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20 “points” in total

1. Focal length

(a) [1 pt] Derive the formula x[µm] = 4.86 · f [m] · θ[”] for the size of the projection
of an object of angular size θ on the focal plane of a telescope with focal length
f .

(b) [2 pt] We will see in a later chapter, that because of the wave-like nature of
light, the maximum angular resolution of a telescope of diameter D is given by
θ[radian] = 1.22λ/D, where λ is the wavelength of the light. Show that for this
resolution the following formula holds:
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Interpret this result.

2. Designing a simple hobby telescope
We have a digital camera with a CCD chip consisting of 1024x1024 pixels, sensitive
to optical light (λ = 0.55µm). The chip is 2cm x 2cm large. We want to use it for
astronomical observations at a site with typically 1” seeing1.

(a) [2 pt] What should be the focal length f of your telescope to ensure that a star
creates a blob of 2x2 pixels on the CCD (seeing-limited observation)?

3. Is bigger always better?
Suppose you want to make an image of the central region of the Andromeda Galaxy,
which is an extended object even for small telescopes. Your friend at the Max-Planck-
Institute for Astronomy allows you exactly 10 minutes of observing time on one of
the two available telescopes. One has 30 cm diameter, the other 60 cm diameter.
Both telescopes have focal ratio f/4. You have a CCD chip which you can put in the
focal plane of either telescope. Of course you want to get nice image quality, i.e. you
want to minimize the noise on each pixel,

(a) [2 pt] Argue, why it does not matter for the signal-to-noise ratio for each pixel
whether you use the 30 cm or the 60 cm telescope.

(b) [2 pt] Could you give a good reason to go for the 30 cm?

(c) [2 pt] Could you give a good reason to go for the 60 cm?

1We will discuss the phenomenon of seeing in much more detail in a later chapter. For now: it is the

smearing on the sky of a point source due to the atmospheric turbulence.
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4. The mathematics of lenses
Consider a piece of glass of refractive index n2 in a medium with refractive index
n1. The piece of glass has a spherical side to the left, with radius of curvature R12.
Consider a ray passing through:
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Light emitted from a point at location at x = s1 is refocussed at point x = s2. Here
s1 < 0 and s2 > R12 > 0, where x is the horizontal coordinate in the figure. In the
paraxial approximation we focus on light rays for which |z| ≪ |R12|, |z| ≪ |s1| and
|z| ≪ |s

s
|, where z is the vertical coordinate of the point at which the ray enters

the glass (see figure). In this approximation the angles θ1 and θ2 are small, so that
sin θ1 = tan θ1 = θ1 and likewise for θ2. Snell’s law becomes n1θ1 = n2θ2.

(a) [3 pt] Prove, in the paraxial approximation, the following relation:
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(b) [3 pt] Show that the focal length on the left side (f1) and the right side (f2) are
respectively:
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and f2 =
n2R12
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(3)

Note: f1 < 0.

(c) [3 pt] The “Power” P12 is defined as
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Now add another curved edge to the piece of glass, with power P23, this time
to the right side, at a distance d from the left edge. Let us take d ≪ |R12|
and d ≪ |R23|, i.e. small enough that we can ignore it. Also assume that the
external medium has n3 = n1 = 1 (vacuum), and call the refractive index of the
glass simply n. Derive the thin lens equation, or in other words: the rule for the
summing of powers:

P = P12 + P23 (5)

where P ≡ 1/f with f the focal length of the total piece of glass (i.e. lens).
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