
Front-Tracking Techniques for Multiphase Viscous Flow
AM205 Final Project

Dylan Nelson1⋆

1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA

14 December 2012

ABSTRACT

We investigate the numerical simulation of multiphase fluid flow problems in two
dimensions. In particular, we implement a front-tracking approach where a number of
discrete points represent the free interface between two fluid phases. This boundary
is advected in time, and at each timestep we calculate the surface curvature and
include a model for surface tension effects. The Lagrangian surface is coupled to a
fixed, Cartesian grid mapped to a square domain. The incompressible Navier Stokes
equations are used to model continuum fluid flow of both phases, which have different
densities and physical viscosities. We use the projection technique to split the second
order time update into an advection-diffusion step following by a pressure correction
step to enforce the divergence free constraint, while the spatial discretization uses
the finite volume approach with staggered, rectangular control volumes for pressure
and velocity. We investigate the numerical accuracy and convergence of the curvature
calculation, area conservation of a high density drop surrounded by low density air, and
the generation of spurious numerical velocities. The approach is then used to simulate
the bounce of a water drop off of a rigid boundary. A proof of concept boundary
merger algorithm is presented to handle the topological change of two colliding water
drops, and extensions to more accurate numerical methods and physical models are
discussed.

Key words: numerical methods – multiphase flow – front tracking – computational
fluid dynamics

1 INTRODUCTION

Multiphase flows are fluid dynamics systems where different
fluid phases – liquid-gas mixtures for instance – are simul-
taneously present. In theory these could be different phases
of the same material, e.g. liquid and vapor water, although
they could also be different materials, e.g. liquid water and
oil. The formation and breakup of bubbles and droplets of
liquid in air or air in liquid are common examples of mul-
tiphase fluid interaction. Bubbles can carry thermal energy
away from hot boundaries, as in boiling. Liquid jets can at-
omize into a large number of droplets, as in fuel combustion.
Droplet collision and droplets impacting surfaces result in
splashing and disruption. Air bubbles can form during the
phase change from liquid to gas and rapidly collapse, lead-
ing to cavitation. Liquid-solid interactions are also a cate-
gory of multiphase flows, in which case the interface often
remains rigid though perhaps moves. However, flexible solids
can change their shape in response to fluid motion, as with

⋆ E-mail: dnelson@cfa.harvard.edu

blood flow through arteries, and solidification or dissolution
can lead to mass exchange between phases similarly to evap-
oration or condensation. Clearly a wealth of both engineer-
ing and natural fluid problems are multiphase in nature (see
Prosperetti & Tryggvason 2007, for more examples), and the
difficulty in obtaining analytical solutions or setting up well
controlled experiments has motivated strong interest in the
numerical simulation of multiphase flow.

Several numerical methods have been developed to solve
multiphase flow problems in various regimes. These can be
either Lagrangian or ALE, when the computational elements
follow the flow to some extent, or Eulerian, where the com-
putational grid is fixed in space (Caboussat 2005). In the
Lagrangian case the interface between two fluid phases is fol-
lowed with edge elements of a mesh (Hansbo 1992), although
typically only small displacements are possible (for instance,
fluid-structure interactions or small amplitude waves) and
general motion leads to topological difficulties and mesh
tangling (e.g. an ocean wave breaking onto itself). For a
fixed grid or mesh, there are two broad classes of following
and modeling the interface between two fluid phases. The

2 D. Nelson

nt

Interface

x(s) = (x(s),y(s))

Fluid 1

Fluid 2

Figure 1. Schematic of the interface between two fluids. The
coordinate s parameterizes distance along the front, while n is
the normal and t the tangential vectors at any point x(s).

first is interface tracking, and the second is volume tracking.
With interface tracking a fixed grid is coupled to Lagrangian
tracer particles, which can either exist solely at the interface,
or everywhere within one of the domains – e.g. the “mark-
ers and cells” (MAC) method (Harlow & Welch 1965) or the
surface “front tracking” method (LeVeque & Shyue 1996).
Two popular volume tracking techniques are the “level set”
method (Chang et al. 1996), where the boundary is defined
by the level line of some smooth function φ(x, t) which is ad-
vected with the velocity field and can represent the signed
distance of each point to the interface, and the “volume of
fluid” (VOF) method (Hirt & Nichols 1981) which captures,
rather than follows, the liquid and its interface. The largest
difference between these methods arise during topological
changes at the interface, which occur implicitly with vol-
ume tracking methods but must be handled explicitly with
front tracking methods. Conversely, the interface curvature
can be estimated directly from its representation in front
tracking methods, whereas with volume tracking methods it
must first be reconstructed from the φ function. In what fol-
lows we consider a moving surface front tracking algorithm
coupled to a fixed grid incompressible Navier Stokes solver.

In §2 we present the mathematical foundations for the
physical system we are trying to model. §3 discusses the
numerical approach for the fluid solution in general, while
§4 details the use of a tracked interface between two sepa-
rate fluids. Next, §5 tests the implementation and verifies
its accuracy, allowing us to explore a few more interesting
simulations in §6. We conclude with a brief discussion of the
results and future work in §7.

2 PHYSICAL MODEL

We consider the mathematical formulation of a domain con-
sisting of two continuum fluids, such as that each is well
described by the Navier Stokes equations. The interface be-
tween these two fluids is assumed to be infinitely sharp (zero

thickness), such that the properties of the fluids change dis-
continuously across this surface. In reality, this transition
occurs at molecular scales (e.g. van der Waals forces) and is
unresolved in our simulations; we model this regime by in-
cluding surface tension at the interfaces. The two fluids are
treated as immiscible, that is, no mass exchange between
them. Following (Tryggvason et al. 2001) we present the
“one-fluid” approach, where the entire domain is modeled
by the same set of equations while fluid properties such as
density and viscosity can vary.

2.1 Incompressible Navier Stokes

We do not present a physically motivated derivation of the
equations but present them as a mathematical model to
which we seek a numerical solution. In conservative form,
conservation of mass gives us

∂ρ

∂t
+ u · ∇ρ = 0 (1)

where ρ(x, t) is the fluid density, and u(x, t) is the fluid
velocity. We restrict our investigation to incompressible flow,
in which case this reduces to

∇ · u = 0. (2)

Momentum conservation gives us

ρ
(

∂u

∂t
+ u · ∇u

)

=

−∇P + ρg + ∇ · µ(∇u+∇T
u) + f (3)

where the stress tensor has been written in terms of the
viscosity µ(x, t). P (x, t) is the pressure, g is a gravitational
acceleration and f any other body forces. The usual conven-
tion is to call the second u · ∇u term the “advection term”
and the second to last ∇·µ(∇u+∇Tu) term the “diffusion
term.” A more compact form is then

∂u

∂t
= −

1

ρ
∇P −A+

1

ρ
D + g +

1

ρ
f (4)

2.2 Surface Tension

At small spatial scales the effect of surface tension becomes
important. We model this phenomenon by adding a term to
f corresponding to the usual model (Prosperetti & Tryg-
gvason 2007) where

fσ = σκnδ(n) (5)

where σ is the coefficient of surface tension (with units of
force per length in two dimensions), and κ is the curvature
such that

κn =
∂t

∂s
(6)

where t is the tangent vector to the interface and s parame-
terizes the curve representing the interface, shown schemat-
ically in Figure (1). The delta function δ(n) indicates that
this body force is zero everywhere except at the interface, so
it added as a “singular term”. We compute surface tension
along each segment of the interface ∆sk as

f
k
σ = σ

∫

∆sk

∂t

∂s
ds = σ

(

tk+1/2 − tk−1/2

)

. (7)

Multiphase Viscous Flow 3

This force, over each segment, is then smoothed onto the
grid as discussed below in §4.2.

3 NUMERICAL SOLUTION

We describe a second order approach to solving the equa-
tions of §2 using an Eulerian, rectilinear grid and the finite
volume technique. We consider only two dimensional prob-
lems.

3.1 Time Integration

We use the “projection” method and split the time stepping
of the momentum equation into two parts. First, we solve
for a velocity field u† neglecting the pressure term. From
Equation (4) this means taking

u† − un

∆t
= −A

n +
1

ρn
D

n + g +
1

ρn
f (8)

where u† represents an intermediate velocity field which
does not yet satisfy ∇ · u = 0, and the superscript n in-
dicates that value at timestep number n. To obtain the final
velocity we then add the pressure term

un+1 − u†

∆t
= −

1

ρn
∇Pn. (9)

The pressure at each timestep Pn must be determined such
that the resulting un+1 is divergence free. This requires an
iterative procedure; taking the divergence of Equation (9)
we have

1

∆t
∇u

n+1 −
1

∆t
∇u

† = −∇
1

ρn
∇Pn (10)

and since we require ∇ · un+1 = 0 then this reduces to

1

∆t
∇ · u† = ∇ ·

(

1

ρn
∇Pn

)

. (11)

We will again follow Tryggvason et al. (2001) and use the
“successive over relaxation” (SOR) technique to solve for Pn

at each timestep. This is written out explicitly in the follow-
ing subsection. Finally, note that Equation (8) as written
is a first order in time, explicit Euler update. We modify
this to be a second order, explicit, predictor-corrector type
update by taking two substeps of ∆t/2 (following the above
procedure) and computing

q
n+1 = q

n +
∆t

2

(

(
∂q

∂t
)n + (

∂q

∂t
)(n+1)

)

. (12)

where q represents the velocity components, density, viscos-
ity, or interface position. The interface position is updated
(discussed in §4) and the density field is advected indirectly,
by reconstructing the density over all of Ω from the location
of the interface between the two fluids.

The only remaining aspect of the time integration is
the allowed timestep. For two-dimensional flow (Tryggvason
et al. 2011) we must have

µ∆t

ρh2
6

1

4
; (u · u)

ρ∆t

µ
6 2 ;

u∆t

h
6 1. (13)

Where h = ∆x = ∆y in our case. The first condition arises
due to the diffusion term, while the second results from

pi,j

ui,j-1/2

ui+1/2,jui-1/2,j pi+1,jpi-1,j

pi,j+1

pi,j-1

ui-1,j+1/2 ui+1,j+1/2

pi-1,j+1 pi+1,j+1ui+1/2,j+1ui-1/2,j+1

ui-1,j-1/2 ui+1,j-1/2

pi-1,j-1 ui-1/2,j-1 pi+1,j-1ui+1/2,j-1

ui,j+1/2

∆x

∆y

Figure 2. Schematic of the staggered grid. Pressure points (pur-
ple) are shown along with the horizontal velocity u1 (colored
green) and vertical velocity u2 (colored red). The control volumes
associated with each primitive variable are shown as dashed lines.

the advection term. We use both heuristically to set our
timestep, but offer no error analysis for their derivation. Our
tests will generally be sufficiently low velocity that these first
two restrictions are more stringent than the third, which is
the standard CFL condition.

3.2 Spatial Discretization

The domain Ω is decomposed into a set of disjoint control
volumes Vi. The average of any fluid quantity q within such
a “cell” is given by the volume integral

q =
1

V

∫

V

q(x)dv. (14)

Our goal is to rewrite the terms of the momentum equation
(3) in terms of surface fluxes. To do this we need Gauss’
theorem to transform the volume integral of a quantity q

into a surface integral with normal n, as
∫

V

(∇ · q) dv =

∮

S

(q · n) ds. (15)

The diffusion term can be written

D =
1

V

∫

V

∇ · µ
(

∇u+∇T
u
)

dv

=
1

V

∮

µ
(

∇u+∇T
u
)

· nds. (16)

Likewise the advection term can be written (since u · ∇u =
(∇ · u)u) as

A =
1

V

∫

V

u · ∇udv =
1

V

∮

S

u (u · n) ds. (17)

For simplicity and computational efficiency we take control
volumes aligned with the coordinate axes, and have V =
∆x∆y. The approach of Tryggvason et al. (2001) is to use a
grid where the pressure and velocity components are stored
on different, staggered grids, and we adopt this approach. In
particular, the horizontal velocity component u1 is stored on
a grid displaced ∆x/2, while the vertical velocity component
u2 is similarly shifted by ∆y/2. We label the nodes of P by

4 D. Nelson

(i, j) and the velocity nodes as (i + 1/2, j) or (i, j + 1/2)
for example. Note that the fluid density and viscosity, for
instance, are stored at the pressure nodes.

This arrangement staggered grid is shown schematically
in Figure (2). The goal is that the primitives required at the
midpoints of the finite volume faces are stored there. For
instance, the center of the u1 (horizontal) velocity cell is
placed at the midpoint of the vertical face of the pressure
cell. The cell spacing (we take ∆x = ∆y throughout) is the
distance between adjacent cell centers of any given primitive
variable.

Given these conventions we can write discretized forms
of the relevant equations. Firstly, using Gauss’ theorem with
∇ · un+1 requires the dot product of un+1 with the normal
of each of the four faces of the pressure cells, integrated over
those faces, vanish. Using the midpoint approximation, this
divergence free requirement becomes

∆y
(

(u1)
n+1
i+1/2,j − (u1)

n+1
i−1/2,j

)

+∆x
(

(u2)
n+1
i,j+1/2 − (u2)

n+1
i,j−1/2

)

= 0. (18)

Next, the two components for the velocity update in Equa-
tion (8) become

(u1)
†

i+1/2,j
= (u1)

n
i+1/2,j +∆t

(

(−A1)
n
i+1/2,j+

(g1)
n
i+1/2,j +

(D1)
n
i+1/2,j

ρn
i+1/2,j

+
(f1)

n
i+1/2,j

ρn
i+1/2,j

)

(19)

(u2)
†

i,j+1/2
= (u2)

n
i,j+1/2 +∆t

(

(−A2)
n
i,j+1/2+

(g2)
n
i,j+1/2 +

(D2)
n
i,j+1/2

ρn
i,j+1/2

+
(f2)

n
i,j+1/2

ρn
i,j+1/2

)

. (20)

Similarly, the two components for the velocity update from
Equation (9) become

(u1)
n+1
i+1/2,j = (u1)

†

i+1/2,j −
∆t

ρn
i+1/2,j

Pn
i+1,j − Pn

i,j

∆x
(21)

(u2)
n+1
i,j+1/2 = (u2)

†

i,j+1/2
−

∆t

ρn
i,j+1/2

Pn
i,j+1 − Pn

i,j

∆y
(22)

We can also write down the discretized advection term An

following Equation (17) for each component

(A1)
n
i+1/2,j = 1

∆x

(

(u1u1)
n
i+1,j − (u1u1)

n
i,j

)

+ 1
∆y

(

(u1u2)
n
i+1/2,j+1/2 − (u1u2)

n
i+1/2,j−1/2

)

(23)

(A2)
n
i,j+1/2 = 1

∆y

(

(u2u2)
n
i,j+1 − (u2u2)

n
i,j

)

+ 1
∆x

(

(u1u2)
n
i+1/2,j+1/2 − (u1u2)

n
i−1/2,j+1/2

)

(24)

Similarly, the discretized diffusion term Dn following Equa-
tion (16) for each component gives

(D1)
n
i+1/2,j = 1

∆x

(

2(µ∂u1

∂x
)ni+1,j − 2(µ∂u1

∂x
)ni,j

)

+ 1
∆y

(

[

µ(∂u1

∂y
+ ∂u2

∂x
)
]n

i+1/2,j+1/2

−
[

µ(∂u1

∂y
+ ∂u2

∂x
)
]n

i+1/2,j−1/2

)

. (25)

(D2)
n
i,j+1/2 = 1

∆y

(

2(µ∂u2

∂y
)ni,j+1 − 2(µ∂u2

∂y
)ni,j

)

+ 1
∆x

(

[

µ(∂u1

∂y
+ ∂u2

∂x
)
]n

i+1/2,j+1/2

−
[

µ(∂u1

∂y
+ ∂u2

∂x
)
]n

i−1/2,j+1/2

)

. (26)

Finally we consider the pressure equation. Substituting
Equations (21) and (22) into the velocity components in
Equation (18) we have

1
∆x2

(

Pn
i+1,j−Pn

i,j

ρn
i+1/2,j

−
Pn
i,j−Pn

i−1,j

ρn
i−1/2,j

)

+ 1
∆y2

(

Pn
i,j+1

−Pn
i,j

ρn
i,j+1/2

−
Pn
i,j−Pn

i,j−1

ρn
i,j−1/2

)

− 1
2∆t

(

(u1)
†

i+1/2,j
−(u1)

†

i−1/2,j

∆x

+
(u2)

†

i,j+1/2
−(u2)

†

i,j−1/2

∆y

)

= 0. (27)

If we then let G be the last two terms (involving u†), F
the four terms containing Pn

α,β for α 6= β, and H the four
terms containing Pn

i,j though with Pn
i,j factored out, we then

have Pn
i,j = H−1(F − G). Because Pn

i,j is calculated with
a stencil over neighbors, this is implicit, and we seek an
iterative solution for k = 1, 2, ... by writing

P
(k+1)
i,j = H−1(k)

(

F(k) − G(k)
)

. (28)

Introducing ω the “relaxation factor” we write a modified
version of the iteration step as a weighted sum of the previ-
ous and successive values

P
(k+1)
i,j = ωH−1(k)

(

F(k) − G(k)
)

+ (1− ω)P
(k)
i,j . (29)

Here ω is a free parameter of the SOR method, we gen-
erally take ω = 3/2 (ω > 1 accelerates the convergence
rate) and terminate the iterations when the infinity norm
between successive approximations drops below some toler-
ance, ||P

(k+1)
i,j − P

(k)
i,j ||inf < ǫtol.

The discretized forms of the velocity update equations
have one problem, showing where the elegance of the stag-
gered grid fails. In particular, several fluid quantities are
required at grid points where they are not stored. In partic-
ular, the density and viscosity on the velocity cell centers,
and some velocity components on the pressure cell centers.
In all cases we use a linear interpolation (centered differenc-
ing) of the neighboring values. For instance,

ρni+1/2,j =
1

2

(

ρni+1,j + ρni,j
)

(30)

(uα)
n
i+1,j =

1

2

(

(uα)
n
i+3/2,j + (uα)

n
u+1/2,j

)

(31)

µn
i+1/2,j+1/2 =

1

4

(

µn
i+1,j + µn

i+1,j+1 + µn
i,j+1 + µn

i,j

)

. (32)

The final numerical consideration is the boundaries of the
domain.

3.3 Boundary Conditions

We set the staggered grid such that the edges of the pressure
control volumes coincide with the edges of the domain. For
simplicity we take a rectangular domain Ω with four bound-
aries δΩleft, δΩright, δΩtop, δΩbottom. This means that the
normal velocity (u1 on the left/right, u2 on the top/bottom)
is known directly on the boundaries. For a rigid wall we set
it directly to zero. To set the tangential velocity (and the
pressure) we make use of ghost cells, requiring a single width
ghost cell buffer for velocity, and likewise for pressure. We
use the same linear interpolate (centered differencing) across

Multiphase Viscous Flow 5

Interface

Fluid 1

Fluid 2

1

2

3

Nf

Nf -1

i

i-1

i+1

prev

new

1 2 3 4 5

1 2 3 4 5 6 7 ...

6 7 ...

Figure 3. (Top) Schematic of the front representation by a series
of linked points. (Bottom) Maintanence operations on the discrete
front points to maintain roughly equal spacing.

the boundary as above. This means that, for tangential ve-
locity zero (u1 = 0 on ∂Ωtop for instance) we set the ghost
cell velocity equal to negative of the first interior cell veloc-
ity, such that the sum is zero. In order to set the pressure
at the boundary we take Equation (27) and set the term
corresponding to the ghost pressure to zero.

4 THE INTERFACE

We represent the interface between the two fluids by a series
of linked points xi(s) for i ∈ [1, ..., Nf], shown schematically
in Figure (3). These points do not necessarily coincide with
the fixed grid points, and we must interpolate quantities
back and forth between the two types of points. In partic-
ular, the fluid velocity must be interpolated to the position
of the front points so that they can be advected, while the
density and viscosity discontinuity, as well as the surface ten-
sion force, defined at the position of the front points, must
be interpolated back to the fixed grid.

4.1 Tracking and Maintaince

Consider a single front point with coordinates (xf , yf). Us-
ing a equi-spaced Cartesian grid makes it easy to locate the
index of the grid point nearest a front point (simply divid-
ing the position xf by the grid spacing ∆x for instance). We
continue the same (bi)linear interpolation used previously,
as with the viscosity. Then, a fluid quantity q at the front is
given by the weighted sum

qf =

4
∑

k=1

wkqk. (33)

where the four points (i, j), (i, j + 1), (i+ 1, j + 1), (i+ 1, j)
are those closest to the front point, and the weights wk are
the one dimensional distances to each grid point, normalized
by the spacings ∆x or ∆y. Each velocity component ui is
interpolated to the front positions xi which are then moved
using an explicit Euler step

x
n+1
i = x

n
i +∆tun

i (34)

although we substep this process, as with the velocity field
update, to make it second order in time. Now, as the front
is advected by the velocity field, its finite number of points
may either spread out or bunch up. To efficiently calculate
an accurate curvature for the front it is desirable to main-
tain a roughly constant spacing between the front points.
To do this we adopt the “copy while inserting or delet-
ing” approach. Each timestep, the linked point list is walked
through and the distance between successive points is cal-
culated. If this distance falls below some threshold (high
linear density) we delete the successor point by omission in
the new point list. If this distance is above some threshold
(low linear density) we insert a new point at the midpoint
of the line bisecting the two old points, thereby increasing
our sampling of the interface. This process is shown in the
bottom of Figure (3), where at the end of the maintenance
a new point #3 has been added, while the old point #5 has
been deleted.

4.2 Density Reconstruction

As indicated earlier, in this approach the fluid density ρ(x, t)
is not advected directly via an upwind scheme, or similar
methods. Rather, it is reconstructed at each timestep from
the position of the interface. In particular, if fluid one has
ρ1 and fluid two has ρ2 then the density everywhere away
from the interface will be one of these two values. Near the
interface, the zero width density discontinuity is mapped to
a steep density gradient on the fixed grid. This is similar
in spirit to smoothing out, and therefore capturing, a hy-
drodynamic shock. The density gradient can be related to
the jump, which should be constant everywhere except for
a single interface between the same two fluids, as

∇ρ = (ρ2 − ρ1)nδ(n). (35)

As we expect the gradient is in the direction normal to the
front. It is important in constructing this gradient that we
conserve the total value. For some quantity q(s) defined on
the interface, what we require is that the integral of q(s)
along a segment equals the area integral of the smoothed
quantity q(x) on the grid, or
∫

A

qi,j(x)dA =

∫

s

qf (s)ds ⇒ qi,j =
∑

k

qkfw
k
i,j

Ak

∆x∆y
. (36)

We store the density, along with the viscosity, at the centers
of the pressure control volumes. This means that the density
gradients (∂ρ/∂x) can be estimated at ±∆x/2 from this
point, and likewise (∂ρ/∂y) can be estimated at ±∆y/2 from
this point (via central differencing). For example,

6 D. Nelson

10
1

10
2

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of front points

m
ea

n
re

la
tiv

e
cu

rv
at

ur
e

er
ro

r

Figure 4. Measuring the relative error in the curvature for a
interface point distribution placed in a circular arrangement with
known radius.

(

∂ρ

∂x

)

i+1/2,j
=

1

∆x
(ρi,j − ρi+1,j) . (37)

For each point x = (xi, xj) we take the density gradients
calculated in this manner from each of the four neighbors,
sum them and divide by four, obtaining an estimate for ρi,j .
Just as when determining the pressure Pi,j this leads to an
iterative solution for ρi,j , since the density is calculated on
a stencil. We use the same SOR technique and iterate for
k = 1, 2, ... until some tolerance on

ρ
(k+1)
i,j = ω 1

4
[ρi,j−1 + ρi,j+1 + ρi−1,j + ρi+1,j

∆x
(

(∂ρ
∂x

)i−1/2,j − (∂ρ
∂x

)i+1/2,j

)

+∆y
(

(∂ρ
∂y

)i,j−1/2 − (∂ρ
∂y

)i,j+1/2

)]

+ (1− ω)ρ
(k)
i,j . (38)

5 NUMERICAL TESTS

Before moving on to more complex examples we explore the
accuracy, stability and convergence behavior of the approach
in simple test setups.

5.1 Accuracy of Curvature Calculation

The surface tension force depends on the accuracy with
which the curvature of the interface is calculated. We at-
tempt to recreate a test similar to that of Figure (4) of
Tryggvason et al. (2001), by setting a number Nf of points
in a circular arrangement with randomized angles. We com-
pute the curvature κ and the radius of curvature R = 1/κ
at each point, and calculate the mean absolute value of the
relative error between this value and the known radius. The
convergence of this quantity with increasing Nf is shown in
Figure (4). As the number of points in the front increases
their linear density also increases, leading to better estimates
of the circular shape, as expected. We see that we can control
the error of the curvature estimate as desired by increasing
Nf , although we generally choose just Nf = 100 (per drop)
which achieves an order of ≃ 10−2.

0 0.02 0.04 0.06 0.08 0.1 0.12
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

time

dr
op

 a
re

a
/ i

ni
tia

l d
ro

p
ar

ea

nx = ny = 16
nx = ny = 32
nx = ny = 48

Figure 5. Time evolution of the ratio of the drop area to its
initial area for three different numerical resolutions.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 6. An example of the numerical growth of “parsitic cur-
rents” in the fluid velocity field.

5.2 Area Conservation of a Drop

In various static situations it is useful to check the behavior
of the interface and the interaction between the two fluids.
In fact, in general we should always conserve the area of
a drop since the two fluids are incompressible. We use the
result that for any two dimensional simple polygon with n
vertices the area is given in terms of the vertex coordinates
as

A =
1

2

n−1
∑

i=0

(xiyi+1 − xi+1yi) . (39)

The most basic test case is a circular drop in equilibrium
in the center of the domain, which is (xc, yc) = (0.5, 0.5)
within Ω = [0, 1] × [0, 1]. With a radius r = 0.25 and the
same fluid parameters as in §6.1 we measure the area con-
servation as a function of the fixed grid resolution h = nx =
ny ∈ [16, 32, 64]. We scale the timestep as 1/h and evolve
until the same final time, such that the total number of
timesteps scales as h. The ratio of the area to the initial
as a function of time in shown in Figure (5). We see that

Multiphase Viscous Flow 7

0

0.2

0.4

0.6

0.8

1

ρ |u|

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u1

0 0.2 0.4 0.6 0.8 1

u2

Figure 7. The density, velocity field, and individual u1 and u2 velocity components in the domain at t = 0.075, when the drop is in
free-fall prior to its first bounce.

the area conservation improves with increasing fixed grid
resolution, as expected. However, all resolutions exhibit a
systematic trend with time – there is no mechanism to pre-
vent the growth of numerical artifacts, of the type discussed
below. The jumps in the area calculation arise when points
are inserted or deleted from the interface. We use just the
linear midpoint to place a new point, which could be im-
proved by using a quadratic or spline fit to local interface
points (a higher order calculation of the curvature could be
done in the same spirit). An issue of points immediately be-
ing added and then removed is also apparent in the narrow
spikes, which could be prevented. Overall though the equi-
librium case seems to work well, and reasonable error levels
are achieved at moderate fixed grid resolution.

5.3 Parasitic Current Generation

As discussed in Tryggvason et al. (2001), any anisotropies
in the surface forces of such an equilibrium setup can lead
to the generation of unphysical velocities called “parasitic
currents”. Indeed this appears to be the main mechanism
which leads to a lack of area conservation in the previous
example. In such a static case, the velocity field of the fluid

should remain everywhere zero, but small pressure fluctua-
tions lead to recirculation near the drop. These depend on
both numerical and physical parameters in the system. We
take nx = ny = 50 and for r = 0.25 after 250 timesteps plot
the magnitude of the fluid velocity field in Figure (6). Their
magnitude is actually rather significant after this period of
time. Again it is likely our first order treatment of the curva-
ture calculation that leads to this problem, although it could
also be the smoothing and density reconstruction phases.

6 WATER DROP EXAMPLES

We present a few more interesting simulations using this
approach, which could be thought of in analogy to a water
drop moving through air. The domain is Ω = [0, 1]× [0, 1].

6.1 Surface Tension: Drop Bounce

One drop is created at (xc, yc) = (0.5, 0.75) with radius
r = 0.15 with surface tension coefficient σ = 10, densities
and viscosities ρ1 = 1, µ1 = 0.02 (air) and ρ2 = 2, µ2 = 0.1
(water). Gravity is included downward as g = −200ŷ. For

8 D. Nelson

0

0.2

0.4

0.6

0.8

1

ρ |u|

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u1

0 0.2 0.4 0.6 0.8 1

u2

Figure 8. The density, velocity field, and individual u1 and u2 velocity components in the domain at the final time t = 0.31125, after
250 timesteps, when the drop has reached its maximum post-bounce height.

the fixed grid we use nx = ny = 32 and a timestep of
∆t = 0.00125 for nstep = 250, which ends just as the drop
reaches its maximal height after bouncing off the bottom
domain boundary. Figure (9) shows the time evolution of
the interface position and shape. As the downward velocity
grows larger the drop accelerates due to the gravity, which
causes an ellipsoidal distortion in the horizontal direction.
This distortion is maximal when the velocity reaches zero
at the middle of the bounce, at which point the ratio of
semi-major to semi-minor axes of the drop is nearly 3:1.
Increasing either the gravitational acceleration or the den-
sity contrast allows us to smash the drop into the bottom
boundary with enough force that it reaches the left and right
walls. Figure (7) shows the density, velocity field, and indi-
vidual velocity components during the free fall phase, prior
to the bounce. We can see that the velocity field exhibits
excellent x̂ symmetry. Errors in the density reconstruction
at this spatial resolution are clear – we show contours at
ρ1 ± 0.001 which demonstrate the level of error incurred
throughout the domain. One approach that is mentioned in
the literature is only reconstructed the density in the local
neighborhood of the interface (we do it over the whole do-
main), and/or “cleaning” these spurious oscillations before

they are allowed to modify the dynamics. Figure (8) shows
the same four panels at the final time, after the drop has
completed its first bounce. Counter-rotating vortices develop
on either side of the drop. It is reassuring that the interface
shape still appears symmetric in the horizontal direction.
Figure (9) shows the time evolution of the interface shape
and position for the drop bounce problem.

6.2 Topology Change: Drop Collision

There are two general types of topology changes: thin film
rupture, and thread snapping. Physical models for how thin
films “drain” are still a fairly modern topic, whereas the dis-
connection of a thin fluid thread is better described by the
same Navier Stokes equations (Eggers 1995). Unfortunately,
the collision (or coalescence) of two drops or a drop and a
surface of the same fluid both fall into the thin film case.
In particular, a thin film of air must evacuate from between
the two water surfaces. If we simply neglect this difficulty,
while also handling the necessary merging and splitting of
the numerical front representation then, due to our finite
timesteps, two drops should naturally merge when they ap-

Multiphase Viscous Flow 9

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9. Time evolution of the shape and position of the inter-
face between the water drop and surrounding air for the physical
and numerical parameters as described in §6.1. The color indi-
cates the time for each droplet, from t0 (blue) to tf (red).

0.495 0.5 0.505 0.51

0.632

0.634

0.636

0.638

0.64

0.642

0.644

Figure 10. Demonstration of the binary front merger algorithm
immediately after its application. The resulting unified interface
is shown in black, while the two separate interfaces prior to the

merge are shown in red and blue.

proach each other, although the timescale or resulting im-
pact on the fluids may be incorrect.

We generalize our code to better handle two or more si-
multaneous fronts. At the end of each timestep we consider
whether or not to merge two fronts, based on the condition
that the minimum pairwise distance between points on ei-
ther front drops to less than half the fixed grid spacing. We
implement this search just as O(N2) which works fine for
two fronts in 2D. If the merger condition is satisfied, the
closest pair of points between the two fronts is “bridged”
as is the next sequential pair, while the connection between
each successive point on a single front is cut.

This process is shown in Figure (10) which shows the
new unified front (black) together with the prior two fronts
(red and blue) immediately after the merge procedure.
Clearly the front shape near the merge point is not cap-
tured with high accuracy, and this could be improved by
pre-emptively refining the front in that neighborhood. Addi-
tionally, our algorithm handles only the simplest case, where
the two fronts are merged into one after the collision. For
instance, we cannot handle two near simultaneous merger
points, nor a single front which gets deformed such that it
would merge with itself (forming an air cavity in the center).
Nor do we consider the opposite direction, i.e. drop breakup,
where one interface breaks into two. The explicit considera-
tion of all these different cases of topological change is one
of the inherent complexities of the front tracking technique.

Using this simple algorithm we set up a two drop col-
lision problem as follows. The first drop has (xc1, yc1) =
(0.5, 0.75) while the second is below it at (xc2, yc2) =
(0.5, 0.4). Both have the same radii of r1 = r2 = 0.15. With
the same gravity we add an upward velocity of u2,t=0 = 10
in the initial conditions, only for grid points correspond-
ing to the interior of the second (lower) drop. This kicks it
upward as the upper drop slowly falls, and the two collide
at t = 0.03. The corresponding time evolution of the front
shapes is shown in Figure (11), where the dashed lines cor-
respond to the lower drop and the solid lines to the upper.
Just prior to the collision (light blue line) the lower drop
has forced the upper into a mushroom shape. Immediately
post-collision (green line) the combined drop rapidly evac-
uates the remaining air in the gap and oscillates as surface
tension drives it towards a circular shape (orange and red
lines).

7 DISCUSSION AND CONCLUSIONS

In this project we have implemented a simple, two dimen-
sional compressible Navier Stokes solver using the projection
method and the finite volume approach. On top of this we
added an interface between two different fluids, represented
by a moving set of discrete points. This allowed us to add the
effects of surface tension to a number of test problems. We
investigated the accuracy of the front related calculations
as well as the smoothing of quantities from the front onto
the fixed grid. Both suffer from our relatively “first order”
choices in e.g. the curvature calculation, but are sufficient
for testing purposes. We consider the case of a water drop
bouncing off a rigid boundary, as well as the collisions of two
water drops, showing the ability of the numerical method to
handle basic multiphase flow scenarios.

10 D. Nelson

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11. Time evolution of the interface shapes of two collid-
ing drops. The lower drop (dashed) is kicked upwards, while the
upper drop (solid) falls downward. The light blue and green lines
indicate immediately before and after the collision, respectively.

We would like to ultimately include an explicit front
tracking technique in the moving mesh code AREPO (de-
scribed in Springel 2009). This code is a finite volume scheme
where the control volumes are defined by a Voronoi tessella-
tion of space. Euler’s equations are solved using Godunov’s
method with the MUSCL-Hancock scheme to compute nu-
merical fluxes and obtain second order accuracy. The tessel-
lation is obtained by a set of mesh generating points which
are allowed to move arbitrarily, though in our simulations
follow the flow in a quasi-Lagrangian fashion. A recent ex-
tension solves the compressible Navier Stokes equations on
this dynamic mesh (Muñoz et al. 2012). A natural approach
to multiphase flow in this context would be to ensure that
the interface is represented at all times by existing faces in
the tessellation. An example of such tightly controlled inter-
face motion is shown in Figure (12) from Springel (2009),
where a rigid, curved “spoon” stirs a cup of coffee.

The moving mesh would make mapping between the
fluid grid and interface position, as in the approach described
in this paper, unnecessary. Reconstructing the density from
the interface position would also be unnecessary. Surface
tension “fluxes” could be added directly to the conservative
equations. Alternatively, a (variable γ) Riemann type solu-
tion at the interface could be explored, and mass exchange
due to phase change could be incorporated. The greatest
strength of this approach would likely be the robust handling
of topological changes in the fluid interface(s). The greatest
difficulty would likely be accurately advecting the interface

Figure 12. The “coffee spoon” example – a reflective, curved
boundary condition with perscribed motion. Formed by two ad-
jacent strings of 60 mesh-generating points (blue on fluid side,
red ‘outside’). Adapted from Springel (2009).

position via the cell center motions. Such an implementa-
tion would allow us to efficiently explore three dimensional
problems, as well as multi-scale physics. The hierarchical
adaptive timestepping scheme in AREPO would in principle
enable a global simulation of a water drop while resolving
the molecular scales (≃1 cm to ≃1 Å) which has a simi-
lar dynamic range as cosmological “zoom” simulations for
which the code was originally designed.

REFERENCES

Caboussat A., 2005, Archives of Computational Methods
in Engineering, 12, 165

Chang Y., Hou T., Merriman B., Osher S., 1996, Journal
of Computational Physics, 124, 449

Eggers J., 1995, Physics of Fluids, 7, 941
Hansbo P., 1992, Computer Methods in Applied Mechanics
and Engineering, 99, 171

Harlow F., Welch J., 1965, Physics of fluids, 8, 2182
Hirt C., Nichols B., 1981, Journal of computational physics,
39, 201

LeVeque R., Shyue K., 1996, Journal of Computational
Physics, 123, 354

Muñoz D. J., Springel V., Marcus R., Vogelsberger M.,
Hernquist L., 2012, MNRAS, p. 63

Prosperetti A., Tryggvason G., 2007, Computational meth-
ods for multiphase flow. Cambridge University Press

Springel V., 2009, Monthly Notices of the Royal Astronom-
ical Society, 401, 791

Tryggvason G., Bunner B., Esmaeeli A., Juric D., Al-
Rawahi N., Tauber W., Han J., Nas S., Jan Y., 2001,
Journal of Computational Physics, 169, 708

Tryggvason G., Scardovelli R., Zaleski S., 2011, Direct nu-
merical simulations of gas-liquid multiphase flows. Cam-
bridge University Press

