
Chapter 3

Numerical hydrodynamics of astrophysical
gas clouds

3.1 Gas dynamics in astronomy

The space between the stars is not empty. It contains large quantities of hydrogen and helium gas, albeit at very low
densities. This interstellar medium is not homogeneous: it consists of cold (⇠ 10 K) turbulent molecular clouds
and hot tenuous atomic gas in between. In the cold molecular clouds new stars are formed. An example is the Orion
molecular cloud complex, of which the Orion nebula can be seen with the naked eye.

The gas is always in motion, like waves on the sea. These motions, and the laws that govern them, are called gas
dynamics, or equivalently hydrodynamics. When dense clumps of gas form, the self-gravity of the gas can cause it
to collapse and form a star. Since no clump will have exactly zero rotation, the angular momentum conservation
typically leads to the formation of a protostellar disk aroud the growing star. Once most of the disk gas has accreted
onto the star, the remaining disk is called a protoplanetary disk because it is believed that planetary systems form in
them. Also the gas in these disks moves around and features waves.

The gas inside stars and planets also obeys the laws of gas dynamics. The simplest example is the weather on Earth.
In other words: astronomy is full of objects that are made of gas, and thus behave according to the laws of gas
dynamics.

The dynamics of gas, for historical reasons often called hydrodynamics even though it has nothing to do with water,
is complex. Again just think of the weather patterns on Earth and you see why. Hydrodynamics displays extremely
non-linear behavior. Analytical solutions are rare and/or approximate. Usually it is necessary to employ numerical
hydrodynamics codes to model the behavior of the gas. In this chapter we will give a very brief introduction to this
topic.

3.2 Equations of hydrodynamics

The motion of gas in most astrophysical settings follows the equation of compressible hydrodynamics. In 1-D these
equations are:

∂r
∂ t

+
∂r v
∂x

= 0 (3.1)

∂r v
∂ t

+
∂r v2 +P

∂x
= r f (3.2)

where the pressure P = r c2
s , with cs the isothermal sound speed given by

cs =

s
kBT
µmp

(3.3)

23

with kB the Boltzmann constant, mp the proton mass and µ = 2.3 the mean molecular weight of a H2,He mixture.
The right-hand side of Eq. (3.2) contain a possible external force, such as the gravitational force (either by an
external body or by the gas itself).

For simplicity we will assume from now on that the temperature T is everywhere the same, both in space and time.
Therefore c2

s is a global constant, specified by the scientist. This means that we do not have to solve the energy
equation, which simplifies the problem.

3.3 Advection on a grid: Numerical diffusion/viscosity

The two equations (Eqs. 3.1, 3.2) are the conservation equations of mass and momentum, respectively. The both
take the form of an advection equation:

∂q(x, t)
∂ t

+
∂q(x, t)v(x, t)

∂x
= s(x, t,q) (3.4)

where q = r and s = 0 for the first equation and q = rv and s =�∂ p/∂x+r f for the second equation.

An advection equation is conceptually very simple: it is the equation that moves around stuff. The velocity of the
movement is v(x, t) and the “stuff” is q(x, t).

One would intuitively think that “moving stuff around” is a simple task, even for a computer. It turns out, however,
that for a computer this task is very hard. Consider the following simple problem:

∂q(x, t)
∂ t

+ v0
∂q(x, t)

∂x
= 0 (3.5)

with v0 > 0 a positive constant. This is the problem of shifting a function to the right with a velocity v0. Suppose
our function at t = 0 is the following step function:

q(x,0) =
⇢

1 for x < 0
0 for x � 0 (3.6)

Clearly the solution to this advection equation (Eq. 3.5), with initial condition given by Eq. (3.6), for t > 0 is:

q(x, t) =
⇢

1 for x < v0t
0 for x � v0t (3.7)

Again: analytically this is trivial.

But for modeling numerical hydrodynamics we wish to advect stuff on a grid in x, i.e. we describe q(x, t) as

qn
i = q(xi, tn) (3.8)

We have no more information about q(x, t) than the discrete set of numbers qn
i . If and only if v0 is constant, the

spatial grid spacing Dx = xi+1 � xi is constant, and the time spacing Dt = tn+1 � tn is exactly equal to Dt = k Dx/v0
with k a positive integer, then the numerical solution can be expressed exactly as qn+1

i = qn
i�k.

But in practice these conditions are rarely met, because in most cases of practical interest, v is not a constant in
space or because other constraints make it impossible to choose Dt as that precise value. Suppose, for instance, that
Dt = 1

3 Dx/v0 (still keeping v0 constant). Then the value of qn+1
i (i.e. at the next time step) should become the value

of qn
i�1/3 (at the current time step). However, qn

i�1/3 does not exist: it is a value of q between two grid points. One
has no other choice than to perform an interpolation of some kind. And interpolations smear things out. This means
that advection on a grid leads to diffusion. This kind of diffusion is called numerical diffusion. In the case of the
momentum equation (Eq. 3.2) this is numerical momentum-diffusion, which we usually call numerical viscosity.

Note: It is important to understand that numerical diffusion/viscosity is unavoidable when modeling hydrodynamics
on a grid! The better a hydrodynamic algorithm, the more such numerical diffusion/viscosity can be suppressed, but
it can never be eliminated. And the suppression of numerical diffusion/viscosity comes at a price: it can make the
code unstable or can lead to spurious (unphysical) features.

24

3.4 Advection on a grid: Naive approach which fails spectacularly

Let us try to come up with a super-simple advection method. Again, let us focus on the simple test problem of
Eq. (3.5). If we employ the same logic of discretization as we used in Section 1.2, we arrive at:

qn+1
i �qn

i
tn+1 � tn

+ v0
qn

i+1 �qn
i�1

xi+1 � xi�1
= 0 (3.9)

Solving for qn+1
i yields:

qn+1
i = qn

i � v0(tn+1 � tn)
qn

i+1 �qn
i�1

xi+1 � xi�1
(3.10)

We still need to deal with the boundary conditions. We do this by defining the first and last grid point as dummy
points: we do not update these points, instead we keep the values constant: qn+1

0 = qn
0 and qn+1

I�1 = qn
I�1 where I is

the number of grid points. For i > 0 up to i < I �1 we employ Eq. (3.10). Now let us see what happens.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

nx = 100
nt = 100
x = np.linspace(0.,10.,nx)
t = np.linspace(0.,10.,nt)
q = np.zeros((nt,nx))
q[0,x<3] = 1.0 # Step function initial condition
v0 = 0.4 # Constant advection velocity
for n in range(0,nt-1):

dt = t[n+1] - t[n]
q[n+1,1:-1] = q[n,1:-1] - dt * v0 * (q[n,:-2] - q[n,2:]) / (x[:-2] - x[2:])
q[n+1,0] = q[n,0]
q[n+1,-1] = q[n,-1]

n = 0
def animupdate(frameNum, a0):

global n,q,x,nt
y = q[n,:]
a0.set_data(x, y)
n = (n + 1) % nt

fig = plt.figure()
ax = plt.axes(xlim=(x.min(),x.max()),ylim=(0.,1.5))
a0, = ax.plot([], [])
anim = animation.FuncAnimation(fig,animupdate,fargs=(a0,),interval=40)
plt.show()

You can find this snippet in snippets/snippet_naive_advection.py.

You see that exponentially growing oscillations appear, which make the solution entirely useless. Apparently this
naive method fails.

3.5 Advection on a grid: The upwind method

There is, in fact, a logical explanation for why the naive approach fails. The spatial derivative is symmetric: it
takes the difference between qn

i+1 and qn
i�1, i.e. both adjacent values of qn

i . However, in our test problem, the flow
velocity v0 > 0 (moving to the right), meaning that in order to know what qn+1

i is, it should be sufficient to only use
information about q for grid points to the left. In other words: the value of qn

i+1 should not be involved at all, because
that information flows further to the right, and should never affect qn+1

i . A method that takes this into account is
called an upwind method, because it only uses information from the direction from “where the wind comes from”.

25

Here is how the simplest upwind method is implemented: instead of using the symmetric spatial derivative, we
should only use, for v0 > 0, the left derivative (involving qn

i and qn
i�1). For the opposite case where v0 < 0 we should

use the right derivative (involving qn
i+1 and qn

i).

Exercise 23: Adapt the naive method to an upwind method. You can still assume that v0 > 0 is constant
everywhere. Try it out and demonstrate that this method remains stable. Describe what you see in terms
of numerical diffusion.

3.6 Advection on a grid: Finite Volume methods

In general the v0 is not a constant, neither in time nor in space. It may, in fact, change sign from one part of the grid
to another. It is therefore not possible to decide globally whether to use a left- or a right-sided derivative. Also the
x-grid may not be constant-spaced as in the example.

Under these adverse conditions, how do we still create a stable algorithm, and how do we ensure that a conserved
quantity q is indeed conserved?

The trick is to think in terms of grid cells instead of grid points. Between every two adjacent grid points i and i+1
there is a cell wall that separates the cell domains belonging to grid points i and i+ 1 respectively. For notational
convenience we write the indices of these cell walls as i+ 1/2 (for the wall between cells i and i+ 1). The cell
wall location is thus written as xi+1/2. The 1/2 is just a notational convention. A computer does not understand
half-integer indices of arrays. So for the implementation in the computer we need to decide how to index these cell
walls. Our convention is that the cell wall between cells i and i+1 has index i, and that for I cells we have I�1 cell
walls.

Now that all grid points (except the boundary grid points, in our convention) become grid cells, we can now formu-
late the flow of quantity q(x, t) as flow through cell walls. Any “stuff” passing through a cell wall leaves one cell,
and automatically enter the adjacent cell. There is no danger of numerically accidently losing stuff.

The class of methods that employ this cell-structure is called finite volume methods. Each cell has a volume Vi
(which in 1-D is simply the size of the cell Vi = xi+1/2 � xi�1/2). Each cell wall has a surface area Ai+1/2 (which in
1-D is simply Ai+1/2 = 1).

Updating the qn
i to the new qn+1

i now goes in two steps:

1. Compute, using some algorithm (to be discussed later), the interface fluxes at half-time f n+1/2
i+1/2 .

2. Compute qn+1
i according to bookkeeping how much flux enters and leaves the cells:

Vi qn+1
i =Vi qn

i +(tn+1 � tn)
⇣

f n+1/2
i�1/2 � f n+1/2

i+1/2

⌘
(3.11)

In this scheme we can only have “leakage” of q at the boundaries. For the rest this scheme is perfectly numerically
conservative.

The big question remains step 1: what algorithm can we use to compute f n+1/2
i+1/2 ? This is the topic of the next section.

3.7 Advection on a grid: The donor-cell algorithm

The simplest finite volume scheme is the donor-cell scheme. In this scheme the “average interface state” is simply:

q̃n+1/2
i+1/2 =

⇢
qn

i for vi+1/2 > 0
qn

i+1 for vi+1/2 < 0 (3.12)

This means that the donor-cell interface flux is:

f n+1/2
i+1/2 =

⇢
vi+1/2 qn

i for vi+1/2 > 0
vi+1/2 qn

i+1 for vi+1/2 < 0 (3.13)

26

The physical interpretation of this method is the following. One assumes that the density is constant within each
cell. We then let the material flow through the cell interfaces, from left to right for vi+1/2 > 0. Since the density to
the left of the cell interface is constant, and as long as we choose the time step small enough (see Section 3.8 for the
CFL condition), we know that for the whole time between time tn and tn+1 the flux through the cell interface (which
is q̃i+1/2 vi+1/2) is constant, and is equal to Eq. (3.13).

Note that the velocity vi+1/2 is defined at the cell walls, and may vary from cell wall to cell wall (and even change
sign).

Exercise 24: Develop a function that performs a single advection step with the donor-cell method. You
can start from the snippet that follows. Test this function on the simple advection problem we already
solved.

The starting snippet for the above exercise is:

def advect_timestep_donorcell(x,q,vi,dt):
"""
Simple donor-cell advection scheme. First and last cell
are ghost cells and are not affected.

ARGUMENTS:
x The cell center locations (array of nx elements)
q The cell center q values (array of nx elements)
vi The velocities at the cell walls (array of nx-1 elements)
dt The time step

RETURNS:
qnew The updated values of q at the next time step

"""
xi = 0.5*(x[1:]+x[:-1]) # Location of cell walls
dx = xi[1:]-xi[:-1] # Array of cell widths
dx = np.hstack((0,dx,0)) # Get dx indices in line with cell indices
fi = np.zeros_like(vi) # Prepare array of interface fluxes
ipos = np.where(vi>=0.)[0] # Indices of interfaces with positive vi
ineg = np.where(vi<0.)[0] # Indices of interfaces with negative vi

<<< COMPLETE THE ALGORITHM HERE >>>

You can find this snippet in snippets/snippet_donor_cell_template.py.

Since the results for this simple test problem are identical to the simple upwind scheme, let us now try a more
complex problem:

v(x) = v0 sin(2px/(xmax � xmin)) (3.14)

Exercise 25: Apply your advection method to this more complicated problem and show that you get
regions where q decreases (why?) and regions where q increases (why?).

3.8 Limitation on the time step (the CFL condition)

Finite volume methods assume that within each time step the flow of stuff through one cell wall does not pass
through the next cell wall too. The reason is that we assume that each cell only receives stuff from its neighbor, not
from the neighbor’s neighbor. This automatically sets a rigorous limit on the time step Dt = tn+1 � tn:

Dt <
Dx
|v| (3.15)

Typically it is even better to impose an even slightly more restrictive limit: Dt < 0.5Dx/|v|, but that may depend on
the algorithm.

27

3.9 Making a hydro code from the advection function

Now that we have an advection function, we can use this to solve the hydrodynamics equations, which we repeat
here for convenience:

∂r
∂ t

+
∂r v
∂x

= 0 (3.16)

∂r v
∂ t

+
∂r v2

∂x
= �∂P

∂x
+r f (3.17)

For the advection equations we need to find the interface velocities. We can obtain the cell center velocities from:

vi =
(r v)i

ri
(3.18)

Next we find the interface velocities by interpolation:

vi+1/2 =
1
2
(vi + vi+1) (3.19)

Next we call the advection function for r and for (r v). We update the boundary values according to our boundary
condition model. We then calculate the pressure from the new r and the known c2

s . Then we add the centered
difference of the pressure times the time step

�Dt
∂ p
∂x

����
i
'�Dt

pi+1 � pi�1

xi+1 � xi�1
(3.20)

to the momentum density (rv)i. Then we are done for this time step.

Exercise 26: Build a function that performs this task.

Let us set up a test hydrodynamics problem: the domain is 0 < x < 2p with 100 spatial grid cells, the isothermal
sound-speed-squared is c2

s = 1, the initial density profile is

r(x, t = 0) = 1+0.3cos(x) (3.21)

the time step is Dt = 0.025, we take 1000 time steps.

Exercise 27: Now model this problem with your code, and make an animation of it.

28

