund 2002; Hennebelle & Chabrier 2008,
2013; Hopkins 2013a). Supersonic turbulence also has an
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important effect on the gravitational instability of galactic
discs (Romeo et al. 2010; Hoffmann & Romeo 2012). Even
the early Universe was likely dominated by supersonic tur-
bulence when the first cosmic haloes started to contract to
form the first galaxies (Abel et al. 2002; Greif et al. 2008;
Wise et al. 2008; Schleicher et al. 2010). Analytic models of
star formation are based upon the probability distribution
function (PDF) of the gas density and the scaling of the ve-
locity spectrum in supersonic turbulence. It is thus crucial
to determine the PDF and the scaling with high precision
and to test whether these are universal in any kind of su-
personically turbulent flow or whether they depend on the
driving of the turbulence.

It is important to study the influence of the driving
mode, because interstellar turbulence is likely driven by a
combination of different stirring mechanisms, all leading to
potentially different excitation states and mode mixtures.
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Driving mechanisms for interstellar turbulence include su-
pernova explosions and expanding, ionizing shells from pre-
vious cycles of star formation (McKee 1989; Krumholz et al.
2006; Balsara et al. 2004; Breitschwerdt et al. 2009; Peters
et al. 2011; Goldbaum et al. 2011; Lee et al. 2012), gravita-
tional collapse and accretion of material (Vazquez-Semadeni
et al. 1998; Klessen & Hennebelle 2010; Elmegreen & Burk-
ert 2010; Vazquez-Semadeni et al. 2010; Federrath et al.
2011b; Robertson & Goldreich 2012; Choi et al. 2013), and
galactic spiral-arm compression of HI clouds (Dobbs & Bon-
nell 2008; Dobbs et al. 2008), as well as magneto-rotational
instability (Piontek & Ostriker 2007; Tamburro et al. 2009).
Wind, jets and outflows from young stellar objects have also
been suggested to drive turbulence on smaller scales (Nor-
man & Silk 1980; Banerjee et al. 2007; Nakamura & Li 2008;
Cunningham et al. 2009; Carroll et al. 2010; Wang et al.
2010; Moraghan et al. 2013). Turbulence in high-redshift
galaxies is probably generated during the collapse of pri-
mordial haloes and later by the feedback from the first stars
(Greif et al. 2008; Green et al. 2010; Latif et al. 2013).

Many of the aforementioned driving mechanisms for in-
terstellar turbulence directly compress the gas (which we call
‘compressive driving’), while others primarily excite vortices
(called ‘solenoidal driving’). Mathematically, we distinguish
those two extreme cases by defining a vector field Fgi, that
drives the turbulence (Federrath et al. 2008, 2010):

e solenoidal driving (V - Feir = 0), and
e compressive driving (V X Fgir = 0).

In reality, we expect a mixture of both, some mechanisms
will be closer to our idealized picture of solenoidal driving,
while others might be closer to compressive driving.

Unlike the extensively studied case of incompressible
turbulence led by the pioneering theoretical work of Kol-
mogorov (1941, hereafter K41), studies of highly supersonic
turbulent flows only recently started to shed light on the
basic statistics of supersonic turbulent flows. Because of
its complexity and three-dimensional nature, the properties
of supersonic, compressible turbulence are primarily inves-
tigated through numerical simulations (e.g., Porter et al.
1992; Kritsuk et al. 2007; Schmidt et al. 2009; Federrath
et al. 2010). Early studies (Porter et al. 1994) indicated
that compressible turbulence might exhibit a turbulent ve-
locity spectrum P(v) very similar to the phenomenologi-
cal theory of incompressible turbulence by Kolmogorov with
P(v) o k5% (K41, Frisch 1995). Here, v is the turbulent
gas velocity and k = 2n/¢ is the wavenumber (or inverse
length-scale £) of a turbulent fluctuation (sometimes called
‘eddy’). The resolution of these early simulations, however,
did not yield a significant inertial range (the scaling range
over which a power law in wavenumber space can be mea-
sured which is well separated from both the driving and the
viscous scales), and the turbulence was only mildly com-
pressible (Mach number < 1).

With the advent of supercomputers combining thou-
sands of compute cores in one large-scale parallel applica-
tion, it is only recently that the spectral scaling of super-
sonic turbulence could be measured with improved preci-
sion (Kritsuk et al. 2007; Federrath et al. 2010), indicating
P(v) o k™2, which is much steeper than the Kolmogorov
spectrum and closer to Burgers turbulence (Burgers 1948).
Burgers turbulence consists of a network of discontinuities

(shocks), which can only form in supersonic flows. However,
the studies by Kritsuk et al. (2007) and Federrath et al.
(2010) were limited to 1024® grid cells. The highest reso-
lution simulation of supersonic turbulence so far was done
by Kritsuk et al. (2009) for a moderate Mach number of
6. Although this is clearly in the supersonic regime, typ-
ical molecular clouds in the Milky Way have Mach num-
bers of about 520 and sizes in the range 1-50pc (e.g.,
Roman-Duval et al. 2010). They can thus be significantly
more compressible. Here we focus on the most compressible
type of clouds in the Milky Way and compare simulations
with Mach 17 turbulence. Kritsuk et al. (2009) only stud-
ied solenoidal (divergence-free) driving, while here we study
both extremes: solenoidal and compressive (curl-free) driv-
ing, in order to test the influence of different driving modes.
We find significantly different statistics for these two ex-
treme cases.

First, we briefly summarize our limited theoretical
knowledge of supersonic turbulence in Section 2. In Sec-
tion 3, we then turn to the numerical simulation tech-
niques used to compare to and test these theories. Section 4
presents our results with details on the vorticity production
and spatial structure of supersonic turbulence, the density
PDF, and finally the scaling of the power spectrum. We con-
clude in Section 5.

2 THEORY OF COMPRESSIBLE
TURBULENCE

Studying turbulence requires a sufficient scale separation be-
tween energy injection (driving) on large scales and dissi-
pation on small scales. The range in between is known as
the inertial range of turbulence with a constant energy flux,
where the flow is directly influenced neither by driving nor
by dissipation. The existence of an inertial range is well es-
tablished for incompressible turbulence (Frisch 1995). How-
ever, this may not be the case for supersonic turbulence.
It is only recently that Aluie (2011, 2013) have rigorously
proven the existence of an inertial range for highly compress-
ible turbulence produced by any type of driving mechanism,
solenoidal or compressive. The existence of such an inertial
range, however, does not exclude the possibility of differ-
ent scaling properties for solenoidal or compressive driving,
which we will test below.

A fundamental idea for the scaling of supersonic turbu-
lence was proposed by Lighthill (1955) and later refined by
Henriksen (1991), Fleck (1996) and Kritsuk et al. (2007).
Based on the dimensional analysis by K41 and the as-
sumption of a constant flux of the kinetic energy density,
€kin = (1/2)pv2 in the inertial range, we can write

2 3

dzl;i" % % %S % < const. (1)
The second proportionality implies a time-scale t = £¢/v
for energy transfer on scale ¢. The last, enforced equality
in Equation (1) is that of a constant energy flux and is
the same as that assumed in K41, only that we keep the
dependence on density p, while p = const in the incom-
pressible model by K41. Taking this last equality in Equa-
tion (1), we find that the third-order structure function of
the density-weighted velocity, vmw = p*/3v o« £1/3, scales
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linearly, (|6vmw(£)[®) o pv® o £, for an increment vy (£)
between two points separated by a distance ¢. Thus, the
original Kolmogorov scaling for the power spectrum

P(p'3v) o d(p'/?v)?/dk o k~°/3 (2)

would be preserved even for highly compressible turbulence,
if the density-weighted velocity p'/3v were taken instead
of the pure velocity v. Indeed, numerical simulations with
with Mach numbers of M ~ 5-7 and resolutions of 10243
grid cells, using solenoidal or weakly compressive driving,
indicate a p*/3v scaling consistent with P(p'/%v) oc k=%/3
(Kritsuk et al. 2007; Federrath et al. 2010; Price & Fed-
errath 2010; Kritsuk et al. 2013), even if a magnetic field
is included (Kowal & Lazarian 2007; Kritsuk et al. 2009).
However, the simulation with purely compressive driving by
Federrath et al. (2010) indicated a significantly steeper scal-
ing with P(p*/%v) o« k=2 in the inertial range.

While this last result might be regarded as a false alarm,
because of a limited or insufficient scaling range in simula-
tions with purely compressive driving as argued by Kritsuk
et al. (2010), recently, Galtier & Banerjee (2011) derived
an exact relation for the scaling of compressible isothermal
turbulence, which does exactly predict P(p1/3v) o k199
k=21, Their model is also based on p'/3v and the predicted
P(p'/3v) o k7% scaling applies for turbulence with a
very strong V - v component, such as produced by compres-
sive driving. Only around the sonic scale, where the local
Mach number drops to unity, would the spectrum approach
P(p*3v) o« k7573,

The central result in Galtier & Banerjee (2011) is an ex-
act relation for compressible turbulence (their Equation 11).
It has two contributions to the total energy injection or dis-
sipation rate ¢,

—2e =8(r) + V, - F(r), (3)

where F o pv® is the energy flux as a function of length-
scale r and S is a new term that vanishes for incompressible
turbulence and contains the contributions of V-v. Using the
general definition of the increment 0§ = &(x + r) — £(x) =
¢ — € of any given variable £ at position x and separated by
a distance r, the exact expression for the new term S(r) is
(Galtier & Banerjee 2011; Banerjee & Galtier 2013)

Sr)=((V-v)(R=E))s + (V- 0)(R' = E))a;  (4)

with R=p(v-v'/2+¢') and E = p(v-v/2+¢€), where e =
c21n(p/po) and {(...), denotes an average over all positions
z in the turbulent flow.

Assuming isotropy (which is typically fulfilled, at least
in a statistical sense) and integrating over a sphere with
radius 7, Equation (3) can be written as

—%zseﬁr r=F(r) (5)

with an effective dissipation rate

cef(r) =€+ §7‘2
e\ 8 Or

to first order in a Taylor expansion of S for sufficiently small
r, but still larger than the viscous scale to probe the scaling
in the inertial range (see Equation 15 in Galtier & Banerjee
2011).

Following dimensional analysis, the flux F o pv®
eeft T. Introducing again the density-weighted velocity vmw =

Slr—o (6)
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p1/3v, we find eegr o vf;]w and thus the spectrum of the
density-weighted velocity

2
P(pl/gv) o Lz[]zw o Ezf/f3r5/3 o aif/f?’k%/g. (7)

If eer = const, then the spectrum P(p'/3v) o« k753 is
expected to follow K41 scaling as argued in our previous
derivation above (Equation 2). If, however, e.¢ scales with
r to some power, then P(p*/3v) does not follow k%3, but
is modified by the scaling of ecg(r) o« € + S(r) according to
Equation (6). It is thus the additional term S in the deriva-
tion of Galtier & Banerjee (2011) that can lead to a modified
scaling of P(p1/3v). Finally, Galtier & Banerjee (2011) argue
that one may expect a scaling ecg x S(r) o r2/3 for turbu-
lence with a strong V - v component (see the dependence of
S on V - v in Equation 4), in which case we would obtain
P(p"/3v) o< k~1%/° according to Equation (7).

In the next section, we run and analyse two extremely
high-resolution simulations of supersonic turbulence with
solenoidal and compressive driving to test the prediction
of P(p*/3v) < k~1%/° by Galtier & Banerjee (2011). We do
this here for compressive driving at a very high Mach num-
ber (M = 17), such that V - v is potentially very strong
on certain scales in the turbulent flow. We also analyse how
V - v depends on the driving mode. A direct measurement
of the new term S(r) is beyond the scope of this paper and
will be presented in a future study with focus on the analysis
of structure functions. Here we concentrate on the scaling
inferred by Fourier analysis.

3 NUMERICAL APPROACH

We use the FLASH code (Fryxell et al. 2000; Dubey et al.
2008) in its current version (v4) to solve the compressible
gas-dynamical equations on three-dimensional, uniform, pe-
riodic grids of fixed side length L with resolutions of 2562,
5123, 10243, 20483, and 40963 grid points. To guarantee
stability and accuracy of the numerical solution of the Eu-
ler equations, we use the HLL5R positive-definite Riemann
solver (Waagan et al. 2011), closed with an isothermal equa-
tion of state, which is a reasonable approximation for dense,
molecular gas of solar metallicity, over a wide range of densi-
ties (Omukai et al. 2005). Keeping the gas temperature fixed
has also the desirable advantage that the sound speed ¢ in
the medium is fixed and thus the root-mean-square (rms)
Mach number M does not change systematically for a con-
stant kinetic energy injection rate of the turbulence. This
allows us to run these calculations for an arbitrary number
of turbulent turnover times, ' = L/(2¢sM) (following the
definition by Kritsuk et al. 2007; Federrath et al. 2010), to
obtain a number of statistically independent flow snapshots,
which can be averaged over time to yield converged statis-
tical measures (PDFs and Fourier spectra).

To drive turbulence, we apply a stochastic acceleration
field Fgiir as a momentum and energy source term. Flir
only contains large-scale modes, 1 < |k| L/27 < 3, where
most of the power is injected at the kinj = 2 mode in Fourier
space, i.e., on half of the box size (for simplicity, we will drop
the wavenumber unit L/27 in the following). Such large-
scale driving is favoured by molecular cloud observations
(e.g., Ossenkopf & Mac Low 2002; Heyer et al. 2006; Brunt
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Table 1. Simulation parameters and statistical measures

Model M Driving N3, PDF o5 PDF 6 Slope P(v)  Slope P(p*/3v)  Slope P(V - v)
(1) (2) 3) (4) 5) (6) (7) (8) )
M17s01256 17.2+1.0 Solenoidal 2563 2.25+0.10 0.37£0.06 n/a n/a n/a
M17sol512 17.14+0.9 Solenoidal 5123 2,18 £0.08 0.28 £ 0.04 n/a n/a n/a
M17s0l11024 17.3+0.9 Solenoidal 10243  2.0940.04 0.22 £ 0.02 n/a n/a n/a
M17s012048 17.44+0.8 Solenoidal 20483  2.0040.02 0.18 £0.02 n/a n/a n/a
M17s014096 174+1.1 Solenoidal 40963  2.0040.02 0.20+£0.02 —1.96 4 0.04 —1.74+0.05 —0.08 +£0.05
M17comp256 16.6 £ 1.0 Compressive 2563  4.03+0.16 0.60 & 0.08 n/a n/a n/a
Ml17comp512  16.9+1.1 Compressive 5123  3.72+0.13  0.43 +0.07 n/a n/a n/a
M17compl024 16.9+1.3 Compressive 10243 3.604+0.11  0.39 +0.06 n/a n/a n/a
M17comp2048 16.8 £ 1.1 Compressive 20483 3.604+0.14 0.39 £ 0.07 n/a n/a n/a
M17comp4096 16.7+ 1.1 Compressive 4096% 3.5440.13 0.37+£0.06 —1.99+0.03 —2.10£0.07 —0.00 £ 0.03

Notes. Column (1): simulation name. Columns (2)—(4): rms Mach number, driving mode, and grid resolution. Columns (5) and (6):
standard deviation of logarithmic density fluctuations os and the intermittency parameter 6 for the density PDF fit. Columns (7)—(9):

slopes of the Fourier power spectra for velocity, p'/3v, and V - v (only measured with sufficient confidence for the 4096% models).

et al. 2009; Roman-Duval et al. 2011). The turbulence on
smaller scales, k > 3, is not directly affected by the driv-
ing and develops self-consistently there. We use the stochas-
tic Ornstein-Uhlenbeck process to model Fg;,y with a finite
autocorrelation timescale (Eswaran & Pope 1988; Schmidt
et al. 2006), set to the turbulent crossing time on the largest
scales of the system, T (for details, see Schmidt et al. 2009;
Federrath et al. 2010; Konstandin et al. 2012a).

We decompose the driving field into its solenoidal and
compressive parts by applying a projection in Fourier space.
In index notation, the projection operator reads Pfj (k) =
CPs+ (1= )Pl = ¢y + (1 — 20) kik;/|k|?, where P
and PZ”J are the solenoidal and compressive projection op-
erators. This projection allows us to construct a solenoidal
(divergence-free) or compressive (curl-free) acceleration field
by setting ( = 1 or ( = 0, respectively.

Our aim here is to study the regime of highly supersonic
turbulence such as in the interstellar medium, so we chose
to drive the turbulence to M = 17 for both extreme cases of
driving (solenoidal and compressive), which means that all
the scales resolved in our calculations are in the supersonic
regime, i.e., above the sonic scale (Vazquez-Semadeni et al.
2003; Federrath et al. 2010). Assuming a power-law velocity
scaling of the turbulence, v(f) o< £ o< k™, the sonic scale
ks (where the scale-dependent Mach number, .# () x v(£)
has dropped to unity) can be estimated as

s Ring 2 (1/ M) 71/, (8)

because the Mach number on the injection scale is roughly
equal to the rms Mach number, .#(L/2) ~ M. With
M =~ 17, kinj = 2, and a ~ 1/2 (the approximate veloc-
ity scaling for supersonic turbulence found in Burgers 1948;
Kritsuk et al. 2007; Schmidt et al. 2008; Federrath et al.
2010, and confirmed in Section 4.3 below), this leads to
ks =~ 578, which is in the dissipation range of the turbu-
lence, even in our highest resolution runs with 4096° points.
Thus, any resolved scales in our calculations are in the truly
supersonic regime of turbulence, so we can exclude any po-
tential contamination of the inferred supersonic scaling ex-
ponents by a transition region to subsonic flow around the
sonic scale, because that transition region is on much smaller

scales than we analyse here. A list of all numerical models
and parameters is provided in Table 1.

4 RESULTS

In the following, we will primarily focus on comparing two
simulations with solenoidal and compressive driving, each
with a grid resolution of 4096 points, which is currently the
world’s largest data set of supersonic turbulence (an equiv-
alent resolution was so far only reached for incompressible
turbulence by Kaneda et al. 2003). Each simulation was run
for about 44,000 time steps (see Appendix A) on 32,768 com-
pute cores running in parallel on SuperMUC at the Leibniz
Rechenzentrum in Garching (which consumed about 7.2 mil-
lion CPU hours altogether). Each run produced 115TB of
data (51 double-precision snapshots of the turbulent den-
sity and three-dimensional velocity, stretched over six tur-
bulent turnover times). In order to study resolution effects,
we also compare each 4096% model with the respective lower-
resolution versions with 2048%, 1024%, 512°, and 256° com-
pute cells (see Table 1 for a complete list of simulations).

4.1 Time evolution and turbulent structure

For all but the 4096 simulations, we start with gas of ini-
tial velocity vo = 0 and homogeneous density po in a three-
dimensional periodic box. The driving then accelerates the
gas to our target Mach number, M =~ 17, until a statis-
tically converged regime of fully developed turbulent flow
is reached, which happens after about two turnover times,
2T. For the 4096° runs, we take the density and velocity
fields of the respective 2048 simulations at ¢ = 27 and
map them on 4096° grids to spare the initial transient start-
up phase, t < 27. We run them until ¢ = 87, which gives
us a sufficiently large statistical sample of independent flow
snapshots to obtain converged results. In order to allow the
turbulence to adjust to the new resolution and to converge
to a statistically steady state, we start analysing the results
for t > 3T, leaving us five turnover times (3 < t/T < 8) to
average PDFs and Fourier spectra. This procedure also al-
lows us to quantify the temporal variations of the turbulence
in the fully developed regime.
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Figure 1. rms Mach number (top panels) and mean vorticity magnitude (bottom panels) as a function of time for solenoidal driving
(left-hand column) and compressive driving (right-hand column). Different line styles indicate grid resolutions from 2563 to 40963 cells.
Both the Mach number and vorticity reach a statistically steady state at t = 27". The 40963 calculations were initialized with the density
and velocity fields of the 20483 runs at t = 27. They reach statistical convergence within another turnover time and were run until
t = 8T. We thus use the interval 3 < ¢/T < 8 for averaging in subsequent analyses (for all resolutions). The Mach number is well
converged, while the vorticity increases with resolution as expected (Lesieur 1997; Sytine et al. 2000). The vorticity at a fixed resolution
is about a factor of 1.8 higher for solenoidal compared to compressive driving, consistent with the limit for hypersonic turbulence (factor

of two) estimated in Federrath et al. (2011a).

To demonstrate statistical convergence within
3<t/T <8, we show the time evolution of the rms
Mach number and the mean vorticity magnitude, (|V x v|),
in Figure 1 for all resolutions with solenoidal driving
(left-hand panels) and with compressive driving (right-hand
panels). We see that both M and the vorticity grow quickly
within 27" and then reach a statistically steady state. The
4096° runs, which were initialized with the 2048 density
and velocity fields at ¢ = 27T, reach a steady state by
t = 3T, so we choose to start averaging PDFs and spectra
for t > 3T, when all statistics have safely reached a steady
state. (We also inspected the time evolution of the rms
velocity divergence, as well as the time evolution of Fourier
spectra shown in Section 4.3, all of which were statistically
converged for ¢ > 3T'.)

Figure 1 shows that both extreme types of driving gen-
erate vorticity, with solenoidal driving being about twice as
efficient. This is because solenoidal motions are directly in-
jected by solenoidal driving, while they have to self-generate
in shock collisions and by viscous interactions across density
gradients with subsequent amplification in the case of purely
compressive driving (for details of the ‘anti-diffusion’ term
responsible for this behaviour, see the vorticity equations in
Mee & Brandenburg 2006; Federrath et al. 2011a).

Since the overall vorticity is always dominated by small-
scale structures, which have the smallest turbulent time-
scales, t(£) = £/v(€) < £*"* for any 0 < a < 1 (e.g., o =
1/3 for Kolmogorov and o = 1/2 for Burgers turbulence as
reasonable limiting cases), increasing the resolution leads to
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higher levels of vorticity, as the effective viscosity of the gas
decreases and the effective Reynolds number increases (Sur
et al. 2010; Federrath et al. 2011b). This is consistent with
the expectation that the vorticity tends to infinity at a finite
time in the limit of zero viscosity (Lesieur 1997; Sytine et al.
2000). The effective Reynolds numbers of our simulations are
of the order of Re ~ Nt (Benzi et al. 1993; Federrath et al.
2011a). For Burgers turbulence with o = 1/2 and for a grid
resolution of Ny.s = 4096, this yields Re ~ 3 x 10°. It must
be emphasized though that the actual dissipation range of
the turbulence is not resolved when computing numerical
solutions of the Euler equations instead of the Navier-Stokes
equations (Sytine et al. 2000). To find the trustworthy scales
in our simulations, i.e., the inertial range, we have to study
the resolution dependence of Fourier spectra, which we do
below in Section 4.3.

Slices through the three-dimensional turbulent flow
structures are shown in Figure 2. Corresponding projections
(integration along the line of sight) of the density and the
mass-weighted vorticity are shown in Figure 3. The latter is
closer to what an observer would see in a molecular cloud
observation. The gas density and vorticity appear to be cor-
related for both driving types in the slices and in the pro-
jections. This is because vorticity is primarily generated in
shocks and across strong density gradients (Mee & Bran-
denburg 2006; Federrath et al. 2011a). Solenoidal driving
produces more space-filling structures with a fractal dimen-
sion Df =~ 2.6, while Df =~ 2.3 and thus closer to sheets
for purely compressive driving (Federrath et al. 2009). The
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Figure 2. Slices through the three-dimensional gas density (top panels) and vorticity (bottom panels) for fully developed, highly
compressible, supersonic turbulence, generated by solenoidal driving (left-hand column) and compressive driving (right-hand column),
and a grid resolution of 40963 cells. Large regions of very low density and very low vorticity in the compressive driving case indicate

that the inertial range is shifted to slightly smaller scales for compressive driving compared to the more space filling case of solenoidal
driving. The fractal dimension of the density is D¢ &~ 2.6 and Df = 2.3 for solenoidal and compressive driving, respectively (Federrath

et al. 2009). (Movies are available in the online version.)

latter is consistent with the fractal mass dimension inferred
for molecular clouds in the Milky Way (Roman-Duval et al.
2010) and in nearby galaxies (Donovan Meyer et al. 2013).
Dense structures with high levels of vorticity are confined
to relatively small patches in the case of purely compres-
sive driving. Some large-scale regions with sizes of about
£ 2 L/10 or k < 10 remain almost empty and exhibit very
low gas density and vorticity. However, structures on smaller
scales (k 2 10) do show high levels of vorticity throughout.
This indicates that the inertial range in M = 17 turbulence
with compressive driving starts on somewhat smaller scales
than with purely solenoidal driving (Kritsuk et al. 2010),
which is different from the case of mildly supersonic turbu-

lence with M ~ 56 (Kritsuk et al. 2007; Federrath et al.
2010), where the inertial-range extent is not significantly
different between solenoidal and compressive driving.

4.2 Density PDFs

The strong density variations in supersonic turbulence, such
as seen in Figures 2 and 3, are clearly the most promi-
nent difference to incompressible turbulence. To quantify
these, we briefly analyse the PDF of the gas density. The
volume-weighted density PDFs of the logarithmic density
s =In(p/po) are shown in Figure 4. Obviously, compressive
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Figure 3. Same as Figure 2, but instead of slices, these show projections (integration along the line of sight) of the three-dimensional
gas density (top panels) and (mass-weighted) vorticity (bottom panels) for solenoidal driving (left-hand column) and compressive driving

(right-hand column). (Movies are available in the online version.)

driving produces a significantly wider density distribution
with a larger standard deviation than solenoidal driving for
the same rms Mach number, which has been explored and
discussed in detail in previous studies (Federrath et al. 2008,;
Price et al. 2011; Konstandin et al. 2012a,b).

Previous works suggest that the density PDF should be
approximately log-normal (Vézquez-Semadeni 1994; Padoan
et al. 1997; Passot & Vizquez-Semadeni 1998). Deviations
from perfectly log-normal distributions are caused by inter-
mittency and sampling effects (Kritsuk et al. 2007; Kowal
et al. 2007; Federrath et al. 2010; Price & Federrath 2010;
Konstandin et al. 2012b). Recently, Hopkins (2013b) sug-
gested an intermittency fit for the volume-weighted PDF
with the following function,

© 0000 RAS, MNRAS 000, 000-000

pr(s) =1 (2VA0)) exp = A+ w(D]y [ g oy

A=02/(20%), w(s)=N(1+60)—5/0 (w=0) (9)
where I1 () is the modified Bessel function of the first kind.
Equation (9) is motivated and explained in detail in Hopkins
(2013b). It contains two parameters, the standard deviation
of logarithmic density variations, o5, and an intermittency
parameter 6. In the zero-intermittency limit 6 — 0, Equa-
tion (9) simplifies to a log-normal PDF. Hopkins (2013b)
show that this intermittency form of the PDF provides ex-
cellent fits to density PDFs from turbulence simulations with
extremely different properties (solenoidal, mixed, and com-
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pressive driving, Mach numbers from 0.1 to 18, and varying
degrees of magnetization).

We apply fits to all PDFs in Figure 4 for different driv-
ing and resolutions by simultaneously fitting the standard
deviation o5 and the intermittency parameter 0, i.e., we per-
form a two-parameter fit. We note that this yields fitted val-
ues of o that agree very well with the actual data values (to
within 10%). The parameters os and 6 are listed in Table 1.
Comparing different resolutions, we see that os and 6 de-

crease with increasing resolution. To study the convergence
behaviour, we plot s and 6 as a function of resolution in
Figure 5. The top panels show os and the bottom panels
show 6. We apply power-law fits with the model function
y(z) = az™? + ¢ to study convergence and to estimate the
parameter values ¢, which correspond to the limit of infi-
nite numerical resolution Nyes — 0. We perform fits for
¢ = 0s(00) and ¢ = 6(c0) and both driving types. The fit
curves are added in each panel of Figure 5. They fit the data
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for all our resolutions Nyes = 2564096 quite well and give
os(00) = 1.95 £+ 0.15 and 6(c0) = 0.18 £ 0.06 for solenoidal
driving, and o,(00) = 3.554+0.25 and 6(c0) = 0.38+0.10 for
compressive driving in the limit of infinite resolution. The
20483 and 4096° data are converged to within 10% of the
limit Nyes — 00.

Our fit values for the infinite-resolution limit in Fig-
ure 5 show that compressive driving is significantly more
intermittent with Ocomp/0so1 =~ 2.1, consistent with the fits
in Hopkins (2013b) for M ~ 15 simulations with solenoidal
and compressive driving by Konstandin et al. (2012b).

4.3 Fourier power spectra of v and p'/%v

Fourier power spectra are an ideal tool to study the scaling
of fluid variables such as the turbulent velocity, density, or
combinations of both, and the results are readily compara-
ble to turbulence theories such as the incompressible Kol-
mogorov (1941, hereafter K41) model or the Burgers (1948,
hereafter B48) model. The latter is entirely composed of dis-
continuities (or shocks). As the analysis is done in Fourier
space, the spatial scale £ simply transforms to a wavenumber
scale k = 2m /£. The three-dimensional Fourier transform of
a variable ¢(£) with € = {1, 2,43} is defined as

W) = gy 0@ @ (o)

where we denote the Fourier transform of ¢(£) with g(k).
With this definition of the Fourier transform, the Fourier
power spectrum of ¢ is given by

P(q) = (q- 7" Ank*), (11)

as an average of ¢ - q" over a spherical shell with radius
k = |k| and thickness dk in Fourier space.

An important caveat of numerical turbulence simula-
tions is that the Fourier spectra are typically only converged
within a very tiny range of scales for the resolutions achiev-
able with current technology (see also Klein et al. 2007).
Thus, a large fraction of scales is either affected by numeri-
cal dissipation (and thus not converged) or a potential iner-
tial range is contaminated by the so-called bottleneck effect
(Falkovich 1994; Dobler et al. 2003; Schmidt et al. 2006).
Scales affected by numerical dissipation and the bottleneck
effect must be excluded from the analysis. Previous simula-
tions established very stringent requirements on the numer-
ical resolution. For instance, Kritsuk et al. (2007), Schmidt
et al. (2009), Lemaster & Stone (2009), and Federrath et al.
(2010) find that at least a resolution of 512% grid cells is
required, but even with a resolution of 1024% grid cells, the
scaling range is much less than half a decade. Those studies
were also run at relatively low Mach number (M =~ 5-7),
while the larger Mach numbers studied here may require
even higher resolution.

Federrath et al. (2010, 2011b) found a strict lower limit
of 32 grid cells, across which the energy carried by a vortex
is reasonably well captured in a grid-based code. Vortices
resolved with less than 32 grid cells in diameter suffer nu-
merical dissipation. It is quite obvious that vortices are com-
pletely lost when their diameter falls below a single grid cell.
In addition to that, the bottleneck effect can contaminate
the inertial-range scaling on even larger scales than numeri-
cal dissipation. Eventually, only resolution studies can reveal
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the trustworthy scales, which is why we perform a resolu-
tion study below. Here we compare runs with 2563, 5123,
10243, 20483, and 4096° grid cells, showing that the most
reasonable scaling ranges for the simulations studied here
are 5 < k < 20 for solenoidal driving and 10 < k£ < 30 for
compressive driving. The upper limit for solenoidal driving
extends to slightly lower k than with compressive driving
(i-e., kmax = 20 versus 30), because the bottleneck effect is
stronger for solenoidal driving (Konstandin et al. 2013, in
preparation). On the other hand, the lower limit (kmin = 5
versus 10) is shifted to higher k for compressive driving, as
we guessed from the visual inspection of Figures 2 and 3
(right-hand panels), which showed large empty patches of
size down to one-tenth of the box length, i.e., kmin ~ 10.

Figure 6 (top panels) shows the compensated velocity
spectra, P(v), i.e., setting ¢ = v (the turbulent velocity)
in Equation (11). We see that both solenoidal and com-
pressive driving produce velocity scalings much steeper than
the K41 scaling for incompressible turbulence (P o k~%/3).
Solenoidal driving yields P(v) o< k~1%6%0-% and compres-
sive driving yields P(v) o k~199%093 hoth very close to
B48 scaling (P o« k~2). These results for P(v) are consis-
tent with previous studies by Kritsuk et al. (2007), Lemas-
ter & Stone (2009), and Federrath et al. (2010) at a lower
Mach number (M =~ 5-7) and lower resolution. Moreover,
our measured spectral slopes for solenoidal and compres-
sive driving are both consistent with a turbulent velocity
dispersion—size scaling (often referred to as Larson 1981, re-
lation) of v o £°-°, as measured in observational studies of
molecular clouds (Larson 1981; Solomon et al. 1987; Falgar-
one et al. 1992; Ossenkopf & Mac Low 2002; Heyer & Brunt
2004; Roman-Duval et al. 2011).

In contrast to the pure velocity spectra, Figure 6 (bot-
tom panels) shows that the density-weighted velocity spec-
tra P(p*/3v) are significantly different for different driv-
ing. As explained in Section 2, the density-weighted velocity
p'/3v has been proposed to exhibit a more universal scaling
in supersonic turbulence than the pure velocity. According
to the simple theoretical analysis given by Equation (2), we
would expect P(p'/3v) o k7%/3, as in the incompressible
K41 case. However, we see that contrary to the hypothe-
sis of universality of P(pl/‘n’v)7 the spectra are significantly
different between solenoidal and compressive driving. While
solenoidal driving is close to (but slightly steeper than) K41
scaling with £~ 17499 compressive driving exhibits a sig-
nificantly steeper scaling with k~210%%-07 The latter seems
to be consistent with the recent theoretical prediction of
P(p"/%v) o k~1%/° by Galtier & Banerjee (2011) for highly
compressible turbulence with a strong V - v component,
which we discuss further in Section 4.4.

Our resolution study in Figure 6 shows that the inertial
range is shifted to smaller scales for compressive driving, as
we guessed from the visual inspection of Figures 2 and 3
(right-hand panels), showing large empty patches of size
down to one-tenth of the box length, i.e., k = 10. This was
not the case in our previous simulations with compressive
driving and a moderate Mach number of M = 5-6 in Fed-
errath et al. (2010), which were consistent with P(p'/%v) o
k199 at moderate 512°-1024% resolution. Resolving Mach
17 turbulence requires much higher resolution than Mach 6
turbulence. The shock width decreases with the Mach num-
ber squared. Thus, we have to resolve structures that are
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for compressive driving), considering how each of the spectra changes with increasing resolution and considering contamination by the

bottleneck effect (see text for details).

(17/6)*> ~ 8 times smaller compared to Federrath et al.
(2010), which is about the difference in the required reso-
lution, i.e., 4096/512 is a factor of 8 in linear resolution,
equivalent to the reduction in shock width between Mach 6
and Mach 17 turbulence.

From this analysis, we see that at least a resolution of
4096 grid cells is required to resolve the inertial range for su-
personic turbulence with a higher Mach number (M = 17).
Even with such high resolution, the inertial range only ex-
tends between k ~ 10 and 30. We emphasize that the
P(p'/3v) spectrum for compressive driving would have been
consistent with the universal hypothesis of k~%/3 scaling, if
we had only resolved it up to 1024% grid cells (see the rel-
atively flat dashed and dot-dashed lines for 512 and 10243
resolutions in the bottom, right-hand panel of Figure 6). In
contrast, the additional 2048 and 4096° calculations clearly
demonstrate a significant steepening to P(p'/%v) oc k199
in the scaling range 10 < k < 30, before P(pl/?’v) flattens
again for k 2 40 due to bottleneck contamination there.
The steepening to k~%/% is basically absent for resolutions
Nres < 1024, because the bottleneck effect artificially flat-
tens the spectra, i.e., we would have measured a shallower
slope closer to k~%/3, if we had included scales in the fit that
are affected by the bottleneck effect. Thus, for fitting the
spectra, great care must be exercised in choosing converged

scales that reflect the physical scaling of supersonic turbu-
lence, which requires extremely high resolution for M 2 15
turbulence, such as in many molecular clouds.

Given all statistical and numerical uncertainties, and
given the systematic evolution of the spectra with increas-
ing resolution in Figure 6, our measured slopes for the
4096% models are converged to within an uncertainty of
< 10%, which we estimated by extrapolating the slopes
for 10242, 20482, and 4096 resolutions to the limit of in-
finite resolution (the temporal variations are of the order of
< 5%). Varying the fit range arbitrarily between kmin = 5
and kmax = 30 (given the constraint that kmax/kmin = 2)
changes the measured slopes by less than 10%. Thus, the
P(p/3v) slopes are significantly different between solenoidal
and compressive driving.

To see that the slopes of the P(p'/%v) spectra are
also converged in time, we fit each individual flow snap-
shot within the fully developed regime of turbulence. This
analysis is shown in Figure 7, demonstrating convergence
and emphasizing our main result: the spectral slope of the
density-weighted velocity p*/3v is —1.74+0.05, only slightly
steeper than K41 scaling, while compressive driving yields
a significantly steeper slope of —2.10 4+ 0.07, consistent with
the theoretical prediction in Galtier & Banerjee (2011).

© 0000 RAS, MNRAS 000, 000-000



>
2
=
X
S _j 9 == =
[
Q.
o -2.0F E
12
T 21 F E
g _o90F 4096° solenoidal
o E driving
-2.3¢ | ‘ ‘ ‘ ]
3 4 5 6 7 8

t/T

Supersonic turbulence 11

-1.6E 1 T 3

— E 4096° compressive 3
o —1.7E driving 7
> E El
SN E E
S _1.9F 3
() E |
a E E
O 2.0k 3
o 2 qr-t1- - E
© O o O e SOOI
a —2.2F 3
” E E
-2.3¢ ‘ ‘ ‘ ‘ E

3 4 5 6 7 8

/T

Figure 7. Spectral slope of the density-weighted velocity power spectra P(p1/3v) in the regime of fully developed turbulence, 3 < ¢t/T < 8.
The left panel is for solenoidal driving and the right panel for compressive driving. The dashed line shows the time-averaged mean slope
and the dotted lines enclose the 1o time variations. Solenoidal driving yields a slope of —1.7440.05, close to K41 scaling, while compressive
driving gives a significantly steeper slope of —2.10 £ 0.07, consistent with the theoretical prediction in Galtier & Banerjee (2011).

4.4 Why is the scaling of p1/3v not universal?

The reason for the dependence of P(p'/3v) on the driving
that we found above can be seen in the theoretical deriva-
tion by Galtier & Banerjee (2011) of the scaling in Equa-
tion (7). This derivation shows that P(p'/®v) o €§é‘3k75/3.
Since ees (1) x S(r), exactly defined in Equation (4), eeg is
not constant, but instead modifies the scaling of P(p'/3v).
Preliminary analyses of structure functions (not shown here)
indicate a positive power-law scaling of S(r), such that the
effect of the new (compressible) term S(r) is to steepen the
slope of P(p'/?v) compared to K41 scaling with k~°/%. Such
a steepening is indeed seen in the numerical spectra in Fig-
ure 6 with P(p'/%v) o k~1™ and x k=219 for solenoidal
and compressive driving, respectively. The stronger steep-
ening for compressive driving is caused by the stronger V - v
component for this type of driving (see Equation 4 for the
dependence of S on V - v).

A detailed analysis of the scaling of the term S is beyond
the scope of this study, but we can nevertheless quantify
the amount of compression and V - v, causing the modified
scaling of P(pl/gv)‘ To study the effects of compression, we
first consider the compressive ratio spectrum,

Y (k) = Feomp(v)/P(v), (12)

i.e., the ratio of the longitudinal part of the velocity spec-
trum Peomp(v) (for which v (k) is parallel to k) divided by
the total velocity spectrum P(v). The compressive ratio
is a useful measure to evaluate the fraction of compress-
ible velocity fluctuations as a function of scale. It is shown
in Figure 8 (top panels). We clearly see the effect of the
distinct driving at k& = 2. Solenoidal driving does not ex-
cite compressible modes directly, producing a minimum in
U(k) ~ 0.1 (note that this is not exactly zero, because some
compression is indirectly induced at k = 2, because the flow
is supersonic). In contrast, compressive driving excites only
compressible modes at k = 2 and ¥ (k) ~ 0.8 (it is also not
exactly unity, because of indirect production of solenoidal
modes in shock collisions and along density gradients). How-
ever, the direct effect of the driving is only noticeable on
scales 1 < k < 3 (see Section 3). Yet, we will see below
that the driving does indirectly change the statistics in the
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inertial range of compressible turbulence, as the supersonic
turbulent fluctuations cascade down to smaller scales.

Figure 8 (top panels) shows that the compressive ratio
¥ decreases from about 1/3 to 1/4 for solenoidal driving
in the inertial range, consistent with Kritsuk et al. (2010),
but remains almost constant at ¥ = 0.43 + 0.04 for com-
pressive driving up to k = 30, where the scaling is nearly
converged with resolution (higher wave numbers, k > 30,
are affected by numerical dissipation and the bottleneck ef-
fect as explained above, and were thus excluded from the
fit). This emphasizes the very different nature of supersonic
turbulence driven by a solenoidal force and driven by a com-
pressive force. In contrast to the classical concept of incom-
pressible turbulence with an inertial range that does not
depend on the driving, we see here that the inertial-range
scaling of compressible turbulence depends on the driving.

Consistent with the compressive ratio spectrum, also
P(V - v) has a significant dependence on the driving as
shown in the bottom panels of Figure 8. P(V - v) o< k™08
decreases in the inertial range for solenoidal driving. Re-
markably though, for compressive driving, P(V - v) remains
constant over an extremely extended range of scales. We be-
lieve that this is the key reason for the different scaling of the
pl/ 3v spectra. A quantitative analysis, however, requires a
direct measurement of the scaling of e o< S(r), which must
be done in a follow-up study.

5 CONCLUSIONS

We studied the statistics of isothermal, highly compressible,
supersonic (Mach 17) turbulence, such as relevant for the dy-
namics of the interstellar medium, with the Mach numbers
of the order of 5-20 in the nearly isothermal density regime
of molecular clouds. We analysed simulations with resolu-
tions of 2563-4096> grid cells to study the convergence of
our results. Comparing the two limiting cases of turbulent
driving: (1) by a solenoidal (divergence-free) force, and (2)
by a compressive (curl-free) force, we find significant differ-
ences in the production of vorticity, the density PDF, and
the scaling of the turbulence in the inertial range.

The vorticity produced by solenoidal driving is about



12 Federrath

1.0[ " B
[ solenoidal driving |
0.8 5
= I 4096° (fit: Trg™0 114009 ]
T o6l ]
< 067 1
B i q
2 0.4F
§ i
S
0.2 8
0.0f ‘ ‘
1 10 100 1000

P(V )

[ —---—2048°

I 4096° (fit: Pk 00209 ]

1 10 100
k

1000

Poomp(V) / P(V)

P(V )

H.O I ‘ H .. 4
I compressive driving |
0.8 ;
[ 4096 (fit: Yrofe™0005002) :
0.6 N
: < .
0.4 ff ¢
; ]
0.2F {
0.0l | | 7
1 10 100 1000
k
4 compressive driving
10 //\\
- e "f'_-.'i«—-a\—_.;
I =
I N
s 256°
103} S e
P - 1024 _ ‘
[ —---—2048°
L 40963 (ﬁJr: PN/C—OOOto.os) i
1 10 100 1000

k

Figure 8. As Figure 6, but showing Fourier power spectra of the compressive ratio defined in Equation (12) (top panels) and of V - v
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solenoidal driving, but stay remarkably constant for compressive driving in the inertial range.

1.8% larger than by compressive driving, close to the hy-
personic limit (Figure 1). The turbulent structures, in par-
ticular the density structures, exhibit significantly different
fractal dimensions for solenoidal and compressive driving
(Figures 2 and 3). For 1024®-4096° resolutions, the density
PDFs are converged to within 20% of the infinite-resolution
limit, while simulations with Nyes < 256 resolution can devi-
ate by more than a factor of two from the infinite resolution
limit (Figures 4 and 5). Compressive driving is more inter-
mittent than solenoidal driving, with the PDF intermittency
parameter Ocomp/0so1 = 2.1.

The pure velocity spectra are close to Burgers scaling
with P(v) o k=2 for both driving cases. In contrast, we
find that the previously suggested universal scaling of the
density-weighted velocity p'/3v is ruled out (see Figures 6
and 7). The power spectrum P(p'/3v) oc k=174£0:95 " close
to (but slightly steeper than) K41 scaling (P o k~°/3) for
solenoidal driving, is consistent with previous studies. How-
ever, P (pl/ 31}) is significantly steeper for compressive driving
with P(p'/3v) oc k=219%09-07 in the inertial range. The lat-
ter is in excellent agreement with the theoretical estimate
P o« k7% by Galtier & Banerjee (2011) for highly com-
pressible turbulence with a strong V-v component, which we
find to decrease for solenoidal driving, but stays almost per-
fectly constant for compressive driving down to very small
scales (Figure 8).

Our study emphasizes the need to rethink the defini-
tion of the inertial-range scaling in highly compressible tur-
bulence compared to incompressible turbulence. The latter

defines an inertial range on scales sufficiently separated from
the driving and dissipation scales, such that there is no in-
fluence of driving and dissipation. This basic rule cannot be
carried over to highly compressible, supersonic turbulence,
where the inertial-range scaling does depend on the driving,
as we have shown here. This may be caused by supersonic
turbulent fluctuations (shocks) crossing multiple scales, in
contrast to the more local energy transfer between scales in
incompressible turbulence. Answering this question requires
a scale-by-scale analysis of the energy transfer tensor with
high-resolution data in future studies.
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(Mach numbers) of vmax ~ £50.

supported ASC/Alliance Center for Astrophysical Ther-
monuclear Flashes at the University of Chicago.

APPENDIX A: VELOCITY PDFS AND TIME
STEPPING

Figure A1l shows the PDF's of velocity v averaged over all
three spatial directions and averaged over time (error bars
indicate 1o temporal and spatial variations of the veloc-
ity components). Since we expressed the velocity in units
of the sound speed throughout, maximum Mach numbers
reach absolute values of about 50. The standard deviation
of the v-PDF is practically identical to the rms Mach num-
ber, because the mean time-averaged velocity (and the mean
momentum) is zero to machine precision.

Given these maximum velocities |Umax| &~ 50, typi-
cal time steps for the simulations with Ny.s = 4096 are
At ~ forL Az/|Umax| ~ 4 x 107¢ for Az = 1/4096 and
the CFL safety factor fcrr, = 0.8 (Courant et al. 1928).
The total number of time steps to evolve the simulations for
six turbulent crossing times 67", where T' = L/(2¢sM) =
1/(2 x 17) & 2.9 x 1072, is thus Nageps = 6T/At ~ 44,000.
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