Chapter 1

Equations of hydrodynamics

In this chapter we will be concerned with compressible gas flows. This forms the main focus of
this lecture.

1.1 Basic quantities
The basic quantities that describe the gas are:

Name Symbol Unit (CGS) Unit (SI)
Gas density ) g/cm?® kg/m?
Particle number density N 1/cm3 1/m?
Velocity u cm/s m/s
Temperature T K K
Sound speed Cs cm/s m/s
Isothermal sound speed Cs cm/s m/s
Pressure P dyne/cm? N/m?
Internal energy density E erg/cm? J/m?3
Internal specific energy e erg/g J/kg
Internal specific enthalpy h erg/g J/kg
Total specific energy Etot erg/g J/kg
Total specific enthalpy Pt erg/g J/kg

This is a large set of variables. But only 3 of these are independent:
o, @ e (1.1)

Since the velocity « consists of 3 components, this means that there are in fact 5 independent
variables:
Py Uge,s uya Uz, € (12)

These are the 5 quantities that we will model in the computer programs we will discuss in this
lecture. Usually it is unpleasant to write u,, u, and u., so we will, from now on, write:

U= (u,v,w) (1.3)

where u = u,,v = u, and w = u,.



All other quantities are linked to the above 5 basic quantities. Most of the relations are
fundamental. The density and number density are related by:

p=DNu (1.4)

The 1 is the mean weight of the gas particles (in gram). For atomic hydrogen, for example,
p=1.67 x 1072* g, and for a typical cosmic mixture of molecular hydrogen and atomic helium
one has roughly ;1 = 3.8 x 10~2*. The internal energy density is linked to the specific internal
energy:

E = pe (1.5)

The specific enthalpy is linked to the specific energy, the density and the pressure as:

P
h=e+ — (1.6)
p

The total specific energy is the internal (heat) energy plus the kinetic energy:
Lo
Etot = € + §|u] (1.7)

and the same for the enthalpy:
1
mmzh+jm2 (1.8)

How the internal specific energy 7', the adiabatic sound speed Cj, the isothermal sound
speed c;, the pressure P and the internal energy £ depend on each other is dependent on the
properties of the gas. This is described by the so-called equations of state for the gas.

1.2 Ideal gases

In this lecture we will be mainly concerned with an ideal gas. Often this is also called a perfect
fluid. This is the simplest kind of gas, and of course this is an idealization of real gases. No gas is
perfect. But if densities are low enough and temperatures are high enough, a gas typically starts
to behave more and more as an ideal gas. For astrophysical purposes the validity of this simple
equation of state is mixed: For modeling the interiors of stars or gasous planets this equation
of state is often inadequate. But when modeling gas flows around stars or in interstellar space,
the ideal gas equation of state is very accurate! Therefore in astrophysics (with the exception of
stellar and planetary interiors) the ideal gas law is almost always used.

In ideal gases the elementary particles (atoms or molecules) are considered to be freely
moving particles, moving in straight lines and once in a while colliding with another particle
and thereby changing direction. The collision events are always two-body processes, perfectly
elastic, and the particles are so small that they are many orders of magnitude smaller than the
mean-free path between two collisions. Also the particles are assumed to have only interactions
with each other through localized collisions, so with the exception of these collisions they move
along straight lines.

For the ideal gas law to work, and indeed for any fluid-description of a gas to work, the
mean free path between consecutive collisions must be orders of magnitude smaller than the
typical scales at which we study our flows. For all of the examples we shall see this condition is
guaranteed.



The ideal equation of state links the temperature, pressure and number density /V of the gas
particles:
pkT
i
where k = 1.38 x 10716 erg/K is the Boltzmann constant. Another aspect of the ideal gas is the
equation of state relating the pressure to the internal specific energy e

P=NKT < P (1.9)

P=(y—1)pe (1.10)

where 7 is the adiabatic index of the gas. In numerical hydrodynamics this equation for the state
of the gas is more relevant, and we will use this one typically, instead of Eq. (1.9). The adiabatic
index v of an ideal gas is derived from the number of degrees of freedom of each gas particle:

Y- f+2

f
In case of an atomic hydrogen gas each particle has merely 3 degrees of freedom: the three trans-
lational degrees of freedom. So for atomic gas one has v = 5/3. For diatomic molecular gas,
such as most of the gas in the Earth’s atmosphere (mainly N» and O,), as well as for molecular
hydrogen gas in interstellar molecular clouds (Hs) the gas particles have, in addition to the three
translational degrees of freedom also 2 rotational ones, yielding f = 5 and thereby v = 7/5.

For adiabatic compression/expansion of an ideal gas with adiabatic index ~ one can relate the
pressure to the density at all times by

(1.11)

P=Kp (1.12)

where K is a constant during the adiabatic process. The K is in some sense a form of entropy.
In fluids without viscosity, nor shocks or heating or cooling processes A remains constant for
any fluid package. The adiabatic sound speed C is by definition:

, OP P

C?=Z_ =q= =y(y—1)e (1.13)
o ; Yy —1)

For isothermal sound waves (in which K is not constant, but e is), the sound speed is:

ci=—=(y—1e (1.14)

1.2.1 Most used variables in numerical hydrodynamics
Of all the above quantities we typically use only a few. The most used symbols are:

p, e h, P and u (1.15)

1.3 The first law of thermodynamics

In compressible hydrodynamics a fluid or gas parcel undergoes many compression and decom-
pression events. When a gas parcel is compressed, its temperature tends to rise and when it is
decompressed the temperature drops. In the absense of any heat transfer to or from the parcel
we know from the first law of thermodynamics that

dU = —PdV (1.16)



V' is the volume occupied by the gas parcel, U = fv pedV is the total thermal energy in the
volume V' and P is the pressure. Eq.(1.16) is valid for adiabatic (de-)compression, i.e. (de-
)compression of the gas parcel without any heat exchange. With this expression we can derive
Egs. (1.10,1.12) from the assumption that e o< p®, where « is for now some arbitrary constant
which we shall constrain later. If we assume that the density in the parcel is constant and if we
define the mass of the parcel M = pV (which is constant) then we can rewrite Eq.(1.16):

P
Me dlge = M—dlgp (1.17)
p
yielding:
dlge
P = = 1.1
pedlgp ape (1.18)

Since e o p®, we see that P oc p®T!. Since we define 7 in Eq.(1.12) such that P o p?, we see
that « = v — 1, which means we can write

P=(y—1)pe (1.19)

proving Eq.(1.10), which is the equation of state for a polytropic gas.

The equation of state tells us what the pressure P is, given the density p and the internal
heat energy e. We have seen here that upon adiabatic compression or decompression the p and
e are related to each other. However, the precise proportionality of the relation is fixed by the
constant /K in Eq.(1.12). So, given the constant /', each density p has its own well-defined
thermal energy e. Two gas parcels with the same /K lie on the same adiabat. Upon compression
and decompression of a parcel the K does not change, unless heat it transferred to or from the
parcel.

The constant K is related to the entropy of the gas. The full first law of thermodynamics
reads:

dU =d@Q) — PdV =TdS — PdV (1.20)

where d() is the added thermal heat to the system, and S is the entropy of the volume V' which
can be expressed in terms of the specific entropy s as S = M s. Let us consider K now to be a
variable instead of a constant, and work out Eq.(1.20). We use P = Kp” = (v — 1)pe = pkT' /11
(note: k # K),e = Kp"™' /(v —1),U = Me and M = pV and we obtain

1 1
Ris= — dlge —dlgp= ——dlg K (121)
k v—1 v—1
where we used dlge = (v — 1)d1g p + dlg K. We can therefore write:
k
S= S0+ —t g K (122)
ply—1)

where s is an arbitrary offset constant. This shows that the number K in Eq.(1.12) is another
way of writing the entropy of the gas. The entropy of a gas parcel is an important quantity.
We will see below that normal gas flow does not change the entropy of a gas parcel. Shock
fronts, however, will increase the entropy, and heating/cooling through radiative processes does
this also. Heat conduction can also do this. But these are all special conditions. Under normal
conditions a parcel of ideal gas keeps a constant entropy. This is a property that can be both
useful and problematic for the development of numerical hydrodynamic schemes, as we shall
see later.



Figure 1.1. Flow through a volume V' with surface 0V = S. The diagram shows Gauss’s
theorem by which the change of the total content within the volume equals the integral of the
flux through its surface.

1.4 The Euler equations: the equations of motion of the gas

The motion of a gas is governed entirely by conservation laws: the conservation of matter, the
conservation of momentum and the conservation of energy. These conservation laws can be
written in the form of partial differential equations (PDEs) as well as in the form of integral
equations. Both forms will prove to be useful for the numerical methods outlined in this lecture.

14.1 Conservation of mass

Consider an arbitrary volume V' in the space in which our gas flow takes place. Its surface we
denote as 0V = S with the (outward pointing) normal unit vector at each location on the surface
denoted as 77 and differential surface element as dS (Fig. 1.1). The conservation of mass says
that the variation of the mass in the volume must be entirely due to the in- or outflow of mass
through OV:

g/pdV = —/ pu - dS (1.23)
ot av
Using Gauss’s theorem, we can write this as:
a —
— [ pdV =— | V- (pu)dV (1.24)
ot v

Since this has to be true for any volume V" one chooses, we arrive at the following PDE:
Op+ V- (p) =0 (1.25)

where pu is the mass flux. This is also called the continuity equation.
Often it is useful to write such equations in tensor form (see appendix ??):

Oip + Oi(pu;) =0 (1.26)

14.2 Conservation of momentum
The momentum density of the gas pu (which is equal to the mass flux). The total momentum in
a volume V is therefore the volume integral over pu. In principle we can do the same trick as
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above, with a volume integral over pu and a surface integral over puu - 7. But here we must also
take into account the forces that act on the surface by the gas surrounding the volume. At any
position on the surface, the force acting by the gas outside the volume onto the gas inside the
volume is — Pri. We can therefore write:

% / piidV = — / piil - idS — / PiidS (127)
ov ov

Unfortunately, to use Gauss’s theorem, one must have an inner product of something with 77 at
the surface, and P7i is not. To solve this problem we need to introduce the unit tensor I, which
is in index notation the Kronecker-delta'. With this we can write P7i as PI - 7. Using Gauss’s
theorem we get:

0
— /pﬁdV = —/ V - (puu + IP)dV (1.28)
ot v
and arrive thus at the PDE:
Oy (pti) + V - (pui + IP) =0 (1.29)
which is the same as
O(ptt) + V - (ptit) + VP =0 (1.30)

The quantity puw + 1P is the stress tensor of the fluid.
Again here we can put this in index notation, which is particularly practical in the momen-
tum equation as we are dealing with the stress tensor here:

O(pui) + O (puiuy + 6 P) = 0 (1.31)

If we include a volume force on the gas, such as gravity, then we must add this as a source term.
For gravity the force is the divergence of the gravitational potential ¢, so we obtain:

Or(pui) + O (puiuy + 0 P) = —p0; @ (1.32)

14.3 Conservation of energy

Energy exists in many forms. Here we concentrate on the two most basic ones: the thermal
(internal) specific energy e and the kinetic specific energy ey, = u?/2. So the total energy is
the volume integral of p(e + u?/2), and the advection of energy through the control volume
surface is the surface integral of p(e + u?/2)d - 7. But in addition to this we also have the
work that the exterior acts on the control volume according to the first law of thermodynamics
(dU = TdS — PdV), which is the surface integral of P - 77. So the conservation equation of
energy is:

3/p<e+1u2> dV:—/ p<e+1u2)ﬁ.ﬁd5— Pii - iidS (1.33)
ot 2 av 2 ov

Using Gauss theorem we then get:

0 1, 1, 1
E/p(e—kiu)d‘/—l—/v-[(pe—l—?pu —i—P)u}—O (1.34)

'For those who are very familiar with tensor mathematics, this is in fact the contravariant metric.
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Since this must be valid for all control volumes V' we get the differential form of the energy
conservation equation:

at(petot) +V- [(petot + P)ﬁ} =0 (1.35)

or in index notation:
s (petor) + Ok[(peror + Pug] =0 (1.36)

This is the energy conservation equation. With the definition of / this can also be written as:

Or(perot) + Ok[phiotur] =0 (1.37)

1.5 Lagrange form of the hydrodynamics equations

The equations derived in Section 1.4 are the hydrodynamics equations in the form which we
shall later numerically solve. But there exists another form of these equations which is a bit
more intuitive, and also has some applications in numerical schemes. The idea is to follow a gas
element along its path and see how it changes its direction of motion and how its density and
pressure change along its way. This is called the Lagrange form of the equations. To derive this
form of the equations we need to introduce the comoving derivative D; as

D, =0, +i-V (1.38)

1.5.1 Continuity equation
With this definition the continuity equation then becomes:

Dip=—pV- i (1.39)

This form of the continuity equation has a physical meaning. It says that a gas parcel changes
its density when the gas motion converges. In other words: when the gas motion is such that the
parcel gets compressed. This compression is expressed by —V - 4.

1.5.2 Momentum conservation equation
The momentum equation can be written as

@0yp + pdyil + GV - [pil] + pii - Vu+ VP =0 (1.40)

We now use Eq. (1.25), i.e. the continuity equation, to remove two of the terms, and with the
definition of the comoving derivative we obtain

Dyl = —~—— (1.41)

This form of the equation of momentum conservation also has a physical interpretation. It says
that a gas parcel will be accelerated due to a force, which is the pressure gradient. Any other
body force, such as gravity, can be easily added as a term on the right-hand-side. This is the
advantage of the Lagrangian form of the equations.
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1.5.3 Energy conservation equation
Finally, the energy equation can be manipulated in a similar manner, also using Eq. (1.25) and
the definition of the comoving derivative, and we obtain

P —

1
Dtetot = ——V . /l_[— —ﬁ . VP (142)
p p

Now with e, = e + |i]?/2 we can write (in index notation)
Dtetot = Dte + uiatui + ukuiakui = Dte -+ u; (8tuz -+ u;ﬁkuz) = Dte + UiDtUi (143)

With the momentum equation (Eq. 1.41) we can replace the part in brackets, which yields —u -
V P/p. Therefore we obtain for the energy equation:

—

P
Die=—=—V -i (1.44)
p

This also has physical meaning: the thermal energy of a gas parcel changes only as a result of
adiabatic compression. Recall that the first law of thermodynamics, when expressed in p and e,
reads .
de =Tds — Pd (—) (1.45)
p
where s is the specific entropy. If we replace d with D,, and we use the continuity equation we
obtain

P —
Dte = TDtS — —v T (146)
p
So this means that another way of writing the Lagrange form of the energy equation is:
TDis =0 (1.47)

or to say: the entropy of a gas parcel does not change along its path of motion! The equations of
hydrodynamics, at least the simplified forms we wrote down until now, conserve entropy. After
its journey, a fluid parcel lies on the same adiabat as it started out.

We should, however, be careful with this statement. It is only true in regions of smooth flow.
As we shall see below, gas flows tend to form shocks, which do not conserve entropy.

1.6 Properties of the hydrodynamic equations

1.6.1 Isentropic flow

In Section 1.4.3 we have derived the energy equation for a generic gas flow. But there are
idealized situation where this equation becomes redundant. We have seen in Section 1.5.3 that a
gas parcel does not change its entropy as it flows through some region. If we follow the motion
of a gas parcel, then we do not need the energy equation: we can simply remember the initial
entropy s (as represented, for instance, by the parameter K in the equation P = p7) and at the
end of its journey we can compute the temperature and pressure immediately using this same s
(or K) that we started out with. This is indeed true for Lagrangian systems, but if we use (as we
shall do often below) the original form of the equations (Section 1.4), then we cannot keep track
of which gas parcel is which. Therefore usually the energy equation is retained in numerical
hydrodynamics.
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However, if all of the gas in this region of interest has the same specific entropy, i.e. if the
system is isentropic, then we do not need to keep track of parcels, since all gas lies on the same
adiabatic. In that case we can, like in the Lagrangian case, drop the energy equation and use the
globally constant s or K to compute the pressure P from p whenever this is needed. This is the
advantage of isentropic flow.

1.6.2 Isothermal flow

So far we have always assumed that the gas cannot radiate away its heat, nor get heated exter-
nally by radiation. Let us here consider the other extreme: the case of extreme heating/cooling:
the situation where the gas is at any given time immediately cooled/heated to some ambient tem-
perature. This can be true if the heating/cooling time scale of the gas is much shorter than the
dynamic time scales, which is sometimes the case for astrophysical flows. In such a case we can
also drop the energy equation, since we always know what e is: it is a global constant. In that
case the can always say (for ideal gases): P = (v — 1)ep, where (7 — 1)e is a global constant.
We see that P is then linearly proportional to p.

Note that this linear relation between P and p is similar as taking v = 1 in the polytropic
gas equation of state P = Kp”. However, for v = 1 we have P = 0, as (y — 1) = 0 in the
equation P = (v —1)pe. Some hydrodynamicists have in the past, however, modeled isothermal
flows with v = 1.01 or thereabout, so as to simulate roughly a linear relation between pressure
and density, without killing the equations.

1.6.3 Pressureless flow

Virtually all the properties and peculiarities of the motion of gases arises because of the effect
that the pressure P has. If we were to assume that the pressure is small, what would then happen?
First of all, we need to define what is small. The pressure appears as a second term next to pu,;uy
in the momentum equation. So if P < plii|*> we can reasonably safely assume P ~ 0. The
momentum conservation equation then becomes

Oy (pu;) + Ok (pusug) =0 (1.48)

The continuity equation remains unchanged. The energy equation becomes irrelevant because
e ~ (. So the continuity equation together with Eq. (1.48) form the equations for a pressureless
gas. It is more precise to say: for a extremely supersonic gas as no gas is perfectly pressureless.
We will later examine the properties of Burger’s equations (Section 2.13) which are mathemati-
cally equivalent to these equations.

1.7 Sound waves

As we will show rigorously lateron, the dynamics of inviscid fluids, as described by the Euler
equations, is in fact purely a matter of the propagation of signals. There are two kinds of signals:
sound waves and fluid movements. One can describe the entire dynamics of the fluid in terms of
these kinds of signals. For 1-D fluids one can make diagrams of these signals in the (z, ¢) plane,
and the signals propagate along lines called characteristics. In this section we will derive the
propagation of sound waves in a static and in a moving gas with constant (background-) density,
and we will therewith demonstrate the concept of characteristics. Since this example is for
infinitesimal perturbations on a constant density medium, it will only give an impression of the
principle, but it will be very important for what follows. In fact, the entire applied mathematics
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of numerical hydrodynamics is based on these concepts, and they therefore stand at the basis of
this lecture.

1.7.1 Derivation of wave equation
Consider a constant density medium with a small space- and time-dependent perturbation. Let
us restrict ourselves to 1-D. The density is then

p(x,t) = po + pr1(z,t) (1.49)

with p; < pg. The fluid is assumed to move with a speed u(x, t) which is given by

u(x,t) = ug + uy(x, t) (1.50)

The equations of motion in 1-D are:
Op+ 0x(pu) = 0 (1.51)
Oi(pu) + Op(pu* + P) = 0 (1.52)

With P = K p” the second equation becomes
2 P
i (pu) + O (pu”) + 7;&,;,0 =0 (1.53)

With Eqgs.(1.49,1.50) we get to first order in the perturbations:

Oip1 + poOyur +updzpr = 0 (1.54)
P

UpOrp1 + podiun + 2pouodytiy + ugdppr + 7p—08x,01 =0 (1.55)
0

If we insert Eq.(1.54) into Eq. (1.55) then we get:

Oip1 + poOyur +updzpr = 0 (1.56)
P

poOyuy + potoOyur + 7/)—08;;:/)1 =0 (1.57)
0

If, just for now, we set ug = 0 (static background density), then we obtain:

Op1 + poOzur = 0 (1.58)
P
poatulﬂp—”awpl -0 (1.59)
0

These two equations can be combined to
P
92py — ’yp—oaipl =0 (1.60)
0

This is a wave equation with waves travelling at velocity ++/vFy/po and —\/~vFy/po. Hence
the definition of C? = vP/p in Section 1.2.

Now let us go back to the full equations with uy # 0. Let us define a comoving derivative
D, of some function ¢(x,t) as:

Diq(z,t) = Owq(z, t) + uo0pq(x, t) (1.61)
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time

space

Figure 1.2. The movement of the signal of a perturbation imposed at some point x(y and time
top in a 1-D spacetime, for the case of zero background velocity, i.e. ug = 0.

With this definition we can write Egs. (1.56,1.56) as:

Dip1 + poOzu; = 0 (1.62)
P
pthulﬂp—Oaxm =0 (1.63)
0

As before, these two equations can be combined to
P
D}py —y—02p1 =0 (1.64)
Po
This can be interpreted as a wave equation in the comoving frame of the background medium. So

the two waves propagate with velocities ug + /v FPy/po and ug — /7Py / po-
The solution is:

pr(z,t) = Aeihr—iwt (1.65)
A Py ijwi

uy(z,t) = = [y—leikrivt (1.66)

Po Po

with the dispersion relation

P
Yo+ 4 [y (1.67)

k Po

1.7.2 Characteristics
The fact that linear perturbations move as waves can be depicted in the (x,t) plane. Consider
a sudden point-like perturbation at some place z at time ?y. For ¢ < t, there were no pertur-
bations, and at time ¢, this point-like perturbation is initiated. What will happen? One wave
will propagate to the left at velocity ug — /v Fo/po, and one wave will propagate to the right at
velocity ug + /7 FPo/po. Of course, if ug > \/7Py/po then the leftward moving wave is also
moving to the right as it is dragged along. In this case the background velocity wg is supersonic.
In any case, we can plot the exact location of the perturbation at any time ¢ > ¢, in the (x, )
diagram (Fig. 1.2).

One sees that this forms a wedge and, dependent on u, this wedge is slanted or not. In
case of supersonic background flow the wedge tops over. The lines shown in these diagrams
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time c

space

Figure 1.3. The three characteristics c_, cg, c4 of the hydrodynamics equations in 1-D, be-
longing to the characteristic velocities A_1, Ag, Ay 1.

are called characteristics. They do not necessarily have to be defined as belonging to the origin
(x0,t0). Any line in the (z,t) diagram following the possible trajectory of a signal is called a
characteristic. In this case we have plotted the sound-characteristics.

There is also another set of characteristics. This is not seen in the above analysis. However,
it can be shown if we give the fluid a ‘color’. Suppose that at t = ¢, we dye all gas left of x( blue
and all gas right of z( as red. We now introduce a special function ¢(z, t) which gives the color.
If it is O, it means blue, if 1 it means red. The equation of this passive tracer is:

O + udyp =0 (1.68)

We now insert u = ug + uq:
O + ug0rp + u10,0 =0 (1.69)

We immediately see that the last term is negligible compared to the first two, so we obtain
approximately:

O + up0rp = 0 (1.70)

This signal evidently propagates with velocity wug. This gives the third set of characteristics, de-
scribing the movement of the fluid itself. This shows that in total we have, for this 1-D example,
three sets of characteristics, moving at speeds:

Ai = ug— 7P/ (1.71)

X = g (1.72)

A1 = uo+/7Fo/po (1.73)

This example shows that, at least for linear perturbations of an otherwise steady constant-density
background, the hydrodynamics equations amount to the propagation of signals at three different
speeds. Two signals are sound signals, while a third signal is the movement of mass (Fig. 1.3).
This third signal may sound a bit as a cheat, since it is simply the passive co-movement with the
background fluid, and has no dynamical character of its own as the sound waves do. However,
in the non-linear evolution of hydrodynamic flows this third characteristic plays an essential
role and is no longer a passive tracer. We will see this later, when we view the hydrodynamics
equations as a hyperbolic set of equations.
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1.8 Viscosity

1.8.1 Bulk and shear viscosity

So far we have assumed that the only force on a fluid parcel is the force due to a pressure
gradient. There are also other forces that can be involved in the exchange of momentum between
fluid parcels. Here we focus on the force of viscosity. A force between to adjacent fluid parcels
A and B can be seen as a flux of momentum from fluid parcel A to B, or the reverse flux from B
to A. Let us recall Eq.(1.31) and write it in a special way:

= Oi(pu;) + O (pujuy + ;) = 0 (1.75)
= Oi(pui) + OTri = 0 (1.76)

where T},; is the momentum flux density tensor and IIj; the pressure tensor?. The T},; tensor is the
flux of ¢« momentum in £ direction. It is the spatial part of the stress-energy tensor familiar from
relativity theory (T" = putu” + g"” P, for those who are familiar with it). Both T}; and II; are
always a symmetric tensor, i.e. it could also describe the flux of £ momentum in ¢ direction. For
the particular case at hand, where IIj; represents merely the pressure force, this tensor has two
two special properties:

1. Momentum is exchanged only in the direction where the transported momentum points.
In other words: 1Ij; is a diagonal tensor. X-momentum is transported in X-direction, Y-
momentum in Y-direction etc.

2. The forces are always perfectly ‘elastic’ in the sense that the force does not depend on the
speed of compression or decompression of a fluid element. These (de-)compressions are
therefore reversible processes.

If we have viscosity, then these properties do no longer hold. Viscosity is a force that acts
whenever there are velocity gradients in the flow, or to be precise, whenever there is shear flow.
In the presence of viscosity, I1; reads:

[y = 6P — oy (1.77)
where o}, is the viscous stress tensor:
, 2
O =1 O;uy, + Okt — gékialul -+ Cékﬁlul (1.78)
where 7) is the coefficient of shear viscosity and ( is the coefficient of bulk viscosity. These

are also called the coefficient of viscosity and the second viscosity respectively. The kinematic
viscosity coefficient v is defined as

v=n/p (1.79)
The equations of motion are then:
Oy (pu;) + Ok (pujug + 0P — 0lp) =0 (1.80)
or, in Lagrange form:
pDyu; = —0; P + oy, (1.81)

2Here we deviate from the Landau & Liftshitz notation.
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This equation is called the Navier-Stokes equation.
To understand what these equations mean we can do two experiments, which we do in 3-D
Cartesian coordinates (z,y, 2):

1. Take a velocity field u; = (y,0,0). This is a typical shear flow without compression. We
obtain:

0 n O
o =1n 0 0 (1.82)

000/,

When inserting this into Eq. (1.81) we see that this transports negative z—momentum in
positive y-direction. The way to see this is that anything in Eq. (1.81) that is being taken
the divergence of should be considered as a flux. In this case it is a flux of momentum, and
for the divergence of o7y, it is the viscous flux of momentum. This is what we are familiar
with as friction. It may seem strange that although we have a clearly non-zero viscosity,
the divergence of this viscosity is zero in this particular example, and therefore the change
of velocity is zero. This is, however, an artifact of the global symmetry.

2. Take a velocity field u; = (—z, —y, —z). This is a typical compressive flow without shear.
We obtain:
-3¢ 0 0
O = 0 0-3¢C O (1.83)
0 0 -3¢

When inserting this into Eq. (1.81) we see that this transports positive z—momentum in
positive z-direction. But if we would flip the sign of u; (i.e. have decompression), then
we have the force also flip sign: we it will transports negative x—momentum in positive
x-direction. In other words: bulk viscosity acts against both compression and decompres-
sion. Or we can say: whatever one does (compression or decompression), it always costs
energy. This is what bulk visocity does.

ki

— Exercise: Show that the viscous force vanishes for solid-body rotation, and explain why
this must be so.

— Exercise: Assume a constant density flow with a velocity field of u; = (sin(y),0) at time
t = 0. The fluid has a constant pressure and has a shear viscosity . Compute the 0,u; at
time ¢ = 0.

— Exercise: Consider a nearly infinitely long pipe along the z-axis, with radius r. Let us
assume that, for the length of the pipe that we are interested in, the z and y velocities are
zero, while v, = 7?2 — 22 — y2. With a non-zero shear viscosity coefficient 77, what does
the pressure gradient in z direction have to be to keep the flow steady? This is the classical
“flow in a pipe” solution.

1.8.2 How important is viscosity?

Some flows are very little affected by viscosity, for instance the flow of air around obstacles, or
the flow of water through a river. Other flows are very much affected by viscosity, for instance
the flow of sirup or Nutella that one smears on bread, or the flow of a glacier. A quantity to tell
the difference is the Reynolds number:

Re — puL _ ul _ il.lertial forces (1.84)
n v viscous forces
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where u is the typical velocity in the fluid flow and L is a typical spatial scale corresponding
to the size of the fluid patterns we are interested in. One sees that the Reynolds number is not
a very strictly defined quantity, because © may vary in the flow and L is just a ‘typical’ length
scale. But it does an indication of the importance of viscosity in the flow:

Re >>1 — Very inviscid flows. These flows can often easily become turbulent.

Re <<'1 — Very viscous flows. These flows tend to be very laminar.

We will see in later chapters that:

1. High Re flows are difficult to model numerically because the numerical algorithm artifi-
cially lowers Re (‘numerical viscosity’)

2. High Re flows often become turbulent (though not always). The flow patters in turbulent
flows have a range of scales L, going from the largerst turbulent eddies, down to very small
scales. This is called a turbulent cascade. The smallest scale of turbulence is the scale L
where Re = ulL /v starts to exceed unity. Therefore, the Reynolds number of turbulent
flows is always a matter of definition which L to use.

3. Turbulence can acts as an ‘effective viscosity’ in itself.

4. Even laminar flows of high Re are sometimes affected by viscosity through boundary
layers: thin layers between a high- Re flow and some solid surface with a thickness such
that in this layer Re 2 1.

1.9 Shock waves

Under normal conditions the equations of hydrodynamics ensure that a fluid parcel keeps its
entropy constant, as we have seen in Section 1.5.3. However, even in the case of inviscid fluids
(Re — 00) there are conditions under which this no longer true: when a shock wave occurs.
The formation of a shock wave can be understood in various ways. One way is to consider a
very strong sound wave. At the top of the wave the temperature is higher than at the valley of
the wave. Since the sound speed is proportional to the square root of the temperature, it is to
be expected that the top of the wave moves faster than the valley. The wave therefore has the
tendency to steepen like waves on the beach. This will necessarily lead to the formation of a
discontinuity called a shock wave. One sees that formally even normal sound waves eventually
develop shock waves. These will, however, be very very weak ones, and they behave very much
like a normal sound wave. In other words: a very weak shock wave is like a sound wave. The
shock wave emerging from an explosion will, as it spherically expands, weaken in strength and
eventually be a strong jump-like sound wave. Also the shock wave emerging from a supersonic
airplane eventually is heard by people on the ground as a ‘sonic boom’, i.e. a sound wave.

The nature of a shock wave is given by its jump conditions. It give which state the gas is
in after going through a shock wave. Let us assume that we move along with the shock, so that
in our laboratory frame the shock is standing still and the gas (before and after the shock) is
moving. We assume a steady state in this frame and we define p; and p» (and idemdito for all
other variables) such that the gas moves from region 1 to region 2. This means that mass flux,
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momentum flux and energy flux through the shock must be constant:

Pz = P11 (1.85)
p2hiottts = prhious (1.87)

Now let us define the specific volumes V5, = 1/ps and V; = 1/p; and the mass flux j = pous =
p1uy. We then get

ug = jVa uy = V1 (1.83)
and
Py + 52V = Py + %W (1.89)
which yields
i = (P — P)/(Va — W) (1.90)

In principle this equation allows for two solutions, one in which the post-shock medium has a
higher pressure than the pre-shock medium (P, > P)), and one in which the post-shock medium
has a lower pressure than the pre-shock medium (P, < F;). The latter will turn out to be an
unphysical solution. In pracise such a solution will quickly smear out into a rarefaction wave,
but this topic will be discussed in a later chapter. We focus here on the case P, > P; which is
what we call a shock wave.

We now substitute uy — uy = j(Vo — V;) into Eq.(1.90) and obtain

Ul—uzz\/(Pz—Pl)(Vl—Vz) (1.91)

where we took only the positive root because that is the physical one. Now let us turn to the
energy equation

p2(ha + 2ud)us = p1(hy + 2ul)uy (1.92)
Because of mass conservation this turns into
ho 4 3uj = by + u] (1.93)
and further into
ho — by = 352 (VE = V5) (1.94)
and with Eq. (1.90) into
ho —hy = (Vi + Va) (P, — Py) (1.95)
Now replace h = e + PV and we obtain
62—61:%(‘/1—‘/2)(P2+P1) (196)

This is the relation between the state of the gas before and after the shock. It is called the
Rankine-Hugoniot shock adiabatic.
For polytropic gases we can derive the following expressions (see e.g. Landau & Lifshitz):

1) M2
pp _ w_ (vt )21 (1.97)
P up (v —1)Mi +2
P M2 4 —1
i (1.98)
24 (v — 1) M2
Mg o= 2HO= DM (1.99)

2yM7 — (v —1)
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where M, = |uq|/Cs and My = |ug|/Cy are the Mach numbers on the pre- and post-shock
regions.
Some properties of shocks:

e For mono-atomic gas (y = 5/3) the maximum compression of the gas (for M; — o0) is
p2/p1 — 4, and for diatomic gas (y = 7/5) it is pa/p1 — 6.

e The Mach number before the shock is always M; > 1 and the Mach number behind the
shock is always M, < 1.

e When a gas parcel goes through a shock, its entropy is increased. For the integral form of
the hydrodynamics equations without viscosity, shocks are the only regions in space where
gas parcels increase their entropy.
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