Chapter 1

The N-body problem applied to exoplanets

1.1 Motivation

The N-body problem is the problem of solving the motion of N > 1 stars or planets that are mutually gravitationally
attracting each other. The 2-body problem is a special case which can be solved analytically. The solutions to the
2-body problem are the Kepler orbits. For N > 2 there is, however, no analytical solution. The only way to solve
the N > 2 problem is by numerical integration of the Newtonian equations of motion.

Of course there are limiting cases where the N > 2 problem reduces to a set of independent N = 2 problems: To first
order the orbit of the planets around the Sun are Kepler orbits: N = 2 solutions in which the two bodies are the Sun
and the planet. That is because the mutual gravitational force between e.g. Venus and Earth is much smaller than the
gravitational force of the Sun. So for the planets of our Solar System, and for most planets around other stars, the
N-body problem can, to first order, be simplified into N — 1 independent 2-body problems. That means that e.g. the
Earth’s orbit is only very slightly modified by the gravitational attraction by Venus or Mars. For most purposes we
can ignore this tiny effect, meaning that the Kepler orbital characteristic are sufficiently accurate to describe most
of what we want to know about the system.

However, for exoplanetary systems where the planets are closer to each other, the situation may be different. The
mutual gravitational forces between the planets will still be small compared to that of the star, but they may be
nevertheless large enough to play a role. In that case, we have no other choice than to actually model the full 3-body
or N-body problem.

1.2 Numerical integration of an Ordinary Differential Equation: Euler’s
method

Before we go to the full N-body problem, let us first try to numerically solve an ordinary differential equation (ODE)
for which we know the analytic solution:

dy(t) _
7 =—Ay(1) (1.1)

where A is a given constant number greater than 0. The analytic solution is of course
y(t) =Be™ (1.2)

where B is an integration constant. The value of B is usually chosen such that y(r = #y) has the value of y as it is
known to be at time ¢ = #y. This is called an initial condition. In this case it is simple to find B for a given initial
condition y(#): we have B = y(ty) e*%0.

Now suppose we wish to integrate Eq. (1.1) numerically. How do we do that? First we have to find out at which
times do we wish to know the value of y(t). We have to know this in advance, because a numerical solution is
nothing else than a table of numbers y; belonging to a table of times #;. So we first have to define the list of times

3

t; (i.e. to,t1,- -+ ,1,) for which we wish to know the solution values y; (i.e. yo,y1,- - ,y»). By definition #y will be the
initial condition, and #; > ¢, for all i > 0.

Now we start at ¢ = #o, for which we know the value of y, because that is the initial condition y(#9). We now wish to
find the value of y at the next time #;, which obeys, of course, #; > #p. How do we do that?

1.2.1 Euler method

The simplest method is called the Euler method. The idea is based on the fact that the differential dy/dt is defined

as
AL — (T
_ iy YA —y(n) (1.3)
=y, A0 At

This equation is exact, because it is the definition of the derivative of an equation. But it is only exact as long as
At — 0, i.e. the time step goes to zero. For finite Az the above equation is only approximately correct. We can write
this as:
dy
dt

_ y(ti+A) — (%) 2, _ Ay 2
= MRS Loty = D) o) (1.4)

t=t; tf=ﬁ

which says that for a small, but non-zero (i.e. finite) As the difference between the true dy/dt and the approximate
Ay/At is a small, and this difference shrinks proportional to Ar? if At is chosen ever smaller. For small enough At
the approximation that dy/dt ~ Ay/At is reasonably good.
The idea behind the Euler integration method is based on this approximation of the derivative dy/dt as a discrete
difference Ay/At. The ODE Egq. (1.1) then becomes:

Yit1 —)i — Ay (1.5)
liv1 — 1

We know the values of ;11 —t; and y;, but we want to compute the value of y;; (i.e. the future value of y). You can
find this value of y;; simply by solving for y;;1 in Eq. (1.5). You obtain:

Vi1 =Yi—Ayi(tiz1 —1;) (1.6)

This is the Euler integration formula for the ODE

Here is a snippet of a Python code that does this:

import numpy as np
import matplotlib.pyplot as plt

A = 0.3 # The A constant in the ODE
t0 = 0. # Starting time
tend = 10. # End time
nt =10 # Nr of time steps
t = np.linspace (t0, tend, nt)
vy = np.zeros (nt)
y[0] = 2. # Intial condition
for it in range(0,nt-1):
y[it+1l] = y[it] - A * y[it] * (t[it+1l] - t[it])

yvana = y[0]xnp.exp (—-Axt)
plt.figure ()

plt.plot (t,yana, label="Analytic"')
plt.plot(t,y, 'o',label="Numeric"')
plt.xlabel ('t"')

plt.ylabel ('y(t)")

plt.legend()
plt.savefig('fig_ode_euler_1_1.pdf")
plt.show ()

You can find this snippet in snippets/snippet_ode_euler_1.py

4

2.0

— Analytic
e o Numeric
1.5}
@
1.0t
>
[}
()
0.5}
e
e
[]
e ° p
00 ! ! ! !
0 2 4 6 8 10

More generally: if we have the ODE

DO — Fow))

where F (y) is some function of y, the corresponding Euler integration formula is:

Vi1 =yi — F(yi) (tiy1 — i) (1.8)

1.2.2 Time step cannot be too large

The Euler integration method, as well as most other numerical integration methods, has one serious weakness: while
it can become arbitrarily accurate if you choose At = t;1| —t; arbitrarily small, it can also become arbitrarily wrong
if you choose Ar =t;| —t; arbitrarily large.

The time step size At = ;| — f; is simply the time between two successive values of your chosen set of times {}.
However, if you choose these time intervals too large, you will get inaccurate results. Moreover, if the time step gets
beyond a certain critical value, the resulting values y; are not only wrong, they are exponentially diverging to ever
larger values.

1.2.3 Substepping

If your intervals between the times #; is too large, then how to solve this? Of course, one can make Ar smaller, but
that means that you need, for the same time range, more time steps. In other words, you will need more #;. This is
not always desirable. For instance, you may simply wish to have just time steps between #y and #gpq;.

The solution is substepping. Between any two time steps #; and #;11 you can do as many substeps as necessary. And
these intermediate step results do not have to be stored. You can simply replace the current with the next step. This
smaller time step 0t would then be 8¢ = At/ (ngyp + 1) where ngyy, is the number of substeps you wish to make.

Exercise 1: Adapt the above python script to divide each time step up in 10 substeps. Plot the results
over the previous results so that you can compare.

1.2.4 How small do you need to make 6¢?

With the substepping you can keep the #; you want, while at the same time obtain the desired accuracy by making the
substep ¢ small enough. But what is “small enough”? We have to find an objective criterion what “small enough”
is. Let us return to the actual equation (Eq. 1.1). The constant A has the dimension of 1/second. Therefore 1/A
defines a characteristic time scale of the problem: fe, = 1/A. It is therefore reasonable to express the desired time
step O¢ in units of z.p, = 1/A:
C

Ot = Ctepar = 2 (1.9)
where C is a number we choose. If we choose C > 1, then the solution will be inaccurate or even numerically
unstable. If we choose C < 1 then we waste too much computational time. Presumably we wish to choose C
somewhere between 0.1 and 0.5 or so.

Note that, for a given value of 8¢, it is not guaranteed that Az is an integer-multiple of 8¢. So instead of taking the
exact 0t of Eq. (1.9), we take the next smaller integer fraction of Az. Here is a way to do that:

import math

dt = t[it+1] - t[it]

C = 0.5

dtsub = C / A

nsub = math.floor(dt / dtsub) # Nr of substeps (round down to integer)

dtsub = dt / (nsub+1l) # New dtsub is now always an integer fraction of df

where Ar=dt and dt=dtsub.

Exercise 2: How does the computational cost (i.e. the number of computer operations) scale with §¢?

Exercise 3: Experiment with choices of C and find, by trial and error, the value for which the relative
error is about 1%. Overplot this result over the other ones.

1.2.5 Non-linear equations

Now let us return to the more general case of Eq. (1.7), which we repeat here for convenience:

dy(1)
=F(y(t 1.10
” () (1.10)
The numerical Euler method follows Eq. (1.8). How do we know which time sub-step 8¢ we should take in this

case? There is no constant A here. The trick is to compute the Jacobian:

oF
J=—= 1.11
Iy (L.11)
The time step formula (1.9) now becomes:
0t = Clehar = < (1.12)

1

For the linear case (Eq. 1.1) we know that F(y) = —Ay, and so J = —A. But this time our formalism is more general.

1.3 Higher-order integration methods: Runge-Kutta methods

The Euler integration is the simplest and most intuitive method of numerical integration. But its accuracy scales
only linearly with 1/8¢. Or in order words: the error scales only linearly with d¢. The algorithm is said to be a first
order algorithm.

If you want to have 10x higher accuracy, you need 10x more computer power. Computers are nowadays so fast,
that it is often affordable to indeed simply invest more computer power. But for problems that require very high
accuracy, the computational cost might become nevertheless too high.

The solution lies in better algorithms: second-order algorithms have an accuracy proportional to 1/8¢>. That means
that for a 10x higher accuracy you need only +/10x more computational effort. Or in other words: with a 10x
smaller time step &7 you get a 100x more accurate result.

The accuracy of third- and even higher-order methods scale even better with 8z. But always keep in mind: all
methods fail if the 67 becomes of the order of 1/J (the Jacobian, see Section 1.2.5) or larger. The order of the
algorithm only says how quickly the results get better as ot is taken ever smaller than 1/J.

1.3.1 Second order method: the midpoint method (RK2)

The simplest second order method is the midpoint method, also often called the second-order Runge-Kutta method.
The method first does a half-timestep to find a reasonable estimate of the value of y at half the time step:

1
Ymid = Yi + EF(yi) (ti1 — 1) (1.13)

Then it uses this value to compute the right-hand-side of the equation for the real integration step:
Yir1 = Yi+ F (ymia) (fis1 = i) (1.14)

This is often called RK2 as in Runge-Kutte-2nd-order.

NOTE: Here, and in the following sections, we do not include sub-stepping in the equations (for simplicity), but the
principle can be easily extended to substepping.

Exercise 4: Use the RK2 method for our simple ODE, and compare to the Euler method. Take, for the
comparison, no substeps, so that the differences become more apparent.

1.3.2 Fourth order method: Runge-Kutta 4 (RK4)

The most popular higher-order integration method is RK4, a fourth-order Runge-Kutta method:

ot
Yirl = Yi+€(k1+2k2+2k3+k4) (1.15)
tiv1 = i+ 6t (1.16)
with
ki = F(y) (1.17)
ky = F(yi+kiét/2) (1.18)
ks = F(yi+k26t/2) (1.19)
ky = F(yi+k36t) (1.20)

Exercise S: Use the RK4 method for our simple ODE.

Exercise 6: Plot the error for the value at t = 10 (compared to the known analytic solution) as a function
of Rgypstep- Overplot the same for the RK2 and Euler method.

1.4 Using built-in Python ODE integrator

Python has several standard methods built in into the scipy package. Here is an example of how to do the same as
above, but now with a built-in method of scipy. We use the odeint () method, which is a Python interface to the
famous 1soda () integrator from the odepack fortran library.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def f(y,t,A):
return —-Axy

A = 0.3 # The A constant in the ODE
t0 = 0. # Starting time

tend = 10. # End time

nt =10 # Nr of time steps

t = np.linspace (t0, tend, nt)

y0 = 2. # Intial condition

sol = odeint (f,y0,t,args=(4,))

vy = sol[:,0].T

yvana = y[0]xnp.exp (-Axt)

plt.figure()

plt.plot (t,yana, label="Analytic"')
plt.plot(t,y,'o',label="'Scipy odeint')
plt.xlabel ('t"')

plt.ylabel ('y(t)")

plt.legend()
plt.savefig('fig_ode_scipy_1_1.pdf")
plt.show ()

You can find this snippet in snippets/snippet_ode_scipy_1.py.

2.0 .
— Analytic
e e Scipy odeint
1.5f
210}
>
0.5F
00 ! ! ! !
0 2 4 6 8 10

Note that this odeint () method automatically makes its internal substepping, so that you do not have to worry
about it. In fact, as you can see, the results are extremely accurate. The reason is that odeint () allows you to
specify the accuracy yourself by setting the error tolerance. The default tolerance is 10~8 (but see the manual of
odeint () for more detailed information), meaning that odeint () will make as many substeps as necessary to
achieve the desired accuracy.

Exercise 7: Inspect what the relative error of the solution at the final time step is. Look for the online
manual of scipy.integrate.odeint () and find out how one can set the accuracy of the integration.
Try out the above snippet with a different error tolerance and show that it was succesful.

1.5 Orbital integration

Now let us move to an astrophysical example: the integration of the orbit of a planet around the Sun. In this initial
example we make the assumption that the planet’s mass is infinitely much smaller than that of the Sun (we will have
to drop this assumption later, when we include multiple planets).

The equations of motion of the planet are:

dx

— = 1.21

7 v (1.21)

dv GMO

E = — r3 X (122)
(1.23)

with r = /|x|. Since both x and v are 3-D vectors, the full set of equations consists of 6 coupled ODE:s.
Here is an example Python snippet that models the orbit of the Earth if we would slow down the earth by 20%.
NOTE: We use CGS units here (as is usually done in astronomy).

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def f(y,t,mstar):

G = 6.67408e-08 # Gravitational constant in CGS units [cm"3/g/s”2]
gm = Gxmstar

X = y[0:3].copy ()

v = yI[3:6].copy()

r = np.sqrt (X[0] x*2+x[1]**x2+x[2] x%2)

dxdt = v

dvdt = —gm*x/r**3

dy = np.hstack ((dxdt,dvdt))

return dy

msun = 1.98892e33 # Solar mass [g]
year = 31557600.e0 # Year [s]

au = 1.49598el13 # Astronomical Unit [cm]
t0 = 0. # Starting time

tend = 1.5+year # End time

nt = 100 # Nr of time steps

t = np.linspace (t0, tend, nt)

r0 = au # Initial distance of Earth to Sun
vp0 = 0.8 % 2xnp.pi*au/year # Initial velocity of Earth

x0 = np.array([r0,0.,0.]) # 3-D initial position of Earth
v0 = np.array ([0.,vp0,0.]) # 3-D initial velocity of Earth
yO0 = np.hstack ((x0,v0)) # Make a 6-D vector of x0 and vO
sol = odeint (f,y0,t,args=(msun,))

X = so0l[:,0:3].T

v = sol[:,3:6].T

plt.figure()

plt.plot (x[0,:]/au,x[1,
plt.plot ([0.],[0.],'0")
plt.xlabel ('x [aul')
plt.ylabel('y [aul')
plt.axis('equal')

:1/au)

plt.savefig('fig_kepler_1_1.pdf"')
plt.show ()

You can find this snippet in snippets/snippet_kepler_1.py.

0.8

0.6}

0.4}

0.2f

0.0

y [aul

0.2}

—0.4}

-0.6

-0.5 0.0 0.5 1.0
x [au]

-0.8

Exercise 8: Explain the results. What is it that you are (physically) seeing? Why does the curve have
slight wobbles on the left, but not (at least not discernable) on the right? Are these wobbles numerical
errors of the integration scheme?

Exercise 9: By default both rtol=1e-8 and atol=1e-8. Which of the two determine time substepping
size for the odeint () method? Tip: What are the dimensions of rtol and atol?

1.6 N-body integration

Now let’s extend what we learned to a multi-planet system, in particular to a system where the planets gravitationally
influence each other. We use again the odeint () subroutine, but now we include not only the additional planets,
but also the star. This is important, because for the N-body problem the reaction of the star to the pull of the planets
can also affect the interactions between the planets.

1.6.1 A Python implementation

Here is a possible implementation in Python. For fun this example has two Jupiter mass planets on orbits not far
from each other, so that they affect each other’s orbits.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def f(y,t,m):

@ = 6.67408e-08 # Gravitational constant in CGS units [cm"3/g/s”2]
n = len (m)

plan = y.reshape ((n,6))

frc = np.zeros((n,3))

dy = np.zeros((n,6))

10

for 1 in range(n):

X = plan[i, 0:3]
for j in range(i+l,n):
x1 = plan[3j,0:3]
dx = xl-x
r = np.sqrt (dx[0] **2+dx [1] **2+dx [2] **2)
df = Gxm[i]*m[J]*dx/r**3
frcl[i,0:3] += df[0:3]
frc[j,0:3] -= df[0:3]

for i in range(n):

X = plan[i, 0:3].copy ()

v = plan[i,3:6].copy()

dxdt = v

dvdt = frc[i,0:3]/m[1i]

dy[i,0:6] = np.hstack((dxdt,dvdt))

return dy.reshape ((6%*n))

G = 6.67408e-08 # Gravitational constant in CGS units [cm"3/g/s”2]
Msun = 1.98892e33 # Solar mass [g]
Mju = 1.899e30 # Mass of Jupiter [g]
year = 31557600.e0 # Year [s]
au = 1.49598e13 # Astronomical Unit [cm]
t0 = 0. # Starting time
tend = 4.5xyear # End time
nt = 400 # Nr of time steps
t = np.linspace (t0, tend, nt)
m = np.array ([Msun,Mju,Mju]) # Masses
a0 = np.array([0.,au,1l.15*xau,]) # Semi-major axes
phi0 = np.array([0.,0.,0.7) # Orbital locations in degrees
nb = len (m)
x0 = np.zeros ((nb,3))
v0 = np.zeros ((nb,3))
pos = np.zeros(3)
mom = np.zeros(3)
for i in range (1l,nb): # Loop over all planets (i.e. excluding star)
x0[1,0] = alO[i]l*np.cos(phiO[i])
x0[1i,1] = a0[i]l*np.sin(phiO[i])
vphi = np.sqrt (Gxm[0]/a0[i])
v0[1i,0] = —-vphixnp.sin(phi0[i])
v0[i,1] = vphixnp.cos(phiO[i])
pos[:] += m[i]#*x0[1, :]
mom[:] += m[i]*vO[di, :]
x0[0,:] = —pos[:]/m[0] # Total center of mass must be at (0,0,0)
v0[0,:] = -mom[:]/m[0] # Total momentum must be (0,0,0)
xv0 = np.zeros ((nb,6))
for i in range (nb) :
xv0[i,0:3] = x0[1,0:3]
xv0[1,3:6] = v0[1i,0:3]
yO0 = xv0.reshape (6*nb) # The full nb*6 element vector
sol = odeint (f,y0,t,args=(m,)) # Solve the N-body problem
XV = sol.reshape ((nt,nb, 6)) # Now extract again the x and v
X = np.zeros ((nb,3,nt))
v = np.zeros((nb,3,nt))

for i in range(nb) :
for idir in range(3):

x[i,idir,:] = xv[:,1i,idir]
v[i,idir,:] = xv[:,1,3+idir]
plt.figure()

for ibody in range (nb) :
plt.plot (x[ibody, 0, :]/au, x[ibody, 1, :]/au)
plt.xlabel('x [au]')

11

plt.ylabel('y [aul')
plt.axis('equal')

plt.savefig('fig _nbody_1_1.pdf")
plt.show ()

You can find this snippet in snippets/snippet_nbody_1.py.

1.5

1.0F

0.5}

0.0

y [au]

—-0.5}

-1.0}

-1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x [au]

Exercise 10: Make a new version of this snippet in which you create a separate subrou-
tine nbody (m, x0,v0,t), which does the N-body integration for the initial conditions given by
%x0[nb, 0:3] and v0[nb, 0:3], and for the time array t. In other words: put all the re-packaging
of the data into (and from) a big array y into the nbody () subroutine so that you do not have to worry
about this data-management anymore.

1.6.2 Long-term evolution of the orbits

So far we have integrated only a few orbits. If we wish to analyze the behavior of the system over thousands of
orbits, then directly plotting the orbits themselves becomes problematic, because one will not recognize anything.

One solution is to plot two of the most important orbital parameters that would remain constant for single-planetary
systems, and change only due to the interaction among the planets: the semi-major axis a and the eccentricity e of
the planets.

The semi-major axis a of the planet can be computed from the center-of-mass velocity v = |v| and radius r = x|
through the specific orbital energy formula:

lo p M
E=g@-t=—2 (1.24)

where i = GM? /(M. +M ,,)2. Note that this formula is derived with all variables in the center-of-mass frame.
The eccentricity e of a planet with respect to the star can be obtained from the eccentricity vector e defined by

Av)? 1 AX-A
e:< v —>Ax— X2V Ay (1.25)
no|Ax| 1

where it = G(M, + M,) where M, is the mass of the planet and
AX = xp — X4, Av=v,—v, (1.26)

"https://en.wikipedia.org/wiki/Eccentricity_vector

12

The eccentricity is the length of this vector:
e=|e| 1.27)

Note that these formulae are all done with the relative position and velocity between planet and star.

Exercise 11: Program a function that computes a and e. Plot how e change over time for 15 years.
Explain why the eccentricities appear to change in sudden jumps.

1.7 The TRAPPIST-1 exoplanetary system

One of the most spectacular exoplanetary systems known today is the TRAPPIST-1 system?”. It is a multi-planet
system around a relatively nearby M-dwarf star. Its 7 known planets have masses not very different from the Earth,
and several of them lie in the so-called habitable zone, meaning that they are at the right distance from the star that
they have temperatures such that liquid water could perhaps exist on them. The distance to their host star is much
less than the Earth-Sun distance, but still their temperatures are not very different from the Earht, because the star
is so much less bright than the Sun.

The discovery paper is3: Gillon, M., Triaud, A. H. M. J., Demory, B.-O., Jehin, E., Agol, E., Deck, K. M., et al.
(2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7),
456

The planets were discovered through the transit method. In this method the existence of a planet is inferred by the
slight dimming of the stellar light by the passage of the planet in front of the star. In the case of TRAPPIST-1, many
planets passed in front of the star, causing a multitude of periodic dimming events.

The orbits of this mini-planetary system lie all very close to each other, so that it is to be expected that the planets
influence each other’s orbits through their mutual gravity.

The most direct consequence of this mutual interaction between the planets is that the transits of the planets will vary
slightly in their timing. If a planet would be a single planet, then the transit (if it occurs at all) will have a perfect
orbital period: each transit happens at exactly the same time interval as the previous one. However, if there are
more than 1 planet in the system, this transit timing may vary a bit, depending on the locaiton of the other planets.
The transit may thus occur slightly earlier or later than expected based on a single planetary orbit. In fact, through
transit timing variations (TTV) it is possible to infer the existence of planets that may not be in the same plane, and
thus may not transit at all. But, equally importantly, these TTV allow the calculation of the planet masses.

To do these things, one must perform N-body calculations, to compute the effect of the mutual gravitational pull.
Finding the proper orbital parameters from the observations requires a trial-and-error procedure, which can be quite
time-consuming. But from the already-inferred orbital parameters we can redo our own N-body calculation of the
system.

Exercise 12 (voluntary): Check out the discovery paper and find the parameters of the TRAPPIST-
1 system. Set up the appropriate initial conditions and simulate a few orbits. Try to find from the
simulations the typical expected magnitude of TTV (in minutes) of the planets.

2http://www.trappist.one/
3http://doi.org/10.1038/nature21360

13

