
Chapter 3

The formal transfer equation

The words “radiative transfer” make it sound as if we are mainly interested in studying
the movement of photons. In reality, the interaction of the radiation with the medium
is actually the main issue. As we discussed in Section 2.4, in the absense of any
interaction with matter, the transport of radiation is fairly trivial: the intensity in any
direction then remains constant along a ray in that direction. However, interaction
with the medium can remove radiation from the ray or add to it. In most cases we can
assume that light propagates so fast that we can ignore the light travel time effects. In
other words: in most cases we can assume that all photons travel through the medium
on a time scale much shorter than any changes that happen to the medium. We can
thus regard the radiation as a steady-state flow of photons. We will, however, discuss
the limits of validity of this approach in Section 3.6.

3.1 Extinction coefficient, opacity
The interaction of radiation with matter can be typically understood in terms of two
processes: radiation being injected into the ray and radiation being removed from the
ray. Let us start discussing the latter.

Suppose that there are particles in the medium that can absorb a photon. This absorp-
tion process is random: a photon can be lucky, and travel quite far, but it can also
be unlucky and be absorbed quickly. The efficiency of the medium to absorb a pho-
ton is given by the photon mean free path lfree, which has the CGS dimension of cm.
Typically this is a function of frequency ν and position in space x, i.e. lν,free(x). The
denser the medium is, the smaller is the mean free path. Suppose that we have a cloud
in which there is no emission, only extinction. If we have a light source on one side
of the cloud, and we observe this light source from the other side of the cloud, then
the cloud may extinct part of the radiation from the source that passes through the
cloud before it reaches us. If the path length of the light travelling through the cloud is
equal to one mean free path, then on average only 36.8% of the photons manage to get
through the cloud (since e−1 = 0.368). If the path length is twice the mean free path,
only 13.5% survives the journey through the cloud. This is what is called extinction.
The number of mean free path lengths the photons travel through the cloud is called
optical depth and is typically written with the symbol τ. A medium that has τ " 1 is
called optically thick while a medium that has τ# 1 is called optically thin.

Rather than using mean free paths, in radiative transfer theory we more commonly
use its reciprocal: the extinction coefficient αν = 1/lν,free, with CGS unit of cm−1.
This quantity is also often called the opacity. With this coefficient the optical depth
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between two points along a ray can be expressed as the following integral:

τν(s0, s1) =
∫ s1

s0
αν(s) ds (3.1)

where αν(s) is the extinction coefficient at point s along the ray (using x = x0 + sn,
see Eq. 2.24).

Often the density-dependence of the opacity is explicitly written as:

αν = ρκν (3.2)

where ρ is the density, with CGS units of gram cm−3, and κν is the mass-weighted
opacity, with CGS units of cm2 gram−1. Often κν is also simply called the opac-
ity. When one talks about “opacity” one should therefore be careful what is actually
meant. Note that sometimes people use the word “opacity” when they actually mean
“optical depth”. We shall stick to the strict separation of these two terms.

If we regard the medium as a collection of particles (for instance: dust particles), then
we can introduce yet another way to write the opacity: the cross section per particle
σν, with CGS units cm2. If the particles are very large compared to the wavelength,
this cross section is typically equal to the geometric cross section, which for spherical
particles of radius a is equal to σ = πa2. This is, however, only valid for particles
with a " λ. For small particles and large wavelength (a # λ) one typically finds that
σ # πa2. We will discuss this at length in Chapter 6. For now we limit ourselved by
stating a relation between κν and σν:

κν =
σν

m
(3.3)

where m is the mass of the particles.

3.2 The formal radiative transfer equation
Let us now introduce the concept of extinction into the differential equation for the
intensity along a ray, Eq. (2.25). Instead of a zero right-hand-side we now have

dIν(n, s)
ds

= −αν(s)Iν(n, s) (3.4)

This is the formal radiative transfer equation for the case of a purely absorbing (and
non-emitting) medium. Note that this equation is an equation along a given ray. It is
valid along any ray passing through the medium. We can integrate Eq. (3.4) to obtain
the integral form of this equation:

Iν(n, s1) = Iν(n, s0)e−τν(s0,s1) (3.5)

where τν(s0, s1) with s1 > s0 is given by Eq. (3.1). This equation expresses what we
already qualitatively argued in Section 3.1.

Now let us assume that the cloud also injects radiation into the ray. We then add an
emission term to Eq. (3.4):

dIν(n, s)
ds

= jν(s) − αν(s)Iν(n, s) (3.6)

This is the complete formal radiative transfer equation. The source term jν is called
the emissivity and has CGS dimensions of erg s−1 cm−3 Hz−1 ster−1. Also this can be
cast in integral form:

Iν(n, s1) = Iν(n, s0)e−τν(s0,s1) +
∫ s1

s0
jν(s)e−τν(s,s1)ds (3.7)
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The formal radiative transfer equation, Eq. (3.6), can also be written in a form similar
to Eq. (2.23):

n · ∇Iν(x, n) = jν(x) − αν(x)Iν(x, n) (3.8)

This form is mathematically equivalent to Eq. (3.6) and it can be useful, for instance,
for deriving the radiative diffusion equation (see Section 4.5).

3.3 Kirchhoff’s law
To satisfy the laws of thermodynamics, the formal radiative transfer equation,
Eq. (3.6), must obey a certain condition. Suppose we have a thermal cavity filled
with gas with some extinction coefficient αν. Suppose that this gas is in thermal equi-
librium with the temperature T in the cavity. Then, irrespective of whether the gas is
optically thick or thin, the intensity should everywhere be equal to Iν = Bν(T ). For the
formal radiative transfer equation this means that dIν/ds = 0 and thus

jν(s) − αν(s)Iν(n, s) = jν(s) − αν(s)Bν(T ) = 0 (3.9)

In other words:
jν
αν
= Bν(T ) (3.10)

This is Kirchhoff’s law. It says that a medium in thermal equilibrium can have any
emissivity jν and extinction αν, as long as their ratio is the Planck function.

This law does not only apply in a thermal cavity. It applies everywhere where the
medium is in local thermodynamic equilibrium (LTE). While LTE is not always guar-
anteed (and we shall see plenty of examples where LTE breaks down in this lecture), in
media where it is valid, Kirchhoff’s law greatly simplifies the radiative transfer prob-
lem: In LTE we can use Kirchhoff’s law to write the formal radiative transfer equation
in the form

dIν(n, s)
ds

= αν(s)[Bν(T (s)) − Iν(n, s)] (3.11)

Note that here the Planck function is allowed to vary along the ray. This form of the
equation clearly demonstrates that the intensity Iν is always trying to asymptotically
approach Bν(T (s)). If the temperature is constant along the ray, then the intensity
will indeed exponentially approach Bν(T ). If the temperature varies along the ray, the
intensity will always lag behind by a few mean free paths, but it will always tend to
approach the Planck function.

3.4 The “source function”
Inspired by Kirchhoff’s law we can try to express the transfer equation in a way similar
to Eq. (3.11) irrespective of whether we have LTE or not. Let us define the source
function S ν as

S ν ≡
jν
αν

(3.12)

The formal radiative transfer equation then becomes

dIν(n, s)
ds

= αν(s)[S ν(s) − Iν(n, s)] (3.13)

For the case of LTE the source function is equal to the Planck function: S ν = Bν(T ),
and we retrieve Eq. (3.11). For a non-LTE case the source function can be unequal to
the Planck function. In this lecture we will encounter radiative transfer problems in
which we will in fact need to solve for the source function as part of the solution to
the transfer equation.

In LTE or non-LTE alike, the source function is a useful quantity because it acts, like
the Planck function for the LTE case, as an “attractor” for the intensity: At every
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point along the ray the intensity wants to approach S ν as it proceeds its journey along
the ray. If S ν is constant along the ray, then within a few mean free path lengths the
intensity will have exponentially approached Iν → S ν. If S ν varies with s, then Iν will
lag behind, but always tries to approach S ν along the way.

How this works for a ray passing through a slab of given temperature in front of a
radiation source of another temperature is illustrated in the margin figure. It shows
the intensity Iν at ν = c/λ with λ = 0.5 µm starting at a background intensity corre-
sponding to a temperature Tbg = 6000K going through a slab or cloud of gas with a
temperature Tcloud = 7000K with three values of the total optical depth, as annotated
in the figure. The slab is assumed to be in LTE, so that the source function equals the
Planck function.

3.5 Spectroscopic absorption- and emission features
With the simple formal radiative transfer framework we have developed so far we can
already study - and understand - how spectroscopic emission features and absorption
features are formed. A “spectral feature” here means any change in the spectrum
that is limited to a small wavelength domain and which can be associated to some
physical property of the medium. Gas spectral lines are “features” in that sense (see
Chapter 7 for an in-depth discussion on gas spectral lines). So when we talk about
gas lines, we would talk about emission lines and absorption lines. However, also
solids such as dust grains can have spectral features. They will, however, be much
wider in wavelength than gas lines. Yet, also these features can be both in emission
and in absorption. Therefore we will refer here to “features” as a more general class
of spectral signatures than just “lines”, and we will discuss here how such features are
formed.

3.5.1 Optically thin case

In the optically thin case we can ignore the extinction part of the radiative transfer
equation and the formal transfer equation becomes

dIν(s)
ds

= jν(s) (3.14)

where, for notational convenience, the n vector is omitted. Integrating this yields

Iν(s1) = Iν(s0) +
∫ s1

s0
jν(s)ds (3.15)

What we observe (Iν(s1)) is equal to the background intensity (Iν(s0)) plus the emis-
sion from the cloud between s0 and s1.

If the frequency-dependent function jν has a feature around some frequency ν0, i.e.
if the function jν has a particularly large value near ν0 but is much smaller (or even
zero) at frequencies far away from ν0, then this is, via the integral Eq. (3.15), also
visible as a feature in the function Iν(s1). The value of Iν(s1) will be particularly high
for frequencies close to ν0. If the background intensity is even much higher than that,
then the feature could be “drowned” by the background intensity. In many cases of
optically thin clouds in astrophysics, however, the background is dark, so the spectral
feature will be strongly apparent and will have the same shape as the feature in the
emissivity function jν. Since the feature points upward (i.e. it is the brightest around
ν0) we call this an emission feature. Or in other words: the feature is in emission.

3.5.2 Optically thick case

A medium that is optically thick can, in addition to emission features also create ab-
sorption features. Both are possible, and which of the two is created depends strongly
on the temperature gradient.
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Let us assume that we have a medium that is in LTE, so that Kirchhoff’s law is valid.
Let us now assume that the medium consists of an optically thick background of tem-
perature Tbg and a foreground layer of gas in front of it (as seen by the observer) of
tempeature Tfg. The “feature” is a bump in the opacity in the gas layer αν around fre-
quency ν0. Together with the thickness ∆X of the foreground layer this opacity bump
yields an optical depth τν = αν∆X which has the following functional form:

τν = τ0 exp
(

−
(ν − ν0)2

γ2

)

(3.16)

where γ denotes the width of the feature. Let us assume that the emission from the
optically thick background is a perfect blackbody Iν,bg = Bν(Tbg). The question is:
howwill the opacity “feature” of Eq. (3.16) appear as a spectral feature in the observed
intensity Iν? We can find out by integrating the formal transfer equation in the form
of Eq. (3.11). We obtain

Iν,observed = Iν,bge−τν +
(

1 − e−τν
)

Bν(Tfg) (3.17)

In the figures in the margin the results are shown for a feature at ν0 = 6 × 1014
Hz (corresponding to a wavelength of λ0 = 0.5 µm), for Tbg = 5000K and Tfg =
6000K, which yields an emission feature, and for the opposite (Tbg = 6000K and
Tfg = 5000K), which yields an absorption feature. The results are shown for three
different values of τ0.

From these figures we learn a number of things. The most important one is that if a
hot layer is in front of a cool layer, we get emission features, and if a cool layer is in
front of a hot layer, we get absorption features. The famous Heidelberger scientists
Kirchhoff and Bunsen in fact discovered this (and published it in 1860), and were thus
able to explain the absorption features of the solar spectrum.

Another thing we learn from the figures is that the emission feature has the same
shape as the opacity feature as long as τ0 ! 1. But when τ0 " 1, the feature becomes
optically thick and saturates. This is exactly the “attractor effect” mentioned above:
the intensity wants to approach the Planck function of the foreground layer. Once it
has arrived at that Planck function, it will not change any further.

Another important thing we can learn is: If we have an optically thick cloud or at-
mosphere with a constant temperature (which here would translate to: the layer tem-
perature being equal to the background temperature), then we would not observe any
features in the spectrum - neither in absorption nor in emission.

It is important to understand that this very same principle of feature formation (for gas
spectral lines: line formation) can be applied to cases of non-LTE.We should then just
replace the Planck function Bν(Tfg) with the source function S ν,fg. The rest stays the
same. For such a case we can in fact form a feature even if the temperature is constant,
as long as S ν,fg ! Iν,bg.

3.5.3 Eddington-Barbier estimation

In most real application we do not have a clean two-temperature situation as sketched
above. We will have a smooth temperature gradient. The solution to the formal trans-
fer equation can still be easily calculated, simply by performing a numerical integra-
tion (see Section 3.8).

However, there is a simple trick to get a reasonably good estimate of the observed
intensity, called the Eddington-Barbier estimation. If the medium is optically thick
but it has a temperature gradient, the intensity you observe is roughly equal to the
source function at the location where the optical depth is τν = 2/3:

Iobservedν ( S ν(τν = 2/3) (3.18)
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For media in LTE this means: you observe a blackbody intensity of temperature T at
the location where the optical depth toward you is 2/3:

Iobservedν ( Bν(T (τν = 2/3)) (3.19)

With the Eddington-Barbier estimation we have another, and quite powerful, way to
understand how spectral lines and features are formed. Consider the solar photo-
sphere. Deep down into the photosphere the temperature is higher than at the top of
the photosphere. In other words: there is a negative temperature gradient: dT/dz < 0.
If we look at the atmosphere at a frequency ν that is right at the center of a spectral
line, where the opacity αν of the photosphere is very high, then the location z where
τν = 2/3 is somewhere in the top of the photosphere, where temperatures are com-
paratively low. If, however, we shift ν far from the spectral line, the opacity αν of the
photosphere drops, meaning that the location z where τν = 2/3 is now much deeper,
where the temperatures are higher. This predicts that the spectrum of the Sun should
have its lines typically in absorption, which is indeed the case.

The Eddington-Barbier estimation is, however, not always valid. You can see this,
again, by an example of the Sun’s atmosphere. Above the photosphere there is the
chromosphere, which is much hotter than the photosphere, but also much more ten-
uous. The optical depth of the chromosphere is small, yet in some strong spectral
lines it may still dominate the photospheric emission. Eddington-Barbier would not
predict this to happen. It shows that Eddington-Barbier can be used if the temperature
gradient is moderate, but not in cases where there is an extremely hot tenuous layer in
front of a much cooler optically thick medium.

3.6 A note on time-dependence
So far we have assumed that the speed of the propagation of radiation is so large,
that photons pass through our object of interest in a time much shorter than that the
object can change its properties. For the vast majority of radiative transfer problems in
astrophysics this is a good approximation. There are, however, some occasions where
the light travel time plays a role. Consider, for instance, a star surrounded by a large
disk or envelope. If the star exhibits a sudden outburst of luminosity (for instance,
an accretion event or an instability), and the onset of this outburst takes only minutes
to hours, then, compared to that minute or hour time scale, the outer regions of the
circumstellar disk or envelope will receive that light much later. Another example is
light echos of a supernova: a supernova lasts only weeks to months, while the outgoing
light may excite molecules or dust grains many parsecs away for tens to hundreds of
years afterward. Clearly in these problems the steady-state formal transfer equation,
Eq. (3.6) is not valid. We can, however, easily extend it to account for the light travel
time effects:

1
c
∂Iν(n, s, t)

∂t
+
∂Iν(n, s, t)

∂s
= jν(s) − αν(s)Iν(n, s, t) (3.20)

Solving such problems numerically is, however, not entirely trivial, even if we know
jν and αν perfectly in advance. Eq. (3.20) is a partial differential equation of hy-
perbolic type: an advection equation with source and sink terms. Problems of this
mathematical kind are routinely encountered in physics, in particular in the area of hy-
drodynamics, but they are also known to be numerically tricky. In the present lecture,
however, we will focus on the more common problems in which the time-derivative
in Eq. (3.20) can be ignored.

There is, however, an entirely other kind of time-dependence in radiative transfer the-
ory that is much more common: matter does not react instantly to changes in the
radiation field. It takes time to radiatively heat up or cool down a parcel of gas. And
as we shall see later, in very optically thick media the transport of radiative energy
proceeds through many absorption and re-emission events, each involving a certain
time-delay. The slowness of radiative energy transport is then not due to the finite
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speed of light, but due to the latency introduced by the slow re-emission process. We
will discuss such effects at length in the chapter on radiation hydrodynamics (Chapter
12).

3.7 1-D Plane-parallel radiative transfer problems
Many radiative transfer problems in astrophysics are truly 3-dimensional in nature.
As we have seen above, this essentially means that the mathematical problem is 6-
dimensional, since we have to also account for 2 directions and 1 frequency. For
notational convenience let us write that our problem is 3-D (with capital D) when we
talk about the spatial dimensions, and 6-d (with small-letter d) when we talk about the
full number of independent variables. Only in the first decade of this millennium have
computers become powerful enough to tackle 6-d problems with sufficient resolution.

Fortunately, often one can identify symmetries in the problem that allow one to reduce
the dimensionality from 6-d down to 5-d or even down to just 3-d.

Consider the simplest possible model of a planetary or stellar atmosphere: a plane
parallel atmosphere. In this model the variables of the gas, such as gas density, gas
temperature etc, depend only on z, but not on x and y. We thus have perfect transla-
tional symmetry in x and y. The coordinate z is the vertical coordinate. For the Earth’s
atmosphere this could mean that z = 0 is the surface while z > 0 is the atmosphere.
We also assume rotational symmetry in the x − y-plane. We have thus reduced the
problem from 3-D to 1-D. The total dimensionality has been reduced from 6-d to 3-d:
In addition to z, we still have the angular coordinate µ = cos θ and the frequency ν.
The angle φ drops out, because of the rotational symmetry in the x − y-plane.

It is important to understand that while a plane-parallel atmosphere is formally a 1-D
problem, this does not mean that the photons can travel only either upward or down-
ward! This is a very common misunderstanding. The problem remains, in some way,
fully 3-D: photons can still move in all three directions, and there exists an atmosphere
not only at x = 0, y = 0, but also at x = 5 and y = −8. The only thing that makes it 1-D
is that we do not need to explicitly care about the dependency of variables on x and
y. The differential operators ∂/∂x and ∂/∂y will yield 0 for such problems. And while
photons can still move in any direction φ, we do not have to keep track of this. Only
the dependence on µ matters. The differential operator ∂/∂φ always yields 0. Solving
the 1-D plane-parallel transfer problem therefore means that we actually solve the full
3-D problem; it is just that the problem has plane-parallel symmetry.

The formal transfer equation in the form of Eq. (2.23) can, for such a plane-parallel
geometry, be written in the following form:

µ
dIν(z, µ)
dz

= jν(z) − αν(z)Iν(z, µ) (3.21)

(with µ = cos θ) or equivalently with the source function S ν:

µ
dIν(z, µ)
dz

= αν(z)[S ν(z) − Iν(z, µ)] (3.22)

In comparison to the “along the ray” form of the transfer equation, Eq. (3.6), the d/ds
was replaced by µd/dz. For fixed µ Eq. (3.21) can be integrated over z, which is
equivalent to integrating Eq. (3.6) along a ray for fixed n.

θ

Plane−parallel atmosphere

z=0

z
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The first three moments of radiation are, in plane-parallel geometry:

Jν =
1
2

∫ +1

−1
Iν(µ) dµ (3.23)

Hν =
1
2

∫ +1

−1
Iν(µ) µ dµ (3.24)

Kν =
1
2

∫ +1

−1
Iν(µ) µ2dµ (3.25)

All these are scalars, because in 1-D we are only interested in the z components of the
tensors.

Throughout this lecture we will regularly deal with plane-parallel transfer problems,
and we will demonstrate many radiative transfer effects using Eq. (3.21). It is the sim-
plest form of the transfer equation that is still general enough to demonstrate many
aspects of radiative transfer theory. In Section 5.2.8 we will discuss another 1-D ra-
diative transfer geometry: that of spherically symmetric radiative transfer problems.
However, those problems involve a few tricky elements that we will try to avoid for
most of the lecture - hence our focus on 1-D plane-parallel geometries.

3.8 A numerical algorithm for integrating the formal transfer
equation

In most cases of practical interest, to get an accurate solution to the formal transfer
equation requires numerical integration. Doing this in a reliable and stable way is not
entirely trivial. A naive approach can lead to vastly wrong results. In this section
we will discuss the first, second and third order versions of the method of Olson &
Kunasz (1987, J. Quant. Spectros. Radiat. Transfer 38, 325), which we will henceforth
call the OK87 method. This method, with some minor additions, has turned out to be
extremely stable and reliable for all purpuses that I have encountered. There are also
other reliable methods in the literature, such as the famous Feautrier method. But
the OK87 method is more generally applicable, and we will therefore take the OK87
method as our workhorse method throughout this lecture.

Warning: To understand what follows, a basic knowledge of numerical methods is
required. I assume that you know how to numerically integrate simple differential
equations on a grid using e.g. forward Euler or Runge-Kutta integration. If you are
completely new to numerical methods, please read some of the relevant chapters of
“Numerical Recipes” by Press, Teukolsky, Vetterling and Flannery1.

3.8.1 Putting the formal transfer problem on a grid

So the objective is, to find a reliable and accurate numerical algorithm to integrate the
equation2

dI
ds
= j − αI ≡ α(S − J) (3.26)

We omitted all (x), (n) and ν for notational convenience.

Let us, for the moment, confine ourselves to a 1-D plane-parallel case, so that we
have only one coordinate: the vertical dimension z. Let us divide z up into cells. The
cells have indices i = 1, 2, 3, · · · ,Nz where Nz is the number of grid cells. The cell
walls, which separate the cells, also have indices, which we will give half-numbers:
i = 1

2 ,
3
2 ,

5
2 , · · · ,Nz +

1
2 . This is shown in the figure.

θ

i=1

i=2

i=3

i=4

i=3/2

z=0 i=1/2

i=5/2

i=7/2

i=9/2

z

Grid indices of pp atmosphere

A computer cannot handle half-numbers as indices to array elements. So if we want
to store variables that are located at the cell walls, we must use integers again. By

1http://www.nr.com/
2Numerical integration is also often called quadrature.
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convention we will then use index 1 for cell wall i = 1
2 and we will have an array of

Nz + 1 elements, because we have Nz + 1 cell walls. Note that several programming
languages start their array indices with 0 instead of 1. That would mean that the
indices shift by one. We would then have cell indices 0, · · · ,Nz − 1 and cell wall
indices 0, · · · ,Nz. How you index the cells and cell walls in your computer program
is, in the end, a matter of taste and is left up to you to decide.

The grid is now defined by the z-locations of the cell walls: z1/2, z3/2, · · · , zNz+1/2. In
the figure the bottom cell wall is located at z1/2 = 0.

The cell walls are, in 1-D, grid points. We will see that there are cell-based radiative
transfer algorithms and grid-point-based radiative transfer algorithms, and that the
two classes of methods work a bit differently. To distinguish between cell-based and
point-based variables we will use the integer and half-integer indexing for cell-based
and point-based (or wall-based) variables.

If we have a ray passing through our grid, then the ray crosses the cell walls. These
cell-wall-crossings divide the ray into ray segments. We will apply the same method
of indexing these segments: the segments have integer indices i while the joining-
points between the segments have half-integer indices i + 1/2. If s is our coordinate
along the ray, then the joining-points have si+1/2.

In our 1-D setting, if we integrate upward (µ > 0), we can match the indices along
the ray with the indices of z. If we integrate downward, then increasing s means
decreasing z. If we decide to still use a matched indexing of the ray and the grid3,
then we will be integrating from high to low indexing. In that case, in all quadrature
formulae shown below we would have to swap: i + 3/2↔ i − 1/2 and i↔ i + 1.

3.8.2 First order integration

The key of the OK87 quadrature formulae is to make an assumption for the functional
form of j(z) and α(z) between the cell boundaries, and then to analytically solve the
formal transfer equation exactly. The first order version of this method assumes that
the emissivity j and extinction coefficient α are constant within each cell, but can be
different from one cell to the next.

For each cell i we can thus calculate an optical depth:

∆τi = (si+1/2 − si−1/2)αi (3.27)

For our 1-D example, assuming that we integrate upward (i.e. µ > 0), we can equiva-
lently write:

∆τi = (zi+1/2 − zi−1/2)
αi

µ
(3.28)

We can now calculate the source function on each ray segment, which in 1-D means
the source function in each cell:

S i =
ji
αi

(3.29)

which is constant throughout each cell. Now we can write the exact integral to the
formal transfer equation from the bottom to the top of cell i as

Ii+1/2 = e−∆τi Ii−1/2 +
(

1 − e−∆τi
)

S i (3.30)

Assuming that j and α are indeed constant within the cell, Eq. (3.30) is an exact result!
It is therefore valid for any grid cell size, i.e. for any value of ∆τi.

i+1/2

i+1/2i−1/2 i+3/2
i i+1

First order integration

S
i−1/2S

i+1/2

I

I

i−1/2

We can now use Eq. (3.30) to integrate systematically from one grid wall to the next.
For µ > 0 we do this using Eq. (3.30) starting at i = 1 (i.e. starting from I1/2) and

3In 1-D this can make sense. In 3-D, however, a ray should always have its own indexing, which is then
increasing with increasing s.
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working our way up to i = Nz (i.e. arriving at INz+1/2). Here I1/2 is the boundary
condition, which we discuss in Subsection 3.8.5 below. For µ < 0 we start from the
top and work our way down. The quadrature formula has to be accordingly adapted.

3.8.3 Second order integration

For many purposes the first order integration scheme of Subsection 3.8.2 is sufficiently
accurate. “Sufficiently” here means that it does not produce results that are dramat-
ically wrong. It may, however, not be very accurate either. To get a result that is
within some tolerance margin, it is known that results obtained from first order inte-
gration schemes require a much finer gridding (and thus many more gridpoints) than
when higher-order integration schemes are used. It is therefore worthwhile to consider
higher order schemes.

Moreover, as we will see in Chapter 4, higher order integration schemes may be crucial
when we use them in iteration methods for solving multiple scattering or non-LTE
radiative transfer problems.

The philosophy of the second order integration scheme presented by Olson and Ku-
nasz (1987, J. Quant. Spectros. Radiat. Transfer 38, 325) is very similar to that of
Subsection 3.8.2. Also in their scheme an exact analytical solution is computed for
the formal transfer equation along a segment of the ray. The difference is now that we
define the S and α on the cell walls (“grid points”), and assume that they vary linearly
between the cell walls (instead of constant within the cell). For cell i this implies:

S (z) =
zi+1/2 − z

zi+1/2 − zi−1/2
S i−1/2 +

z − zi−1/2
zi+1/2 − zi−1/2

S i+1/2 (3.31)

α(z) =
zi+1/2 − z

zi+1/2 − zi−1/2
αi−1/2 +

z − zi−1/2
zi+1/2 − zi−1/2

αi+1/2 (3.32)

Without proof the exact solution of the integral of the formal transfer equation across
cell i is such that, for µ > 0,

Ii+1/2 = e−∆τi Ii−1/2 + Qi (3.33)

with
Qi =

(

1 − (1 + ∆τi)e−∆τi
∆τi

)

S i−1/2 +
(

∆τi − 1 + e−∆τi
∆τi

)

S i+1/2 (3.34)
i+1/2

i+1/2i−1/2 i+3/2
i i+1

S
i−1/2S

i+1/2

I i−1/2

Second order integration

I

There are two caveats with this quadrature formula. First, if ∆τi # 10−6, the finite
machine precision may cause problems. In that limit one can write

lim
∆τi→0

Qi =
1
2
∆τi

(

S i−1/2 + S i+1/2
)

(3.35)

So if we use this formula, in case ∆τi < 10−6, then this problem is solved. Sec-
ondly, under very pathological circumstances this second order quadrature recipe can
sometimes yield overshoots. This can happen in cases in which S i+1/2 < S i−1/2 but
αi+1/2 > αi−1/2 (or vice versa). Inside of cell i the functions S (z) and α(z) are lin-
ear interpolations between these values. Their product j(z) = α(z)S (z) is therefore a
parabola which, for the case described above, can have a local maximum somewhere
inside the cell. If ∆τi ! 1, then such a parabolic functional form of j(z) will give an
intensity that is larger than one would expect when one would have linearly interpo-
lated j(z) instead of S (z). Therefore it is important to supplement the above second
order integration recipe with the following “quadrature limiter”:

Qi = min
(

Q2ndi ,Q
max
i

)

(3.36)

with Q2ndi given by Eq. (3.34) and

Qmaxi =
1
2
( ji+1/2 + ji−1/2)∆s (3.37)
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This quadrature limiter will only intervene if the gradients of S and α have opposite
signs. Otherwise the second order recipe stays in effect.

3.8.4 Third order integration

It may sound like overkill, but as we will discover in Chapter 4, even second order
integration can under some circumstances be not accurate enough. If we just want
to integrate the formal transfer equation to obtain a spectrum or image, then first and
second order are absolutely fine (of course, with second order giving nicer results than
first order). But when we use first or second order integration for iteration schemes to
solve non-LTE and/or multiple scattering problems, we may be forced to use third or-
der integration. This was recognized by Olson and Kunasz (1987, J. Quant. Spectros.
Radiat. Transfer 38, 325), who, in addition to their second order integration scheme
also presented a third order one. Here is how it goes4.

In the third order integration scheme for obtaining Ii+1/2 for µ > 0 we do not only use
S i−1/2 and S i+1/2, but also S i+3/2. The “subgrid model” for S (z) is now a quadratic
fit through these three values. Also for this S (z) the formal transfer equation can be
analytically solved. The result:

Ii+1/2 = e−∆τi Ii−1/2 + Qi (3.38)

(i.e. the same as Eq. 3.33). But now we define Qi as

Third order integration

i+1/2i−1/2 i+3/2
i i+1

i−1/2S

I i−1/2

I i+1/2

S i+1/2

S i+3/2

Qi = u S i−1/2 + v S i+1/2 + w S i+3/2 (3.39)

with

u = e0 +
e2 − (2∆τi + ∆τi+1)e1
∆τi(∆τi + ∆τi+1)

(3.40)

v =
(∆τi + ∆τi+1)e1 − e2

∆τi∆τi+1
(3.41)

w =
e2 − ∆τie1

∆τi+1(∆τi + ∆τi+1)
(3.42)

where the symbols e0, e1 and e2 are defined as

e0 = 1 − e−∆τi (3.43)
e1 = ∆τi − 1 + e−∆τi ≡ ∆τi − e0 (3.44)
e2 = ∆τ2i − 2∆τi + 2 − 2e

−∆τi ≡ ∆τ2i − 2e1 (3.45)

With this third order integration we must be even more careful than for second order
integration: now not only an overshoot could happen, but also an undershoot: we
might even obtain negative results, because the quadratic interpolation of the source
function might go negative. We must thus, in addition to the upper limiter set by
Eqs. (3.36, 3.37), also introduce a bottom limiter:

Qi = max
(

min
(

Q3rdi ,Q
max
i

)

, 0
)

(3.46)

with Qmaxi still given by Eq. (3.37).

3.8.5 Boundary conditions

When we integrate from z = 0 upward, for µ > 0, we must start with some value
of I1/2. Which value should we take? The answer depends on the problem we wish
to solve. If z = 0 represents the surface of the Earth, and if the wavelength we are

4Note that in the Kunasz & Olson paper the grid indices are from top to bottom, so for µ > 0 the cell
indices get smaller each step. We have our indices from bottom to top, i.e. zi+1/2 > zi−1/2.
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interested in is the mid-infrared, then it is reasonable to take it to be I1/2 = Bν(T ) with
T the temperature of the ground. But if we consider the optical wavelength regime,
then it depends entirely on the reflection of light impinging on the surface. That is:
we do know know I1/2 in this case until we calculate the downward radiative transfer.
This gives us a glimpse of the true complexity of radiative transfer: To calculate the
radiation field, we have to know it in advance. So let us put this issue to rest for the
moment. We will discuss it at length in Chapter 4.

So what about the downward integration, for µ < 0? In that case we must impose a
boundary condition for INz+1/2. In the case of our Earth’s atmosphere, most of the sky
above the atmosphere is pitch black. We can then set INz+1/2 = 0. This is also true if
we model a stellar atmosphere.

For the Earth’s atmosphere (and any planetary atmosphere) there is, however, one
exception: The irradiation of the Earth’s atmosphere by the Sun. Typically this occurs
under some inclination angle: θ > 0 for some φ. While this does not break the plane-
parallel translational symmetry, it does break the rotational symmetry in the x − y-
plane. The irradiation by the Sun thus would force us to go from a 3-d problem (z, µ,
ν) to a 4-d problem (z, µ, φ, ν). We will discuss this at length in Chapter 9.

3.8.6 Choosing the right spatial resolution

A (wrong) rule of thumb for the sufficiently narrow spacing of the z-grid that is often
quoted is to always make sure that ∆τ ! 1 over each grid cell. As we have seen
above, if you do the integration properly, this is not always necessary. In fact, it is
often prohibitly numerically expensive to make the grid finely enough spaced that all
cells are optically thin. This is even more true in 3-D radiative transfer problems.
If we were to strictly adhere to that rule, most 3-D radiative transfer problems would
presumably be not feasible. This rule of thumb is also simply wrong: there are regions,
at sufficiently high optical depth, where it is not at all necessary to have optically thin
grid spacing. Fortunately!

The “real” rules of thumb are:

1. Use a stable numerical integration scheme that also works properly when large
steps in τ are taken.

2. For high optical depths use second order integration if possible.

3. Try to spatially resolve the photosphere of the object with sufficient number of
grid points, because it is here where the observed spectrum is formed.

4. Regions that are at high optical depth at all wavelengths5 can be mapped with
optically thick grid spacing.

5. One can always do an a-posteriori check if the grid resolution was chosen suf-
ficiently high: the intensity function Iν(s) along the ray should not make large
jumps from one grid point (or grid cell) to the next.

3.8.7 Numerical integration of rays in 2-D and 3-D

While the 1-D plane-parallel example is sufficient to explain the basic principles of
the numerical integration methods, it is worthwhile to briefly discuss how this can
be generalized to 2-D and 3-D grids. If we divide our 2-D or 3-D space up in cells,
then a ray passing through that grid will intersect with the cell walls, thus dividing
the ray up into ray segments, each segment belonging to a cell that is being traversed.
Their lengths ∆si can be quite irregular: a long segment can be followed by a tiny one,

5To be more precise: all wavelengths near the peak of the Planck function at the temperatures involved.
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followed by an intermediate one etc. But apart from that the integration along the ray
remains the same as we have seen so far: we simply use the quadrature formulae we
have discussed in this section.

Ray made up of ray segments

C
D

A

B

EThe main new aspect in 3-D compared to what we have done so far in 1-D is that the
variables such as α and S are stored either in the cell or on the cell corners. When
they are stored in the cell (cell-based radiative transfer), we must use the first order
quadrature formula, because α and S are then assumed to be constant throughout the
cell. If they are stored at the cell corners (grid-point-based radiative transfer), then we
must employ interpolation from the cell corners to the point where the ray crosses the
cell wall. The simplest would be bilinear interpolation, because a cell wall has four
corner points. A better way would be bi-quadratic or bi-cubic.
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