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Since it is almost Christmas, the obligatory part of this exercise sheet is kept short. But
if you like to learn about non-Gaussianity, bispectra and three-point correlation functions,
you can also do the voluntary exercise. You can also get extra points if you do this exercise,
in case you need to beef-up your average score.

1. Linear growth in the late Universe
For the Einstein-de-Sitter Universe (Ωm = 1, ΩΛ = ΩK = Ωr = 0) we know that
the growth function is linear: D+(a) = a. However, our Universe at present has
ΩΛ,0 = 0.75, Ωm,0 = 0.25, Ωr,0 ! ΩK,0 ! 0. In the script an approximative function
for D+(a) under these conditions was given.

(a) Show that this function is consistent with linear growth that is linear in a (i.e.
δ ∝ a) in the early Universe after the CMB release (0 # z ! 1100).

(b) Once ΩΛ is no longer negligible, the linear growth is no longer linear in a. Show
this by making a plot of D+(a) (linear in 0 ≤ a ≤ 1 and linear in 0 ≤ D+ ≤ 1)
by calculating D+(a) for the following values and interpolating between them:
a = 0.1, 0.25, 0.5, 0.75, 1.

2. Bispectrum, three-point-correlation and non-linearity [VOLUNTARY]
In the early Universe the density perturbations δ("x) are, as far as we can currently
tell, a Gaussian random noise. Any Gaussian random noise is fully described by its
power spectrum, or its Fourier-equivalent: the two-point correlation function. The
purpose of this exercise is to learn about higher-order statistical quantities such as the
bispectrum and its Fourier-equivalent: the three-point correlation function. Signals
that have non-zero bispectrum contain more information than just the power spec-
trum; they are therefore non-Gaussian. Linear evolution equations preserve Gaus-
sianity. Non-linear evolution equations induce a non-zero bispectrum. This is very
general: it is not only relevant to cosmology. We will therefore explore this with a
very trivial example of a real function f("x, t) obeying

∂f("x, t)

∂t
= Cfn("x, t) (36)

where C is some arbitrary constant and n is either 1 (making the equation linear) or
2 (making it quadratic = non-linear).

(a) Argue in words why, if f("x, 0) is a Gaussian random signal with 〈f("x, 0)〉 = 0
to start with, it will remain Gaussian for t > 0 if n = 1.

(b) Argue in words why, if f("x, 0) is a Gaussian random signal with 〈f("x, 0)〉 = 0
to start with, it will become non-Gaussian for t > 0 if n = 2.
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Now let f̂("k, t) be the Fourier transformed version of f("x, t):

f̂("k, t) =

∫

f("x, t)ei!k·!xd3x , f(x, t) =
1

(2π)3

∫

f(k, t)e−i!k·!xd3k (37)

(c) Show that for n = 1 the equation for f̂("k, t) can be written in the form

∂f̂ ("k, t)

∂t
= C

∫

f̂("k1, t)δD("k − "k1)d
3k1 (38)

where δD is the Dirac-delta function.

(d) Show that for n = 2 the equation for f̂("k, t) can be written in the form

∂f̂ ("k, t)

∂t
=

C

(2π)3

∫ ∫

f̂("k1, t)f̂("k2, t)δD("k − "k1 − "k2)d
3k1d

3k2 (39)

(e) Argue in words why Eq. (38) implies that modes of different "k do not couple to
each other.

(f) Argue in words why Eq. (39) implies that modes of different "k do couple to each
other. Which two modes can couple to mode "k?

These results show that non-linear terms induce mode coupling. Each individual
mode "k is no longer independent of the others. If we make use of the symmetry
f̂("k) = f̂ ∗(−"k) this suggests that we should be able, for t > 0, to find a correlation
between f("k), f("k1) and f("k2) for each combination for which "k + "k1 + "k2 = 0:

〈f̂("k)f̂("k1)f̂("k2)〉 = (2π)3δD("k + "k1 + "k2)Bf("k1,"k2) (40)

where Bf("k1,"k2) is called the bispectrum of the function f .

(g) We know that the power spectrum Pf ("k) is related to the two-point correlation
function in space 〈f("x)f("x+"y)〉 (see derivation in the script). Derive, in a similar
way, how the bispectrum Bf ("k1,"k2) is related to the three-point correlation
function in space 〈f("x)f("x + "y1)f("x + "y2)〉.
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