Appendix B

Statistical quantities

B.1 Signals of finite duration

Consider two complex functions ¢(t) and h(t), where t is real. Their convolution is defined
as +00

(g% h)(t) = / g(t = m)h(r)dT = (h* g)(t) (B.1)
This function is only defined if one or both of the functions decay rapidly enough for 7 —
+00. A precise condition is a bit tricky. But let us take as an example a function g(¢) that
does not diverge anywhere but remains substantially non-zero even for 7 — +oo. Take h(t)
to be a function that decays rapidly for 7 — £oo and has normalization fj;o h(T)dr =1,
for instance: The Gauss function h(7) = exp(—72)/y/m. Then the convolution exists and
is for this example a smeared-out version of the original function g(¢). In a similar manner,
the correlation of two complex functions ¢(¢) and h(t) is defined as

Corrlg, h](t) = / N g(t +71)h*(T)dr (B.2)

Here the same issues of their existence hold.

Assume from now on that both ¢(¢) and h(t) are signals of finite duration, i.e. their
values (which can be complex) go to zero at large |t|.

We can then derive many interesting properties for these quantities. For instance
convolution and correlation functions have interesting behavior in Fourier space:

Fllg = ml(u) = Flgl(u)F[h)(u) (B.3)
F|Corrlg, hj(u) = Flgl(u)(F[hl(u))* (B4)

where F is the Fourier operator:

400
Flo)(u) = / g(t)e >ty (B.5)

If we now take the correlation between g(t) and itself, we obtain the autocorrelation!,

! This is often also called more precisely the autocovariance, but note that, strictly speaking, auto-
covariance and autocorrelation are normalized differently, the autocorrelation being the autocovariance
normalized by the variance. In this script we will not be so precise in this nomenclature.
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which is defined as

—+o0
B,(t) = Conly.gl(t) = [ ot +7)g"(r)ar (B.6)
The structure function is defined as
—+oco
Dy = [ lgtt )~ glr)Par (B.7)

Let us write out the structure function:

Dy(t) = /_*Oo[g(t +7) — g(D)][g(t +7) — g(7)]*dr

[e.9]

+o0
= / gt +7)g"(t+7) +9(7)g"(7) = g(t + 7)g"(7) — g(7)g"(¢ + 7)]dr
— 2B,(0)— B,(t) - B,(1) (B5)
If g(t) is a real function, then we obtain
Dy(t) = 2[By(0) — By(t)] (B.9)
From Eq. (B.4) we can also directly obtain the Wiener-Khinchin theorem:
F[Corrlg, g)(u) = | Flg] (w)|” (B.10)

which can also be derived explicitly as follows:

F[Corr[g, g]](u) = / :O e 2Tt l / :O g(t+ r)g*(f)df} di (B.11)
_ /_ :O ¢ (7) { /_ :O e2mity(f 4 T)dt] dr (B.12)
= /_ :O g (r)et? T [ /_ :O e P gt 7)d(t + T)} dr (B.13)
= [T e [T e (B.14)
= (Flg)Fld] (B-15)

Similarly we can derive Parseval’s theorem:

+00 +o00
| lswpa= [ AP (B.16)
—00 —0o0

All the above quantities (convolution, correlation, autocorrelation, structure function)
all depend on the duration of the signal. Let us assume that the signal exists between
t =0 and t =T but is zero before t = 0 or after ¢ = T'. If the stochastic properties of the
signal do not change in time but we increase T by a factor 2, then all the above values
become roughly twice as large. The definitions we used are therefore not bound if the
signal duration gets ever longer. We will discuss this normalization issue in Section B.3.
But first we must take a closer look at what a “stochastic signal” means.
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B.2 Stochastic signals

Let us take a step back and consider a stochastic signal ¢g(¢) a bit more mathematically.
Let us define an “experiment” to be one incarnation of the function g(¢). But one could
do many experiments, yielding many functions g;(t) for, say, i € [1, N], where N is the
number of experiments. An example is the thermal motion of molecules, where g;(t) is in
that case the velocity vector vj;(t) for molecule i. We thus have an ensemble of functions
g(t). At any time ¢t we thus have N values of g(t): {g;(t)}. For N — oo the ensemble
{gi(t)} defines the statistical properties of the stochastic function g(t). We can now define
the propability function of finding the value of g; (for some arbitrary i) to be between a
and a + da at time ¢:

P,(a;t)da (B.17)
It is normalized as .
/ Py(a;t)da =1 (B.18)
We can define the average:
1 Foo
(g(t)) = lim — g:i(t) = / P,(a;t)ada (B.19)
N—oo N . _
i=1,N o0
Let us write for convenience:
ng(t) = (9(t)) (B.20)

The average is therefore the first moment of the probability function. Note that “average”
here is not defined in time (it is in fact taken at time ¢): It is an average over the ensemble.
However, as we shall see below, the time-average is very closely related. Often this average
is written as the expectation value EI]:

(1) = Elg(t)] (B.21)

Let us continue with defining the standard deviation 03:

2 = & 3l — (1) (B2

= El(g(t) - my(0))”) (B.23)
- / Py(a;t)(a — n,(1))*da (B.24)

We can also define te probability that we find the value of g; between a and a + da at
time ¢; and find it between b and b + db at time &5:

P(a,b;ty,ta)dadb (B.25)

normalized as oo i
/ / Py(a,b;ty, ty)dadb =1 (B.26)

If the value of g(t) at t5 is totally uncorrelated with the value some time earlier ¢;, then
Py(a,b;ty,ty) = Pya;t1)Py(b;t2), but if there is a correlation, then this is not the case.
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Going back to our example of thermal molecular motion: if ¢, is sufficiently close to 1,
then it is unlikely that the velocity has changed very much in between these two times:
they are thus correlated over some time interval.

Using this formalism let is now re-define the concepts of autocorrelation, structure
function that we already encountered in Section B.1, but now we do it more thoroughly
(and sometimes with a different normalization, but we will come back to this).

So let us define the autocorrelation By(t;,t2) of the stochastic process g(t) as:

By(t1,t2) = Elg(t1)g(t2)] = /_+OO /_+OO Py(a,b;ty,t2) abdadb (B.27)

and the autocovariance Cy(t1,1t3) as
Cy(ti,ta) = El(g(t1) = ny(t2))(g(t2) = ng(L2))] (B.28)

+oo +oo
= [ [ bt @) 0 - ) dad (B29)
They obey the following properties:

Cy(ti,ta) = By(t,ta) — ng(t1)ny(tz) (B.30)
oo(t) = Cy(t,t) = By(t, t) — n,(t)? (B.31)

g

Furthermore the structure function Dy(tq,t2) is defined as

+oo +oo
Dg(tl, tg) Hg(tl — g t2 / / (l b tl, tg) |(l - b|2 da db (B32)

If our stochastic function g(t) is stationary, i.e. that its stochastic properties are the
same as for g(t — 7) for any value of 7, then all the above quantities only depend on
t= |t2 — t1|1

By(t) = Elg(0)g(t)] = Elg(r)g(T +1)] (B.33)
Co(t) = El(g(0) = n,(0))(g(t) — n4(1))]

= El(g(r) = ng(1))(g(T + 1) — 1g(7 + 1))] (B.34)
Dy(t) = Ellg(0) = g(t)") = Ellg(r) — g(r + t)[’] (B.35)

where 7 can be any value.

As you can see, as opposed to the definitions in Section B.1, the autocorrelation and
the structure function are normalized. But apart from that, they are strongly related, as
we shall see in Section B.3.

B.3 Ergodic stochastic signals

In many cases one does not have N incarnations of a stochastic signal g(¢), but instead a
single signal g(t) for a very long time period. An example is the wave front of light at a
telescope: what we observe is the time average of the square of the electric field: (EE*).
Since the electric field signal is clearly a stationary stochastic signal, the time average over
any long enough period of time is sufficient information.
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A signal is called ergodic if the stochastic properties of an entire ensemble of incarnations
of the function ¢(¢) can be derived from one individual incarnation of the function g(t),
when it is studied over its entire time domain. A simple example: If we study the velocities
of molecules that undergo thermal motion we have two choices: we can study the velocity
distribution of a million molecules at a single instance in time, or we can study the velocity
evolution of a single molecule over millions of collision times. Since the molecule loses
memory of its original velocity in a few collisions, and since the molecules are all the same,
the two ways of investigating the stochastics of molecular motion yield the same results:
this stochastic variable is ergodic. Counter-example: if we study the time in the day that
a human goes to bed, we could study the bed-time of thousands of people on January
1, 2015, or we can study the bed-time of a single person over his/her entire life. The
results are, however, not the same, because each instance of a human being is different
from another. The stochastic variable “bed time” is therefore not ergodoc.

For most of the stochastic variables we are concerned with in the study of techniques of
observational astronomy the signals are, fortunately, stationary and ergodic. This explains
why we defined autocorrelation, structure function etc. in Section B.1 as an integral over
time: we use time as a way to compute expectation values. The problem is, however, that
this only works perfectly if we average over an infinitely long time, which is in practice not
possible.

So let us redo what we did in Section B.2, but now in a more careful way. We will
also take care of normalization. Let g(¢) and h(t) be two real or complex-valued stochastic
signals, and let us assume that their mean values are zero (for convenience):

1 +T/2 1 +T/2
lim —/ g(t)dt =0 lim —/ h(t)dt =0 (B.36)

Let us also assume that both signals are non-zero even for large |t|. These are ever con-
tinuing signals. That means that we would not be able to define their convolution and
correlation according to Section B.2, because the integrals would diverge. But we can
re-normalize these integrals and compute them over a finite range:

+7/2

(gxh)(t) =~ %/—T/z g(t — 7)h(r)dr (B.37)
T2

Corr[g, h|(t) =~ %/T/Q g(t +7)h*(T)dr (B.38)

These are only estimates. The true value is for the limit 7" — oco. Because of the assumed
property of ergodicity and stationarity, the above limit converges quickly with increasing
T, and if you would get the same result if one were to shift the integration domain by an
arbitrary amount. In other words: the statistical properties of an ergodic signal can be
found by studying any finite, but sufficiently long, sample of the signal. Let us, from now
on, assume that all our signals are ergodic, which is a good assumption for our purposes.
Hence the normalized convolution and correlation can be defined as

+7/2

(gxh)(t) = jliigo%/T/Q g(t — 7)h(7)dr (B.39)
+T/2

Corr[g, h](t) = TIEI;O%/T/Q g(t+7)h*(1)dr (B.40)



and their values can be well approximated by simply taking 7T large, not infinite.
We now define the autocorrelation function

1 [+T/2
B,(t) = Corr[g, g](t) = lim ?/_ gt +71)g"(1)dr (B.41)

T—o00 T/2

and the structure function

1 [t7/2
Dy(t) = {lg(t +7) = g(r)[*)> = Jim = /_m lg(t +7) — g(7)|*dr (B.42)

These definitions are directly compatible with those from Section B.2. They do not scale
with T'. Instead, they become more accurate as 1" increases.
But many properties are the same as in Section B.1, for instance:

D,(t) = 2B,(0) - B,(t) - Byt (B.43)
and again ¢(t) is a real function, then we obtain
Dy(t) = 2[B,4(0) — By(t)] (B.44)

Applying Fourier analysis is a bit more tricky. We have to use the technique to deal with
Fourier transforms on finite domains, discussed in Section A.3. Much remains analogous,
but we will not dig deeper into the details here.

B.4 Gaussian signals

Suppose a signal g(t) has a Gaussian probability distribution function with zero mean and
variance o?:

Py(r) = 2 - (B.45)
y(x) = Gr exp | —5— .
We can then derive a useful property of Gaussian signals:
+o0
(e*) = / e P(z)dx (B.46)
1 +oo .I’Q
= exp | ar — — | dx B.47
\V2ro /—oo P < 202) ( )
1 +oo 22 — 2ax0?
= exp |— | ———— | | dx B.48
V2mo /_oo P [ < 20? )] ( )
1 oo (r — ao?)? 1y,
= /Oo exp {_T] exp <§a o ) dx (B.49)
B 1,,\ 1 [™ 21
= exp <2a o ) 5 /Oo exp {—202 dz (B.50)

= exp <%a2<x2>) (B.51)

This holds also for complex a. In the particular case of imaginary a we get a Gaussan
expectation value again.
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