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Euler Method

The time evolution of a function f(t) is given by the di�erential equation

df(t)
dt

= −νf(t) (1)

1. Calculate the analytic solution f(t)

2. In �numerical notation� we denote the so called timestep by ∆t and the
value of the function f at the time t = n∆t with n ∈ {0, 1, 2, ...} by fn.
Calculate the numerical expression fn+1 by discretizing the time derivative
operator in equation (1) via df(t)/dt = (fn+1 − fn)/∆t and choosing the
right-hand-side value f(t) at the

(a) actual time f(t) = fn(Forward Euler method/Explicit method)

(b) future time f(t) = fn+1(Backward Euler method/Implicit method)

3. Calculate a linear approximation for the time evolution in dependence of
f(t) and compare the results with problem 2. Hint: Calculate f(t + ∆t)
and use Taylor-Expansion of exp(−ν∆t) up to the �rst order.

4. Write a code in your favorite programming language to calculate nu-
merically the discretized time evolution from problem 2 from t0 = 0 to
tmax = 100 in both explicit and implicit method. Compare with the
analytic solution. Choose ν = 0.1.

(a) Determine a reasonable timestep topt, which minimizes the deviation
from the analytic solution, but is calculated in reasonable CPU-time.

(b) Vary the timestep ∆t in a wide range. What is the result? Give an
Explanation.
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Newton-Raphson Method

Explicit method calculates the state of a system at a later time from the current
state of the system, i.e.

fn+1 = F (fn).

Implicit method however evolves the system by involving both the current state
and the later one, i.e.

fn+1 = F (fn, fn+1),

or in general form,

G(fn+1, fn) = 0. (2)

It is clear that solving eq. (2) requires extra work. Implicit method is used sim-
ply because many problems arising in real life are often sti�, for which the use
of explicit method requires impractical timestep to bound the error (numerical
stability). This is actually a quite common situation in astrophysical environ-
ment, ex. a strong source term. Hence getting familiar with implicit method is
practically useful.

To solve eq. (2) we need a root-�nding algorithm, such as Newton's method
(also known as Newton-Raphson method). Consider the following di�erential
equation

df(t)
dt

= −[f(t)]2 (3)

1. Find the algorithm of Newton's method from the reference books or web-
sites (ex. Wikipedia)

2. Given initial condition f(0) = 1, solve eq. (3) analytically and numerically
from t = 0 to t = 100. Try again with explicit and implicit method learned
from the last excercise.

3. Apply Newton's method to problem 2.

4. Can you solve a more general equation like df/dt = −αf2−βf5 implicitly
without root �nder? Don't try to do it, it is very hard! This gives us a
good reason to learn root-�nding algorithm.
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Higher Order method

Euler method � 1st order

A successful integration relies on how accurate we evaluate the value at the
later time. The accuracy of forward Euler method is �rst order, meaning that
it introduces an error proportional to timestep ∆t. Prove this statement.

Midpoint method � 2nd order

An example of a second-order method with two stages is provided by the mid-
point method. Given

y′(t) = f(t, y(t)),

numerically, integration is done by the following formula

yn+1 = yn + ∆tf(tn +
∆t
2
, yn +

∆t
2
f(tn, yn))

1. Give an geometric explanation to this method.

2. Apply this method to dy(t)/dt = −[y(t)]2 with y(0) = 1. Try out ∆t=0.1,
1.0 and 2.0. You should see that midpoint method is more stable and
accurate than the forward Euler method.

Runge-Kutta method � higher order

Euler method and midpoint method are the special cases of a general category
named after two German mathematicians C. Runge and M. W. Kutta. It is a
multi-step method in order to achieve higher order accuracy and stability at the
expense of integration speed. This method is used widely in astrophysics. Just
for your information, we are not going deeper here.
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