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Chapter 1

Introduction, copyright and disclaimer

1.1 Introduction

RADMC-3D is a software package for astrophysical radiatie@sfer calculations in arbitrary 1-D, 2-D or 3-D
geometries. It is mainly written for continuum radiativarisfer in dusty media, but also includes modules for gas
line transfer and gas continuum transfer.

RADMC-3D is a new incarnation of an older software packageedaRADMC. The original RADMC package
was written in Fortran 77 and was only for axially symmetrioldems in spherical coordinates. Because it was
written in Fortran 77, the arrays had a fixed maximum size, bengver a new grid was necessary, the code
had to be recompiled. RADMC was also ageing in many other wiaythe sense that it used input formats that
stemmed from the very early developing phase, and were mtylarly practical. Also, RADMC'’s limitation to
axisymmetric configurations and rigid gridding made it nepable of dealing with more complex 3-D models that
are now becoming ever more mainstream. For these reasorgleddgo make a huge make-over of the code, or
more precise: to build a new incarnation of RADMC, called RAD-3D, almost completely from scratch.

At the moment RADMC-3D is still in the development phase, ibus already reasonably mature. Here is a list of
current and planned features. Those features that are meadglworking are marked with [+], while those which
are not yet (!) built in are marked with [-]. Those that areremtly being developed are marked with [.] and those
that are ready, but are still in the testing phase are markibd

e Coordinate systems:

[+] Cartesian coordinates (3-D)
[+] Spherical coordinates (1-D, 2-D and 3-D)
e Gridding systems (regular and adaptive mesh refinemers grielavailable for cartesiamd spherical coor-
dinates):
[+] Regular
[+] Adaptive Mesh Refinement: oct-tree style
[+] Adaptive Mesh Refinement: layered ('patch’) style
[-] Delaunay griddindTo be implemented on request]
[-] Voronoi gridding[To be implemented on request]

e Radiation mechanisms:

[+] Dust continuum, thermal emission
[t] Dust continuum scattering:
[+] -..in isotropic approximation
[t] ...with full anisotropy



[-] Dust quantum heated graififo be implemented on request]
[-] Polarized light[To be implemented on request]

[t] Gas line transfer (LTE)

[-] Gas line transfer (non-LTE: LVG)

[-] Gas line transfer (non-LTE: full transfer)

[t] Gas line transfer with user-defined populations

[+] Gas continuum opacity and emissivity sources

e Radiation netto sources for continuum:

[+] Discrete stars positioned at will

[t] Continuous 'starlike’ source

[-] Continuous 'dissipation’ source

[t] External 'interstellar radiation field’

e Imaging options:

[+] Easy-to-use IDL front-end widget interface for imaging
[+] Observer from ’infinite’ distance

[+] Zoom-in at will

[+] Flux-conserving imaging, i.e. pixels are recursived§ined
[+] A movie-making tool

[+] Multiple wavelengths in a single image

[+] Local observer with perspective view (for PR movies!)

Spectrum options:

[+] SED spectrum (spectrum on 'standard’ wavelength grid)
[+] Spectrum on any user-specified wavelength grid

[+] Spectrum of user-specified sub-region (pointing)

[t] Specification of size and shape of a primary 'beam’ forctpse

User flexibility:

[+] Free model specification via tabulated input files
[+] Easy special-purpose compilations of the code (optjona

Front-end IDL packages:

[+] Example model setups
[+] Image viewing GUI (graphical user interface)

Miscellaneous:

[+] Stars can be treated as point-sources or as spheres
[+] Option to calculate the mean intensify (Z) in the model
[-] Support for parallel computing



1.2 Copyright and disclaimer

The use of this software is free of charge. However, it is notllowed to distribute this package without prior
consent of the lead author (C.P. Dullemond). Please refer grinterested user to the web site of this software
where the package is available, which is currently:

http://www.mpia.de/homes/dullemon/radmc-3d/index.pbp

IMPORTANT NOTICE 1: I/We reject all responsibility for the u se of this package. The package is provided
as-is, and we are not responsible for any damage to hardwarer coftware, nor for incorrect results that
may result from the software. The user is fully responsible ér any results from this code, and we strongly
recommend thorough testing of the code before using its redts in any scientific papers.

IMPORTANT NOTICE 2: Any publications which involve the use of this software must mention the name
of this software package and cite the accompanying paper ogrdt is published (Dullemond et al. in prep), or
before that the above mentioned web site.

IMPORTANT NOTICE 3: If you use this software, you may want to notify the lead author (C.P. Dullemond)
so that you are put on an email list. This ensures that you arelaays up to date with major bug reports and
major updates. This mail list is only used for important enough news, so you will not be flooded with emails
and you can always unsubscribe.
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Chapter 2

Quick-Start

In general | recommend reading the manual fully, but it isofiiseful to get a quick impression of the package with
a quick-start. To make your first example model, this is wiuat go:

1.

10.
11.

12.

When you read this you have probably already unzippegbttikage. You should find, among othersia
directory and a&xamples/ directory. Go into therc/ directory.

Edit thesrc/Makefile file, and make sure to set thiF variable to the Fortran-90 compiler you have
installed on your system.

Typemake. If all goes well, this should compile the entire code andtzen executable calleadmc3d .

Typemake install . If all goes well this should try to create a link tadmc3d in your ~/bin/  directory.
If this directory does not exist, it will ask to make one.

. Make sure to have the/bin/  directory in your path. If you use, for instance, thgh shell, you do this by

setting thepath variable:set path = ( ~/bin $path )  inyour~/tcshrc file. If you change these
things you may have to open a new shell to make sure that thiensierecognizes the new path.

. Check if the executable is OK by typimgdmc3d in the shell. You should get a small welcoming message

by the code.

. Now enter the directorgxamples/run  _simple _1/.

. Copy all standard IDL (see Secti82 about IDL) routines from the/../idl/ directory into the current

directory by typing in the tcsh or bash shadl ../../idl/ =.pro ./ . NOTE: Thisis a quick-and-dirty way
of using the IDL routines, only meant to get the stuff runmjaigckly without going through the somewhat
more involved IDL routines installation procedure desedbin Sectior4.4. For the the proper use of the
RADMC-3D package, it is recommended to follow the procesidescribed in Sectioh.4.

. Enter IDL.

Type (in IDL).r problem _setup.pro , and after thaéxit to exit IDL again.

Typeradmc3d mctherm . This should let the code do a Monte Carlo run. You should$een nr 1000
followed by Photon nr 2000 , etc until you reachPhoton nr 1000000 . The Monte Carlo modeling for
the dust temperatures has now been done.

Go into IDL again and type viewimage.pro followed by viewimage . This should bring an image
viewer on the screen and show what the simple model looksattken rendered at some anyl@he model
is very simple: a spherical blob, so do not expect to see mutiis simple example.

INote: on some systems there is an apparent problem with thenoaication pipe betweeradmc3d and IDL which causes things to
freeze. Try typingviewimage,/nochild in that case, which should fix the problem, although the viemay then be substantially
slower. | am working on figuring out how the problem can be fjxmd have so far been not succesful.
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If you experience troubles with the above steps, and youatdixit, please read the next chapters for more details.

Tip: If the code unexpectedly quits or freezes while usiegimage , please have a look at the fitedmc3d.out

which contains the messages that RADMC-3D outputs. Thiggmayhints what went wrong. Note that this file is
only written if RADMC-3D is used in child mode, which is theeavhen it is spawned from viewimage. Otherwise
this output will be written to screen. Also, when viewimagesilled with the optiorinochild  the output will also

be written to screen instead of the fitlgimc3d.out
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Chapter 3

Overview of the RADMC-3D package

3.1 Introduction

The RADMC-3D code is written in fortran-90 and should corapilith most f90 compilers without problems. It
needs to be compiled only once for each platfoNote that the code is developed for Unix-based systems such a
linux machines or Mac OS X machines. It may also work on Wisdaachines, but this is not guaranteed, and
throughout this manual a Unix-based machine is assumet,anish, tcsh or bash shell. User-level knowledge of
Unix-like operating systems is required.

The executable is callechdmc3d and it performs all the model calculations of the RADMC-3ckege, for
instance the Monte Carlo simulations, ray-tracing runsges, spectra), etc. There is also a set of useful subrgutine
written in the IDL! language to use theadmc3d code, butadme3d can also run without IDL. In that case the user
will have to write his/her own pre- and post-processingsubinesin e.g. python or other data processing languages.

3.2 Requirements

This package runs under linux/unix/MacOSX, but has not lhested under Windows. The following pre-installed
software is required:

e make Or gmake
This is the standard tool for compiling packages on all Urinix-based systems.

e perl
This is a standard scripting language available on most &frak/Linux-based systems. If you are in doubt:
typewhich perl to find the location of th@erl executable. Sekttp://www.perl.org/ for details on

perl, should you have any problems. But on current-day UNie operating systems perl is nearly always
installed in the/usr/bin/ directory.

e A fortran-90 compiler
Preferably thegfortran ~ compiler (which the current installation assumes is presarthe system). Web
site: http://gcc.gnu.org/fortran/ . Other compilers may work, but have not been tested yet.

e The IDL package (Interactive Data Language)
IDL is a software package similar to MatLab, and it is not free. il&WRADMC-3D can be used with-
out IDL, all examples and all post-processing scripts artewr in IDL, so it would require the user to
rewrite them into other languages (fortran, c, c++, perthpy or whatever). The website for IDL is:
http://www.ittvis.com/ . If IDL is not present on your system, and your system administraimnot
install this package due to lack of funding, you can also usepen source clone call&bDL(Gnu Data Lan-
guage) which can be readily downloaded from the wefp(/gnudatalanguage.sourceforge.net/ ).

1IDL is a commercial data processing package used frequanityng astrophysicists. Skétp://www.ittvis.com/idl/ for
more information.
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This GDL package misses some libraries and features, bRAEMC-3D code can be used with GDL with
the exception that the Graphical User Interfaces of RADMIZ{8uch as viewimage.pro) cannot be used.

Note that the Monte Carlo code RADMC-3D itself is in Fortrad- Only the creation of the input files (and hence
the problem definition) and the analysis of the output filedoise in IDL. The user is of course invited to use other
ways to create the input files for RADMC-3D if he/she is noesatbluse IDL. Therefore IDL are not strictly required
for the use of this code.

3.3 The archive, how to unzip it, and what it contains

The package of RADMC-3D is packed in a zip archive catitinc-3d _v*. »» ##.####.zip  where thex. =
is the version number angt.##.## is the date of this version in dd.mm.yy format. To unpack oimax, unix or
Mac OS X machine you type:

unzip <this archive file>

i.e. for example for radmc-3d0.07.27.07.09.zip you type

unzip radmc-3d_v0.07_29.07.09.zip

A directoryradmce-3d is created which has the following subdirectory structure:

radmc-3d/
src/
idl/
examples/
run_simple_1/
run_simple_1_userdef/
run_simple_1_userdef_refined/

man.uaI/
The first directorysrc/ , contains the fortran-90 source code for RADMC-3D. The sdatirectoryjdl/ , contains

a set of IDL routines that are useful for model preparatiahpost-processing. The third directory contains a series
of example models. The fourth directory contains this ménua

3.4 Units: RADMC3D uses CGS

The RADMC-3D package is written such that all units are in G@&8gth in cm, time in sec, frequency in Hz,
energy in erg, angle in steradian). There are exceptions:

e Wavelength is usually written in micron

e Sometimes angles are in degrees (internally in radianplpuitias degrees)
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Chapter 4

Compilation and installation of radmc3d

Although the RADMC-3D package contains a lot of differenttw@are, the main code is located in thee/  di-
rectory, and is written in Fortran-90. The executableinc3d . Here we explain how to compile the fortran-90
source codes and create the executedalmc3d .

4.1 Compiling the code with 'make’

To compile the code, enter tisec/ directory in your shell (we assume a tcsh shell here, but basither Unix-
shells are also fine). You nomayneed to edit théakefile in this directory using your favorite text editor and
replace the line

FF = gfortran

with a line specifying your own compiler. If, of course, yoseugfortran, you can keep this line. But if you use,
e.g., ifort, then replace the above line by

FF = ifort
If you save this file, and you are back in the shell, you can dtantipe radmc3d code by typing
make

in the shell. If all goes well, you have now created a file chttelmc3d in thesrc/ directory.

4.2 The install.perl script

If instead of typing just ‘make’ you type
make install

(or you first type ‘make’ and then ‘make install’, it's the se)nthen in addition to creating the executable, it also
automatically executes a perl script callsstall.perl (located also in therc/  directory) that installs the code
in such a way that it can be conveniently used in any direcitiyat it does is:

1. Itchecks if abin/ directory is present in your home directory (i.e~tbin/  directory). If not, it asks if you
want it to automatically make one.

2. It checks if the~/bin/  directory is in the 'path’ of the currently used shell. Thesimportant to allow the
computer to look for the program 'radmc3d’ in thebin/  directory. If you use a csh or tcsh shell, then you
can add the following line to your/.tcshrc file:
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set path=($HOME/bin $path)

3. ltcreates afileadmc3d inthis~/bin/  directory with the correct executable permissions. Thesi§iimerely
a dummy executable, that simply redirects everything tdrineradmc3d executable located in your current
src/ directory. When you now open a new shell, the path contams-thin/  directory, and the command
radmc3d is recognized. You can also typeurce ~/.tcshrc  followed byrehash . This also makes sure
that your shell recognizes thadmc3d command.

4. It checks if adl/  subdirectory exists in the above mentioriéd directory, i.e. a~/bin/idl/ directory.
If not, it asks if you want it to automatically create one.

5. If yes, then it will copy all the files ending witlpro in theidl/  directory of the distribution to that
~[bin/idl/ directory. This is useful to allow you to make #&DL _PATHentry to allow idl to find these
idl scripts automatically (see Sectid).

Note that this perl script installs the code only for the ubat installs it. A system-wide installation is, in my view,
not useful, because the code package is not very big andutdhemain in the control of the user which version of
the code he/she uses for each particular problem.

If all is 'normal’, then theperl.install script described here is called automatically once you typake
install  following the procedure in Sectioh1

Before the installation is recognized by your shell, you tmgsv either typaehash in the shell or simply open a
new shell.

How do you know that all went OK? If you typadmc3d in the shell the RADMC-3D code should now be executed
and give some comments. It should write:

WELCOME TO RADMC-3D: A 3-D CONTINUUM RT SOLVER

This is the 3-D version of the 2-D RADMC code
(c) 2008 Cornelis Dullemond

Nothing to do... Use command line options to generate action

mctherm : Do Monte Carlo simul of thermal radiation
mcscat : Do Monte Carlo simul only for scattering
spectrum : Make continuum spectrum

image : Make continuum image

on the screen (or for newer versions of RADMC-3D perhaps soime or different text). This should also work
from any other directory.

4.3 Whatto do if this all does not work?

In case the above compilation and installation does not wuetke is a proposed procedure to do problem hunting:

e First, answer the following questions:

— Did you typemake install  inthesrc/ directory? | mean, did you not forget thestall ~ part?
— Did you put~/bin/  in your path (see above)?

— If you just added~/bin/  to your path, did you follow the rest of the procedure (eitblesing the
current shell and opening a new shell or typingdberce andrehash commands as described above)?

If this does not help, then continue:
e Close the shell, open a new shell.

e Go to the RADMC-3Dsrc/ directory.
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e Type./radmc3d . This should give the above message. If not, then make saté&i compilation went right
in the first place:

— Typerm -f radmc3d , to make sure that any old executable is not still present.
— Typemake clean . This should return the sentenO8JECT and MODULE files removed.

— Then typemake. This should produce a set of lines, each representing aitatiop of a module, e.g.
gfortran -¢c -O2 .Jamr _module.f90 -0 amr _module.o ,etc. The final line should be something
like gfortran -O2 main.o rtglobal _module.o montecarlo  _module.o dust _module.o quantum _module.o
mathroutines _module.o ioput _module.o stars _module.o amr _module.o amrray _module.o
constants _module.o camera _module.o lines _module.o namelist _module.o userdef _module.o
gascontinuum _module.o -0 radmc3d . If instead there is an error message, then do the following:

x Check if the compiler used (by defagfortran ) is available on your computer system.
x If you use an other compiler, check if the compiler optionsdiare recognized by your compiler.

— Check if the executableadmc3d is now indeed present. If it is not present, then somethingtmu
have gone wrong with the compilation. So then please cheskdmpilation and linking stage again
carefully.

If you followed all these procedures, but you still cannat@eesn the executable in tlsec/  directory to run
by typing (in thesrc/  directory)./radmc3d (don’t forget the dot slash!), then please contact the autho

e At this point | assume that the previous point worked. Now gahother directory (any one), and type
radmc3d . This should also give the above message. If not, butdtiec3d executable was present, then
apparently the shell path settings are wrong. Do this:

— Check if, in the current directory (which is now rest/ ) there is by some accident another copy of the
executableadmc3d . If yes, please remove it.

— Typewhich radmc3d to find out if it is recognized at all, and if yes, to which loicatt it points.

— Did you make sure that the shell path includesHikein/  directory, as it should? Otherwise the shell
does not know where to find the/bin/radmc3d  executable (which is a perl link to thsec/radmc3d
executable).

— Does the file~/binfradmc3d  perl file exist in the first place? If no, check why not.

— Typeless ~/binfradmc3d  and you should see a text with first line be#ifusr/bin/perl and the
second line being someting likkgstem("/Users/userl/radmc-3d/version 0.12/src/radmc3d
@ARGV"); where theUsers/userl  should of course be the path to your home directory, in fatité¢o
directory in which you installed RADMC-3D.

If this all brings you no further, please first ask your syst@aministrators if they can help. If not, then please
contact the author.

4.4 Installing the IDL analysis tools

In the package there is a directory containing a whole sefiesalysis tools for analyzing the results of RADMC-
3D. They are highly recommended, but not essential for URRBPMC-3D. These tools are described in detail in
Chapterl4.

The tools are written in IDL and you can find them in thi¢  directory. To use them in a convenient way one must
let IDL know where to find these routines. Since the instatl.gcript described above copies all these files to the
~lIbin/idl/ directory, it is advisable to put that directory as the _PATHinstead of the localll directory. The
reason is that if you have multiple versions of RADMC-3D omyeystem, you always are assured that IDL finds
the idl routines belonging to the latest installation of RAD-3D (note: only assured if that latest compilation was
done withmake install ).

In IDL here are two ways how you can make sure that IDL autoradlyi finds the RADMC-3D scripts:

1. Under Unix/Linux/MacOSX you can set thgL. _PATHdirectly in your.cshrc  or.tcshrc  or.bashrc file.
For example: intcshrc  (if you use the tcsh shell) you can write:
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setenv IDL_PATH "/myhomedirectory/bin/idl:/Applicatio ns/itt/idI70/lib:\
/Applications/itt/idI70/lib/iTools:\

/Applications/itt/idl70/lib/iTools/framework:\
/Applications/itt/idl70/lib/iTools/components:\
/Applications/itt/idI70/lib/iTools/ui_widgets"

(wheremyhomedirectory ~ should be replaced by your home directory name). Note thegtitire IDL
default path also has to be added, as it is done here, otteemst of IDL libraries are not working anymore.
The disadvantage of this method is that if IDL adds furtheeatories to its default path in the future, you
would have to add them by hand here.

2. You can set theébL _PATHin a more elegant way directly from within IDL with the comngan
PREF_SET, 'IDL_PATH’, ''myhomedirectory/bin/idl:<IDL_ DEFAULT>',/COMMIT

(wheremyhomedirectory  should be replaced by your home directory name). Of coumedp not want to
have to type this line every time you start up IDL. So you caikena startup script that IDL executes every
time it is started or reset. The way to do this is:

(a) Make a scriptfile, e.g. calledil _startup in your home directory (Note: by starting the name with a

it will remain invisible under Unix/Linux unless you tygds -a ), containing the above line (i.e. con-
tainingPREFSET, 'IDL _PATH’, 'myhomedirectory/bin/idl: <IDL DEFAULT",/COMMIT ).

(b) Inyour.tcshrc  or.bashrc file in your home directory set thBL _STARTURenvironment variable to
/myhomedirectory/.idl startup . For.tcshrc  this works by adding a line
setenv IDL _STARTUP /myhomedirectory/.idl _startup

If all goes well, if you now start IDL you should be able to haeress to the IDL routines of RADMC-3D
directly. To test this, try typing viewimage in IDL. If this gives an error message tha¢wimage.pro
cannot be found, then please ask your system administiaarso solve this.

NOTE: You can also ignore all of this, and not copy any of thé Houtines to this central location, and instead
simply copy all thex.pro files of theidl/  directory that you use to the local model directory (seeiBe&.6
for what we mean with ‘model directory’). Or you could, in IDgive the full path to each of the files. But these
solutions are a lot messier.

4.5 Making special-purpose modified versions of RADMC-3D (ptional)

For most purposes it should be fine to simply compile the tagsion of RADMC-3D once-and-for-all, and simply
use the resultingadmce3d executable for all models you make. Normally there is noords have to modify the
code, because models can be defined quite flexibly by prep#ravarious input files for RADMC-3D to your
needs. So if you are an average user, you can skip to the resecion without problem.

But sometimes theris a good reason to want to modify the code. For instance to aleecial behavior for a
particular model. Or for a model setup that is simply easiadeninternally in the code rather than by preparing
large input files. One can imagine some analytic model sétaprhight be easier to create internally, so that one
can make use of the full AMR machinery to automatically refimegrid where needed. Having to do so externally
from the code would require you to set up your own AMR machimnehich would be a waste of time.

The problemis that if the user would modify the central camtesfach special purpose, one would quickly lose track
of which modification of the code is installed right now.

Here is how this problem is solved in RADMC-3D:

e For most purposes you can achieve your goals by only editiedile userdef _module.fo0 . This is a set
of standard subroutines that the main code calls at spegiadsin the code, and the user can put anything
he/she wants into those subroutines. See Chd@t&ar more information about these standard subroutines.
This method is the safest way to create special-purposescdtiemeans (a) that you know that your mod-
ification cannot do much harm unless you make really big usidbecause these subroutines are meant
to be modified, and (b) you have all your modificatiargy in one single file, leaving the rest of the code
untouched.
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e You can create éocal version of the code, without touching the main code. Supposehave a model
directoryrun _mymodel and for this model you want to make a special-purpose versitine code. This is
what you do:

1. Copy the Makefile from therc/ directory intorun _mymodel.

2. Copy thefoo file(s) you want to modify from tharc/ directory intorun _mymodel. Usually you
only want to modify theuserdef _module.f90 file, but you can also copy any other file if you want.

3. Intherun _mymodel/Makefile  replace theSRC = . line with SRC = XXXXXXwhereXXXXxXxshould
be thefull path to thesrc/  directory. An example line is given in the Makefile, but is coented out.

4. In therun _mymodel/Makefile ~ make sure that all th€d0 files that should remain as they are have
a$(SRC)/ in front of the name, and all th&0 files that you want to modify (and which now have
a copy in therun _mymodel directory) have a/ in front of the name. By default alfoo files have
$(SRC)/ in front of the name, except theserdef _module.f90 file, which has a/ in front of the
name because that is the file that is usually the one thatmggdoibe edited by you.

5. Now edit the localfo0 files in therun _.mymodel directory in the way you want. See Chapi&for

more details.
6. Now insidethe run _-mymodel directory you can now typenake and you will create your own local
radmc3d executable. NOTE: Do not typeake install  in this case, because it should remain a local

executable, only inside than _mymodel directory.

7. If you want (though this is not required) you can clean Uithal local.o and.mod files by typingmake
clean , so that yourun _mymodel directory is not filled with junk.

8. You can now use this special purpose versiomadfinc3d by simply calling on the command line:
Jradmc3d , with any command-line options you like. Just beware thapehding on the order in
which you have your paths set (in tcsh or bash) typingrjathc3d mayinstead use the global version
(that you may have created in thee/  directory withmake install ). So to be sure to use thecal
version, just putthe in front of theradmc3d .

Note: In chapted3 there is more information on how to set up models internallyhie code using the method
described here.

Note: You can usenake clean toremove all the .0 and .mod files from your model directoegduse they can be
annoying to have hanging around. By typimgke cleanmodel you remove, in addition to the .0 and .mod files,
also all model input and output files, with the exception oftchpacity or molecular data files (because these latter
files are usually not created locally by theblem _setup.pro  script). By typingmake cleanall  you remove
everythingexcepthe basic files such as tivakefile , any.fo0 files, any.pro files, the dust opacity or molecular
data files andREADMEHiles.
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Chapter 5

Basic structure and functionality

RADMC-3D is a very versatile radiative transfer packagehmtany possibilities. As a consequence it is a rather
complex package. However, we have tried to keep it still 3y @a possible to use as a first-time user. We tried to
do so by keeping many of the sophisticated options “hidded’teaving many default settings already well-chosen.
The idea is that one can already use the code at an entry dekthen gradually work oneself into the more fancy
options.

RADMC-3D is a general-purpose package, so there are nd-inuinodels inside theadmc3d executablé For
instance, if you want to model a protoplanetary disk, themwould have to design the grid and density structure
of the disk on this grid yourself. To make it easier for theruge have provided several IDL-scripts as examples.
Among these examples is indeed a protoplanetary disk m8aoethis is as close as we go to 'built-in’ models: we
provide, for some cases, already well-developed examptietadhat you, the user, can use out-of-the-box, or that
you can adapt to your needs.

In this chapter we give an overview of the rough functiowyatif the code in its simplest form: ignoring all the
hidden fancy options and possibilities. For the detailshentrefer to the chapters ahead.

5.1 Radiative processes

Currently RADMC-3D handles the following radiative proses:

e Dust thermal emission and absorption
RADMC-3D can compute spectra and images in dust continuuhe diust temperature must be known in
addition to the dust density. In typical applications yoll kow the dust density distribution, but not the dust
temperature, because the latter is the results of a balateeen radiative absorption and re-emission. Soin
order to make spectra and images of a dusty object we mustdiisilate the dust temperature consistently.
This can be done with RADMC-3D by making it perform a “therrivnte Carlo” simulation (see Chapter
6). This can be a time-consuming computation. But once thi®iee, RADMC-3D writes the resulting dust
temperatures out to the fildust temperature.dat , which it can then later use for images and spectra.
We can then call RADMC-3D again with the command to make argama a spectrum (see Chap@&r To
summarize: a typical dust continuum radiative transfecudation goes in two stages:

1. Athermal Monte Carlo simulation with RADMC-3D to compukes dust temperatures.
2. A spectrum or image computation using ray-tracing withDRAC-3D.
e Dust scattering

Dust scattering is automatically included in the thermahtéoCarlo simulations described above, as well as
in the production of images and spectra. For more detaitssidoChaptes.

e Gas atomic/molecular lines
RADMC-3D can compute spectra and images in gas lines (sept@hg. The images are also known

1Except if you insert one yourself using the userdef modue,Ghapted.3.
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as “channel maps”. To compute these, RADMC-3D must know thieufation densities of the various
atomic/molecular levels. For now there are two options hmlet RADMC-3D know these values:

— Tell RADMC-3D to assume that the molecules or atoms are incdld@hermodynamic Equilibrium”
(LTE), and specify the gas temperature at each locationdey & ADMC-3D to compute these LTE level
populationsNote that in principle one is now faced with the same problewith the dust continuum:
we need to know the gas temperature, which we typically damat in advancetHowever, computing
the gas temperature self-consistently is very difficult;éaese it involves many heating and cooling
processes, some of which are very complex. That's why mostridiative transfer codes assume that
the user gives the gas temperature as input. We do so as fwadlu like, you can tell RADMC-3D to
use the (previously calculated) dust temperature as theeggserature, for convenience.

— Deliver RADMC-3D an input file with all the level populatiotisat you have calculated youself using
some method.

— Tell RADMC-3D to compute the level populations accordingstome simple local non-LTE prescrip-
tion such as the Sobolev approximation (“Large Velocity di@at method”) or the Escape Probability
Method. (This is still under development!)

Currently RADMC-3D does not have a full non-local non-LTEgautation method implemented. The reason
is that it is very costly, and for many applications presulypabt worth the computational effort. But we are
working on a full non-LTE mode. Stay tuned!

e Gas continuum opacities
We are currently working on implementing gas continuum djecas well. Again we are faced with the
guestion how to compute the gas temperature. For now we wiraguire you to specify the gas temperature
yourself.

Remark:We are thinking of methods to compute gas temperaturegeabistently in some special situations. Stay
tuned...

5.2 Coordinate systems

With RADMC-3D you can specify your density distribution iwd coordinate systems:

e Cartesian coordinates
The simplest coordinate system is the Cartesian coordsiyatem(z, y, z). For now each model must be 3-D
(i.e. you must specify the densities and other quantitiesfasction ofz, y andz). But in the near future we
plan to also include the possibility of 1-D plane-paralleldels.

e Spherical coordinates
You can also specify your model in spherical coordindte#, ¢). These coordinates are related to the
cartesian ones by:

x = rsinfcoso (5.1)
= rsinfsing (5.2)
= rcosf (5.3)

This means that the spatial variables (density, temperaita) are all specified as a function @f 6, ¢).
However, the location of the stars, the motion and direatigphoton packages etc. are still given in cartesian
coordinategz, y, z). In other words: any function of spagéz) will be in spherical coordinates(r, 6, ¢),

but any point-like specification of positiafwill be given as Cartesian coordinatés= (x, y, z). This hybrid
method allows us to do all physics in cartesian coordingteston packages or rays are treated always in
cartesian coordinates, and so is the physics of scattdiimggemission etc. Only if RADMC-3D needs to
know what the local conditions are (dust temperature, gasafirbulence, etc) RADMC-3D looks up which
coordinatesr, 6, ¢) belong to the currer(tz, y, z) and looks up the value of the density, microturbulence etc.
at that location in thér, 8, ¢) grid. And the same is true if RADMC-3D updates or calculatesristance the
dust temperature: it will compute thie, 6, ¢) belong to the currertr, y, z) and update the temperature in the
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cell belonging to(r, 0, ¢). For the rest, all the physics is done in the Cartesian coatdisystem. This has
the major advantage that we do not need different physicaufeedor cartesian and spherical coordinates.
Most parts of the code don’t care which coordinate systensésiuthey will do their own work in Cartesian
coordinates. When using spherical coordinates, pleaseSectionl0.2

5.3 The spatial grid

To specify the density or temperature structure (or anyratpatial variable) as a function of spatial location we
must have a grid. There are two basic types of grids:

e Structured grids (AMR grids)
The standard gridding is a simple rectangular grid.

— Cartesian coordinatesiWhen cartesian coordinates are used, this simply meansdbhtcell is defined
asxy <z <z Yy <y <y-andz < z < z., wherel andr stand for the left and right cell walls
respectively.

— Spherical coordinatesivhen spherical coordinates are used, this simply meansdcatcell is defined
asr <r<rmr.,0, <0 <6.and¢, < ¢ < ¢,.. Note therefore that the shape of the cells in spherical
coordinates is (in real space) curved. For spherical coatds the following four modes are available:

x 1-D Spherical symmetnAll spatial functions depend only an

x 2-D Axial symmetryAll spatial functions depend only anandé.

x 2-D Axial symmetry with mirror symmetnAll spatial functions depend only onandé, where
the @ grid only covers the part above the= 0 plane. Internally it is in this mode assumed that
all quantities below the = 0 plane are equal to those above the plane by mirror symmethein
z = 0 plane. This saves a factor of two in computational effortfimnte Carlo calculations, as well
as in memory useage. Note that also the resulting outputsfileb aslust _temperature.dat
will only be specified forz > 0.

x 3-D: All spatial functions depend on all three variableg and.

x 3-D with mirror symmetry:All spatial functions depend on all three variable® and¢, but like
in the 2-D case only the upper part of the model needs to béfigueche lower part is assumed to
be a mirror copy.

When using spherical coordinates, please read Setfich

In all cases these structured grids allow for oct-treeestyid refinement, or its simplified version: the layer-
style grid refinement. See Secti@n2 and Chapterl0 for more information about the gridding and the
(adaptive) mesh refinement (AMR).

e Unstructured grids (for now: cartesian coordinates only)
For some applications it may be more convenient to specHgialpvariables not on a structured grid, but on
a semi-random set of points in 3-D space. RADMC-3D will (hioiig) soon feature a mode in which it can
handle such a situation, and use a Delaunay triangulatiprotduce driangulationon the basis of this set of
points, thus creating amstructured grid Unfortunately, for now this mode is not yet ready. Stay tline

5.4 Computations that RADMC-3D can perform

The code RADMC-3D (i.e. the executabteimc3d ) is onecode formanyactions. Depending on which command-
line arguments you give, RADMC-3D can do various actionsieHg a list:

e Compute the dust temperature:
With radmc3d mctherm you call RADMC-3D with the command of performing a thermal Me Carlo
simulation to compute the dust temperature under the agsamipat the dust is in radiative equilibrium with
its radiation field. This is normally a prerequisite for camipg SEDs and images from dusty objects (see
“computing spectra and images” below). The output file of tdmputation iglust _temperature.dat
which contains the dust temperature everywhere in the model
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e Compute a spectrum or SED:
With radmc3d sed you call RADMC-3D with the command of performing a ray-tragicomputation to
compute the spectral energy distribution (SED) for the nhatlband. Typically you first need to have called
radmc3d mctherm (see above) beforehand to compute dust temperatures ydashave created the file
dust _temperature.dat yourself because you have a special way of computing thetelngterature). With
radmc3d sed the spectrumis computed for the wavelengths points givéreifilewavelength _micron.inp
which is the same wavelength grid that is usedrf@imc3d mctherm . If you want to compute the spec-
trum at wavelength other than those used for the thermal &@atrlo simulation, you should instead call
radmc3d spectrum , and you have the full freedom to choose the spectral waggisrpoints at will, and
you can specify these in various ways described in Se@idn Most easily you can create a file called
camera wavelength _micron.inp  (see SectiorA.12) and call RADMC-3D usingadmc3d spectrum
loadlambda . In all these cases the vantage point (where is the obsararrdf course be set as well, see
Section6.2and Chapte®.

e Compute an image:
With radmc3d image you call RADMC-3D with the command of performing a ray-tragicomputation to
compute an image. You must specify the wavelength(s) atiwyoc want the image by, for instance, calling
RADMC-3D asradmc3d image lambda 10 , which makes the image at =10um. But there are other
ways by which the wavelength(s) can be set, see Se@tibin all these cases the vantage point (where is the
observer) can of course be set as well, see Se6tand Chapte®.

e Compute the local radiation field inside the model:
With radmc3d mcmono you call RADMC-3D with the command of performing a waveldngpty-wavlength
monochromatic Monte Carlo simulation (at the wavelendtasyou specify in the filencmonawavelength  _micron.inp
The output file of this computation isean_intensity.out which contains the mean intensify as a func-
tion of the (z,y, z) (cartesian) orr, 6, ¢) (spherical) coordinates at the frequencigs= 10%c/\; where
A; are the wavelengths (jmm) specified in the filencmonawavelength _micron.inp . The results of this
computation can be interesting for, for instance, modefshotochemistry. But if you use RADMC-3D only
for computing spectra and images, then you will not use this.

In addition to the above main methods, you can ask RADMC-3@otwarious minor things as well, which will be
described throughout this manual.

5.5 How a modelis set up and computed: a rough overview

A radiative transfer code such as RADMC-3D has the task ofprding synthetic images and spectra of a model
that you specify. You tell the code what the dust and/or gasitiedistribution in 3-D space is and where the star(s)
are, and the code will then tell you what your cloud looks likémages and/or spectra. That's basically it. That's
the main task of RADMC-3P,

First you have to tell RADMC-3D what 3-D distribution of dwestd/or gas you want it to model. For that you must
specify a coordinate system (cartesian or spherical) apatasgrid. For cartesian coordinates this grid should be
3-D (although there are exceptions to this), while for splaicoordinates it can be 1-D (spherical symmetry), 2-D
(axial symmetry) or 3-D (no symmetry). RADMC-3D is (for mgsirt) a cell-based code, i.e. your grid devides
space in cells and you have to tell RADMC-3D what the averagesities of dust and/or gas are in these cells.

The structure of the grid is specified in a fderr_grid.inp  (see Sectio\.2). All the other data, such as dust
density and/or gas density are specified in other files, basalime that the grid is given laynr_grid.inp

We can also specify the locations and properties of one oesiars in the model. This is done in tters.inp
(see Sectior\.7) file.

Now suppose we want to compute the appearance of our modesirtdntinuum. We will describe this in detail in
Chaptei6, but let us give a very rough idea here. We write, in additmtheamr_grid.inp  andstars.inp  files,

a file dust _density.inp which specifies the density of dust in each cell (see Se&i8h We also must write
the main input fileadmc3d.inp  (see Sectio\.1), but we can leave it empty for now. We must give RADMC-3D
a dust opacity table in the filetustopac.inp  and for instancelustkappa _silicate.inp (see Sectio\.13).

2|t can/will, of course, do much more, but that is describeerli this manual.
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And finally, we have to give RADMC-3D a table of discrete wareiths in the filevavelength _micron.inp  that

it will use to perform its calculations on. We then call hadmc3d code with the keyworehctherm (see Chapter

6) to tell it to perform a Monte Carlo simulation to compute th@énperatures everywhere. RADMC-3D will write
this to the filedust _temperature.dat . If we now want to make a spectral energy distribution, fatamce, we
call radmc3d sed (see Sectio®.3) and it will write a file calledspectrum.out  which is a list of fluxes at the
discrete wavelengths we specifiedhiavelength _micron.inp . Then we are done: we have computed the spectral
energy distribution of our model. We could also make an imgtgeavelength 1Qum for instance withradmc3d
image lambda 10 (see Sectio®.l). This will write out a fileimage.out containing the image data (see Section
A.15).

As you see, RADMC-3D reads all its information from tablevarious files. Since you don’t want to make large
tables by hand, you will have to write a little computer pramgrthat generates these tables automatically. You can do
this in any programming language you want. But in the exammadels (see Sectids 7) we use the programming
language IDL (see Sectidh?) for this. This is a very simple (BASIC-like) programmingiguage that makes it
easy to create the above input files. It is easiest to indeeslddook at the example models to see how this is (or
better: can be) done.

We will explain all these things in much more detail belowg ave will discuss also many other radiative transfer
problem types. The above example is really just meant toayivenpression of how RADMC-3D works.

5.6 Organization of model directories

The general philosophy of the RADMC-3D code package is tieviing. The core of everything is the fortran
coderadmc3d . This is the main code which does the hard work for you: it nsdke radiative transfer calculations,
makes images, makes spectra etc. Normally you compile tiuis ftist once-and-for-all (see Chapfgrand then
simply use the executabladmc3d for all models. There is an exception to this ‘once-anddibrrule described in
Sectiond.5, but in the present chapter we will not use this (see Chdjgéor this instead). So we will stick here to
the philosophy of compiling this code once and using it fonaddels.

So how to set up a model? The trick is to presadinc3d with a set of input files in which the model is described
in all its details. The procedure to follow is this:

1. The best thing to do (to avoid a mess) is to make a directorydch modelone model, one directory. Since
radmc3d reads multiple input files, and also outputs a number of fil@s,is a good way to keep organized
and we recommend it strongly. So if we wish to make a new madehake a new directory, or copy an old
directory to a new name (if we merely want to make small change prior model).

2. Inthis directory we generate the input files accordingp&rtrequired format (see Chap#). You can create
these input files in any way you want. But since many of thepatifiles will/must contain huge lists of
numbers (for instane, giving the density at each locatiopauar model), you will typically want to write
some script or program in some language (be it either C, Cettran, IDL, GDL, perl, python, you name
it) that automatically creates these input fil&ge recommend using IDL, because we provide examples and
standard subroutines in the programming language IDL; selew for more details. But IDL is not a strict
requirement for using RADMC-3[%ection5.7 describes how to use the example IDL scripts to make these
input files with IDL.

3. When all the input files are created, and we make sure thateieside the model directory, we calimc3d
with the desired command-line options (see Cha@jeiThis will do the work for us.

4. Once this is done, we can analyze the results by readingtipeit files (see Chaptéy). To help you reading
and analyzing these output files you can use a set of IDL resitimat we created for the user (see Chapder
and Sectiort.4). But here again, you are free to use any other plotting softvand/or data postprocessing
packages (many people favor python, for instance).
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5.7 Running the example models

Often the fastest and easiest way to learn a code is simplgatyze and run a set of example models. They are
listed in theexamples directory. Each model occupies a separate directory. Bhédsio the style we normally
recommend: each model should have its own directory. Ofseotirere are also exceptions to this rule, and the user
is free to organize her/his data in any way he/she pleasdsnBil the examples and throughout this manual each
model has its own directory.

To run an example model, go into the directory of this moded &llow the directions that are written in the
READMEHile in each of these directorie$his is under the assumption that you have IDL installed amr ggstem,
and that you have a license for it.

Let us do for instanceun _simple _1/:
cd examples/run_simple_1

Now we must create all the input files for this model. Theseifiiles are all described in chapt&r but let us here
just 'blindly’ follow the example. In this example most (&kcept one) of the input files are created using an IDL
script calledproblem _setup.pro . To execute this script, this is what you do:

idl
IDL> .r problem_setup.pro
IDL> exit

or in words: you go into IDL andvithin the IDL promptyou type.r problem _setup.pro , and if this is ready,
you can leave IDL again (the latter is not required of coutts&his IDL script has now created a whole series of
input files, all ending with the extensioinp . To see which files are created, type the following in thelshel

Is -1  *.inp

There is one file that this example does not create, and thia¢ ifile dustkappa _silicate.inp . This is a file
that contains the dust opacity in tabulated form. This isegtfit you as the user should provide to the RADMC-3D
code package. The filtustkappa _silicate.inp is merely an example, which is an amorphous spherical tlica
grain with radius 0.1 micron. But see Sectiari3 for more information about the opacities.

Now that the input files are created we must rasmc3d :
radmc3d mctherm

This tells RADMC-3D to do the thermal Monte Carlo simulatiofhis may take some time. When the model is
ready, the prompt of the shell returns. To see what files haee lbreated by this run of the code, type:

Is -l * dat

You will find the dust _temperature.dat containing the dust temperature everywhere in the moded. a§ain
chapterA for details of these files. To create a spectrum:

radmc3d sed incl 45.

This will create a filespectrum.dat . To analyze these data you can use the IDL routines deliveitadhe code
(see Chaptet4 and Sectior.4).

There is a fileMakefile  in the directory. This is here only meant to make it easy tarckhe directory. Typeake
cleanmodel to clean all the output from the radmc3d code. Tymke cleanall  to clean the directory back to
basics.

Let us now do for instance modein _simple _1_userdef/

cd examples/run_simple_1_userdef

3Note that this does not work in IDL demo mode, which is what getiif you use IDL without a license, because files will be terit which
is not possible in demo mode.
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This is the same model as above, but now the grid and the dositgare set upnsideradme3d , using the file
userdef _module.f90 which is presentin this directory. See Chagit&for details and follow the directions in the
READMEHile. In short: first edit the variabl8RCin the Makefile  to point to thesrc/ directory. Then typenake.
Then go into IDL and run thproblem _setup.pro  script (which now only sets up the frequency grid, the stakr an
theradme3d.inp file and some small stuff). Now you can run the model.

Please read the README file in each of the example model diiest Everything is explained there, including
how to make the relevant plots.

26



Chapter 6

Dust continuum radiative transfer

Many of the things related to dust continuum radiative tfanisave already been said in the previous chapters. But
here we combine these things, and expand with more in-defitbmation.

Most users simply want RADMC-3D to compute images and spdotm a model. This is done in a two-stage
procedure:

1. First compute the dust temperature everywhere usindnérenal Monte Carlo computation (Secti6ri).

2. Then making the images and/or spectra (Se@ign

You can then view the output spectra and images with the IBLstor use your own plotting software.

Some expert users may wish to use RADMC-3D for somethingedntiifferent: to compute the local radiation field
insidea model, and use this for e.g. computing photochemistrg iaita chemical model or so. This is described in
Section6.4.

You may also use the thermal Monte Carlo computation of thet dumperature to help estimating thastemper-
ature for the line radiative transfer. See Chaftéar more on line transfer.

6.1 The thermal Monte Carlo simulation: computing the dust tmpera-
ture

RADMC-3D can compute the dust temperature using the Monte@aethod of Bjorkman & Wood (2001, ApJ
554, 615) with various improvements such as the continubesration method of Lucy (1999, A&A 344, 282).
Once a model is entirely set up, you can asknc3d to do the Monte Carlo run for you by typing in a shell:

radmc3d mctherm
if you use the standamddmc3d code, or
Jradmc3d mctherm

if you have created a local versionmfime3d (see Sectiod.5).

What the method does is the following: First all the nettorses of energy (or more accurately: sources of lumi-
nosity) are identified. The following net sources of energy be included:

e Stars: You can specify any number of individual stars: their pasitiand their spectrum and luminosity (See

SectionA.7). This is the most commonly used source of luminosity, ana bsginning user we recommend
to use only this for now.
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e Continuum stellar sourceFor simulations of galaxies it would require by far too mangividual stars to
properly include the input of stellar light from the billisrof stars in the galaxy. To overcome this problem
you can specify a continuously spatially distributed sewtstars NOTE: Still in testing phase.

e Viscous heating / internal heatingdometimes the dust grains acquire energy directly from &g fpr in-
stance through viscous heating of the gas or adiabatic @ssjon of the gas. This can be included as a
spatially distributed source of enerdyOTE: Still in progress... Not yet working.

To compute the dust temperature we must have at least oneesoituminosity, otherwise the equilibrium dust
temperature would be everywhere 0.

The next step is that this total luminosity is divided infthot packages, whemghot is 100000 by default, but can

be set to any value by the user (see therfitbnc3d.inp  described in SectioA.1). Then these photon packages
are emitted by these sources one-by-one. As they move thithieggrid they may scatter off dust grains and thus
change their direction. They may also get absorbed by thie Halsat happens, the photon package is immediately
re-emitted in another direction and with another wavelen@he wavelength is chosen according to the recipe by
Bjorkman & Wood (2001, ApJ 554, 615). The luminosity fractithat each photon package represents remains,
however, the same. Each time a photon package enters ainelidases the “energy” of this cell and thus increases
the temperature of the dust of this cell. The recipe for thiagain described by Bjorkman & Wood (2001, ApJ
554, 615), but contrary to that paper we increase the teriyeraf the dust always when a photon package enters
a cell, while Bjorkman & Wood only increase the dust tempamif a discrete absorption event has taken place.
Each photon package will ping-pong through the model an@émgsts lost until it escapes the model through the
outer edge of the grid (which, for cartesianl coordinatesany of the grid edges im, y or z, and for spherical
coordinates is the outer edgergf Once it escapes, a new photon package is launched, sttiltaiscapes. After

all photon packages have been launched and escaped, thempstrature that remains is the final answer of the
dust temperature.

One must keep in mind that the temperature thus computedggultibriumdust temperature. It assumes that each
dust grain acquires as much energy as it radiates away. Sfioisrnost cases presumably a very good approximation,
because the heating/cooling time scales for dust graintypieally very short compared to any time-dependent
dynamics of the system. But there might be situations whesentay not be true: in case of rapid compression of
gas, near shock waves or in extremely optically thick reglion

6.2 Making SEDs, spectra, images for dust continuum

You can use RADMC-3D for computing spectra and images in dustinuum emission. This is described in detail
in Chapter9. RADMC-3D needs to know not only the dust spatial distribnt{the filedust _density.inp ) but
also the dust temperature (the filast _temperature.dat ). The latter is normally computed by RADMC-3D
itself through the thermal Monte Carlo computation (sediSe6.1). But if you, the user, wants to specify the dust
temperature at each location in the model youself, then gawsonply create your own fidust _temperature.dat

and skip the thermal Monte Carlo simulation and go straiglié¢ creation of images or spectra.

The basic command to make a spectrum at the global grid ofleragth (specified in the filwavelength _micron.inp
see Sectior.11) is:

radmc3d sed
You can specify the direction of the observer withl  andphi :
radmc3d sed incl 20 phi 80

which means: put the observer at inclination 20 degreesaanayle 80 degrees.

You can also make a spectrum for a given grid of wavelengttefdendent of the global wavelength grid). You
first create a fileeamera _wavelength _micron.inp , which has the same format a@velength _micron.inp

You can put any set of wavelengths in this file without modifythe global wavelength grid (which is used by the
thermal Monte Carlo computation). Then you type

radmc3d spectrum loadlambda
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and it will create the spectrum on this wavelength grid. Mafermation about making spectra is given in Chapter
9.

For creating an image you can type
radmc3d image lambda 10

which creates an image at wavelengtfilOum. More information about making images is given in Chapter

Important note:To handle scattering of light off dust grains, the ray-tngds preceded by a quick Monte Carlo run
that is specially designed to compute the “scattering sofinaction”. This Monte Carlo run is usualtyuchfaster
than the thermal Monte Carlo run, but must be done at eachlerayth. It can lead, however, to slight spectral
noise, because the random photon paths are different faneaelength. See Secti@ns for details.

6.3 Overview of input data for dust radiative transfer

In order to perform any of the actions described in Sectbh%.40r 6.2, you must give RADMC-3D the following
data:

e amr_grid.inp: The grid file (see SectioA.2).

e wavelength _micron.inp: The global wavelength file (see Sectiarll).

e stars.inp: The locations and properties of stars (see Se&ig.

e dust _density.inp: The spatial distribution of dust on the grid (see SechAadB).

e dustopac.inp: A file with overall information about the various species abtlin the model (see Section
A.13). One of the main pieces of information here is (a) how marst dpecies are included in the model
and (b) the tag names of these dust speciesdigkappa XXX.inp below). The filedust _density.inp
must contain exactly this number of density distributiomse density distribution for each dust species.

e dustkappa XXX.inp: One or more dust opacity files (whex&Xshould in fact be a tag name you define,
for instancedustkappa _silicate.inp ). The labels are listed in thiustopac.inp ~ file. ee SectiorA.13
for more information.

e camera _wavelength _micron.inp (optional): This file is only needed if you want to create a spectrum
at a special set of wavelengths (otherwisenasenc3d sed ).

e mcmonawavelength _micron.inp (optional): This file is only needed if you want to compute the
radiation field inside the model by callimgdmc3d mcmono (e.g. for photochemistry).

Other input files could be required in certain cases, but yiulven be asked about it by RADMC-3D.

6.4 Special-purpose feature: Computing the local radiatia field

If you wish to use RADMC-3D for computing the radiation figliside the model, for instance for computing
photochemical rates in a chemical model, then RADMC-3D carsa by calling RADMC-3D in the following
way:

radmc3d mcmono
This computes the mean intensify as a function of théx, y, =) (cartesian) o(r, 6, ¢) (spherical) coordinates at
frequencies; = 10%c/\; where); are the wavelengths (jum) specified in the filencmonawavelength _micron.inp

The results of this computation can be interesting for, fatance, models of photochemistry. But if you use
RADMC-3D only for computing spectra and images, then you mak use this.
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Note that if your model is very large, the computation of theiation field on a large set of wavelength could easily
overload the memory of the computer. However, often you mitbe end not interested in the entire spectrum at
each location, but just in integrals of this spectrum ovens@ross section. For instance, if you want to compute
the degree to which dust shields molecular photodissocidines in the UV, then you only need to compute the
total photodissociation rate, which is an integral of thetpldissociation cross section times the radiation field. In
Sectionl13.3it will be explained how you can create a userdef subrousee Chaptet3) that will do this for you

in a memory-saving way.

There is an important parameter for this Monochromatic Md@erlo that you may wish to play with:

e nphot _mono
The parametefiphot _mono sets the number of photon packages that are used for the Manoatic Monte
Carlo simulation. It has as default 100000, but that may bditite for 3-D models. You can set this value in
two ways:

— Intheradmc3d.inp file as a linenphot _-mono = 1000000 for instance.
— On the command-line by addimghot _mono 1000000 .

6.5 More about scattering of photons off dust grains

Photons can not only be absorbed and re-emitted by dustsgrdiney can also be scattered. Scattering does
nothing else than change the direction of propagation ofcaigeh Strictly speaking it may also slightly change its
wavelength, if the dust grains move with considerable speeyilmay Doppler-shift the wavelength of the outgoing
photon (which may be relevant, if at all, when dust radiatramsfer is combined with line radiative transfer, see
chapter7), but this subtle effect is not treated in RADMC-3D. For RAGMD scattering is just the changing of
direction of a photon.

6.5.1 Three modes of treating scattering
RADMC-3D has three main levels of treatment of scattering:

1. No scattering:If either thedustkappa XXX.inp files do not contain a scattering opacity or scattering is
switched off by settingcattering _mode_max to O in theradmc3d.inp file, then scattering is ignored. It
is then assumed that the dust grains have zero albedo.

2. Isotropic scatteringif either thedustkappa XXX.inp files do not contain information about the anisotropy
of the scattering or anisotropic scattering is switchedlyffsettingscattering _mode.max to 1 in the
radmc3d.inp  file, then scattering is treated as isotropic scatteringteNloat this can be a bad approxi-
mation in certain cases.

3. Full anisotropic scatteringif the dustkappa _XXX.inp files contain the scattering opacity and information
about the anisotropy, arstattering _mode-max to 2 or higher in theadmc3d.inp  file (2 is the default,
which will be used if no setting is specified fattering  _mode_max) then the full anisotropic scattering is
treated. This is clearly the most physically correct.

So in summary: the dust opacity files themselves tell howilgetéhe scattering is going to be included. If no scat-
tering information is present in these files, RADMC-3D haghoice but to ignore scattering. If they only contain
scattering opacities but no phase information, then RADBIDwill treat scattering in the isotropic approximation.
Only if all scattering information is present in these infilets, will RADMC-3D do the full thing. BUT even if this
information is present, you can limit the realism of scatigby setting thescattering _mode_.maxto 1 or O in the
file radmc3d.inp . This can be useful to speed up the calculations or be sunotd aertain complexities of the
full phase-function treatment of scattering.

At the moment there are some limitations to the full anigot@cattering treatment:
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e Anisotropic scattering in 1-D and 2-D Spherical coordirgte
For 1-D and 2-D Spherical coordinates there is currently ossibility of treating anisotropic scattering in
the image- and spectrum-making. The reason is that theesogtisource function (see Sectiérb.4 must
be stored in an angle-dependent way. However, in 2-D spdi@dordinates, each cell is in fact a ring around
the symmetry axis, and the angular dependence of the sogtyurce function would depend on which
position along the ring the scattering takes place (witppeesto the location of the observeffhis will be
fixed hopefully later by storing the scattering source fiorcfor different angles in each cell; stay tuned!

6.5.2 Scattering of photons in the Thermal Monte Carlo run

So how is scattering treated in practice? In the thermal Bl@arlo model (Sectio6.1) the scattering has only one
effect: it changes the direction of propagation of the phqtackages whenever such a photon package experiences
a scattering event. This may change the results for the €ongidratures subtly. In special cases it may even change
the dust temperatures more strongly, for instance if séatf@llows “hot” photons to reach regions that would have
otherwise been in the shadow. It may also increase the dpegdh of an object and thus change the temperatures
accordingly. But this is all there is to it.

6.5.3 Scattering of photons in the Monochromatic Monte Carb run

For the monochromatic Monte Carlo calculation (Sectof) the scattering has the same effect as for the thermal
Monte Carlo model: it changes the direction of photon paekagdn this way “hot” radiation may enter regions
which would otherwise have been in a shadow. And by incrgasia optical depth of regions, it may increase
the local radiation field by the greenhouse effect or deeréasy preventing photons from entering it. As in the
thermal Monte Carlo model the effect of scattering in the odmomatic Monte Carlo model is simply to change
the direction of motion of the radiation field, but for thetresthing differs to the case without scattering.

6.5.4 Scattered light in images and spectra: The “Scatterigm Monte Carlo” computation

For making images and spectra with the ray-tracing capissilof RADMC-3D (see Sectiof.2 and ChapteB)

the role of scattering is a much more complex one than in thrthl and monochromatic Monte Carlo runs. The
reason is that the scattered radiation will eventually emem your images and spectra. The ray-tracing transfer
equation along each ray is:

dl . abs c:

S e (o + 0, (6.1)
wherea?® andas°** are the extinction coefficients for absorption and scatterLet us assume, for convenience
of notation, that we have just one dust species with densitshaition p, absorption opacity:2*s and scattering
opacityx5°t. We then have

abs = piabs (6.2)
ozf,cat = p/-@,sfat (6.3)
G = alPB,(T) (6.4)

whereB, (T') is the Planck function. The last equation is an expressid€irahhoff’s law. For isotropic scattering
the scattering source functigff™* is given by

v

jscat — a,sfati ]{Lde (6.5)
47

where the integral is the integral over solid angle. In thisegsc®* doesnotdepend on solid angle. For anisotropic

v

scattering we must introduce the scattering phase fundi{@x?), whereA(2 is the angle between incoming and
outgoing photon, and the scattering phase function is nii@ethto unity:

1
- f@(m) =1 (6.6)
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Then the scattering source function becomes:

jls/cat(Q/) _ O[icat% %IV(Q)(I)(AQ)CZQ (67)
7

which is angle-dependent. The angular dependence mearstangpackage has not completely forgotten from
which direction it came before hitting the dust grain.

If we want to make an image or a spectrum, then for each pixemwst integrate Eq.6(1) along the 1-D ray
belonging to that pixel. If we performed the thermal Montel@aimulation beforehand (or if we specified the
dust temperatures by hand) we know the thermal source aimthirough Eq. §.4). But we have, at that point,
no information yet about the scattering source functione Tiermal Monte Carlo calculatiocould have also
stored this function at each spatial point and each wavétesgd each observer direction, but that would require
gigantic amounts of memory (for a typical 3-D model it migktinany Gbytes, going into the Tbhyte regime). So in
RADMC-3D the scattering source functionristcomputed during the thermal Monte Carlo run.

In RADMC-3D the scattering source functigif®*(Q') is computedust prior to the ray-tracing through a brief
“Scattering Monte Carlo” run. This is doraitomaticallypoy RADMC-3D, so you don't have to worry about this.
Whenever you ask RADMC-3D to make an image (and if the sdatfés in fact included in the model, see Section
6.5.1), RADMC-3D will automatically realize that it requires kwtedge ofj5¢2t(£2'), and it will start a brief single-
wavelength Monte Carlo simulation for computigigf®* (). This single-wavelength “Scattering Monte Carlo”
simulation is relatively fast compared to the thermal Mo@&rlo simulation, because photon packages can be
destroyed by absorption. So photon packages do not bounoedifor long, as they do in the thermal Monte
Carlo simulation. This Scattering Monte Carlo simulatisini fact very similar to the monochromatic Monte Carlo
model described in Sectighi4. While the monochromatic Monte Carlo model is called speaify by the user
(by calling RADMC-3D withradme3d mcmono), the Scattering Monte Carlo simulation is not somethirggubker
must specify him/her-self: it is automatically done by RABMD if it is needed (which is typically before making
an image or during the making of a spectrum). And while the oecbnomatic Monte Carlo model returns the mean
intensity inside the model, the Scattering Monte Carlo $ation provides the raytracing routines with the scatigrin
source function but doewot store this function in a file.

You can see this happen if you have a model with scatteringitygacluded, and you make an image with RADMC-
3D, you see that it print$000, 2000, 3000, ... etc., in other words, it performs a little Monte Carlmsiation
before making the image.

There is an important parameter for this Scattering MontdoGhat you may wish to play with:

e nphot _scat
The parametatphot _scat sets the number of photon packages that are used for the&uogitlonte Carlo
simulation. It has as default 100000, but that may be tde fitir 3-D models and/or cases where you wish to
reduce the “streaky” features sometimes visible in saadtdight images when too few photon packages are
used. You can set this value in two ways:

— Intheradmc3d.inp file as a linenphot _scat = 1000000 for instance.
— On the command-line by addimghot _scat 1000000

e nphot _spec
The parametenphot _spec is actually exactly the same aphot _scat , but is used (and used only!) for
the creation of spectra. The default is 10000, i.e. subsignsmaller thamphot _scat . The reason for this
separate parameter is that if you make spectra, you integvatr the image to obtain the flux (i.e. the value
of the spectrum at that wavelength). Even if the scattegdt Image may look streaky, the integral may still
be accurate. We can thus afford much fewer photon packages wh make spectra than when we make
images, and can thus speed up the calculation of the spectiauntan set this value in two ways:

— Intheradmc3d.inp file as a linenphot _spec = 100000 for instance.
— On the command-line by addimghot _spec 100000 .

NOTE: It may be possible to get still very good results with even llBnaalues ofnphot _spec than the
default value of 10000. That might speed up the calculatfaih® spectrum even more in some cases. On
the other hand, if you notice “noise” on your spectrum, yoymant to increas@phot _spec . If you are
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interested in an optimal balance between accuracy (higlewvafinphot _spec ) and speed of calculation (low
value ofnphot _spec ) then it is recommended to experiment with this value. If yant to be on the safe
side, then setphot _spec to a high value (i.e. set it to 100000, @shot _spec ).

WARNING:At wavelengths where the dominant source of photons is takdmst emission but scattering is still
important (high albedo), it cannot be excluded that the ttecamg monte carlo” method used by RADMC-3D
produces very large noise. Example: a very optically thioktddisk consisting of large grains (30n size),
producing thermal dust emission in the near infrared imiter disk regions. This thermal radiation can scatter off
the large dust grains at large radii (where the disk is cottivamere the only “emission” in the near-infrared is thus
the scattered light) and thus reveal the outer disk in seattight emerging from the inner disk. However, unless
nphot _scat is huge, most thermally emitted photons from the inner difk ve emitted so deeply in the disk
interior (i.e. below the surface) that they will be immedigtreabsorbed and lost. This means that that radiation
that does escape is extremely noisy. The correspondingeaatight source function at large radii is therefore very
noisy as well, unlessphot _scat is taken to be huge. Currently no elegant solution is fountintaybe there will

in the near future. Stay tuned...

6.5.5 Warning when using an-isotropic scattering

An importantissue with anisotropic scattering is that & fhase function is very forward-peaked, then you may get
problems with thespatialresolution of your model: it could then happen that one geitimay be too much to the
left to “beam” the scattered light into your line of sight, iehthe next grid point will be too much to the right. A
proper treatment of strongly anisotropic scattering tfeggerequires also a good check of the spatial resolution of
your model. There are, however, also two possible trickpr@amations) to prevent problems. They both involve
slight modifications of the dust opacity files:

1. You can simply assure in the opacity files that the forwaaking of the phase function has some upper limit.

2. Or you can simply treat extremely forward-peaked sdatjesis no scattering at all (simply setting the scat-
tering opacity to zero at those wavelengths).

Both “tricks” are presumably reasonable and will not aff@mtir results, unless you concentrate in your modeling
very much on the angular dependence of the scattering.

6.5.6 For experts: Some more background on scattering

The inclusion of the scattering source function in the insaged spectra is a non-trivial task for RADMC-3D
because of memory constraints. If we would have infinite caméccess memory, then the inclusion of scattering
in the images and spectra would be relatively easy, as wealdbeh store the entire scattering source function
75z, y, 2, v, Q) and use what we need at any time. But as you see, this funstaé-dimensional function: three
spatial dimensions, one frequency and one angular dire¢tiich consists of two angles). For any respectable
model this function is far too large to be stored. So neatlyha “numerical logistic” complexity of the treatment
of scattering comes from various ways to deal with this pgobl In principle RADMC-3D makes the choices of
which method to use itself, so the user is not bothered witBut depending on which kind of model the user sets
up, the performance of RADMC-3D may change as a result ofshise.

So here are a few hints as to the internal workings of RADMCH3Ehis regard. You do not have to read this, but
it may help understanding the performance of RADMC-3D irioias cases.

e Scattering in spectra and multi-wavelength images
If no scattering is presentin the model (see Sedidnl), then RADMC-3D can save time when making spec-
tra and/or multi-wavelength images. | will then do eachgn&tion of Eq. 6.1) directly for all wavelengths at
once before going to the next pixel. This saves some timeusedd ADMC-3D then has to calculate the geo-
metric stuff (how the ray moves through the model) just ormecetich ray. If, however, scattering is included,
the scattering source function must be computed using thae®ing Monte Carlo computation. Since for
large models it would be too memory consuming (in partictdai3-D models) to store this function for all
positionsand all wavelengths, it must do this calculation one-by-onedach wavelength, and calculate the
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image for that wavelength, and then go off to the next wawlenThis means that for each ray (pixel) the
geometric computations (where the ray moves through theeihbés to be redone for each new wavelength.
This may slow down the code a bit.

Anisotropic scattering and multi-viewpoint images

Suppose we wish to look at an object at one single wavelehgttirom a number of different vantage points.
If we haveisotropic scattering, then we need to do the Scattering Monte Cartulzdion just once, and we
can make multiple images at different vantage points withdhme scattering source function. This saves
time, if you use the “movie” mode of RADMC-3D (Secti@ll). However, if the scattering is anisotropic,
then the source function would differ for each vantage pdimthat case the scattering source function must
be recalculated for each vantage point. There is, deeptiehith RADMC-3D, a way to compute scattering
source functions for multiple vantage points within a sin§tattering Monte Carlo run, but for the moment
this is not yet activated.
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Chapter 7

Line radiative transfer

RADMC-3D is capable of modeling radiative transfer in mallee and/or atomic lines. Due to the complexity of
line radiative transfer, and the huge computational and angmrequirements of full-scale non-LTE line transfer,
RADMC-3D has various different modes of line transfer. Sanwales are very memory efficient, but slower, while
others are faster, but less memory efficient, yet others are accurate but much slower and memory demanding.
The default mode (and certainly recommended initially) T€lray-tracing in the slow but memory efficient way:
thesimple LTE modésee Sectiof7.2). Since this is the default mode, you do not need to specifyhémg to have
this selected.

7.1 Quick start for adding line transfer to images and specta

Do properly model line transfer requires dedication andeexpentation. This i:ot a simple task. See Section
7.5for an analysis of several pitfalls one may encounter. Haravothing is better than experimenting and thus
gaining hands-on experience. So the easiest and quickggbwgtart is to start with one of the simple line transfer
test models in thexamples/ directory.

So simply visitexamples/run  _test _lines _1/,examples/run _test _lines _2/ orexamples/run _test _lines _3/
and follow the directions in thREADMEHile. The main features of adding line ray tracing to a modébiadd the
following files into any previously constructed model withst radiative transfer:

e lines.inp  : A control file for line transfer.
e molecule _co.inp : or any other molecular data file containing properties efrtiolecule or atom.

e gas _temperature.inp . The gas temperature at each grid cell. You do not need tafgphbis file if you
add the keywordgas _eq_tdust = 1 into theradmc3d.inp file.

and then start theiewimage viewer (see Sectioh4.3 with keyword lines ”. Or you can use thenakeimage
ordoimage routines from theeadradmec.pro

7.2 Line transfer modes and how to activate the line transfer

Here is a list of the various modes for line transfer:

1. Simple LTE mode (=default moddh this mode the line radiative transfer is done under LTEiag#ions.
The level populations will be calculated on-the-fly whileérapthe ray-tracing. It is therefore cheap in mem-
ory (the level populations do not have to be stored), but stalvan thefast LTE modgas the populations
continuously have to be re-calculated on the fly. Shaple LTE modés default. NOTE: The simple LTE
mode allows the use of “line lists” instead of full moleculdata input files. See Secti@r3.3
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2. Fast LTE modeThis is likesimple LTE modebut here the LTE populations are pre-computed. This requir
some more memory, but can be done still quite efficiently ifiaset of levels is chosen in thiees.inp
file, in particular if for a particular line just the upper alogver level is chosen.

3. Simple LVG modelN PROGRESS!
4. Fast LVG modeNot yet ready
5. Full non-LTE modesNot yet ready

Which model of line transfer is used is specified in the radinod file. If no option is given, then th@mple LTE
modeis used. For each of the modes (including the default onegtisea switch that can be set to 1 to select that
mode:

e simplelte=1  selects thesimple LTE modédefault, so you do not need to set this).

o fastite=1  selects thdast LTE mode

NOTE 1: Line emission is automatically included in the images aretsja if RADMC-3D finds the fildines.inp
in the model directory. You can switch off the lines with ttramand-line optiomoline’

NOTE 2: Theviewimage.pro image viewer also automatically includes line emissiont Y&u would have to
seek the precise wavelength of the lines yourself. If, h@rgrou callviewimage with option/lines , then some
extras appear that allow you to directly find the right wamgkh of the lines. Try it out, and you will see how it
works.

7.3 The various input files for line transfer

7.3.1 INPUT: The line transfer entries in the radmc3d.inp file

Like all other modules ofadmc3d , also the line module can be steered through keywords imatirec3d.inp
file. Here is a list:

e tgas _eq_tdust (default: 0)
Normally you must specify the gas temperature at each giidisig thegas _temperature.inp file (or
directly in theuserdef _module.f90 , see Chaptet3). But sometimes you may want to compute first the
dust temperature and then set the gas temperature equaldaghtemperature. You can do this obviously by
hand: read the output dust temperature and create the &qnigas temperature input file from it. But thatis
cumbersome. By settingas _eq_tdust=1 you tellradmc3d to simply read thelust _temperature.inp
file and then equate the gas temperature to the dust tempeerktonultiple dust species are present, only the
first species will be used.

7.3.2 INPUT: The line.inp file

Like with the dust (which has thidustopac.inp ~ master file, also the line module has a master liibes.inp . It
specifies which molecules/atoms are to be modeled and irhviiftecthe molecular/atomic data (such as the energy
levels and the EinsteiA coefficients) are to be found.

iformat <=== Put this to 1

N Nr of molecular or atomic species to be modeled
molnamel inpstylel idumal idumbl Which molecule used as spe cies 1, where to read it?
molnameN inpstyleN idumaN idumbN Which molecule used as spe cies N, where to read it?

The N is the number of molecular or atomic species you wish to modgpically this is 1. But if you want to
simultaneouslynodel for instance the ortho-® and para-HO infrared lines, you would need to set this to 2.
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The N lines following N (i.e. lines 3 to N+2) specify the molge or atom, the kind of input file format (explained
below), and two integers which, at least for now, can be syspt to 0 (see Section.7 for the meaning of these
integers - for experts only).

The molecule name can be e@ for carbon monoxide. The file containing the data should thercalled
molecule _co.inp (even if it is an atom rather than a molecule; | could not findbadjname which means both
molecule or atom). This file should be either generated byuties, or (which is obviously the preferred option)
taken from one of the databases of molecular/atomic radiptioperties. Since there are a number of such databases
and | want the code to be able to read those files without thd okeasting them into some special RADMC-3D
format,radmc3d allows the user to select whi&tind of file themolecule _co.inp (for CO) file is. At present only
one format is supported: the Leiden database. But morealid\i. To specify toradme3d to use the Leiden style,
you put theinpstyle  to “leiden”. So here is a typical example ofiees.inp  file:

1

1
co leiden 0 0

This means: one molecule will be modeled, namely CO (andtsad from the filemolecule _co.inp ), and the
data format is the Leiden database format.

7.3.3 INPUT: The moleculeXXX.inp file

As mentioned in Sectiod.3.2the atomic or molecular fundamental data such as the leagtam and the radiative
decay rates (Einstein A coefficients) are read from a file (@rethan one files) nameablecule _XXX.inp , where
theXXXis to be replaced by the name of the molecule or atom in quedtidhelines.inp  you can specify which
style this file has. Currently the following input style issported: the Leiden database. More will follow.

INPUT: The Leiden database format of moleculeXXX.inp

The precise format of the Leiden database data files is ofseadescribed in detail on their web pagélere we
only give a very brief overview, based on an example of CO iictvionly the first few levels are specified:

#leiden

IMOLECULE

CcO

IMOLECULAR WEIGHT
28.0

INUMBER OF ENERGY LEVELS

10

ILEVEL + ENERGIES(cm™-1) + WEIGHT + J
0.000000000 1.0
2 3.845033413 3.0
3 11.534919938 5.0
4 23.069512649 7.0
5 38.448164669 9.0
6
7
8

=

57.670329083 11.0
80.735459105 13.0
107.642407981 15.0
138.390328288 17.0

10 172.978074417 19.0
INUMBER OF RADIATIVE TRANSITIONS

©
©CoOoO~NOOUTMWNEO

9

ITRANS + UP + LOW + EINSTEINA(s™-1) + FREQ(GHz) + E_u(K)
1 2 1 7.203e-08 115.2712018 5.53
2 3 2 6.910e-07 230.5380000 16.60
3 4 3 2.497e-06 345.7959899 33.19
4 5 4 6.126e-06 461.0407682 55.32
5 6 5  1.221e-05 576.2679305 82.97
6 7 6 2.137e-05 691.4730763  116.16
7 8 7 3.422e-05 806.6518060  154.87
8 9 8  5.134e-05 921.7997000  199.11
9 10 9 7.330e-05  1036.9123930  248.88

IBELOW CAN FOLLOW MORE DATA, FOR INSTANCE COLLISION RATEADAT

http://www.strw.leidenuniv.nimoldata/

37



IWHICH ARE USEFUL FOR NON-LTE STUFF. BUT PLEASE REFER TO THE
ILEIDEN DATABASE INFORMATION ABOUT THAT.

The very first line is optional: it shows that we are dealinthvei file from the leiden database.

The next first few lines are self-explanatory. The first oftilve tables is about the levels. Column one is simply a
numbering. Column 2 is the energy of the le¥&|, specified in units of /cm. To get the energy in erg you multiply
this number withhc/k whereh is the Planck constant,the light speed ané the Boltzmann constant. Column 3 is
the degeneration number, i.e. the thparameter of the level. Column 4 is redundant informatiar,used by the
code.

The second table is the line list. Column 1 is again a simpletay. Column 2 and 3 specify which two levels the
line connects. Column 4 is the radiative decay rate in urits/eeconds, i.e. the Einsteifi coefficient. The last
two columns are redundant information that can be easiliyei@from the other information.

7.3.4 INPUT: The number density of each molecular species

For the line radiative transfer we need to know how many madéscof each species are there per cubic centimeter.
For molecular/atom speci@xXthis is given in the filmumberdens _XXX.inp (formatted) ohumberdens _XXX.uinp
(fortran-style unformatted). For each molecular/atorpiecies listed in thénes.inp  file there must be a corre-
spondinghumberdens XXX.inp or numberdens XXX.uinp file. The structure of the file is very similar (though
not identical) to the structure of the dust density inputdilst _density.inp (SectionA.3). For the precise way

to address the various cells in the different AMR modes, ierte SectionA.3, where this is described in detail.

For formatted stylerumerdens _XXX.inp ):

iformat <=== Typically 1 at present
nrcells
numberdensity[1]

numberdensity[nrcells]

The number densities are to be specified in units of moleaideybic centimeter.

For unformatted input we have again a very similar strucasreithdust _density.uinp (see ChapteB for more
details on unformatted 1/O)

iformat reclen

nrcells

numberdensity[1] ... humberdensity[reclen]

numberdensity[reclen+1] ... numberdensity[2 *reclen]

..... numberdensity[nrcells] ... 0 0 o0 <==== fill with 0 unti | end of record

Allintegers (format ,reclen andnrcells are 8-byte integers. The data of the number density is stwsdries
of double-precision (8-byte) reals organized in recordgeofen /8 numbers long. If the last double precision
number ends before the end of its record, then the remairfidee ocecord is filled with O until the end (see example
above). For details on this unformatted structure, pleaad the last part of Sectigh3.

7.3.5 INPUT: The gas temperature

For line transfer we need to know the gas temperature. Yoeifgghis in the filegas _temperature.inp (format-
ted) orgas _temperature.uinp (fortran-style unformatted). The structure of this filedeitical to that described
in Section7.3.4 but of course with number density replaced by gas temperatKelvin. For the precise way to
address the various cells in the different AMR modes, wertef&ectionA.3, where this is described in detail.

Note: see Chaptd® for more details on unformatted I/O.

Note: Instead of literally specifying the gas temperatwe gan also teltadmc3d to copy the dust temperature (if
it know it) into the gas temperature. See the keywiged _eq_tdust described in Sectior.3.1
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7.3.6 INPUT: The velocity field

Since gas motions are usually the main source of Dopplerahifroadening in astrophysical settings, it is obliga-
tory to specify the gas velocity. This can be done with thegike_velocity.inp (formatted) ogas _velocity.uinp
(unformatted) ogas _velocity.usinp (unformatted, single precision). The structure is agaimlar to that de-
scribed in Sectiory.3.4 but now with three numbers at each grid point instead of gu&t. The three numbers
are the velocity inz, y and z direction for Cartesian coordinates, orind and¢ direction for spherical coordi-
nates. Note that both in cartesian coordinates and in si@dordinatesll velocity components have the same
dimension of cm/s. For spherical coordinates the convestare: positivey, points outwards, positivey points
downward (toward larget) for 0 < 6 < 7 (where “downward” is toward smallef), and positives, means velocity

in counter-clockwise direction in the, y-plane.

For the precise way to address the various cells in the diffehMR modes, we refer to Secti#n3, where this is
described in detail.

The unformatted style is similar in structure as thatiedt _density.uinp  , but now with three numbers at each
grid point. See Chaptds for more details on unformatted 1/O.

7.3.7 INPUT: The local microturbulent broadening (optional)

Theradmc3d code automatically includes thermal broadening of the IBiet sometimes it is also useful to spec-
ify a local (spatially unresolved) turbulent width. Thisnst obligatory (if it is not specified, only the thermal
broadening is used) but if you want to specify it, you can dansthe file microturbulence.inp (formatted)
or microturbulence.uinp (unformatted). Same structure as described in Se@tid For the precise way to
address the various cells in the different AMR modes, wertef&ectionA.3, where this is described in detail.

The unformatted style is similar in structure as thatiadt _density.uinp . See ChapteB for more details on
unformatted /0.

7.3.8 INPUT for LTE line transfer: The partition function (o ptional)

If you use the LTE mode (eitheasimple LTEor fast LTE, then the partition function is required to calculate, for
a given temperature the populations of the various levelsceshis involves a summation ovall levels of all
kinds that can possibly be populated, and since the moledatdanic data file may not include all these possible
levels, it may be useful to look the partition function up onge literature and give this tadmc3d . This can be
done with the filepartitionfunction XXX.inp , where agairxXXis here a placeholder for the actual name of
the molecule at hand. If you do not have this file in the pressmiel directory, themadme3d will compute the
partition function itself, but based on the (limited) setafels given in the molecular data file. The structure of the
partitionfunction XXX.inp fileis:

iformat ; The usual format number, currently 1
ntemp ; The number of temperatures at which it is specified
temp(1) pfunc(1)

temp(2) pfunc(2)
temp(ntemp) pfunc(ntemp)

7.4 Making images and spectra with line transfer

Making images and spectra with/of lines works in the same agafor the continuum. RADMC-3D will check if
the filelines.inp is present in your directory, and if so, it will automatigaiwitch on the line transfer. If you
insist onnot having the lines switched on, in spite of the presence ofitlkes.inp  file, you can add the option
noline toradmc3d on the command line. If you don't, then lines are normallyoauatically switched on, except
in situations where it is obviously not required.
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You can just make an image at some wavelength and you'll geintlage with any line emission included if it is
there. For instance, if you have the molecular data of CQuohadl, then

radmc3d image lambda 2600.757

will give an image right at the CO 1-0 line center. The codé aiitomatically check if (and if yes, which) line(s)
are contributing to the wavelength of interest. Also it viltlude all the continuum emission (and absorption) that
you would usually obtain.

There is, however, an exception to this automatic line isioln: If you make a spectral energy distribution (with the
commandsed, see Sectio®.3), then lines are not included. The same is true if you uséotitzolor  command.
But for normal spectra or images the line emission will awtioally be included. So if you make a spectrum at
wavelength around some line, you will get a spectrum incigdhe line profile from the object, as well as the dust
continuum.

It is not always convenient to have to know by heart the exastelengths of the lines you are interested in. So
RADMC-3D allows you to specify the wavelength by specifyiwdich line of which molecule, and at which
velocity you want to render:

radmc3d image iline 2 vkms 2.4

If you have CO as your molecule, then iline 2 means CO 2-1 @cersd line in the rotational ladder).
By default the first molecule is used (if you have more thanrao&cule), but you can also specify another one:

radmc3d image imolspec 2 iline 2 vkms 2.4

which would select the second molecule instead of the first on
If you wish to make an entire spectrum of the line, you can darfstance:

radmc3d spectrum iline 1 widthkms 10

which produces a spectrum of the line with a passband goamg 6.0 km/s to +10 km/s. By default 40 wavelength
points are used, and they are evenly spaced. You can setithisar of wavelengths:

radmc3d spectrum iline 1 widthkms 10 linenlam 100

which would make a spectrum with 100 wavelength points, evgraced around the line center. You can also shift
the passbhand center:

radmc3d spectrum iline 1 widthkms 10 linenlam 100 vkms -10

which would make the wavelength grid 10 kms shifted in shvgtation.

For more details on how to specify the spectral samplin@gaeead Sectioh4. Note that keywords such as!
phi , and any other keywords specifying the camera positionymog factor etc, can all be used in addition to the
above keywords.

7.4.1 Speed versus realism of rendering of line images/sec

As usual with numerical modeling: including realism to thedrling goes at the cost of rendering speed. A “fully
realistic” rendering of a model spectrum or image of a gasiliwolves (assuming the level populations are already
known):

1. Doppler-shifted emission and absorption.
2. Inclusion of dust thermal emission and dust extinctioewendering the lines.

3. Continuum emission scattered by dust into the line-giusi
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4. Line emission from (possibly obscured) other regioni@eed to scatter into the line-of-sight by dust grains
(see Sectio7.4.2.

RADMC-3D always includes the Doppler shifts. By default, BMC-3D also includes dust thermal emission and
extinction, as well as the scattered continuum radiatiome 3cattering of line emission into the line of sight can
only be done if the level populations are pre-computed fdlsemode, see SectioXXX), so it is by default not
included (since by default RADMC-3D renders lines in the reyrsavingslowmode).

If we use the memory-savirglowmode of line rendering, then the default inclusion of scattd continuum light
can slow down the rendering enormously, if spectra or muttirelength images are madélhe reason is that,
again for saving memory, the scattering Monte Carlo sinmhafsee Sectior.5.49 will be done once for each
wavelength, and the different wavelength images are rexddane at a time (each preceded by a scattering Monte
Carlo simulation). At each image rendering, the local lgvgpulations along the ray have to be re-computed
(because in the memory-savisipwmode they are not stored). This can be very time-consuming.

For many lines, however, dust continuum scattering is aig#g portion of the flux, so you can speed things up by
not including dust scatteringlhis can be easily done by adding tiescat option on the command-line when you
issue the command for a line spectrum or multi-frequencygiar his way, the scattering source function is not
computed (is assumed to be zero), and no scattering Monte Qais are necessary. This means that the ray-tracer
can now render all wavelength simultaneously (each raygdaiinvavelength at the same time), and the local level
populations along each ray can now be computed once, ancebddarsall wavelengthsThis may speed up things
drastically, and for most purposes virtually perfectly mmt Just beware that when you render short-wavelength
lines (optical) or you use large grains, i.e. when the sdatie@lbedo at the wavelength of the line is not negligible,
this may result in a mis-estimation of the continuum arounaline.

7.4.2 Line emission scattered off dust grains

NOTE: The contents of this subsection may not be 100% implechget.

Also any line emission from obscured regions that get seatteto the line of sight by the dust (if dust scattering is
included) will be included. Note, however, that any possbbppler shifinducedby this scattering isotincluded.
This means that if line emission is scattered by a dust cloonmg at a very large speed, then this line emission will
be scattered by the dust, but no Doppler shift at the prajeatéocity of the dust will be added. Only the Doppler
shift of the line-emitting region is accounted for. Thisasely a problem, because typically the dust that may scatter
line emission is located far away from the source of line sinisand moves at substantially lower speed.

7.5 What can go wrong with line transfer?

Even the simple task of performing a ray-tracing line transflculation with given level populations (i.e. the so-
calledformal transfer equationis a non-trivial task in complex 3-D AMR models with possillighly supersonic
motions. | recommend the user to do extensive and critiga¢esnentation with the code and make many simple
tests to check if the results are as they are expected to e lend a result must be understandable in terms of
simple argumentation. If weird effects show up, please aoesdetective work until you understand why they show
up, i.e. that they are eitherraal effect or a numerical issue. There are many numerical atsifdnat can show up
that arenota bug in the code. The code simply does a numerical integrafithe equations on some spatial- and
wavelength-grid. If the user chooses these grids unwieyresults may be completely wrong even if the code is
formally OK. These possible pitfalls is what this sectiomlut.

So here is a list of things to check:

1. Make sure that the line(s) you want to model are indeedanrblecular data file you use. Also make sure
that it/they are included in the line selection (if you arengghis option; by default all lines and levels from
the molecular/atomic data files are included; see Sectign

2. Ifyoudo LTE line transfer, and you do not latime3d read in a special file for the partition function, then the
partition function will be computed internally bsgdmc3d . The code will do so based on the levels specified
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Figure 7.1. Left: Pictographic representation of the doppler jumpimgbtem withray-tracing through a model
with strong cell-to-cell velocity differences. Right: Rigraphic representation of the doppler catching method to
prevent this problem: First of all, second order integraii® done instead of first order. Secondly, the method
automatically detects a possibly dangerous doppler jurdmeaakes sub-steps to neatly integrate over the line that
shifts in- and out of the wavelength channel of interest.

in themolecule XXX.inp file for moleculexXX This requires of course that all levels that may be excited
at the temperatures found in the model are in fact presetiteimblecule XXX.inp file. If, for instance,
you model 1.3 mm and 2.6 mm rotational lines of CO gas of up ®80and your filemolecule _co.inp

only contains the first three levels because you think yoy naéd those for your 1.3 and 2.6 mm lines, and
you don't specify the partition function explicitly, theradmc3d will compute the partition function for all
temperatures including 300 K based on only the first threel$evThis is evidently wrong. The nasty thing
is: the resulting lines won't be totally absurd. They wilsflbe too bright. But this can easily go undetected
by you as the user. So please keep this always in mind. Notéf hau make aselectionof the first three
levels (see Section.7) but the filemolecule _XXX.inp contains many more levels, then this problem will not
appear, because the partition function will be calculatedhe original data from thenolecule _XXX.inp

file, not from the selected levels. Of course it is safer tacpehe true partition function directly through
the file partitionfunction XXX.inp (see Sectio7.3.8.

3. If you have a model with non-zero gas velocities, and iféhgas velocities have cell-to-cell differences that
are larger than or equal to the intrinsic (thermal+microtlient) line width, then the ray-tracing will not be
able to pick up signals from intermediate velocities. Inesttvords, because of the discrete gridding of the
model, only discrete velocities are present, which caneausnerical problems. See Fig.1-Left for a
pictographic representation of this problem. There arepassible solutions. One is the wavelength band
method described in Secti@5. But a more systematic method is the “doppler catching” meithescribed
in Section7.6 (which can be combined with the wavelength band method di@e@.5to make it even more
perfect).

7.6 Preventing doppler jumps: The “doppler catching method

If the local co-moving line width of a line (due to thermalidlamental broadning and/or local subgrid “microtur-
bulence”) is much smaller than the typical velocity fieldshe model, then a dangerous situation can occur. This
can happen if the co-moving line width is narrower than thpper shift between two adjacent cells. When a
ray is traced, in one cell the line can then have a dopplet shifstantially to the blue of the wavelength-of-sight,
while in the next cell the line suddenly shifted to the redesidf the intrinsic (= thermal + microturbulent) line
width is smaller than these shifts, neither cell gives aGoution to the emission in the ray. See Figl-Left for a
pictographic representation of this problem. In reality toppler shift between these two cells would be smooth,
and thus the line would smoothly pass over the wavelengsightt, and thus make a contribution. Therefore the
numerical integration may thus go wrong.

The problem is described in more detail in Sec®85 and one possible solution is proposed there. But thatisalut
does not always solve the problem.

RADMC-3D has a special method to catch situations like ttmvaband when it detects one, to make sub-steps in
the integration of the formal transfer equation so that theath passing of the line through the wavelength-of-sight
can be properly accounted for. Here this is called “doppd¢cting”, for lack of a better name. The technique was
discussed in great detail in Pontoppidan et al. (2009, AgJ ¥482). The idea is that the method automatically tests
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if a line might “doppler jump” over the current wavelengthacimel. If so, it will insert substeps in the integration at
the location where this danger is present. See FiyLeft for a pictographic representation of this method. éNot
that this method can only be used with the second order eaynly (see Sectiod.8); in fact, as soon as you switch
the doppler catching on, RADMC-3D will automatically alseitch on the second order ray-tracing.

To switch on doppler catching, you simply add the command-bptiondoppcatch to the image or spectrum
command. For instance:

radmc3d spectrum iline 1 widthkms 10 doppcatch

(again: you do not need to addcondorder , because it is automatic whenppcatch is used).

The Doppler catching method will assure that the line isgraged over with small enough steps that it cannot
accidently get jumped over. How fine these steps will be caadpasted with theatch _doppler _resolution
keyword in theradmc3d.inp ~ file. The default value is 0.2, meaning that it will make theegration steps small
enough that the doppler shift over each step is not more tiatirfes the local intrinsic (thermal+microturbulent)
line width. That is usually enough, but for some problemsigimbe important to ensure that smaller steps are
taken. By adding a line

catch_doppler_resolution = 0.05

to theradmc3d.inp  file you will ensure that steps are small enough that the dghiift is at most 0.05 times the
local line width.

So why is doppler catching amption i.e. why would this not be standard? The reason is that @omaitching
requires second order integration, which requires RADMICt@ first map all the cell-based quantities to the cell-
corners. This requires extra memory, which for very largelet® can be problematic. It also requires more CPU
time to calculate images/spectra with second order intiegraSo if you do not need it, i.e. if your velocity gradients
are not very steep compared to the intrinsic line width, theaves time and memory to not use doppler catching.

It is, however, important to realize that doppler catchimgot the golden bullet. Even with doppler catching it
might happen that some line flux is lost, but this time as alre$too low image resolution This is less likely to
happen in problems like ISM turbulence, but it is pretty ke happen in models of rotating disks. Suppose we
have a very thin local line width (i.e. low gas temperaturd aa microturbulence) in a rotating thin disk around a
star. In a given velocity channel (i.e. at a given observame frequency) a molecular line in the disk emits only in
a very thin “ear-shaped” ring or band in the image. The thirthe intrinsic line width, the thinner the band on the
image. See Pontoppidan et al. (2009, ApJ 704, 1482) and iR&hdykov et al. (2007, ApJ 669, 1262) for example.
If the pixel-resolution of the image is smaller than thattigtband, the image is simply underresolved. This has
nothing to do with the doppler jumping problem, but can beadlgulevastating for the results if the user is unaware
of this. There appears to be only one proper solution: asbatehe pixel-resolution of the image is sufficiently
fine for the problem at hand. This is easy to find out: The imagelevsimply look terribly noisy if the resolution is
insufficient. However, if you are not interested in the imgdmit only in the spectra, then some amount of noisiness
in the image (i.e. marginally sufficient resolution) is Oknce the total flux is an integral over the entire image,
smearing out much of the noise. It requires some experirtienfahough.

Here are some additional issues to keep in mind:

e The doppler catching method uses second order integragen $ectior®.8), and therefore all the relevant
guantities first have to be interpolated from the cell centeithe cell corners. Well inside the computational
domain this amounts to linear interpolation. But at the sdafethe domain it would requirextrgpolatior?
RADMC-3D does does not do extrapolation but simply takesatierage values of the nearest cells. Also
the gas velocity is treated like this. This means that oveettige cells the gradient in the gas velocity tends
to be (near) 0. Since for the doppler catching it is the gratdi¢ the velocity that matters, this might yield
some artifacts in the spectrum if the density in the bordds ég high enough to produce substantial line
emission. Avoiding this numerical artifact is relativelgsy: One should then simply put the number density
of the molecule in question to zero in the boundary cells.

e If you are using RADMC-3D on a 3-D (M)HD model which has straimcks in its domain, then one must

2In 1-D this is more easily illustrated, because there thiogehers are in fact cell interfaces. Cellandi 4 1 share cell interface + 1/2.
If we haveN cells, i.e. cells = 1,--- , N, then we haveV + 1 interfaces, i.e. interfacas= %, <o N+ % To get physical quantities from

the cell centers to cell interfacés= %, s N — % requires just interpolation. But to find the physical quiéesi at cell interfaces = % and
i =N+ % one has to extrapolate or simply take the values at the agér® = 1 andi = N.
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be careful that (magneto-)hydrodynamic codes tend to sméahe shock a bit. This means that there will
be some cells that have intermediate density and velocitigersmeared out region of the shock. This is
unphysical, but an intrinsic numerical artifact of numatibydrodynamics codes. This might, under some
conditions, lead to unphysical signal in the spectrum, bsedhere would be cells at densities, temperatures
and velocities that would be in between the values at botissid the shock and would, in reality, not be
there. It is very difficult to avoid this problem, and even todfiout if this problem is occurring and by
how much. One must simply be very careful of models contgirsitntong shocks and do lots of testing.
One way to test is to use the doppler catching method and tergdoppler catching resolution (using the
catch _doppler _resolution keyword inradmc3d.inp ).

7.7 For experts: Selecting a subset of lines

If you use standard molecular/atomic data files from e.gL#iden databasethen you may have many more lines
than you are actually interested in. This is no problem if yse thesimple LTE modésee Sectior?.2) because
thenradmc3d will anyway only work with those lines that happen to be claséhe wavelength of interest. But if
you use other modes of line transfer, the level populatioag need to be stored into memory. If you have a large
spatial grid, and for each grid point you have to store a 19€l lgopulations, you can easily run out of memory. For
non-LTE modes (such as the LVG or escape probability moazsiitl be implemented later) it may be unavoidable
to store these, but if you already know in advance that teaipegs will never be high enough to populate the levels
above, say, 20, then you may want to be able toréelinc3d not to use all 100 levels, but only the first 20. One
can do this of course by editing the molecular data file by remdisimply strip all the levels and lines you don’t
need. But a more elegant way is to specify in lihes.inp file thatradmc3d.inp  should use only a subset of
the levels.

The way to do this is to replace, in the examiple.inp  file of Section7.3.2 the line

co leiden 0 0

with
co leiden 0 10

where the 10 now says that only levels 1 (=ground) to 10 are tased. That's it!

7.8 For developers: some details on the internal workings

[This section is only interesting for developers]

7.8.1 Automatic selection of sub-sets of levels and lines foptimal performance

The line module is optimized such that at any time the codg wsgs those lines and levels that are in fact important
for carrying out the task at hand. For example: if an imagaatapecial wavelength is made (a “channel map”) then
the code will check which lines and levels are ‘active’ in Hemse that they potentially contribute to the emission at
that particular wavelength. This means that before thetnaging is done the code will make a selection of levels
and lines that it will need to consider. If the lines / levstdi are large, this may save a lot of computer time. Note
that this is in addition to the possibility that the user nmakte own sub-set selection of levels. So what happens is
that at the start of the code the molecular fundamental dateead, then a subset of these levels can be chosen by
the user (if not, the entire level list is used), and aftet,théaen a specific wavelength or wavelength range is chosen
for the camera routines, another subset from this subsstasub-set”) is automatically selected by RADMC-3D.
The latter automatic sub-sub-set selection is redone wiherng the same run, see calling RADMC-3D in child
mode, Chaptet2) a new wavelength domain is chosen by the user. The useifispesub-set of levels is, however,
only done once, when the molecular data is read.

This subset and subsubset selection makes the line moditleaplex to read and understand. But it is essential

Shttp://www.strw.leidenuniv.ntvmoldata/
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for high efficiency, because if the line module has to walltigh the entire line lists and level lists for each action
is wants to do, and if the line/level lists are large, the codeslow down enormously.

The matter gets a bit more complicated due to the methodsyetraaing for images and spectra (See Chapter
9). For the treatment of multi-wavelength images (method Wvirich in which all wavelength are traced within

a single call to the ray-tracing routine and method 2 in wtdohimage is made for each wavelength separetely)
this is done differently: For method 1 the automatic substibslection is done for the complete set of wavelength
simultaneously; For method 2 the automatic subsubsettaaids made for each wavelength separately. Also for
the way the rays are traced (sequential [method A] or as lePgyed rays [method B]) there are differences: For
method A the automatic subsubset selection is done at thteotae image making routine, while for method B it
is done at the start of each ray-trace (i.e. for each pixedrsgply). The latter (for each pixel separately) is useful
when there are small regions in the model which have very tagiperatures or very large velocities while by far
the most of the model has low temperatures and velocities: tthe possibility for line overlapping is only realistic
in parts of the image that probe these high-T/velocity regjavhile for the rest no overlapping has to be expected,
and hence a smaller subsubset can be selected. That witl spg@e calculation. But this works only for method
B (the 1-D prepared ray method).
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Chapter 8

Gas continuum opacities and emissivities

In addition to dust and line radiative transfer, RADMC-3hadso handle gas continuum opacities. Here is a list
of features that are now already working, marked with [+]] &mose which are not yet (!!) built in, marked with
[-]. Those that are currently being developed are markek jiand those that are ready, but are still in the testing
phase are marked with [t].

The following processes are included:

[t] Gas free-free absorption/emission
[.] Gas bound-free absorption/emission

[.] Self-consistent determination of the gas temperatumeed on the continuum opacity and possibly also the
lines. Perhaps also various non-thermal heating procégketoelectric heating etc) will be included. But
this is future work.

8.1 Gas continuum opacities and emissivities

While under most circumstances gas emission is mostly ifidime of lines, there are also continuum sources of
emission and opacity. Gas continuum opacities can be irdliida way very similar to the dust opacities. Since
currently we envisage thermalized gas (i.e. no accelenadeticle distributions, for instance), we can then use
Kirchhoff’s law to compute, with the gas temperature, thessigities. Normally the user will have to determine
all the locally required quantities, including the gas temgure, the ion and/or electron density etc. In the first
version(s) of this module the gas temperature will not be ppated self-consistently, but instead have to be given
by the user. The processes will be discussed one-by-one.belo

Each process can be switched on or off independently:

Process: Command-line switch on  Command-line switch afidmc3d.inp  variable (0/1)
All processes inclgascont nogascont incl _gascont
Thermal free-free inclfreefree nofreefree incl _freefree

The main switch is théncl _gascont . If this is 0, all gas continuum processes are switched 6éfit i$ 1, then
gas continuum processes that have their own switch on wiihbleded. Typically, by switching on one of the
processes, the main switch will also be automatically $veitton. But the reverse is not true: if you switch off one
of the processes, the main switch remains on.

8.1.1 Thermal free-free emission/absorption

The process of thermal free-free emission and absorptigivés by the following formula (Eq. 2.96 of Gordon &
Sorochenko, 2002, Kluwer Academic Publishers):

N.N;

ff_

(8.1)
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in units of cn! (i.e. the mean free photon pathligaf).

This mode requires theectronnumdens(;)ion_numdens(;) andgastemp(:)arrays to be set. This is typically done by
providing the fileslectronnumdens.inpion_-numdens.in@ndgastemperature.ingsee Chaptef), or by allocating and
setting the arrays directly in theserdef _module.f90

8.2 Self-consistent gas temperature iteration

In future versions of RADMC-3D the gas temperature can, the dust temperature, be determined through a
Monte Carlo procedure. In contrast to the dust, howevergdsopacities change with temperature. The Monte
Carlo simulation must therefore be repeated a few timestigerge on the right temperatures.

At the moment this method is, however, not yet implementestelad, the gas temperature must be set by the user,
either in the form of a file calledas _temperature.inp or in theuserdef _module.f90 module.
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Chapter 9

Making images and spectra

Much has already been said about images and spectra in theechan dust radiative transfer and line radiative
transfer. But here we will combine all this and go deeper thite material. So presumably you do not need to read
this chapter if you are a beginning user. But for more sojmaitdd users (or as a reference manual) this chapter
may be useful and presents many new features and more ih-idsjght.

9.1 Basics of image making with RADMC-3D

Images and spectra are typically made after the dust temyperhas been determined using the thermal Monte
Carlo run (see Chapt@). An image can now be made with a simple caltddmc3d *:

radmc3d image lambda 10

This makes an image of the model at wavelengts 10xm and writes this to the filanage.out 2. The vantage
point is at infinity at a default inclination of 0, i.e. pole&r@iew. You can change the vantage point:

radmc3d image lambda 10 incl 45 phi 30

which now makes the image at inclination 45 degrees (betweksion and edge-on) and withangle 30 degrees
in the x-y plane. Note that this ‘inclination’ ang ‘angle’ are just ways to specify angles in the x-y-z spaces&he
are angles with respect to the x-y plane. You can also rdtateamera with

radmc3d image lambda 10 incl 45 phi 30 posang 20

which rotates the camera by 20 degrees. Up to now the cameagsapointed to one single point in space: the
point (0,0,0). You can change this:

radmc3d image lambda 10 incl 45 phi 30 posang 20 pointau 3.2 0. 104

which now points the camera at the point (3.2,0.1,0.4), eliee numbers are in units of AU. The same can be done
in units of parsec:

radmc3d image lambda 10 incl 45 phi 30 posang 20 pointpc 3.2 0. 104

Note thatpointau andpointpc  are always 3-D positions specified in cartesian coordindtieis remains also true

when the model-grid is in spherical coordinates and/or vthermodel is 2-D (axisymmetric) or 1-D (spherically

symmetric): 3-D positions are always specified in X,y,z.

Let's now drop the pointing again, and also forget aboupthsang , and try to change the number of pixels used:
radmc3d image lambda 10 incl 45 phi 30 npix 100

Iplease also read Sectidd.1.3for IDL routines that do all of this for you conveniently. TlBoice is up to you: you can either do this
directly as described here, or use the IDL routines.

2We refer to Sectiord.15 for details of this file and how to interpret the content. Séetlerl4 for an extensive IDL tool set that make it
easy to read and handle these files.
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This will make an image of 100x100. You can also specify thand y- direction number of pixels separately:
radmc3d image lambda 10 incl 45 phi 30 npixx 100 npixy 30

Now let’s forget again about the number of pixels and chahgesize of the image, i.e. which zooming factor we
have:

radmc3d image lambda 10 incl 45 phi 30 sizeau 30

This makes an image which has 30 AU width and 30 AU height {i5eAU from the center in both directions).
Same can be done in units of parsec

radmc3d image lambda 10 incl 45 phi 30 sizepc 30

Although strictly speaking redundant is the possibilitgtmme-in right into a selected box in this image:
radmc3d image lambda 10 incl 45 phi 30 zoomau -10 -4. 0 6

which means that we zoom in to the box givenby0 < 2 < —4 AU and0 < y < 6 AU on the original image
(note thatzoomau -15 15 -15 15 gives the identical result aszeau 30 ). This possibility is strictly speaking
redundant, because you could also changgdiveau andsizeau to achieve the same effect (unless you want to
make a non-square image, in which case this is the only wayl)itBs just more convenient to do any zooming-in
this way. Please note that when you make non-square imagfegosmau or zoompc, the code will automatically
try to keep the pixels square in shape by adapting the nunfipétals in x- or y- direction in the image and adjusting
one of the sizes a tiny bit to assure that both x- and y- sizamiateger times the pixel size. These are very small
adjustments (and only take place for non-square zoom-ihgdu want to force the code to talexactlythe zoom
area, and you don’t care that the pixels then become sliglottysquare, you can force it wittuezoom :

radmc3d image lambda 10 incl 45 phi 30 sizeau 30 zoomau -10 -4. 0 3.1415 truezoom

If you do not want the code to adjust the number of pixels innd g- direction in its attempt to keep the pixels
square:

radmc3d image lambda 10 incl 45 phi 30 sizeau 30 zoomau -10 -4. 0 3.1415 npixx 100 npixy 4 truepix

Now here are some special things. Sometimes you would lilke¢oan image of just the dust, not including stars
(for stars in the image: see Secti®rT). So blend out the stars in the image, you usenttsar option:

radmc3d image lambda 10 incl 45 phi 30 nostar

Another special option is to get a ‘quick image’, in which tteele does not attempt assure flux conservation in the
image (see Sectio®.6 for the issue of flux conservation). Doing the image with flaaservation is slower than

if you make it without flux conservation. Making an image waith flux conservation can be useful if you want to
have a ‘quick look’, but is strongly discouraged for actuaéstific use. But for a quick look you can do:

radmc3d image lambda 10 incl 45 phi 30 nofluxcons

Note: In the IDL widget interfac@iewimage.pro  the default is to use this ‘quick look’ option, because you
typically want to make images quickly if you use thiewimage.pro interface. But there is a button (called
“preview”) that if you unclick it, it will do flux-conservingmaging.

Finally, if you want to produce images with a smoother lookdavhich also are more accurate), you can ask
RADMC-3D to use second order integration for the images:

radmc3d image lambda 10 incl 45 phi 30 secondorder

NOTE: The resulting intensities may be slightly differemtrh the case when first order integration (default) is used,
in particular if the grid is somewhat course and the objetisterest are optically thick. Please consult SecBd
for more information.

Note: All the above commands caddmc3d separately. If it needs to load a large model (i.e. a modéi miany
cells), then the loading may take a long time. If you want t&kenaany images in a row, this may take too much
time. Then itis better to cathdmc3d as a child process and pass the above commands through tnefipe (see
Chapterl2).
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9.2 Making multi-wavelength images

Sometimes you want to have an image of an object at multipleleagth simultaneously. Rather than calling
RADMC-3D separately to make an image for each wavelength,cgm make all images in one command. The
only thing you have to do is to tell RADMC-3D which wavelengihshould take. There are various different ways
you can tell RADMC-3D what wavelengths to take. This is diead in detail in Sectio®.4 Here we will focus

as an example on just one of these methods. Type, for instance

radmc3d image incl 45 phi 30 lambdarange 5. 20. nlam 10

This will create 10 images at once, all with the same viewiagpective, but at 10 wavelengths regularly distributed
between Sum and 20um. All images are written into a single filepage.out (See Sectio’\.15 for its format).

In IDL you simply type:
.r readradmc
a=readimage()
and you will get all images at once. To plot one of them:

plotimage,a,ilam=3

which will plot image number 3 (out of images number 0 to 9)fifid out which wavelength this image is at:
print,a.lambda[3]

which will return 7.9370053 in this example.

Note that all of the commands in Sectiri are of course also applicable to multi-wavelength imagesget for
thelambda keyword, as this conflicts with the other method(s) of speeif the wavlengths of the images. Now
please turn to Sectiofi.4 for more information on how to specify the wavelengths fa thultiple wavelength
images.

9.3 Making spectra

The standard way of making a spectrum witldmc3d is in fact identical to making 1x1 pixel images with flux
conservation (i.e. recursive sub-pixeling, see Sediéhat multiple frequencies. You can asiddmc3d to make a
spectral energy distribution (SEmith the command

radmc3d sed incl 45 phi 30
This will put the observer at inclination 45 degrees and apgi 30 degrees, and make a spectrum with wavelength
points equal to those listed in the&velength _micron.inp file.

The output will be a file calledpectrum.out  (see Sectioi\.14). In Section14.4it is discussed how to read this
file into IDL.

You can also make a spectrum on a set of wavelength pointsusfopen choice. There are multiple ways by which
you can specify the set of frequencies/wavelength pointsvfuch to make the spectrum: they are described in
Section9.4. If you have made your selection in such a way, you can maksgletrum at this wavelength grid by

radmc3d spectrum incl 45 phi 30 <COMMANDS FOR WAVELENGTH SELECTION>

where the last stuff is tellingadmc3d how to select the wavelengths (Sectd). An example:
radmc3d spectrum incl 45 phi 30 lambdarange 5. 20. nlam 100

will make a spectrum with a regular wavelength grid betweemé& 20:m and 100 wavelength points. But see
Section9.4for more details and options.

The output filespectrum.out  will have the same format as for tked command.
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9.3.1 Whatis “in the beam” when the spectrum is made?

As mentioned above, a spectrum is simply made by making angatar image at all the wavelengths points,

and integrating over these images. The resulting fluxesdt wavelength point is then the spectral flux at that
wavelength point. This means that the integration area ffluthe spectrum is (a) rectangular and (b) of the same
size at all wavelengths.

So, whatis the size of the image that is integrated over? The answeristhe same size as the default size of an
image. In fact, if you make a spectrum with

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20. nlam 10

then this is the same as if you would type
radmc3d image incl 45 phi 30 lambdarange 5. 20. nlam 10

and read in the filémage.out ininto IDL (see Sectio®.2) or your favorite other data language, and integrate the
images to obtain fluxes. In other words: the commsgettrum is effectively the same as the commange
but then instead of writing out @émage.out file, it will integrate over all images and writespectrum.out ~ file.

If you want to have a quick look at the area over which the spettis to be computed, but you don’t want to
compute all the images, just type e.g.:

radmc3d image lambda 10 incl 45 phi 30

then you see animage of your sourca at 10xm, and the integration area is precisely this area — at akkleagths.
Like with the images, you can specify your viewing area, dnttyour integration area. For instance, by typing

radmc3d image lambda 10 incl 45 phi 30 zoomau -2 -1 -0.5 0.5

makes an image of your sourcedat= 10um at inclination 45 degrees, and orientation 30 degreeszaouhs in at
an are from -2 AU to -1 AU in x-direction (in the image) and fre@n5 AU to 0.5 AU in y-direction (in the image).
To make an SED within the same integration area:

radmc3d sed incl 45 phi 30 zoomau -2 -1 -0.5 0.5

In this case we have an SED with a “beam size” of 1 AU diametdrkbep in mind that the “beam” is square, not
circular.

9.3.2 Can one specify more realistic “beams”?

Clearly, a wavelength-independent beam size is unreglestid also the square beam is unrealistic. So is there a
way to do this better? In reality one should really know elyalsbw the object is observed and how the flux is
measured. If you use an interferometer, for instance, mggbeflux is meant to be the flux in a single synthesized
beam. For a spectrum obtained with a slit, the precise flugpeddent on the slit width: the wider the slit, the more
signal you pick up, but it is a signal from a larger area.

So if you really want to be sure that you know exactly what ymudoing, then the best method is to do this youself
by hand. You make multi-wavelength images:

radmc3d image incl 45 phi 30 lambdarange 5. 20. nlam 10

and integrate over the images in the way you think best mithiesictual observing procedure. You can do so, for
instance, in IDL. See Sectidgh2 for more information about multi-wavelength images.

But to get some reasonable estimate of the effect of the wagé#i-dependent size and circular geometry of a
“beam”, RADMC-3D allows you to make spectra with a simptistircular mask, the radius of which can be
specified as a function of wavelength in the filgerture _info.inp  (see Sectioi\.16.2). This file should con-
tain a table of mask radii at various wavelengths, and whekimgaa spectrum with the command-line keyword
useapert the mask radii will be found from this table by interpolatiom other words: the wavelength points
of theaperture _info.inp  file do not have to be the same as those used for the spectrunthédurangemust

be larger or equal than the range of the wavelengths usethdosgectrum, because otherwise interpolation does
not work. In the most extreme simplistic case #perture _info.inp  file contains merely two values: one for a
very short wavelength (shorter than used in the spectruchpae for a very long wavelength (longer than used in
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the spectrum). The interpolation is then done double-ityaically, so that a powerlaw is used between sampling
points. So if you use a telescope with a given diameter foetitee range of the spectrum, two sampling points
would indeed suffice.

You can now make the spectrum with the aperture in the foligwvay:
radmc3d sed useapert dpc 100

The keyworddpc 100 is the distance of the observer in units of pafséere assumed to be 100. This distance is
necessary because the aperture information is given ie@wns's, and the distance is used to convert this is image
size.

Important note:Although you specify the distance of the observer herespleetrum.out  file that is produced is
still normalized to a distance of 1 parsec.

Note also that in the above example you can add any other kelgves shown in the examples before, as long as
you add theuseapert keyword and specifdpc .

A final note: the default behavior of RADMC-3D is to use the agufield approach described before. You can
explicitly turn off the use of apertures (which may be uséfuihe child mode of RADMC-3D) with the keyword
noapert , but normally this is not necessary as it is the default.

9.4 Specifying custom-made sets of wavelength points forélcamera

If you want to make a spectrum at a special grid of wavelerifytiencies, with thepectrum command (see
Section9.3), you must telradme3d which wavelengths you want to use. Here is described how thidan various
ways.

9.4.1 Usinglambdarange and (optionally) nlam

The simplest way to choose a set of wavelength for a specsunmith thelambdarange and (optionally)nlam
command line options. Here is how to do this:

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20.

This will make a spectrum between 5 and 2®. It will use by default 100 wavelength points logarithniga
spaced between 5 and 2én. You can change the number of wavelength points as well:

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20. nlam 1000

This will do the same, but creates a spectrum of 1000 wavtiquajnts.

9.4.2 Usingloadcolor

By giving the commandbadcolor  on the command lineadmc3d will search for the filecolor _inus.inp
This file contains integers selecting the wavelengths fitoarfite wavelength  _micron.inp . The file is described
in SectionA.16.1

9.4.3 Usingloadlambda

By giving the commantbadlambda on the command lineadmc3d will search for the fileamera _wavelength _micron.inp
This file contains a list of wavelengths in micron which catuge the grid in wavelength. This file is described in
SectionA.12.

3This is still (and only) valid in the observer-at-infinity faelt mode. But the distance is necessary for internal caatioms as described in
the text.
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9.4.4 Usingiline ,imolspec etc (for when lines are included)

By adding for instancéine 3 to the command line you specify a window around line numbédnBdgefault of
molecule 1). By also specifying for instanioeolspec 2 you select line 3 of molecule 2. By addimgdthkms

3 you specify how wide the window around the line should be (3skim this example). Witlvkms 2 you set
the window offset from line center by 2 km/s in this exampley &ldinglinenlam 30  you set the number of
wavelength points for this spectrum to be 30 in this examPtea complete (though different) example is:

radmc3d spectrum incl 45 phi 30 iline 2 imolspec 1 widthkms 6. 0 vkms 0.0 linenlam 40

9.5 Heads-up: In reality wavelength are actually wavelendt bands

In a radiative transfer program liIKRADMC-3Dthe images or spectral fluxes are calculateexaictwavelengths.
This would correspond to making observations with infiyitearrow filters, i.e. filters wittAA = 0. This is not
how real observations work. In reality each wavelength oeahas a finite widtl/A\ and the measured flux (or
image intensity) is an average over this range. To be even precise, each wavelength channieas some profile
®;(\) defined such that

/OO B;(\)dA =1 (9.1)
0

For wide filters such as the standard photometric systergs&BRI in the optical and JHK in the near infrared)
these profiles span ranges with a width of the ordei d@fself. Many instruments have their own set of filters.
Usually one can download these profiles as digital tablesarlf under some circumstances, be important to include
a treatment of these profiles in the model predictions. Askamgle take the N band. This is a band that includes
the 10um silicate feature, which is a strong function of wavelengtthin the N band. If you have a wide filter

in the N band, then one cannot simply calculate the modeltspadn one single wavelength. Instead one has to
calculate it for a properly finely sampled set of wavelengthfor 1 < i < n, wheren is the number of wavelength
samples, and then compute the filter-averaged flux with:

Fhand = / h ;N F(\)d\ = Xn:@Fid/\ (9.2)
0

i=1

whered \ is the wavelength sampling spacing used. The same is truméwe intensitiesSRADMC-3Dwill not do

this automatically. You have to tell it the sampling points, let it make the images or fluxes, and youthéh have

to perform this sum yourselfNote that this will not always be necessahy!many (most?) cases the dust continuum
is not expected to change so dramatically over the width efitter that such degree of accuracy is required. So
you are advised to think carefully: “do | need to take carehaf br can | make do with a single wavelength sample
for each filter?”. If the former, then do the hard work. If tlaétér: then you can save time.

9.5.1 Using channel-integrated intensities to improve lia channel map quality

When you make line channel maps you may face a problem thahiglsow related to the above issue of single-
A-sampling versus filter-integrated fluxes/intensitiesh& model contains gas motion, then doppler shift will shift
the line profile around. In your channel map you may see ragiewoid of emission because the lines have doppler
shifted out of the channel you are looking at. However, agmigsd in Sectior?.5 if the intrinsic line width of

the gas is smaller than the cell-to-cell velocity differescthen the channel images may look very distorted (they
will look “blocky”, as if there is a bug in the code). Pleaséerao Section7.5for more details and updates on this
important, but difficultissue. Itis not a bug, but a generalkjfem with ray-tracing of gas lines in models with large
velocity gradients.

As one of thes-testers 0RADMC-3D Rahul Shetty, has found out, this problem can often beialies a lot if you
treat the finite width of a channel. By taking multiplepoints in each wavelength channel (i.e. multipi@oints in
each velocity channel) and simply averaging the interss{tie. assuming a perfectly squardunction) and taking
the width of the channels to be not smaller (preferably sigtlly wider) than the cell-to-cell velocity differense
this “blocky noise” sometimes smoothes out well. Howeues always safer to use the “doppler catching” mode
(see Sectior1.6) to automatically prevent such problems (though this medgires more computer memory).
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9.6 The issue of flux conservation: recursive sub-pixeling

9.6.1 The problem of flux conservation in images

If an image of nxny pixels is made simply by ray-tracing one single ray forrepixel, then there is the grave
danger that certain regions with high refinement (for instanith AMR in cartesian coordinates, or near the center
of the coordinate system for spherical coordinates) ar@ragterly 'picked up’. An example: suppose we star with
a circumstellar disk ranging from 0.1 AU out to 1000 AU. Mostlee near infrared flux comes from the very inner
regions near 0.1 AU. If an image of the disk is made with 10@xpiXels and image half size of 1000 AU, then
none of the pixels in fact pass through these very brightrinegions, for lack of spatial resolution. The problem is
then that the image, when integrated over the entire imaggs dot have the correct flux. Whedtouldbe is that the
centermost pixels contain the flux from this innermost rag&ven if these pixels are much larger than the entire
bright region. In other words, the intensity of these pixaisst represent the average intensity, averaged over the
entire pixel. Strictly speaking one should trace an infigib@tinuous 2-D series of rays covering the entire pixel
and then average over all these rays; but this is of courspassible. In practice we should find a way to estimate
the average intensity with only a finite number of rays.

9.6.2 The solution: recursive sub-pixeling

In RADMC-3D what we do is to use some kind of 'adaptive gridmefnent’ of the pixels of the image. For each
pixel in the image the intensity is computed through a ca#l subroutine calledamera _compute _one _pixel()

In this subroutine a ray-tracing is performed for a ray thadseright in the middle of our pixel. During the ray-
tracing, however, we check if we pass regions in the modélthet have grid cells with sizésthat are smaller than
the pixel size divided by some factgyr.; (where pixel size is, like the model grid size S itself, meadun centime-
ters)). If this is foundnotto be true, then the pixel size was apparently ok, and thesitieresulting from the ray-
tracing is now returned as the final intensity of this pixglhbwever, this conditiois found to be true, then the re-
sult of this ray is rejected, and instead 2x2 sub-pixels areputed by calling theamera _compute _one _pixel()
subroutine recursively. We thus receive the intensity cheaf these four sub-pixels, and we return the average of
these 4 intensities.

Note, by the way, that each of these 2x2 subpixels may bees@it further into 2x2 sub-pixels etc until the desired
resolution is reached, i.e. until the condition tt$ats larger or equal to the pixel size divided Iy is met. By
this recursive calling, we always end up at the top level whhaverage intesity of the entire top-level pixel. This
method is very similar to quad-tree mesh refinement, bueatsof retaining and returning the entire complex mesh
structure to the user, this method only returns the finalay@intensity of each (by definition top level) pixel in
the image. So the recursive sub-pixeling technique destfiere is all done internally in the RADMC-3D code,
and the user will not really notice anything except that gub-pixeling can of course be computationally more
expensive than if such a method is not used.

Note that the smaller we choogg¢ the more accurate our image becomes. Inréldenc3d.inp file the value of
fret Can be set by setting the varialt@mera _refine _criterion to the value you wanf,.; to be. Not setting
this variable means RADMC-3D will use the default value whis reasonable as a choice (default is 1.0). The
smaller you setamera _refine _criterion  , the more accurate and reliable the results become (buteiinedr
the calculation becomes, too).

NOTE:The issue of recursive sub-pixeling becomes tricky whers stee treated as spheres, i.e. non-point-like (see
Section9.7and Chaptef 1).

9.6.3 A danger with recursive sub-pixeling

It is useful to keep in mind that for each pixel the recursiub-pixeling is triggered if the ray belonging to that
pixel encounters a cell that is smaller than the pixel sizgs mormallyworks well if f..¢ is chosen small enough.
But if there exist regions in the model where one big non-egfioell lies adjacent to a cell that is refined, say, 4
times (meaning the big cell has neighbors that are 16 timedieart), then if the ray of the pixel just happens to miss

4This is not possible for images for local observers, but se#i@9.10for details.
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the small cells and only passes the big cell, it won't “ndtitet it may need to refine to correctly capture the tiny
neighboring cells accurarely.

Such a problem only happens if refinement levels jump by mfae 1 between adjacent cells. If so, then it may be
important to make,.r correspondingly smaller. A bit of experimentation may bedes here.

9.6.4 Recursive sub-pixeling in spherical coordinates

In spherical coordinates the recursive sub-pixeling haeaigsues that you may want to be aware of. First of all,
in 1-D spherical coordinates each cell is in fact a shell oéidain thickness. In 2-D spherical coordinates cells are
rings. In both cases the cells are not just local boxes, e Bar 1 (respectively) extended dimensions. RADMC-
3D takes care to still calculate properly how to define theirgige sub-pixeling scale. But for rays that go through
the central cavity of the coordinate system there is no wijgdefined pixel resolution to take. The global variable
camera _spher _cavity _relres (with default value 0.05) defines such a relative scale. Youahange this value

in theradmc3d.inp file.

A second issue is when the user introduces extreme “separefbiement” (see SectidrD.2 in the R coordinate.
This may, for instance, be necessary near the inner edgeusta disk model in order to keep the first cell optically
thin. This may lead, however, to extremely deep sub-pigelar rays that skim the inner edge of the grid. This
leads to a huge slow-down of the ray-tracing process althdtig likely not to give much a different result. To
avoid this RADMC-3D has a global variabtamera _min _aspectratio (default value is 0.05) that limits this.
You can change it in theadmc3d.inp  file. The smaller you make this number, the more accurateeliable the
results.lt may be prudent to experiment with smaller values for modéth extremely optically thick inner edges,
e.g. a protoplanetary disk with an abrupt inner edge and dhigst surface density.

9.6.5 How can I find out which pixels RADMC-3D is recursively efining?

Sometimes you notice that the rendering of an image or spadgikes much more time than you expected. When
recursive sub-pixeling is used for imaging, RADMC-3D willzg diagnostic information about how many more

pixels it has rendered than the original image resolutiohis Tactor can give some insight if extreme amount of
sub-pixeling refinement has been used. But it does not sagevithéhe image this occurs. If you want to see exactly
which pixels and subpixels RADMC-3D has rendered for somagien you can use the following command-line

option:

radmc3d image lambda 10 diag_subpix

This diag _subpix option will tell RADMC-3D to write a file calledsubpixeling  _diagnostics.out which
contains four columns: One for the x-coordinate of the (fuikel, one for the y-coordinate of the (sub-)pixel, one
for the x-width of the (sub-)pixel and a final one for the y-thiaf the (sub-)pixel. In IDL, if you use for instance
the astrolib library, you can use theadcol procedure to read these columns.igide IDLyou then type

.r readcol
readcol,’'subpixeling_diagnostics.out’,px,py

plot,px,py,psym=3

and you get a plot of all the pixel-centers and sub-pixelkt&erused.

9.6.6 Alternative to recursive sub-pixeling

As an alternative to using this recursive sub-pixeling teghe to ensure flux conservation, one can simply enhance
the spatial resolution of the image. This has the clear adgenthat the user gets the complete information of
the details in the image (while in the recursive sub-pixgliechnique only the averages are retained). The clear
disadvantages are that one may need rediculously highudtEsoimages (i.e. large data sets) to resolve all the
details and one may waste a lot of time rendering parts ofittagé which do not need that resolution. The latter is
typically an issue when images are rendered from modelaif@afMR techniques.
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Figure 9.1. Pictographic representation of the integration of thegfanequation along a ray (red line with arrow
head) through an AMR grid (black lines). The grid cuts theirdg ray segments A, B, C and D. At the bottom it
is shown how the integrands are assumed to be along thessdgonents. Left: When using first order integration.
The emissivity functiory,, and extinction functiomy, are constant within each cell and thus constant along egch ra
segment. Right: When using second order integration. Thesarity functionj, and extinction functiory, are
given at the cell corners (solid blue circles), and lineartgrpolated from the cell corners to the locations wheee th
ray crosses the cell walls (open blue circles). Then, alaul) eay segment the emissivity and extinction functions
are assumed to be linear functions, so that the integragisultris quadratic. The thin blue horizontal dashed lines
are the same as those in the Left panel, and are just thererfggarison. Note that these figures are 2-D, whereas
this actually happens in 3-D. See Secttha for more information.

9.7 Stars in the images and spectra

Per default, stars are still treated as point sources. Thansithat none of the rays of an image can be intercepted
by a star. Starlight is included in each image as a post-pgeitg step. First the image is rendered without the stars
(though with of course all the emission of dust, linesiattucedby the stars) and then for each star a ray tracing
is done from the star to the observer (where only extinctiotaken into account, because the emission is already
taken care of) and the flux is then added to the image at theatqrosition. You can switch off the inclusion of the
stars in the images or spectra with tiwstar command line option.

However, as of version 0.17, stars can also be treated asitteedize spheres they are. This is done with setting
stars _sphere = 1 inradmc3d.inp . However, this mode can slow down the code a bit or even suoiiestg.
And it may still be partly under development, so the code ntay § it is required to handle a situation it cannot
handle yet. See Chaptet for details.

9.8 Second order ray-tracing (Important information!)

Ideally we would like to assure that the model grid is suffitig finely spaced everywhere. But in many cases of
interest one does not have this luxury. One must live witlfdloethat, for memory and/or computing time reasons,
the grid is perhaps a bit coarser than would be ideal. In swesea it becomes important to consider the “order” of
integration of the transfer equation. By default, for imagad spectra, RADMC-3D uses first order integration: The
source term and the opacity in each cell are assumed to btaoboser the cell. This is illustrated in Fig.1-Left.
The integration over each cell proceeds according to thewaig formula:

Liesuit = Istarce™ " + (1 - e_T)S (93)
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whereS = j/« is the source function, assumed constant throughout thercel « As is the optical depth along
the path that the ray makes through the cell, &gl is the intensity upon entering the cell. This is the default
used by RADMC-3D because the Monte Carlo methods also tedlatas having constant properties over each cell.
This type of simple integration is therefore the closestdw the Monte Carlo methods (thermal MC, scattering
MC and mono MC) “see” the grid. However, with first order intatipn the images look somewhat “blocky”: you
can literally see the block structure of the grid cells inith@ge, especially if you make images at angles aligned
with the grid. For objects with high optical depths you magmegee grid patterns in the images.

RADMC-3D can also use second order integration for its insaayed spectra. This is illustrated in FR1-Right.
This is done with a simplestcondorder " option added on the command line, for instance:

radmc3d image lambda 10 secondorder

The integration now follows the formula (Olson et al. 1986):

Ircsult - Istartei‘r + (1 - 677 - B)Sstart + ﬁScnd (94)
with
T—14e 7
g=l—*c (9.5)
T
and "
- Qstart 5 Qend As (96)

ForT — 0 we have the limit3 — 7/2, while for 7 — oo we have the limit3 — 1.

The values oty, S etc., at the “start” position are obtained at the cell irdeef where the ray enters the cell. The
values at the “end” position are obtained at the cell intafevhere the ray leaves the cell. The above formulas
represent the exact solution of the transfer equation aloisgay-section if we assume that all variables are linear
functions between the “start” and “end” positions.

The next question is: How do we determine the physical vigat the cell interfaces (“start” and “end”)? After
all, initially all variables are stored for each cell, not &ach cell interface or cell corner. The way that RADMC-3D
does this is:

e First create a “grid of cell corners”, which we call thiertex grid(see the solid blue dots in Fi§.1-Right).
The cell grid already implicitly defines the locations of e cell corners, but these corners are, by default,
not explicitly listed in computer memory. When thecondorder  option is given, however, RADMC-3D
will explicitly find all cell corners and assign an identitg (inique integer number) to each one of them.
NOTE: Setting up this vertex grid costs computer memory!

e At each vertex (cell corner) the physical variables of thet@) 8 cells touching the vertex are averaged with
equal weight for each cell. This now maps the physical véggfvom the cells to the vertices.

e Whenever a ray passes through a cell wall, the physicalbasaof the 4 vertices of the cell wall are in-
terpolated bilinearly onto the point where the ray passesuthh the cell wall (see the open blue circles in
Fig. 9.1-Right). This gives the values at the “start” or “end” points

e Since the current “end” point will be the “start” point foremext ray segment, the physical variables need
only be obtained once per cell wall, as they can be recyclethionext ray segment. Each set of physical
variables will thus be used twice: once for the “end” and ofwethe “start” of a ray segment (except of
course at the very beginning and very end of the ray).

If you compare the images or spectra obtained with first ongkexgration (default) or second order integration
(Fig. 9.2 you see that with the first order method you still see the stelicture of the grid very much. Also
numerical noise in the temperature due to the Monte Carlkistts is much more prominent in the first order
method. The second order method makes much smoother results

For line transfer the second order mode can be even improitedhe “doppler catching method”, see Sectibb.
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Figure 9.2. First-order integration of transfer equation in ray-trecileft two panels), versus second order in-
tegration (right two panels). Upper: 60 degrees inclimatibower: 4 degrees inclination. Shown here is the
run _simple _1_layers model (in theexamples directory) atA = 10 um at some zoom factor. See Section
9.8for more information.

9.9 Using circularly arranged pixels for spectra (special dpic)

In the predecessor code (RADMC) the issue with flux consinvatas dealt with using a trick different from
subpixeling: Rather than arranging the pixels of the image®ws and columns, the pixels were arranged in
concentric circles. The radii of these circles are tunedhéoradii of the spherical coordinate system. In this way
the huge dynamic range of scales of the model could be dehlantomatically.

Here, in RADMC-3D, we do not really need this trick, becaukthe new technique of recursive subpixeling (see
Section9.6.2.

But it might sometimes nevertheless be useful to use thisilar pixel arrangement, because it is faster (though less
reliable) than the recursive subpixeling. Also, the reswibuld be easier to compare to the results of RADMC. But
this mode works only when you use spherical coordinatesb Algere is no recursive subpixeling done when you
use this mode, so if you use spherical coordirsatd AMR grid refinement, then the refined regions may be not
well resolved and flux may not be well conserved. And it worklydor spectra. Images will remain rectangular
pixel arrangements.

You can active it by the command-line opticinc , iff you specifiedspectrum orsed as well.

9.10 For public outreach work: local observers inside the mdel

While it may not be very useful for scientific purposes (thibtigere may be exceptions), it is very nice for public

outreach to be able to view a model from the inside, as if ysuha observer, were standing right in the middle of
the model cloud or object. One can then use physical or séysipal or even completely ad-hoc opacities to create
the right 'visual effects’. RADMC-3D has a viewing mode fbiid purpose. You can use different projections:

e Projection onto flat screen:
The simplest one is a projection onto a screen in front (oiehhthe point-location of the observer. This gives
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an image thatis good for viewing in a normal screen. Thisagigfault amera _localobs _projection=1 ).

e Another projection is a projection onto a sphere, whichvafields of view that are equal or larger tham of
the sky. It may be useful for projection onto an OMNIMAX dornidais is projection modeamera _localobs  _projection=2

You can set the variableamera _localobs _projection  to 1 or 2 by adding on the command lipsjection
2 (or 1), or by setting it in theadmc3d.inp  as a linecamera _localobs _projection = 2 (or1).

To use the local projection mode you must specify the foltmwariables on the command line:

e sizeradian
This sets the size of the (square) image in radian. Settingvili make the image square (like settisigeau
in the observer-at-infinity mode, see Sectibf).

e zoomradian :
Insteadof sizeradian ~ you can also specifyoomradian , which is the local-observer version adomau
orzoompc (see Sectiod.1).

e posang :
The position angle of the camera. Has the same meaning as ab#erver-at-infinity mode.

e locobsau orlocobspc
Specify the 3-D location of the local observer inside the elad units of AU or parsec. This requires 3
numbers which are the x, y and z positions (also when usingragai coordinates for the model setup: these
are still the cartesian coordinates).

e pointau Or pointpc
These have the same meaning as in the observer-at-infindglmbhey specify the 3-D location of the point
of focus for the camera (to which pointin space is the cameirating) in units of AU or parsec. This requires
3 numbers which are the x, y and z positions (also when usingrggal coordinates for the model setup: these
are still the cartesian coordinates).

Settingsizeradian , zoomradian , locobsau orlocobspc on the command line automatically switches to the
local observer mode (i.e. there is no need for an extra keywetting the local observer mode on). To switch back
to observer-at-infinity mode, you specify eiigzl  or phi (the direction toward which the observer is located in the
observer-at-infinity mode). Note that if you accidentlygpeboth e.g.sizeradian  andincl , you might end up
with the wrong mode, because the mode is set by the last relemé&ry on the command line.

The images that are produced using the local observer madldeswe the x- and y- pixel size specifications in radian
instead of cm. The first line of an image (the format numbenhefftle) contains then the value 2 (indicating local
observer image with pixel sizes in radian) instead of 1 (Whintlicates observer-at-infinity image with pixel sizes
in cm).

NOTE: For technical reasons dust scattering is (at leastrfow) not included in the local observer mode! It is
discouraged to use the local observer mode for scientifippses.

9.11 Multiple vantage points: the “Movie” mode

It can be useful, both scientifically and for public outreatchmake movies of your model, for instance by show-
ing your model from different vantage points or by “travedf through the model using the local observer mode
(Section9.10. For a movie one must make many frames, each frame being ageicreated by RADMC-3D’s
image capabilities. If you cathdmc3d separately for each image, then often the reading of allaigelinput files
takes up most of the time. One way to solve this is to Galnc3d in “child mode” (see Chaptet2). But this

is somewhat complicated and cumbersome. A better way iss@RADOMC-3D’s “movie mode”. This allows you
to ask RADMC-3D to make a sequence of images in a single chk Way to do this is to cathdmc3d with the
movie keyword:

radmc3d movie
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This will makeradmc3d to look for a file callednovie.inp  which contains the information about each image it
should make. The structure of thevie.inp file is:

iformat

nframes

<<information for frame 1>>

<<information for frame 2>>
<<information for frame 3>>

<<information for frame nframes>>

Theiformat is an integer that is described below. Tifeames is the number of frames. The<information
for frame xx >> are lines containing the information of how the camera sthbel positioned for each frame of
the movie (i.e. for each imag). Itis also described below.

There are multiple ways to tell RADMC-3D how to make this sege of images. Which if these ways RADMC-
3D should use is specified by thermat  number. Currently there are 2, but later we may add furthssipdities.
Here are the current possibilities

e iformat=1:
The observer is at infinity (as usual) and theinformation for frame xx >> consists of the following
numbers (separated by spaces):

pntx pnty pntz hsx hsy pa incl phi
These 8 numbers have the following meaning:

— pntx,pnty,pntz
These are the x, y and z coordinates (in units of cm) of thetpoieard which the camera is pointing.

— hsx,hsy
These are the image half-size in horizontal and verticalatiion on the image (in units of cm).
This is the position angle of the camera in degrees. Thishesame meaning as for a single image.
— incl,phi
These are the inclination and phi angle toward the obsema@ggrees. These have the same meaning as
for a single image.

e iformat=-1:
The observer is local (see Secti®rl0 and the<<information for frame xx >> consists of the fol-
lowing numbers (separated by spaces):

pntx pnty pntz hsx hsy pa obsx obsy obsz
These 9 numbers have the following meaning:

— pntx,pnty,pntz,hsx,hsy,pa
Same meaning as for iformat=1.

— obsx,0bsy,obsz
These are the X, y and z position of the local observer (irswofitm).

Apart from the quantities that are thus set for each imagarsggly, all other command-line options still remain
valid.

Example, let us make a movie of 360 frames of a model seen aitynfvhile rotating the object 360 degrees, and
as seen at a wavelength b= 10m with 200x200 pixels. We construct thevie.inp  file:

1

360

0. 0. 0. 1d15 1d15 0. 60. 1.
0. 0. 0. 1d15 1d15 0. 60. 2.
0. 0. 0. 1d15 1d15 0. 60. 3.
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0. 0. 0. 1d15 1d15 0. 60. 358.
0. 0. 0. 1d15 1d15 0. 60. 359.
0. 0. 0. 1d15 1d15 0. 60. 360.

We now call RADMC-3D in the following way:
radmc3d movie lambda 10. npix 200

This will create image fileémage _0001.out , image -0002.out , all the way toimage _0360.out . The images
will have a full width and height o2 x 10°cm (about 130 AU), will always point to the center of the imagél
be taken at an inclination of 60 degrees and with varyirangle.

Another example: let us move through the object (local olesemode), approaching the center very closely, but
not precisely:

-1

101

0. 0. 0. 0.8 0.8 0. 6.d13 -1.0000d15 O.
0. 0. 0. 0.8 0.8 0. 6.d13 -0.9800d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 -0.9600d15 O.
0. 0. 0. 0.8 0.8 0. 6.d13 -0.0200d15 O.
0. 0. 0. 0.8 0.8 0. 6.d13 0.0000d15 O.
0. 0. 0. 0.8 0.8 0. 6.d13 0.0200d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 0.9600d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 0.9800d15 O.
0. 0. 0. 0.8 0.8 0. 6.d13 1.0000d15 0.

Here the camera automatically rotates such that the foooains on the center, as the camera flies by the center of
the object at a closest-approach to the centérofl0'3>cm. The half-width of the image is 0.8 radian.

9.12 For developers: some details on the internal workings

[This section is only interesting for developers]

9.12.1 Multi-wavelength images and spectra: two methods @nd 2)

[TO BE COMPLETED]

9.12.2 Ray-tracing: two methods (A and B)
The camera module of RADMC-3D features two different waysacing a ray for making images and spectra:

e Method A: Tracing in a sequential step-by-step fashion, wherebyddt step the opacities are computed, the
intensities are updated and the next position of the raydr8tbh model is determined. This is the method by
default, and it the simplest method. But it may not alwayshgenhost optimized in terms of speed.

e Method B: First find out how the ray goes through the 3-D model, and peepa -D array of dust tempetures
and densities, line transfer quantities (such as level jadipuas etc) and\s values (length of ray elements).
Then compute the opacities at each point. Then finally do tBefdrmal transfer. This method has the
advantage that it lends itself well for parallellization arGPU (which only gives speed-up if method 2 is
used for multi-wavelength images and spectra, see Se@tiith). Also, by scouting the entire ray before
doing the full transfer — the automatic line/level substilsséection for the line transfer (see SectibB.1) —
can be done and may give some speed up in some cases for theylitracing.
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Chapter 10

More information about the gridding

We already discussed the various types of grids in Seéti®rand the grid input file structure is described in Section
A.2. In this chapter let us take a closer look at the gridding ipdi&ges and things to take special care of.

10.1 Regular grids

Aregular grid is called “grid style 0" in RADMC-3D. It can besed in Cartesian coordinates as well as in spherical
coordinates (Sectiob.?2).

A regular grid, in our definition, is a multi-dimensional dmvhich is separable im, y andz (or in spherical coordi-
nates in-,  and¢). You specify a 1-D monotonically increasing array of vaue, xs, - - - , xy,+1 Which represent
the cell walls inz — direction. You do the same for the other directions; vz, - - - , Yny+1 andzi, 22, - -+ , Znzy1.
The value of, says- is the same for every position inandz: this is what we mean with “separable”.

In Cartesian coordinates RADMC-3D enforces perfectly cufnid cells (i.e. linear grids). But that is only to
make the image sub-pixeling easier (see Seddi@1). For spherical grids this is not enforced, and in fact it is
strongly encouraged to use non-linear grids in sphericatdinates. Please read Sectih2if you use spherical
coordinates!

In a regular grid you specify the grids in each direction safedy. For instance, the x-grid is given by specifying
the cell walls in x-direction. If we have, say, 10 cells in kedttion, we must specify 11 cell wall positions. For
instancex; = {—5,—4,-3,-2,—1,0,1,2, 3,4, 5}. For they-direction and:-direction likewise. Fig10.1shows

an example of a 2-D regular grid of 4x3 cells. In Cartesiarrdiomates wenustdefine our model in full 3-D (proper
2-D and 1-D modes are not available, but see Sedtb6how to simulate a 1-D plane-parallel mode). In Cartesian
coordinates the cell sizesustbe perfectly cubical, i.e. the spacing in each directiontrbeghe same. If you need
a finer grid in some location, you can use the AMR capabiliissussed below.

In spherical coordinates you can choose between 1-D splilgrgymmetric models, 2-D axisymmetric models
or fully 3-D models. In spherical coordinates you dot have restrictions to the cell geometry or grid spacing.
You can choose any set of numbeis- - - ,r,, as radial grid, as long as this set of numbers is larger thamdO a
monotonically increasing. The same is true for #hgrid and thep-grid.

The precise way how to set up a regular grid usingatie grid.inp  file is described in SectioA.2.1. The input
of any spatial variables (such as e.g. the dust density)theesequence of grid cells in the same order as the cells
are specified in thamr_grid.inp  file.

10.2 Separable grid refinement in spherical coordinates (imortant!)

Spherical coordinates are a very powerful way of dealindp wéntrally-concentrated problems. For instance, col-
lapsing protostellar cores, protoplanetary disks, didégas, dust tori around active galactic nuclei, accretimks
around compact objects, etc. In other words: problems irchvhisingle central body dominates the problem, and
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Figure 10.1. Example of a regular 2-D grid withx=4 andny =3.

material at all distances from the central body matters. éxample a disk around a young star goes all the way
from 0.01 AU out to 1000 AU, covering 5 orders of magnitudeadius. Spherical coordinates are the easiest way
of dealing with such a huge radial dynamic range: you simphkena radial grid, where the grid spacing, — r;
scales roughly withr; .

This is called dogarithmic radial grid This is a grid whith a spacing in whid; 1 — 7;)/r; is constant withr.

In this way you assure that you have always the right spasalution inr at each radius. In spherical coordinates
it is highly recomended to use such a log spacing. But you tsmrafine the- grid even more (in addition to the
log-spacing). This is also strongly recommended near theriadge of a circumstellar shell, for instance. Or at the
inner dust rim of a disk. There you must refine thgrid (by simply making the spacing smaller as you approaeh th
inner edge from the outside) to assure that the first few aeeioptically thin and that there is a gradual transition
from optically thin to optically thick as you go outward. Bhs particularly important for, for instance, the inner
rim of a dusty disk.

In spherical coordinates you can vary the spacing ihand¢ completely freely. That means: you could have for
instancer to be spaced ak00,1.01,1.03,1.05,1.1,1.2,1.35, - - -. There is no restriction, as long as the coordinate
points are monotonically increasing.

For models of accretion disks it can, for instance, be ugefutake sure that there are more grid pointg oiear
the equatorial plane = 7/2. So the grid spacing betweén= 0.0 andd = 1.0 may be very coarse while between
0 = 1.0 andd = 7/2 you may put a finer grid. All of this “grid refinement” can be @owithout the “AMR”
refinement technique: this is the “separable” grid refineirsrause you can do this separatelyfdor § and for

0.

Sometimes, however, separable refinement may not help yefine the grid where necessary. For instance: if you
model a disk with a planet in the disk, then you may need toedfie grid around the planet. You could refine the
grid in principle in a separable way, but you would then halage redundancy in cells that are refined by far away
from the planet. Or if you have a disk with an inner rim thatdd exactly at- = r.;,,,, but is a rounded-off rim. In
these cases you need refinement exactly located at the refgioierest. For that you need the “AMR” refinement
(Sectionsl0.3and10.4).
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Figure 10.2. Example of a 2-D grid with oct-tree refinement. The base gasinx=4 andny =3. Three levels of
refinement are added to this base grid.

10.3 Oct-tree Adaptive Mesh Refinement

An oct-tree refinened grid is called “grid style 1” in RADM@3It can be used in Cartesian coordinates as well as
in spherical coordinates (Sectiér).

You start from a normal regular base grid (see Sectidd), possibly even with “separable refinement” (see Section
10.2. You can then split some of the cells into 2x2x2 subcellsnfore precisely: in 1-D 2 subcells, in 2-D 2x2
subcells and in 3-D 2x2x2 subcells). If necessary, eachasigl2x2x2 subcells can also be split into further subcells.
This can be repeated as many times as you wish until the degiicerefinement level is reached. Each refinement
step refines the grid by a factor of 2 in linear dimension, Whiteans in 3-D a factor of 8 in volume. In this way
you get, for each refined cell of the base grid, a tree of refer@nirhe base grid can have any size, as long as the
number of cells in each direction is an even number. Forim&ayou can have a 6x4 base grid in 2-D, and refine
cell (1,2) by one level, so that this cell splits into 2x2 selltx

Note that it is important to set which dimensions are “actased which are “non-active”. For instance, if you have
a 1-D model with 100 cells and you tell RADMC-3D (see SectoB.?2) to make a base grid of 100x1x1 cells, but
you still keep all three dimensions “active” (see SecthkB.2), then a refinement of cell 1 (which is actually cell
(1,1,2)) will split that cell into 2x2x2 subcells, i.e. it Ivalso refine in y and z direction. Only if you explicitly
switch the y and z dimensions off the AMR will split it into ju® subcells.

Oct-tree mesh refinement is very powerful, because it alipousto refine the grid exactly there where you need
it. And because we start from a regular base grid like the gpetified in Sectiod 0.1, we can start designing our
model on a regular base grid, and then refine where needediGd®.2

The AMR stand for “Adaptive Mesh Refinement”, which may sugfjghat RADMC-3D will refine internally. At
the moment this is not yet the case. The “adaptive” aspeeftitd the user: he/she will have to “adapt” the grid
such that it is sufficiently refinened where it is needed. iftiture we may allow on-the-fly adaption of the grid,
but that is not yet possible now.

One problem with oct-tree AMR is that it is difficult to handiech grids in external plotting programs, or even in
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programs that set up the grid. While it is highly flexible,striot very user-friendly. Typically you may use this
oct-tree refinement either because you import data from eolaythamics code that works with oct-tree refinement
(e.g. FLASH, RAMSES), or when you internally refine the greiing theuserdef _module.fo0 (see Chaptet3).

In the former case you are anyway forced to manage the coitiperf AMR, while in the latter case you can
make use of the AMR modules of RADMC-3D internally to handilerh. But if you do not need to full flexibility
of oct-tree refinement and want to use a simpler kind of refer@mthen you can use RADMC-3D’s alternative
refinement mode: the layer-style AMR described in Sectiodbelow.

The precise way how to set up such an oct-tree grid usingrthegrid.inp  file is described in SectioA.2.2. The
input of any spatial variables (such as e.g. the dust dgnsstgs the sequence of grid cells in the same order as the
cells are specified in thainr_grid.inp ~ file.

10.4 Layered Adaptive Mesh Refinement

A layer-style refinened grid is called “grid style 10” in RADBA3D. It can be used in Cartesian coordinates as well
as in spherical coordinates (Sect®2).

This is an alternative to the full-fledged oct-tree refinetridiSection10.3 The main advantage of the layer-style
refinement is that it is far easier to handle by the human beaid thus easier for model setup and the analysis of
the results.

The idea here is that you start again with a regular grid (ite of Sectionl0.1), but you can now specify a
rectangular region which you want to refine by a factor of 2e Way you do this is by choosing the starting indices
of the rectangle and specifying the size of the rectanglecityng the number of cells in each direction from that
starting point onward. For instance, setting the startimigtat (2,3,1) and the size at (1,1,1) will simply refine just
cell (2,3,1) of the base grid into a set of 2x2x2 sub-cellst &atting the starting point at (2,3,1) and the size at
(2,2,2) will split cells (2,3,1), (3,3,1), (2,4,1), (3,4,12,3,2), (3,3,2), (2,4,2) and (3,4,2) each into 2x2x2cslis.
This in fact is handled as a 4x4x4 regular sub-grid patch. #etting the starting point at (2,3,1) and the size at
(4,6,8) will make an entire regular sub-grid patch of 8x12g#lls. Such a sub-grid patch is callethger.

The nice thing of these layers is that each layer (i.e. sdhggich) is handled as a regular sub-grid. The base grid is
layer number 0, and the first layer is layer number 1, etc. Eagr (including the base grid) can contain multiple
sub-layers. The only restriction is that each layer fitsrehtiinside its parent layer, and layers with the same parent
layer should not overlap. Each layer can thus have one or sulirdayers, each of which can again be divided into
sub-layers. This builds a tree structure, with the baserlagahe trunk of the tree (this is contrary to the oct-tree
structure, where each base geell forms the trunk of its own tree). In Fig.0.3an example is shown of two layers
with the same parent (= layer O = base grid), while in Bi@.4an example is shown of two nested layers.

If you now want to specify data on this grid, then you simplgafy it on each layer separately, as if each layer
is a separate entity. Each layer is treated as a regularigedpective of whether it contains sub-layers or not. So
if we have a base grid of 4x4x4 grid cells containing two |layeme starting at (1,1,1) and having (2,2,2) size and
another starting at (3,3,3) and having (1,1,2) size, theringespecify the data on the’464 base grid, then on
the (2*2)*=64 grid cells of the first layer and then on the 2x2x4=16 ceflthe second layer. Each of these three
layers are regular grids, and the data is inputted/outpiritthe same way as if these are normal regular grids (see
Section10.]). But instead of just one such regular grid, now the data élg.@ust _density.inp ) will contain
three successive lists of numbers, the first for the basetipedsecond for the first layer and the last for the second
layer. You may realize at this point that this will introdueceedundancy. See Subsectiih4.1for a discussion of
this redundancy.

The precise way how to set up such an oct-tree grid usingrthegrid.inp  file is described in SectiofA.2.3. The
input of any spatial variables (such as e.g. the dust dgnsstgs the sequence of grid cells in the same order as the
cells are specified in thainr_grid.inp  file.

10.4.1 Onthe “successively regular” kind of data storage,ra its slight redundancy
With the layered grid refinement style there willleelundantata in the data files (such as e.g.dhst _density.inp

file. Each layer is a regular (sub-)grid and the data will bec#fied in each of these grid cells of that regular (sub-
)arid. If then some of these cells are overwritten by a higbeel layer, these data are then redundant. We could
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Figure 10.3. Example of a 2-D base grid withx =4 andny =3, with two AMR-layers added to it. This example
has just one level of refinement, as the two layers (brown a@e) gre on the same level (they have the same parent
layer = layer 0).
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Figure 10.4. Example of a 2-D base grid withx=4 andny =3, with two nested AMR-layers added to it. This
example has two levels of refinement, as layer 1 (brown) ipénent of layer 2 (green).
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of course have insistent that only the data in those cellsatteanot refined by a layer should be written to (or read
from) the data files. But this would require quite some clgs@gramming on the part of the user to a-priori find
out where the layers are and therefore which cells shoulkipped. We have decided that it is far easier to just
insist that each layer (including the base grid, which igtayumber 0) is simply written to the data file as a regular
block of data. The fact that some of this data will be not usetduse they reside in cells that are refined) means
that we write more data to file than really exists in the moilbis makes the files larger than strictly necessary, but
it makes the data structure by far easier. Example: suppmséave a base grid of 8x8x8 cells and you replace the
inner 4x4x4 cells with a layer of 8x8x8 cells (each cell betadf the size of the original cells). Then you will have
for instance alust _density.inp file containing 1024 values of the density’=%12 values for the base grid and
again 8=512 values for the refinement layer. Of the firstB12 values #=64 values are ignored (they could have
any value as they will not be used). The file is thus 64 valugglahan strictly necessary, which is a redundancy of
64/1024=0.0625. If you would have used the oct-tree refimestgle for making exactly the same grid, you would
have only 1024-64=960 values in your file, making the file &2&maller. But since 6.25% is just a very small
difference, we decided that this is not a major problem aedimplicity of our “successively regular” kind of data
format is more of an advantage than the 6.25% redundancesadvantage.

10.5 Unstructured grids

In a future version of RADMC-3D we will include unstructurgddding as a possibility. But at this moment such
a gridding is not yet implemented.

10.6 1-D Plane-parellel grid

Sometimes it can be useful to make simple 1-D plane parabelais, for instance if you want to make a simple 1-D
model of a stellar atmosphere. RADMC-3D doeshave a 1-D plane-parallel modButyou can simulate a plane-
parallel mode by making a 1-D spherically symmetric modeVlvich you make, for instance, a radial grid in which
rnr/T1 — 1 < 1. An exampler = {10000.0, 10000.1, 10000.2, - - - , 10001.0}. This is not perfectly plane-parallel,
but sufficiently much so that the difference is presumabtiisoernable. The spectrum is then automatically that
of the entire large sphere, but by dividing it by the surfaesaayou can recalculate the local flux. In fact, since
a plane-parallel model usually is meant to approximateyagart of a large sphere, this mode is presumably even
more realistic than a truly 1-D plane-parallel model.
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Chapter 11

More information about the treatment of
stars

How stars are treated in RADMC-3D is perhaps something thatls some more background information. This is
the structure:

1. Stars as individual objects:
The most standard way of injecting stellar light into the mlad by putting one or more individual stars in
the model. A star can be placed anywhere, both inside theagiddoutside. The main input file specifying
their location and properties istars.inp . The stars can be treated in two different ways, dependirigen
setting of the variablstars _sphere that can be setto O or 1 in the filadmc3d.inp file.

e The default is to treat stars as zero-size point sourcess i$hthe way it is done if (as is the default)
stars _sphere=0 . The stars are then treated as point sources in spite of thehfat their radius is
specified as non-zero in tisears.inp  file. This default mode is the easiest and quickest. For most
purposes it is perfectly fine. Only if you have material velnse to a stellar surface it may be important
to treat the finite size(s) of the star(s).

e If stars _sphere=1 intheradmc3d.inp file, then all stars are treated as spheres, their radii ibing
radii specified in thetars.inp  file. This mode can be tricky, so please read Sectib.2

2. Smooth distributions of zillions of stars:
For modeling galaxies or objects of that size scale, it isofrse impossible and unnecessary to treat each star
individually. Soin addition to the individual stargou can specify spatial distributions of stars, assumiaty th
the number of stars is so large that there will always be al&ge number of them in each cell. Please note
that using this possibility doesot exclude the use of individual stars as well. For instanceafgalaxy you
may want to have distributions of unresolved stars, but amgles “star” for the active nucleus and perhaps
a few individual “stars” for bright star formation regions ©-star clusters or so. The distribution of stars is
described in Sectiohl.3

3. An external “interstellar radiation field”:
Often an object is affected not only by the stellar radiatiom the stars inside the object itself, but also by the
diffuse radiation from the many near and far stars surraumthie object. This “Interstellar Radiation Field”
can be treated by RADMC-3D as well. This is called the “exé¢source” in RADMC-3D. It is described in
Sectionll.4

11.1 Stars treated as point sources

By default the stars are treated as point-sources. Even ifatiius is specified as non-zero in thars.inp  file,
they are still treated as points. The reason for this is thatmuch easier and faster for the code to treat them as
point-sources. Point sources cannot occult anything ibb#to&ground, and nothing can partly occult them (they are
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only fully or not occulted, of course modulo optical deptftiod occulting object). This approximation is, however,
not valid if the spatial scales you are interested in are natmtarger (or even the same or smaller) than the size of
the star. For instance, if we are interested in modelingalétive transfer in a disk around a Brown Dwarf, where
dust can survive perhaps even all the way down to the stelfface, we must take the non-point-like geometry of
the star into account. This is because due to its size, theatashinedownonto the disk, which would not be
possible if the star is treated as a point source. Howeveg fiust disk arounda Herbig Ae star, where the dust
evaporation radius is at about 0.5 AU, the star can be trest@dooint-source without problems.

So if you just use RADMC-3D as-is, or if you explicitly s&ars _sphere = 0 in the fileradmc3d.inp ,thenthe
stars are all treated as point sources.

11.2 Stars treated as spheres

For problems in which the finite geometrical size of the starstars) is/are important, RADMC-3D has a mode
by which the stars are treated as spheres. This can be ngcssastance if you model a disk around a Brown
Dwarf, where the dusty disk goes all the way down to the stellaface. The finite size of the star can thus shine
downonto the disk, but only if its finite size is treated as suchthindefault point-source approximation the surface
layers of such a disk would be too cold, because this “shidowgn onto the disk” phenomenon is not treated.

You can switch this mode on by settiiggar _sphere = 1 in the fileradmc3d.inp . Note that no limb darkening
or brightening is included in this mode, and currently RADND does not have such a mode available.

This mode is, however, somewhat complex. A sphere can pawvdylap the grid, while being partly outside the
grid. A sphere can also overlap multiple cells at the same,tiemgulfing some cells entirely, while only partly
overlapping others. The correct and fast treatment of tlaikas the code a bit slower, and required some complex
programming. So the user is at the moment advised to use tds only if necessary and remain aware of possible
errors for now (as of version 0.17).

For the Monte Carlo simulations the finite star size meanspthaton packages are emitted from the surface of the
sphere of the star. It also means that any photon that resgheestar during the Monte Carlo simulation is assumed
to be lost.

11.3 Distributions of zillions of stars

For models of galaxies it is important to be able to have ithsted stellar sources instead of individual stars. The
way to implement this in a model for RADMC-3D is to

1. Prepare one or motemplate stellar spectrdor instance, one for each stellar type you wish to includeese
must be specified in the filgellarsrc ~ _templates.inp (see Sectio\.8). Of course the more templates
you have, the more memory consuming it becomes, which isritpéar concern for models on large grids.
You can of course also take a sum of various stellar types esiplate. For instance, if we wish to include
a 'typical’ bulge stellar component, then you do not need¢atteach stellar type of bulge stars separately.
You can take the "average spectrum per gram of average sttireaemplate and thus save memory.

2. For each template you must specify 8patial distribution i.e. how many stars of each template star are
there per unit volume in each cell. The stellar density ifaat, given as gram-of-star/chii.e. not as number
density of stars). The stellar spatial densities are sgeldifithe filestellarsrc ~ _density.inp (see Section
A.9).

Note that if you have a filatellarsrc ~ _templates.inp in your model directly, then the stellar sources are
automatically switched on. If you do not want to use themntheu must delete this file.

The smooth stellar source distributions are nothing elaa gource functions for the radiative transfer with the
spectral shape of the template stellar spectra fronstdiarsrc  _templates.inp . You will see that if you
make a spectrum of your object, then even if the dust temperatc is zero everywhere, you still see a spectrum:
that of the stellar template(s). In the Monte Carlo simuolasithese stellar templates act as net sources of photons,
that subsequently move through the grid in a Monte Carlo way.
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Note that the smooth stellar source distributions assuatetie zillions of stars that they represent are so small that
they do not absorb any appreciable amount of radiation. Bheyherefore pure sources, not sinks.

11.4 The interstellar radiation field: external source of errgy

You can include afsotropicinterstellar radiation field in RADMC-3D. This will take eftt both in the making of
spectra and images, as well as in the Monte Carlo module.

The way to activate this is to make a fidgternal  _source.inp  and fill it with the information needed (see Section
A.10).

11.4.1 Role of the external radiation field in Monte Carlo sinulations

For the Monte Carlo simulations this means that photons redgdnched from outside inward. The way that this
is done is that RADMC-3D will make a sphere around the entii@, gust large enough to fit in the entire grid but
not larger. Photon packages can freely leave this sphereif Becessary, photon packages can be launched from
this sphere inward. RADMC-3D will then calculate the totahiinosity of this sphere, which & = 472173, ..
wherel is the intensity. For monochromatic Monte Carlo it is simply= I,,, while for the thermal Monte Carlo it
isI = fooo 1,dv, wherel, is the intensity as specified in the fieternal _source.inp . Note that if the sphere
would have been taken larger, then the luminosity of theragteadiation field would increase. This may seem
anti-intuitive. The trick, however, is that if the spherddsger, then also more of these interstellar photons never
enter the grid and are lost immediately. That is why it is spantant that RADMC-3D makes the sphere as small
as possible, so that it limits the number of lost photon pgeka It also means that you, the user, would make
the grid much larger than the object you are interested an RRADMC-3D is forced to make a large sphere, and
thus potentially many photons will get lost: they may enker tuter parts of the grid, but there they will not get
absorbed, nor will they do much.

In fact, this is a potential difficulty of the use of the exterisources: since the photon packages are lauchned
from outside-inward, it may happen that only few of them wititer in the regions of the model that you, the user,
are interested in. For instance, you are modeling a 3-D mtdecloud complex with a few dense cold starless
cores. Suppose that no stellar sources exist in this modhsi tiee interstellar radiation field. The temperature in
the centers of these starless cores will be determined biptiéestellar radiation field. But since the cores are very
small compared to the total model (e.g. you have used AMRfioe¢he grid around/in these cores), the chance of
each external photon package to ‘hit’ the starless core @lsih means that the larger the grid or the smaller the
starless core, the more photon packagesdt , see Sectios.1) one must use to make sure that at least some of
them enter the starless cores. If you chogget too small in this case, then the temperature in these coreklwo
remain undetermined (i.e. they will be zero in the results).

11.4.2 Role of the external radiation field in images and sp&@a

The interstellar radiation field also affects the images gmectra that you make. Every ray will start at minus-
infinity with the intensity given by the external radiatioelfl, instead of 0 as it would be if no external radiation
field is specified. If you make an image, the background of yject will then therefore not be black. You can
even make silhouette images like those of the famous sittedesks in Orion.

But there is a danger: if you make spectra, then also the bacgkd radiation is inside the beam, and will thus
contribute to the spectrum. In fact, the larger you make gabthe more you will pick up of the background. This
could thus lead to the spectrum of your source to be swampeleblyackground if you do not specify a beam in
the spectrum.
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Chapter 12

Using RADMC-3D in child mode (optional)

For large datasets it may take a considerable amount of timRADMC-3D to read the entire dataset into mem-
ory. Having to wait such a long time for every action one wantsake (e.g. re-making an image at a different
vantage point or a different wavelength) quickly gets on'®nerves and strongly inhibits the interactivity between
RADMC-3D and the user. The “child mode” is designed to cirgemt this problem. It allows RADMC-3D to be
started as a child process of another process, stay in mgmithyall the data loaded once-and-for-all) for as long
as the parent process lives, and have communication witlaient process via a bi-way pipe. A bi-way pipe is like
a file to which you can write or from which you can read. Yourguamprocess, which calls RADMC-3D as a child,
can give RADMC-3D the command to do something by writing t® plipe file unit, and then receiving the results
from RADMC-3D by reading from that same file unit.

The IDL programviewimage.pro  (see chaptet4), which is part of the RADMC-3D package, calls RADMC-3D
as a child process and communicates with it in preciselyhis

NOTE: Currently there appears to be a problem when tryingse RADMC-3D in child mode on some systems. For
instance, viewimage may freeze. This appears to be a probignbuffering of the standard 1/O unit. | have been
trying to figure out what causes this, and particularly, whigappens on some machines and not on other machines
(in fact it happened on one Macbook but not on another, whieslystems were seemingly identical). | will continue
to work on this. When calling viewimage and the thing fregzgscalling viewimage,/nochild. That is slower, but
should work.

In IDL this is done with the keywordnit=unit  in thespawn command. For instance, in viewimage.pro there is
aline

spawn,’nice radmc3d child’,unit=iounit

The nice is simply to let RADMC-3D run at a low priority under Linux or & OS X, thechild command
line option is a RADMC-3D specific command line option thdistRADMC-3D that it should not exit after its
first action, but wait further orders. Thmit=iounit gets the file unit through which we can communicate with
RADMC-3D. Of course, by virtue of the fact that RADMC-3D isllea by IDL in the first place, it is naturally
IDL’s child process. But by asking RADMC-3D not to exit afte first action, and by getting the file unit from the
keywordunit=", RADMC-3D will wait for our commands and only exit when welieko by giving it the command
quit .

The way we can communicate with RADMC-3D is by writing to the founit commands like the ones on the
command line. But contrary to the normal command line, tlreynaw given one word per line. For instance, to let
RADMC-3D make an image at wavelength numbeanbda (from IDL):

printf,iounit,'image’

printf,iounit,’ npix’

printf,iounit,strcompress(string(npix),/remove_all)

printf,iounit,'ilambda’
printf,iounit,strcompress(string(ilambda),/remove_a 1)}
printf,iounit,’incl’

printf,iounit,strcompress(string(incl),/remove_all)

printf,iounit,’phi’

printf,iounit,strcompress(string(phi),/remove_all)

printf,iounit,’enter’
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Theenter is meant to tell RADMC-3D: now go and do your work. In fact, y@arely have to interact like this
with RADMC-3D youself, because you can use the IDL subrautiakeimage() in thereadradmc.pro file that
does all these things for you; just set the keywiotohit  to the value you obtained from startirggime3d in child
mode.

In child mode the results fromadmc3d are not returned immediately to the parent. Tosknc3d for the results
of its latest calculation (for instance an image), you do:

printf,iounit,’'writeimage’

followed by

iformat=0

nx=0

ny=0

nf=0
readf,iounit,iformat
readf,iounit,nx,ny
readf,iounit,nf
readf,iounit,sizepix_x,sizepix_y
lambda=dblarr(nf)
readf,iounit,Jambda
image=fltarr(nx,ny,nf)
readf,iounit,image

But again you don’t have to do this complex stuff yourseltéad this is done for you by theadimage() IDL
routine in thereadradmc.pro  file, again whernounit  is specified.
So IDL users can simply do (in IDL):

.r readradmc

. Start RADMC-3D

’spawn,'nice radmc3d child’,unit=iounit

Make an image

;nakeimage,incl=45.,phi=10.,npix=200,ifreq=10,iounit =iounit

; Read the image from RADMC-3D

a=readimage(iounit=iounit)

; Plot the image on the screen

plotimage,a

; ...and here many more images or spectra...

; And when we are done, quit RADMC-3D and free the file number
printf,iounit, quit’

close,iounit

free_lun,iounit

Tip: If you use RADMC-3D in child mode, then all the usual etifpat normally would go to screen will now be

redirected to a separate file calleddmc3d.out

So if RADMC-3D fails somehow when in child mode, then haveladtradmc3d.out

. This is useful for debugging the code when using it in childeno
to see what went wrong.
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Chapter 13

Using the userdefmodule.f90 file for
Internal model setup (optional)

It has been mentioned several times before that as an dltertathe standard ‘compile once-and-for-all’ philoso-
phy, one can also use RADMC-3D by modifying the code diremtiyhatradmc3d will have new functionality that
might be of use for you. We refer to Sectidrbfor an in-depth description of how to modify the code in a wagtt

is non-invasiveo the main code. We urge the reader to read Sedtibfirst before continuing to read this chapter.
In all of the following we assume that the editings to therfamtfiles are done in the local way described in Section
4.5s0 that the original source files in teee/  directory stay unaffected, and only local copies are edited

The most common reason for editing the code itself is foirggtip the modeinternally rather than reading in

all data via input files. This is what this chapter is aboutr &dist of advantages and disadvantages of setting
models up internally as opposed to the standard way, se@B8d&.2 below. This is done by editing the file
userdef _module.fo0 . This file contains a set of standard subroutines that atedcaly the main program at
special points in the code. Each subroutine has a specipbperwhich will be described below. By keeping a
subroutine empty, nothing is done. By filling it with your owade lines, you can set up the density, temperature or
whatever needs to be set up for the model. In addition to thiscan do the following as well:

e Add new variables or arrays in the module header (abovedhins command), which you can use in
the subroutines of theserdef _module.fo0 module. You are completely free to add any new variables you
like. A small tip: it may be useful (though not required) tarstall their names with e.giserdef _to make
sure that no name conflicts with other variables in the cogpéa.

e Add new subroutines at will (below thedntains command) which you can call from within the standard
subroutines.

e Introduce your owmadmc3d command-line options (see Sectibd.]).

e Introduce your owmadmc3d.inp namelist variables (see Sectib8.1).

13.1 The pre-defined subroutines of the userdefodule.f90

The idea of thauserdef _module.fo0 is that it contains a number of standard pre-defined subresithat are
called from themain.f90 code (andonly from there). Just browse through thein.fo0 file and search for the
sequencedall userdef " and you will find all the points where these standard rowgiaee called. It means that
at these points you as the user have influence on the processief setup. Here is the list of standard routines and
how they are used. They are ordered roughly in chronologicr in which they are called.

e userdef _defaults()
This subroutine allows you to set the default value of any parmameters you may have introduced. If neither
on the command line nor in thedmc3d.inp  file the values of these parameters are set, then they witllgim
retain this default value.
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userdef _commandline(buffer,numarg,iarg,fromstdi,gotit)

This subroutine allows you to add your own command-lineaysiforradmc3d . The routine has a series
of standard arguments which you are not allowed to change.bififer is a string containing the current
command line option that is parsed. You will check here i§ian option of your module, and if yes, activate
it. An example is listed in the code. You an also require a se@gument, for which also an example is
listed in the original code.

userdef _commandline _postprocessing()
After the command line options have been read, it can be use@iheck if the user has not asked for con-
flicting things. Here you can do such checks.

userdef _parse _main _namelist()
Here you can add your own namelist parameters that read fremadmc3d.inp  file. An example is pro-
vided in the original code.

userdef _main _namelist _postprocessing()
Also here, after the entirmdmc3d.inp  file has been read and interpreted, you can do some consistenc
checks and postprocessing here.

userdef _prep _model()

This routine can be used if you wish to set up the grid not fraput files but internally. You will have
to know how to deal with themr_module.f90 module. You can also set your own global frequency grid
here. And finally, you can set your own stellar sources heralllcases, if you set these things here (which
requires you to make the proper memory allocations, or ie cishe gridding, let themr_module.fo0  do

the memory allocations for you) the further courseaatinc3d will skip any of its own settings (it will simply
detect if these arrays are allocated already, and if yesllisimply not read or allocate them anymore).

userdef _setup _model()

This is the place where you can actually make your own modeps®y the time this subroutine is called, all
your parameters have been read in, as well as all of the otlnameters from the origineddmc3d code. So
you can now set up the dust density, or the gas velocity or yooenit. For all of these things you will have
to allocate the arrays youself (!!!). Once you did this, testrof theradmc3d code won't read those data
anymore, because it detects that the corresponding araagsdiready been allocated (by you). This allows
you to completely circumvent the reading of any of the follogvfiles by making these data yourself here at
this location:

— amr_grid.inp  oramr_grid.uinp  orin the future the input files for any of the other griding éxgp
— dust _density.inp or dust _density.uinp

— dust _temperature.dat or dust _temperature.udat

— gas _density.inp or gas _density.uinp

— gas _temperature.inp Or gas _temperature.uinp
— gas _velocity.inp or gas _velocity.uinp
— microturbulence.inp or microturbulence.uinp

— levelpop _XXX.inp orlevelpop _XXX.uinp

— numberdens XXX.inp or numberdens _XXX.uinp

To learn how to set up a model in this way, we refer you for nothé&oput _module.f90 orlines _module.f90
and search for the above file names to see how the arraysaeatali and how the data are inserted. | apolo-
gise for not explaining this in more detail at this point. Bemples are or will be given in tlexamples/
directory.

userdef _dostuff()

This routine will be called by the main routine to allow youdo any kind of calculation after the main
calculation (for instance after the monte carlo simulgtidrhis is done within the execution-loop, so that if
you use RADMC-3D in child mode, this routine will be calledeafeach calculation.

75



e userdef _myaction()
If RADMC-3D is called asradmc3d myaction , then the user-defined routinserdef _myaction() is
called, just like the spectrum making routine is called ififgperadmc3d sed . This allows the user to
make RADMC-3D do special things on demand. Note that thisbeansed in combination with many of the
above subroutines to interpret command-line optionsradeic3d.inp  entries.Not yet working in version
0.15.

e userdef _compute _levelpop()
This is a subroutine that can be called by the camera modulenféhe-fly calculation of level populations
according to your own recipe. This may be a bit tricky to uset | bhope to be able to provide some example(s)
in the near future.

e userdef _writemodel()
This allows the user to dump any stuff to file that the user aatexh in this module. You can also use
this routine to write out files that would have been used néynes input file (like amr_grid.inp  or
dust _density.inp ) so that the IDL routines can read them if they need. In paldaicthe grid informa-
tion may be needed by these external analysis tools. Heréissaf standard subroutines you can call for
writing such files:

— write _grid _file()
— write _dust _density()
— ...more to come...

e userdef _reset _flags()

If the user wants some flags to be reset after each commartte(child mode, see Chapte®), then here it
can be done.

For now this is it, more routines will be included in the fugur

Note that theuserdef _compute _levelpop() subroutine, in contrast to all the others, is called not fribve
main.fo0  program but from theamera _module.f90 module. This is why the camera module is the only module
that is higher in compilation ranking than the userdef medué. the userdef module will be compiled before the
camera module). For this reason the userdef module has essatxthe variables of the camera module. For the
rest, the userdef module has access to the variables irhall otodules.

Note also that not all input data is meant to be generatedsmiaty. The following types of data are still supposed
to be read from file:

e Dust opacity data

e Molecular fundamental data

Please have a look in tlexamples/  directory for models which are set up in this internal way.

13.2 Some caveats and advantages of internal model setup

Setting up the models internally has several advantageghasvdisadvantages compared to the standard way of
feeding the models intadmc3d via files. The advantages are, among others:

e You can modify the model parametersrinimc3d.inp  and/or in the command line options (depending on
how you allow the user to set these parameters, i.e. indtaelef _parse _main _namelist()  routine and/or
in theuserdef _commandline() routine. You then do not need to run IDL anymore (except fetirse up
the basic files; see examples). Some advantages of this:

1. It allows you, for instance, to create a version ofrdwimc3d code that acts as if it is a special-purpose
model. You can specify model parameters on the commandritiesf than going through the cumber-
some IDL stuff).
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2. ltis faster: even alarge model is built up quickly and doetsrequire a long read from large input files.

e You can make use of the AMR module routines such asathebranch _refine() routine, so you can
adaptively refine the grid while you are setting up the model.

Some of the disadvantages are:

e The model needs to be explicitly written out to file and redd IDL or any other data plotting package before
you can analyze the density structure to test if you've dorighit. You can explicitly askiradmc3d to call
theuserdef _writemodel()  subroutine (which is supposed to be writing out all essedt#a; but that is
the user’s responsibility) by typingradmc3d writemodel

e Same is true for the grid, and this is potentially even moregéaous if not done. You can explicitly

ask./radmc3d to write out the grid file by typing/radmc3d writegridfile . Note that if you call
thewrite _grid _file() subroutine from withinuserdef _writemodel() , then you do not have to ex-
plicitly type ./radmc3d writegridfile as well. Note also thatadmc3d will automatically call the

write _grid _file() subroutine when it writes the results of the thermal MonteldCeomputation, iff it
has its grid from inside (i.e. it has not read the grid fromfiteeamr _grid.inp

e It requires a bit more knowledge of the internal workingshatadmc3d code, as you will need to directly
insert code lines in theserdef _module.fo0 file.

13.3 Using the userdef module to compute integrals of,

With the monochromatic Monte Carlo computation (see Sa@&id) we can calculate the mean intensityat every
location in the model at a user-defined set of wavelengthaeder, as mentioned before, for large models and large
numbers of wavelengths this could easily lead to a data veltimat is larger than what the computer can handle.
Since typically the main motivation for computing is to compute some integral of the the form:

- l/l/d 13.1
Q/OJKV (13.1)

where K, is some cross section function or so, it may not be necessatpte the entire functiost as a function
of nu. Instead we would then only by interested in the result & thiegral at each spatial location.

So it would be useful to allow the user to do this computatigarinally. We should start by initializin@(z, y, z) =

0 (orQ(r, 6, @) = 0 if you use spherical coordinates). Then we call the monaolat@ Monte Carlo routine for the
first wavelength we want to include, and multiply the resigtmean intensities with an appropridte and add this

to Q(z,y, z). Then we do the monochromatic Monte Carlo for the next wangtleand again add 1Q everywhere.

We repeat this until our integral (at every spatial locatiomthe grid) is finished, and we are done. This saves a
huge amount of memory.

Since this is somewhat hard to explain in this PDF documentgfier to the example modeh _example _jnu _integral/
STILL IN PROGRESS.

13.4 Some tips and tricks for programming user-defined subratines

Apart from the standard subroutines thaistbe present in theserdef _module.fo0 file (see Sectiod3.1), you
are free to add any subroutines or functions that you warigiwjou can call from within the predefined subroutines
of Section13.1 You are completely free to expand this module as you wisl. ¢én add your own variables, your
own arrays, allocate arrays, etc.

Sometimes you may need to know “where you are” in the gridigiance, the subroutinserdef _compute _levelpop()
is called with an argumertdex . This is the index of the current cell from within which thebsoutine has been
called. You can now address, for instance, the dust temperat this location:

temp = dusttemp(1,index)
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(for the case of a single dust species). You may also wantdwlthe coordinates of the center of the cell. For this,
you must first get a pointer to the AMR-tree structure of thah. cThe pointem is declared as

type(amr_branch), pointer :: b

Then you can point the pointer to that cell structure

b => amr_index_to_leaf(index)%link

And now you can get the x,y,z-coordinates of the center otdile

xc = amr_finegrid_xc(b%ixyzf(1),1,b%level)
yc = amr_finegrid_xc(b%ixyzf(2),2,b%level)
zc = amr_finegrid_xc(b%ixyzf(3),3,b%level)

Or the left and right cell walls:

Xi_l amr_finegrid_xi(b%ixyzf(1),1,b%level)

yi_| = amr_finegrid_xi(b%ixyzf(2),2,b%level)
zi_| = amr_finegrid_xi(b%ixyzf(3),3,b%level)
xi_r = amr_finegrid_xi(b%ixyzf(1)+1,1,b%level)
yi_r = amr_finegrid_xi(b%ixyzf(2)+1,2,b%level)
zir =

amr_finegrid_xi(b%ixyzf(3)+1,3,b%level)
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Chapter 14

Model analysis (I): The IDL model analysis
tool set

While the code RADMC-3D is written in fortran-90, there is extensive set of tools written in IDL that make it
easier for the user to set up models and interpret resules.S8etiond.4 for where they are and how they can be
properly installed so that they are easy to use. Here we idedtiese tools.

14.1 The readradmc.pro tools

Thereadradmc.pro  program file contains a series of subroutines for reading RIEEBD output into IDL so
that the user can do post-processing and analysis on th&se Tae file also contains subroutines for operating
RADMC-3D directly from within IDL.

14.1.1 Function readimage

Thereadimage() function reads the latest produced image into IDL. This ie&gi.e. should be) located in the
file image.out , which is produced by RADMC-3D. Theadimage() function returns an IDL structure contain-
ing the image (be it a single-frequency image or a multifiacy image) in units of intensity (erg/s/éfHz/ster),
as well as information about the pixel grid and at which freney(ies) the image was taken. With the “help”
command you can see the full contents of the returned steictu

.r readradmc.pro

a=readimage()

help,a,/str

This will show you the contents of the structure. Here is &kisummary of these contents:

nx, ny : The number of pixels in x- and y- direction in the image
nrfr : The number of frequencies (wavelengths), i.e. the numbienages at different wavelengths

sizepix x, _y: The size of the pixels in x- and y- directions in units of ¢em@ters. This is of course only
possible for images at semi-infinity (the default). For imagnade as a local observer, see Se@idofor
details.

image : The nxxny array of intensities of the image. If multiple colors (vetengths, frequencies) are present,
then themage array will be three-dimensional: mayx nrfr. The intensities are in units of erg/éfm/Hz/ster.

flux : The integral of the intensity over the entire image, i.e.fthx in the image. The units are erg/tisiHz

for an observer at 1 parsec distance. This “1 parsec” is justranalization distance. If you make images
of objects much larger than 1 parsec in size, this dagsnean that the image is made by a local observer
(unless explicitly specified, see Secti®rl0. It is just so that you can compute the actually observed flux
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by multiplying the flux by a factotpc/d)?, whered is the true distance of the observer (which must then be
much larger than the size of the object to keep the far-fietit Walid).

x,y : The actual image coordinates in cm (unless local obseseer,Sectior®.10. These are in principle
redundant because you can calculate them yourself frorsizbgix _x, _y andnx, ny values. They are
here just for convenience.

lambda : The wavelength (in micron) at which this image was made. rRoltiple colors/freqs/wavelengths
this is an array.

Thereadimage() function can also be used to read from a pipe between IDL andMR@ (see “child mode” in
Chapterl2). One then gives it as an argument the file number of the pgmd¢gample shown in ChaptE®). This
is in fact what is done byiewimage.pro  below.

14.1.2 Subroutine plotimage

The subroutinglotimage  plots the image read lneadimage() to screen (or postscript file) in a proper way.
Check out the following example (to be executed only afteidihst temperatures have been written tadiilet _temperature.dat

.r readradmec.pro
a=readimage()
plotimage,a,/au

This subroutine is in fact used by th&wimage.pro  below to display images on the drawing pane of the GUI
widget. Theplotimage subroutine has a large number of optional arguments:

/au or/pc : Display spatial scales in units of AU or parsec.

llog : Display the image using logarithmic spacing of the brigisslevels. This allows you to gain far
greater depth in the image.

/contour : Overplot contours over the image
nlevels : Number of levels for the contours
/noimage : If set, only plot axes

position : An array of 4 numbers specifying position of plot on the @\Like position keyword in typical
IDL plotting routines.

maxlog : Set the maximum number of factors of 10 the log brightneks @mding will span

saturate : Allows you to enhance the contrast of very weak emissioioregby saturating bright regions
lipg : Write the image to a JPEG file

Igrange : A two-valued array specifying the range in brightness (Fdg) that the image will show

filenr : (For case of /jpg): if set to e.g. 6 it will write the JPEG ineap fileimage _6.jpg

ilam : If the image is a multi-color image, ilam specfies which @ tihhages you wish to plot

coltune : If setto 1, then rescale the brightness of all channelsah@esvalue, to get the best color depth. If
set to a 3-element array, you can directly specify the wes§laach color. In this way you can really fine-tune
the colors.

zoom: If set to a 4-valued array, it maketimage put the proper x- and y- axis scaling for the particular
zoom-in. Normally the center of the image is taken to(bg)), but with this zoom keyword you can set
exactly what the x- and y-axes should display. Warning: @rodes the pixel size specifications in the image.
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14.1.3 Subroutine makeimage

The subroutinenakeimage allows the user to interact with RADMC-3D for making imagesn easy way, although
a direct calling of theadmc3d command with the corresponding keywords is almost just ag. €0 one can also
consider this as an example routine for calling RADMC-3D ifimatking images. From within IDL you can call
makeimage as follows:

makeimage,incl=34.,phi=40.,lambda=11.3

Here are the keywords:

incl : The inclination of the object on the sky of the obsenietl =0 means a view from the northpole
downwardjncl =180 means a view from the southpole upward mad =90 means an edge-on view.

phi : The rotation of the object along its z-axis. A positipghi means that the object rotates counter-
clockwise, i.e. that the observer rotates clockwise ardgbhadbject.

npix : Number of pixels (assumed to be the same for x and y)

sizecm / sizeau / sizepc : The size of the image in units of centimeter / AU / parsec. 3iae means
the full width and full height of the square image.

posang : The rotation of the image in the image plane, i.e. the pmsiingle of the image on the sky. Default
is 0.

nofluxcons : If setto 1 (nofluxcons ) we use the fast ray-tracing method, while if not set (dejaud use
the accurate method with sub-pixeling for flux conservals®ee Sectiod.6).

pointcm / pointau / pointpc . A three-valued array giving the 3-D coordinates of the ptinvard
which we aim our camera. Default is (0.,0.,0.). Units are &/ parsec.

ifreq : If specifyingifreq  (putting it to an integer value of 1 or higher) then the wawagth at which the
image is going to be taken is taken from the global frequen@ydrom thewavelength _micron.inp  file.
The integeiifreq  is then the index of the wavelength you want to use. Note thiatihteger starts with 1
(fortran convention).

lambda : If lambda is specified, this will be the wavelength at which the image ise taken. This wavelength
does not have to be part of the global frequency array. It esanly value, even a value in between wavelength
grid points of the dust opacity files or so. In that case, alineterpolation of these opacities will then allow
RADMC-3D to nevertheless make the image. So any positiveavallambda is allowed. NOTE: You cannot
specify bothambda andifreq simultaneously.

nostar : If set, then the star(s) in the model are not included in thages.

zoomau / zoompc : Specify the precise window on the image plane which you fikgoom in to. Note
that (0.,0.) is the location in the image plane that points to the pointowation specified byointcm

/ pointau / pointpc . NOTE: You cannot specify botsizecm / sizeau / sizepc andzoomau /
zoompc simultaneously.

plottau : If setto 1, the images will not show the emission at that wawgth but instead the total integrated
optical depth of the ray at that wavelength. This is only ukffr debugging purposes.

iounit : For child mode (See chapt&p).

NOTE: If you want to make multiple images of the same objédwntit may be much too slow if each time a new
image is to be taken, the RADMC-3D code must be restartedtandritire model must be re-read into RADMC-
3D. You can use RADMC-3D in "child mode” to have it start uptjesice (and reading all input data just once)
and keeping alive until explicitly told to end. By commurtiog with it via a pipe you can then quickly get your
images one-by-one while having the slow I/O only once. Youhi®by starting RADMC-3D in the way described
in Chapterl2, and then callingnakeimage with keywordiounit equal to the unit of the pipe. See chapt&ifor

an example.
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14.1.4 Subroutine readdata()

Itis always useful to analyze the dust temperature strachat RADMC-3D produces. The functiosad _data()
(orreaddata()  in abbreviated form) is meant to do that. In IDL, the way it W®rs:

.r readradmc
a=read_data(/dtemp)

The/dtemp stands for “read the dust temperature”. You can also readukedensity (which is an input, not an
output of RADMC-3D):

a=read_data(/ddens)

You can find what is contained in the structarby
help,a,/struct

The structurea contains a sub-structugeid :
help,a.grid,/struct

which contains all the information of the grid. We come bazkhat later.

If you just read the dust temperature (withemp ) then you can see that the structure contains a large arliag ca
a.temp . Its dimensionality depends on which kind of grid you arengsi

e Regular grid:

The arraya.temp (or any other data array) will have dimensi@iemp(nx,ny,nz,nspec) , Wherenx,ny,nz
are the number of cells in x, y and z direction argec is the number of dust species.ndpec=1 , then the
array automatically becomesemp(nx,ny,nz) (this is IDL convention).

e Oct-tree AMR grid:
The arraya.temp (or any other data array) will have dimensianemp(ncells,nspec) , Wwherencells
is the number of real cells (excluding the branches that imidedl into subcells: only the leafs count) in the
AMR oct-tree. How the (complex!) oct-tree is structured peafied ina.grid . Thenspec is again the
number of dust species.

e Layer-style AMR grid:
The arraya.temp (or any other data array) will have dimensi@ismp(nxmax,nymax,nzmax,nspec,nlayers+1)
wherenxmax,nymax,nzmax are the maximum of number of cells in x, y and z direction offad layers (in-
cluding the base grid). Thespec is again the number of dust species. Tit@yers is the number of
refinement layers (patches), where 0 means that there iglolyase grid, 1 means there is one single patch
of refinement, etc. The last index of thagemp array goes from O talayers . Here O means the base grid, 1
the first layer of refinement, etc. Note that if you just reagldlust temperature in this way, the regions in the
parent layers (including the base grid) that are replacealfigfined layer will have the value 0. This makes a
“hole” in the dust temperature distribution. If you want IDa fill these holes with the rebinned values of the
refined layers, then you can cedhd _data with theffill keyword, i.eread _data(/dtemp,/fill)

Now coming back to tha.grid  sub-structure. This contains all the information aboutgthid. Again the content
of this structure depends on which gridding you use:

e Regular grid:
The structure containsy,z which are 1-dimensional arrays with the cell-centered xng a coordinates
(for spherical coordinates they arg and¢, but then the grid also contains, for your convenience, tiiges
r,theta andphi ). It also containsi,yi,zi which are again 1-D arrays with the x, y and z coordinates of
the cell walls (for spherical coordinatas, thetai andphii ). nx, ny, nz are the number of cells in x, y
and z direction.
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e Oct-tree AMR grid:
Thex,y,z andxi,yi,zi (and in addition to that in spherical coordinatesheta , phi , ri , thetai and
phii ) still have the same meaning as in the regular grid case. i$nctise, however, this “regular grid” is
just the “base grid” of the oct-tree refinement. The oct-s&ecture is now specified by the 1-D byte-array
octtree , which contains only the values 0 and 1. See Sedi@Tor details about their meaning. The order
of the values of the data are the same as the order of the aadis gy octtree

e Layer-style AMR grid:
Again, as in the oct-tree case, thg,z andxi,yi,zi and their spherical-coordinates counterparts now
have their meaning for the base grid. Thiayers tells how many layers (in addition to the base grid)
there are. Théparent(nlayers+1) give the parent layer for each layer, where 0 means base Ghid.
ixyz(3,nlayers+1) give the starting point of the layer in the parent gnictyz(3,nlayers+1) the
size of the layer in the parent grid andxyz(3,nlayers+1) the size of the layer in its own grid. The
layer _x(nxmax,nlayers+1) ,layer _y(nxmax,nlayers+1) ,layer _z(nxmax,nlayers+1) ,layer _xi(nxmax,nlayers+1)
layer _yi(nxmax,nlayers+1) andlayer _zi(nxmax,nlayers+1) are like thex,y,z andxi,yi,zi ,
but now for each layer separately. Note that &ger x[ ,0] = x[ <], etc, because layer 0O is identical to
the base grid. Note also thiayz[ *,0] andnxyz[ *,0] have no meaning, buinxyz[ *,0] are the same
asnx, ny, nz

For all the above griddings, the following additional elertseare present ia.grid . For instancegridstyle
(=0,1,10)  specifies which of the above griddings is useshrdsys is the coordinate systemirror (=0,1)

a flag whether equatorial mirror symmetry is present (ontysfgherical coordinatespcell gives you the total
number of actual cellsicellinp  gives you the total number of read-in cell values (in casayéi-type refinement
this is generally larger thamcell , incx, incy, incz (=0,1) are flags whether the x, y or z dimensions are
active or not.

Note that even if you have e.g. a regular grid,ittyg etc elements are still in the structure, but they are simply 0

14.2 Support for FITS

Many people in astronomy use the FITS format (Flexible Imagmsport System) for analyzing images or other
observational data. Many software packages are geareddoeading and processing FITS data. For instance, the
ds9 image viewet is very powerful, but requires its images in FITS format.

We provide a conversion routine from the standiardge.out image format produced by RADMC-3D to FITS
format. The routine is callechdmcimage _to _fits and is located in the filell/radmc3dfits.pro . To use this,
you must have the ASTROLIBlibrary of IDL installed.

To convert to FITS format, you must specify the distance attvthe observer stands from the object. The reason
is that theimage.out file produced by RADMC-3d iglistance independentThe pixel size inimage.out is
specified in centimeters, not as an angular size. rati@cimage _to fits routine automatically converts this to
pixel scale in degrees, but it must know the distance.

Here is how you conveitnage.out intoimage.fits . First go into IDL and then:
.r radmc3dfits

radmcimage_to_fits,'image.out’,'image.fits’,140.

where the last number (140.) is the distance to the objeatits of parsec. In the FITS file the unit of the intensity
is Jansky/Pixel. The pixel sizes are specified in degreese ®ou have made this conversion, you can, for instance,
useds9 (if it is installed on your system!) to view your image. Frohetunix shell you type:

ds9 image.fits

Just for your information, in case you want to know more alibatFITS conversion: The FITS header looks for
example like this:

SIMPLE = T /image conforms to FITS standard

http://hea-www.harvard.edu/RD/ds9/
2http://idlastro.gsfc.nasa.gov/
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-64 /bits per data value

BITPIX =
NAXIS = 2 /number of axes
NAXIS1 = 100 /

NAXIS2 = 100 /

EXTEND = T /file may contain extensions
BTYPE = ’Intensity’

BUNIT = "JY/PIXEL’

CDELT1 = 6.9418601352850E-07

CUNITL = 'deg

CRPIX1 = 5.0000000000000E+01

CDELT2 = 6.9418601352850E-07

CUNIT2 = ’'deg

CRPIX2 = 5.0000000000000E+01

RESTFREQ=  2.997924580000E+13

END

which you can see if you typess image.fits in the Unix shell and rescale the width of your shell window to
80 characters. If you want to know more about the details@RITS format, please consult the various papers by
E.W. Greisen, for instance Greisen & Calabretta (2002) A&®531061-1075.

14.3 The image viewing GUI: viewimage.pro

Making images of a model can be done “by hand” using the todlséreadradmc.pro  file (see Sectioi4.]). But

it is much more convenient to use the fully widget-based i user interfaceiewimage.pro  (see Fig14.1)%.
This interface can be used once the dust temperatures @ro€dsist continuum radiative transfer) have been com-
puted using e.g. the thermal monte carlo method (i.e. afeinly calledradmc3d mctherm ). Or more precisely:
the filedust _temperature.dat should be present and consistent with the other files. Ifisrsatisfied, then one

can go into IDL (does not work on the IDL-clone “GDL") and type

.r viewimage
viewimage

and one should get the GUI shown in Fig4(1). NOTE: It may take a while for RADMC-3D to load all the data
into memory the first time, so before the first image appearnherscreen it may take some time. From that point
on, further ray-trace actions should go much quicKeere is a list of controls and their functions:

e “Quit Viewer” button: Ends this viewer and quits RADMC-3D.
e “Write Image” button: Writes a idl.ps postscript version of the plot on the screen.

e “mouse rotate” switch: If unset (default), the mouse clicks on the plotting pand@stlect a zoom-
in box. If set, the mouse clicks on the plotting pane act tatethe object. Note that the rotation can also
be done by hand by setting the values'otlination” and“Phi” and redoing an image rendering

with the“Render Image” button.

e “lin” switch: Switch between linear color table of intensity and logamiiticolor table of intensity.

e “preview” switch: If set (default) then the ray-traced image is done withobtgixeling in regions
where the model has higher spatial resolution than the imeg@ution can resolve. This is a fast mode (i.e.
hence the name “preview”). If unset, then the ray-tracemagbvensures that if a pixel of the image does
not resolve details of the model, it will internally refinesthixel in 2x2 (and recursively repeat this until the
resolution matches that of the model), and finally integttag¢eflux of all the sub-pixels to find the flux of the
parent pixel. The intensity it then puts into this pixel ietithe true average intensity over all the pixel. The
sub-pixels will never be seen by the user. They are only maéerially in RADMC-3D to ensure the correct
flux in the pixel, and then dropped again. For science-quatiages the‘preview” button should be
unset. It may take longer, however, to render. Please reattb86.6for details about this procedure.

3NOTE: Currently there appears to be a problem that viewimaiifreeze, which happens on some machines and not on othefines (in
fact it happened on one Macbook but not on another, while yetems were seemingly identical). This is somehow relatétktway radme3d
and IDL communicate with each other in child mode (see chai it must be a buffering problem. So far | could not figure otis going
wrong, but | will continue to work on this. If you experienbéstproblem, try calling viewimage,/nochild. That is slovimit should work.
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e “contour” switch: If set: overplot contours.

e “star” switch: If set (default): Include the flux of all the point-sourcersta the image. Not setting it
has the potential advantage that you can concentrate oirtiienstellar material and not be 'blinded’ by the
strong starlight.

e slider in this box: The slider in the same box as the above switches selects thedor table for
monochromatic images.

e “MaxLog” textbox (editable): The maxlog is the maximum number of factors of 10 that we will
include in the color table. A high number gives more extreahepth” to the image, but may also wash out
details.

e “Saturate” textbox (editable): Saturate the image with this factor. Default is 1.0, i.e. atusa-
tion.

e “Nr Cont” textbox (editable): Set how many contours you want if the contour switch is 'on’.

e “Render Spectrum” button: Render a complete SED. This may take a long time!

e “Render Image” button: Render a single image. See entries below for the settings.

e “Unzoom” button: If you are zoomed in, and you want to zoom out again, push thitobh. Note:

Zoomin in is done by selecting a region with the moise in thagmpane (make sure the “mouse rotate”
switch is off) and pressintRender Image”

e “Npix” textbox (editable): The number of x and y pixels of the image.

e “Size” textbox (editable): The size of the imagdBUG HERE: This does not seem to work.]

e “Inclination” textbox (editable): The inclination where the observer is placed (at large dis-
tance).

e “Phi” textbox (editable): The azimuthal angle where the observer is placed (at lagjardie).

e slider below: The wavelength slider. These are the wavelengths fromélielength _micron.inp  file
and using the slider you can select one of these values. Bali'cgn also select the wavelength by directly
editing the textbox next to it, see below.

e textbox next to slider: The current wavelength in micron. This is automaticallyvgleén the slider is
moved. BUT you can also put in any value of the wavelength yaotand type return to get the image at the
precise wavelength of interest. That may be a wavelengthigheot one of thevavelength _micron.inp
values, but somewhere in between or even outside that goid cdn try any value.

The image is of course independent of observer distancesffexor the local observer mode). The total flux,

however, is a distance-dependent quantity. Written in thagie is the total flux, normalized to a distance of 1
parsec. Clearly, if the model is far bigger than 1 parseg) thes number has no physical meaning. But by scaling
the image flux to a reasonale distance you will get reasorsatseers.

Theviewimage routines will print to the command line thedmc3d command sequence used to make the image
you see now on your screen. This is just for the user’s coeve, that it is clearly seen which commaretsnc3d
receives. You can simply copy-paste such a line to the shelheand line and you will see that RADMC-3D will
do precisely that command (note that if already another RABBD is running a huge model, you may get memory
problems when doing this in parallel to that model).

Note also that each time a new image is made and is shown irghver the same image is also stored in the file
image.out in the current directory. This means that you can read tlesti@hage using theadimage() routine
in thereadradmc.pro  file. As an example of such a complete sequence:

.r viewimage

viewimage

<<< NOW MAKE WITH THIS WIDGET SOME NICE IMAGE YOU WANT TO 31ORE >>>
.r readradmc

a=readimage()

window,0

surface,a.image
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Figure 14.1. The graphical user interface (GUI) to the ray-trace-baseber module of RADMC-3D.

In this example you make a surface plot in window 0 of the imgmesee in the viewer.

There are further capabilities efewimage , which can be switched on with keyword options to thewimage
subroutine. Here is a list of such keyword options (i.e. tgeviewimage,/color to enable the first option):

[color : When/color is set then you will find three wavelength sliders which camdependently shifted.
These three sliders represent the red, green and blue dhanfriee image. This way you can make false
color images.

/au / /pc : When setting eithefau or/pc the axis will not be drawn with centimeter units, but instead
with AU or parsec units.

/small : If set, the widget will be smaller, so that it fits on low-réstion screens.

Iverti  : If set, the widget will put the controls below the image &t of next. Can be useful on high-
resolution screens to save screen real estate.

/nochild  : When settingnochild , the RADMC-3D code will be called separately for each imageler-
ing. This can be very slow, but it has the advantage that ia oagroblems the debugging might be easier,
because all I/O of theadmc3d executable will then go to screen.

Nines : This includes entry fields such &sol , iline  andvkms to make it easier to specify the precise
wavelength of the image in case of lines.

Tip: If viewimage unexpectedly quits or freezes, please l@alook at the fileadme3d.out  which contains the

messages that RADMC-3D outputs. This may give hints whatwreng. If you have called viewimage with the
option /nochild, then the output will have been written teesa, not taradmc3d.out

Another thing to keep in mind is that when RADMC-3D makes iesdt will run a small Monte Carlo simulation
beforehand to compute the scattering source function (see)

14.4 Making and reading spectra with IDL

[THIS STILL HAS TO BE WRITTEN]
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Figure 14.2.The graphical user interface (GUBnder3d.pro  that allows you to analyze 3-D regularly spaced
datacubes. In Chaptébit is described how to create regularly spaced datacubesyofaiable in the model from
a complex AMR-based model. Shown in this figure is in factrie _disk _1/ model, which is an AMR-based
model, in which the trick of Chaptel5is applied to create a regularly spaced box.

14.5 A general-purpose 3-D datacube analysis GUI

Although this is not specific for RADMC-3D, we thought it wauhnyway be useful to provide this: a super-fast
interactive IDL GUI for analyzing 3-D data cubes calledder3d.pro . This code is a general-purpose adaption
of one of IDL's example codes, so this is not in any way copytégl by the RADMC-3D authors, even though we
made extensive changes to it for the better. The tool candxalso for any other 3-D datacube data: it is not at all
limited to RADMC-3D.

Therender3d.pro  tool can only handle 3-D regularly spaced data. No AMR-basedels can béirectly ana-
lyzed in this way. But in Chaptetr5we describe a feature of thedmc3d code that allows you to easily create 3-D
regularly spaced boxes from anywhere in your model at antyadpasolution you like. You can then subsequently
feed that datablock intender3d.pro  for 3-D viewing.

Usingrender3d.pro  is simple:

g = <some 3-D array of floats or double precisions>
.r render3d
render3d,q

Have fun! For all the functionality, just try things out. heuld be reasonably self-explanatory. See Eigy2for
a screen-shot. Note: Apart from all the sliders and butttgsalso out how you can interactively rotate the 3-D
datacube with the mouse: just click on the plotting window drag while keeping clicked.
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Chapter 15

Model analysis (I1): Tools inside of
radmc3d, steered by IDL

There are also some special purpose features in the F@@readmc3d code that can be useful for analyzing
complex AMR-gridded models. You do not have to directly iat# withradmc3d to use these features, as there
are IDL routines that do this for you. If you do not have IDL wwill have to directly interact withadmc3d to use
these features.

15.1 Making a regularly-spaced datacube (‘subbox’) of AMRbased mod-
els

Because handling AMR-based models in IDL or other data aispackages can be rather cumbersome, we decided
that it would be useful to create the possibilityrinime3d to generate 1-D, 2-D or 3-D regularly spaced ‘cut-outs’
or ‘sub-boxes’ (whatever you want to call them) of any valéadif the model. An example of how this all works,
and how these 1-D, 2-D or 3-D sub-boxes can be used witretlier3d.pro  tool set described in Sectid#.5

is given in the modedxamples/run  _disk _1/ .

15.1.1 Creating and reading a subbox from within IDL

If all the IDL tools are set up properly, you can make use o ttatacube creation feature mfime3d entirely
through IDL. An example, type in IDL:

.r readradmc.pro

g=subbox('dust_density’)

This creates a box with the size of the original model box,tbisttime regularly spaced. The data isgidata .
You can see this by typing:

help,q,/str

You will see thafg.data is a 3-D array of 64x64x64 (default size).

The box contains the dust density. You can specify the sidetasnumber of grid points of the regularly-spaced
box:

.r readradmec.pro

@natconst.pro

g=subbox('dust_density’,nxyz=64,size=2 * 100+ AU)

.r render3d.pro

render3d,alog10(qg.data>1d-20)

NOTE: Thesize keyword is thefull-width size of the box! So if you want to capture a disk with radius 200
then you must have a box size of 200 AU.
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You can also make and read in separate steps:

.r readradmec.pro

@natconst.pro

makesubbox, dust_density’,nxyz=64,size=200 * AU
g=readsubbox('dust_density_subbox.out’)

.r render3d.pro

render3d,alog10(qg.data>1d-20)

You can specify the box location with the keywaqrak :
g=subbox('dust_density’,nxyz=64,size=200 * AU,pos=[30,30,30] * AU)

or by specifying the corners of the box directly:
g=subbox('dust_density’,nxyz=64,box=[-1,1,-1,1,-1,1 ] *80* AU)

Note that if you haveadmc3d already running in the background using dtéld mode (see Chaptdr2) then
you can do the above commands more quickly by directly conicating through the pipe by passing the keyword
iounit=<myiounitnumber> (where the thing in between and> should be the unit number of the biway pipe

to radmc3d ) to the above routinesakesubbox or subbox .

15.1.2 Creating and reading a subbox by directly communicamhg with radmc3d
You can callladmc3d directly from the shell asking it to make the subbox. Hereniggample:

Jradmc3d subbox_dust_density subbox_nxyz 64 64 64 \
subbox_xyz01 -2.d15 2.d15 -2.d15 2.d15 -2.d15 2.d15
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Chapter 16

Creating Protoplanetary Disk Models
using a GUI

Author: A. Juhasz

Attila Juhasz has created an IDL-driven graphical userfate (GUI) for modeling protoplanetary disks. The GUI
for RADMC-3D was developed for YSO disks/envelopes but dao be used (to some extent) as a general purpose
user interface. Or it may serve as a template for other usetseate GUIs for their own models. The GUI is
written in IDL and consits of five IDL routines; radmc2pli.pro, readparamsradmc3d.pro, problemarams.pro,
problemsetupyso.pro, mygapfunction.pro.

e radmc3d_gui.pro This file contains all the widget definitions and basicallgmithing related to the visual-
ization.
e read_params.radmc3d.pro This file contains two functions to read and write the paramseinto a file.

e problem_params.pro Those, who have actually worked with the 2D version of RADMId@s file should
look familiar. This file contains all parameters requiredsé&t up the problem and create the input files for
RADMC 3D.

e problem_setup.proThis file has also the same function as in the 2D version of RADEIn the basis of the
parameters stored in probleparams.pro, it creates the input files to RADMC 3D.

e my_gap_function.pro This is a small routine to cut a gap in the disk to demonstfaie; one can use this
GUI with one’s own dust density setup.

e my_gap2function.pro This is a small routine to cut a second gap in the disk (in thecegame way as
my_gapfunction.pro) to demonstrate, how one can use this GUI wiliioown dust density setup.

16.1 How to run the GUI

The GUI can be run in a very simple way. First an IDL should letstl and the radmc3gui.pro routine should be
compiled.

IDL> .r radmc3d_gui
With this step not only radmc3dui.pro, but also all other necessary files/routines willcoenpiled (Note: it
assumes that you are in the examplesiumatever directory and the readradmc.pro file is locatedhén. ¥../idl/

directory). After the compilation the GUI is ready to be ruithithe command radmc3gui:

IDL> radmc3d_gui
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Figure 16.1. The graphical user interface for a protoplanetary disk rhodethor: A. Juhasz.

After this command has been executed the user should seelawvgimilar to that in Fid 6.1

To make things easy (especially for those ones who use dikedieansfer code for the first time) the GUI comes
with a simple 'default’ setup for the dust density distribat This setup is based on a common parametrization
of a protoplanetary disk and a surrounding envelope. Howeélie user may want to change the whole density
distribution or may want to add extension(s) to this setup.(ea gap in the disk). One can add his/her own

extension(s) to the model setup so, that the GUI will recogitiem and new tabs will automatically open to access
the parameters of these extensions.

16.2 Create your own setup and/or open your own tab

Adding new extension to the code which appears as a new talke iust density setup frame is relatively easy, one
only needs to keep a few rules. To make it clear how this carobe d is useful to understand what the GUI does
behind the buttons and windows. In a few steps the GUI doe®tiosving;

Write the parameter values to problgrarams.pro
Run problensetupyso.pro to create all necessary input files for RADMC3D

Run RADMC3D mctherm to calculate the temperature strectu

A w0 b

Run RADMC3D to calculate images/spectra

After Step 2. any arbitrary IDL procedure can be run to modifiy even completely re-create) the dust density
distribution. Such a procedure can be integrated to the &tHe following way;

e The procedure should not accept any keywords or input Veriatstead, the user should add the @prohfsmrams.pro
line after the procedure name, allowing the procedure tesscthe variables in probleparams.pro;
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pro my_arbitrary_procedure
@problem_params.pro

e Create a new section of parameters in prohfgamams.pro which will be used in the user’s procedure. For
examle;

; My extra function - example

; Cut a gap in the disk reducing the density by an arbitrary fac tor
extra_gap_tab_name = 'My gap function’ ; Name of the tab in th e GUI
extra_gap_enable = 1 ; 0-Enable, 1-Disable this function

extra_gap_func = 'my_gap_function’ ; Name of the user defin ed function
extra_gap_rin = 5.0 * AU ; Inner radius of the gap

extra_gap_rout = 10. * AU ; Outer radius of the gap

extra_gap_drfact = 1d-4 ; Density reduction factor in the ga p

e The parameter names should look like; ex¢ecnamgoname. The 'extra’ means that this is an additional
parameter for which a new tab should be opened. The 'secnaitidde the identifier of this section of
parameters within the widgets and should be the same foaedinpeters within this section. The 'pname’ is
the actual parameter name, that can be any arbitrary name.

e Each new section should contain a parameter called 'esdcaameaab name’, which will be the title of the
new tab which will open in the dust density setup frame.

e Each new section should contain a parameter called 'esseacaamegunc’, which should be the name of the
user’s procedure.

e Each new section should contain a parameter called 'esédcaameenable’, which should have a value of 0
or 1 and disables or enables the execution of the user’s guoeafter problensetupyso.pro.

If the user followed the instructions above and start the @dew tab in the density setup frame should open for
the user’s procedure. Input fields for the parameters wiletthe parameter names as titles. If one made comments
in problemparams.pro at the end of a line to explain the meaning of thenpater at the beginning of the line, this
explanation/comment will be available in the Help menu uritkelp on parameters”. Two examples were given in
the current problenparams.pro to open gaps in the dust density distribution.
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Chapter 17

How to convert old-style RADMC models
to RADMC-3D

Some users of RADMC-3D may have used the predecessor pragpdvVIC before. The input files of RADMC
are different from those used by RADMC-3D. You may have maeélips created for RADMC which you would
like to feed into RADMC-3D. The best way would be of coursedd gourproblem =+ .pro files and make sure
that they create the RADMC-3D input files instead of the RADM@ut files. But that costs quite some work, and
you may make errors.

We offer the IDL routingadmc2radmc3d.pro  in theidl/  directory that automatically converts all the RADMC
input files into RADMC-3D input files. In particular, it willathe following conversion:

RADMC RADMC-3D
radius.inp & theta.inp amr_grid.inp
starinfo.inp & starspectrum.inp stars.inp
dustdens.inp dust _density.inp
- radmc3d.inp

The fileradmc3d.inp  is ignored for now, and instead a frestdmc3d.inp  is created. While RADMC-3D would
readradmc3d.inp  if no radmc3d.inp  is present, the presence @fimc3d.inp  means that RADMC-3D will
readradmc3d.inp  (andnotreadradmc3d.inp ).

The opacity files are kept as they are. While the recommertgibdfer the opacities is theustkappa _*.inp file,
RADMC-3D can also read the old stydastopac _+.inp files. Also thefrequency.inp file is kept as itis.

NOTE: For now the quantum-heated grains are not ported to RGE3D. Also some specialties of the RADMC
code may not yet work in RADMC-3D — just keep this in mind.

So if you have a working model for RADMC, and you want to run ttnRADMC-3D, then just go into the model
directory, go into IDL and type:

.r radmc2radmc3d.pro

and this should convert the files from RADMC-style to RADMO-3tyle, as described above. Note that you must
now redo the thermal Monte Carlo, because RADMC-3D readsnits style of dust temperature file. So go out of
IDL and type (on the shell):

radmc3d mctherm

wait until it is finished, and now you can make your spectraiaraes.
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Chapter 18

Tips, tricks and problem hunting

18.1 Tips and tricks

RADMC-3Dis a large software package, and the user will in all liketidaot understand all its internal workings.
In this section we will discuss some issues that might beuiseknow when you do modeling.

e Things that can drastically slow down ray-tracing:
When you create images or spectajmc3d will perform a ray-tracing calculation. You may notice that
sometimes this can be very fast, but for other problems itbeawery slow. This is because, depending on
which physics is switched on, different ray-tracing stgée must be followed. For instance, if you use a dust
opacity without scattering opacity (or if you switch dusattering off by settingcattering  _mode_max to
0 in theradmc3d.inp  file), and you make dust continuum images, or make SEDs, tajsguo very rapidly:
less than a minute on a modern computer for grids of 256x2aBxRowever, when you include scattering,
it may go slower. Why is that? That is because at each wavisleagmc3d will now have to make a quick
Monte Carlo scattering model to compute the dust scattexingce function. This costs time. And it will
cost more time if you havephot _scat setto a high value in thedmc3d.inp file, although it will create
better images. Furthermore, if yalsoinclude gas lines using the simple LTE or simple LVG methalsn
things become even slower, because each wavelength charagd is done after each other, and each time
all the populations of the molecular levels have to be reqmated. If dust scattering would be switched off
(which is for some wavelength domains presumably not a bptbapmation; in particular for the millimeter
domain), then no scattering Monte Carlo runs have to be doneafch wavelength. Then the code can ray-
trace all wavelength simultaneously: each ray is tracegdomte, for all wavelength simultaneously. Then the
LTE/LVG level populations have to be computed only once ahdacation along the ray. So if you use dust
and lines simultaneously, it can be advantageous for sfpged ican afford to switch off the dust scattering,
for instance, if you model sub-millimeter lines in regionghandust grains smaller than 10 micron or so. If
you must include scattering, but your model is not so big yleatmay get memory limitation problems, then
you may also try the fast LTE or fast LVG modes: in those modesi¢vel populations are pre-computed
before the ray-tracing starts, which saves time. But that maquire much memory.

18.2 Bug hunting

Although we of course hope thatdmc3d will not run into troubles or crash, it is nevertheless pblesthat it will.
There are several ways by which one can hunt for bugs, andstedie a few obvious ones:

e In principle theMakefile  should make sure that all dependencies of all modules areatpso that the most
dependent modules are compiled last. But during the fudbeelopment of the code perhaps this may be
not 100% guaranteed. So try dake clean followed bymake (or make install )to assure a clean make.

e IntheMakefile you can add (or uncomment) the line
BCHECK = -fbounds-check , if you usegfortran . Find the array boundary check switch on your own
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compiler if it is notgfortran

e Make sure thatin thmain.fo0 code the variabldebug _check _all is setto 1. This will do some on-the-fly
checks in the code.

18.3 Some tips for avoiding troubles and for making good mods

Here is a set of tips that we recommend you to follow, in ordenoid troubles with the code and to make sure that
the models you make are OK. This list is far from complete!ilt e updated as we continue to develop the code.

1. Make a separate directory for each model. This avoidsusiori with the many input and output files from
the models.

2. When experimenting: regularly keep models that work, @mtinue experimenting with a fresh model di-
rectory. If things go wrong later, you can always fall backaomolder model thadid work well.

3. Keep model directories within a parent directory of thdesdust like it is currently organized. This ensures
that each model is always associated to the version of thefoodvhich it was developed. If you update to a
new version of the code, it is recommended to simply copy thdets you want to continue with to the new
code directory (and edit th@RCvariable in theviakefile if you use the techniques described in Secddh
and Chaptefl 3).

4. If you make a new model, try to start with as clean a dirgcésr possible. This avoids that you accidently
have a old files hanging around, their presence of which magec&roubles in your new model. So if you
make a model update, make a new directory and then copy oelfil&s that are necesary (for instance,
problem _setup.pro , dustkappa _silicate.inp , Makefile and other necessary files). One way of do-
ing this easily is to write a little perl script or csh scripat does this for you.

5. Inthe example model directories there is alwajtkefile present, evenifnolocalfoo files are present.
The idea is that by typingake cleanalyou can safely clean up the model directory and restore itedenpodel
status. This can be useful for safely cleaning model direztso that only the model setup files remain there.
It may save enormous amounts of disk space. But of coursesanmthat if you revisit the model later, you
would need to redo the Monte Carlo simulations again, faaimse. It is a matter of choice between speed of
access to results on the one hand and disk space on the otiter ha

6. If you use LVG or escape probability to compute the levedyations of molecules, please be aware that you
must include all levels that could be populated, not onlylévels belonging to the line you are interested in.

18.4 For the careful modeler: things you may want to check

In principle RADMC-3D should be fine-tuned such that it prodd reliable results in most circumstances. But
radiative transfer modeling, like all kinds of modeling nist an entirely trivial issue. Extreme circumstances can
lead to wrong results, if the user is not careful in doing®asisanity checks. This section gives some tips that you,
the user, may wish to do to check that the results are ok. Shist an exhaustive list! So please remain creative
yourself in coming up with good tests and checks.

1. When making images or spect@ne important issue is always the proper choice of resoiudf the pixels.
This is not only for the pixels you see in your image, but alsothe recursive sub-pixelingsee Section
9.6) which ensures proper flux conservation. In principle theursive sub-pixeling is pre-tuned by us (the
programmers) in a sensible way. But we cannot guaranteatthatrks always well under all conditions!
So if you want to be absolutely sure that the image flux is pilg@ecounted for, please read Secti@)
carefully, and play a bit with the various tuning parameters

2. When making images or specirawhich dust scattering is important, the scattered lighissivity is com-
puted by a quick Monte Carlo simulation before the ray-trgdisee Sectio6.5.4. This requires the set-
ting of the number of photon packages used for this (the bkrigphot _scat for images and equivalently
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nphot _spec for spectra, both can be set in tre@mc3d.inp  file). If you see too much “noise” in your
scattering image, you can improve this by settipgot _scat to a larger value (default = 100000). If your
spectrum contains too much noise, try settipgot _spec to a larger value (default = 10000).

3. For rather optically thick modelgou may want to experiment with grid resolution and refinem&trictly
speaking the transition from optically thin to opticallydak, as seen both by the radiation entering the object
and by the observer, has to occur over more than one cell. i§ @t very optically thick models, one may
need to introduce grid refinement in various regions. As amgte: an optically thick protoplanetary disk
may have an extremely sharp thin-thick transition nearriheri edge. To get the spectra and images right, it is
important that these regions are resolved by the grid (rowtee well inside the optically thick interior, it is no
longer necessary to resolve individual optical mean frebegpdahankfully). It should be said that in practice
it is often impossible to do this in full strictness. But yoayrnwant to at least experiment a bit with refining
the grid (using either “separable refinement”, see Sedthd or AMR refinement, see Sectign?2.2).

18.5 Common problems and how to fix them

When using a complex code such as RADMC-3D there are mangghivat can go wrong. Here is a list of common
issues and tips how to fix them.

1. After updating RADMC-3D to a new version, some setups don’t wrk anymore.
This problem can be due to several things:

(&) When your model makes a logaimc3d executable (see Sectidnb), for instance when you use the
userdef _module.f90 to setup the model, then you may need to editdRevariable in theMakefile
again to point to the new code directory, and tymeke clean followed bymake.

(b) Are you sure to have recompileadmc3d againandinstalled it (by going insrc/ and typingmake
install  )?

(c) Try going back to the old version and recheck that the rhadeks well there. If that works, and the
above tricks don't fix the problem, then it may be a bug. Pleasgact the author.

2. After updating RADMC-3D to a new version: the new features ae not present/working.
Maybe again théakefile issue. See poirit above.

3. After updating RADMC-3D to a new version: model based on usedef_module fails to compile
If you switch to a new version of the code and try to 'make’ arlieamodel that uses the userdaodule.f90,
it might sometimes happen that the compilation fails begaosne subroutineserdef _*+ is not known
(heres+ is some name). Presumably what happened is that a new sezeieinctionality has been added
to the code, and the corresponding subroutiserdef _*++ has been added to thigerdef _module.f90
If, however, in your owruserdef _module.fo0 this subroutine is not yet built in, then the compiler can't
find this subroutine and complains. Solution: just add a dyraabroutine to youuserdef _module.f90
with that name (have a look at theerdef _module.fo0 in thesrc/ directory). Then recompile and it
should now work.

4. After switching back from the userdef_-module.f90-driven model setup to the original IDL-driven stup
style, suddenly lots of IDL routines produce problems or do ot give the right results.
Check if an oldradmc3d executable is still present. If so, remove it, because thetiva IDL tools check
whichradme3d executable to use (local or global) is by checking if a loadinc3d executable is present.

5. The viewimage GUI aborts with message “Aborting: RADMC-3D dbes not respond...”
This means that thedmc3d code, which is a child process of IDL, has unexpectedly @iiice the standard
IO channel ofradmc3d is used for commincation with IDL, the usual standard outputow redirected to
the fileradmc3d.out . Have a look at that file to see what causadmc3d to abort.

6. RADMC-3D stops with message “ERROR: dustdensity.inp does not have same number of cells as the
grid. -32768 32768” or similar
This message means that the filest _density.inp specifies the dust density in a different number of cells
than which is specified in thamr_grid.inp ~ file. In the above example this is in fact caused by the fadt tha

96



10.

11.

12.

13.

in the IDL routines for generating the setup the number diagbt an overflow over the maximum range
of two-byte signed integers. To avoid this, use long integén IDL this is done likenx=100L instead of
nx=100 .

. While reading an input file, RADMC-3D says “Fortran runtime e rror: End of file”

This can of course have many reasons. Some common mistakes ar

e In amr_gridinp  you may have specified the coordinates of the nx*ny*nz gridtees instead of
(nx+1)*(ny+1)*(nz+1) grid cell interfaces.

e You may have no line feed at the end of one of the ascii inpu.figome fortran compilers can read
only lines that are officially ended with a return or line fe&blution: Just write an empty line at the
end of such afile.

. My changes to the main code do not take effect

Did you type, in thesrc/  directory, the fulimake install ~ ? If you type jusinake, then the code is compiled
but not installed as the default code.

. My userdef_module.f90 stuff does not work

If you runradmc3d with own userdefined stuff, then you must make sure to runitjfeé executable. Just
typingradme3d in the shell might cause you to run the standard compilatistead of your special-purpose
one. Try typing/radmc3d instead, which forces the shell to use the local executable.

When | make images from the command line, they take longer thawith viewimage.pro

If you make images witlhadmc3d image (plus some keywords) from the command line, the defaultas th
a flux-conserving method of ray-tracing is used, which idechlecursive sub-pixeling (see SectiBré).
This takes, under some circumstances, much longer thamwifmake images without recursive sub-pixeling.
In the viewimage widget (see Sectioi4.3 the default is to use no sub-pixeling (though by pressirgg th
“preview” button off, the sub-pixeling is used again). Yancmake an image without sub-pixeling with the
command-line optionofluxcons

My line channel maps (images) look bad

If you have a model with non-zero gas velocities, and if thggsevelocities have cell-to-cell differences that
are larger than or equal to the intrinsic (thermal+microtlient) line width, then the ray-tracing will not be
able to pick up signals from intermediate velocities. Inesttvords, because of the discrete gridding of the
model, only discrete velocities are present, which caneausnerical problems. There are two possible
solutions to this problem. One is the wavelength band mettesttribed in Sectio®.5 But a more sys-
tematic method is the “doppler catching” method descrilbe8éction7.6 (which can be combined with the
wavelength band method of Secti®rbto make it even more perfect).

My line spectra look somewhat noisy

If you include dust continuum scattering (Secti®m) then the ray-tracer will perform a scattering Monte
Carlo simulation at each wavelength. If you look at lines veh@ust scattering is still a strong source of
emission, and ihphot _scat (Section6.5.9 is set to a low value, then the different random walks of the
photon packages in each wavelength channel may causesliifferent resulting fluxes, hence the noise.

My dust continuum images look very noisy/streaky: many “lines” in the image
There are two possible reasons:

(a) Photon noise in the thermal Monte Carlo ruif. you have too few photon packages for the thermal
Monte Carlo computation (see Chap&r then the dust temperatures are simply not well computed.
This may give these effects. You must then incregget in theradmce3d.inp file to increase the
photon statistics for the thermal Monte Carlo run.

(b) Photon noise in the scattering Monte Carlo rufiyou are making an image at a wavelength at which
the disk is not emitting much thermal radiation, then what yall see in the image is scattered light.
RADMC-3Dmakes a special Monte Carlo run for scattered light befoch @aage. This Monte Carlo
run has its own variable for setting the number of photon pgek:nphot _scat . If this value is set too
low, then you can see individual “photon”-trajectoriesfie tmage, making the image look bad. Itis
important to note that this can only be remedied by increpsphot _scat (in theradmc3d.inp file,
see Sectiol.5.9, not by settingiphot (which is the number of photon packages for the thermal Monte
Carlo computation).
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Appendix A

Main input and output files of RADMC-3D

RADMC-3D is written in fortran-90. It is written in such a walyat the user prepares input files (endingrp )

for the program and then calladmc3d with some command-line options. The program then readsih files,
and based on the command-line options will perform a cedalculation, and finally outputs the results to output
files (ending in.out ) or intermediate files (ending imat ) which need further processing. In principle the user
therefore needs to compile the program only once, and canuge the executable from that point onward. In this
chapter we will describe the various input/output and miediate files and their formats. Just for clarity: the IDL
routines in thadl/  directory are only meant to make it easier for the user togneephe.inp files, and to make
sense of theout and.dat files. They are not part of the main codeimc3d .

A few comments on RADMC-3D input and output files:

e Most (though not all) files start with farmat number This number simply keeps track of the version of the
way the information is stored the file. The idea is that if ne@ssions of RADMC-3D come out in the future,
it would be good to have the possibility that new informati®added to the files. The format number is there
to tell RADMC-3D whether a file is the new version or still ardet version. NOTE: Do not confusermat
numbermwith unformatted/formatted I/@see below for the latter). These are unrelated issues.

e RADMC-3D is no longer backward compatible with the older RMD code input files. It has proven to be
too messy to maintain this option.

e RADMC-3D has four types of I/O files:

1. Files ending withinp or .uinp are input files that allow the user to specify to RADMC-3D whic
problem to solve.

2. Files ending withdat or .udat are intermediate files that are typically created by RADMTi8
self, but can also be read by RADMC-3D for further processifgr instance, the dust temperature is
computed by the Monte Carlo method, but can also be readanfiat ray-tracing.

3. Files ending without or.uout are final products of RADMC-3D, such as an image or spectrum.

4. File ending with.info  are small files containing some numbers that are useful terheterpret the
output files of RADMC-3D. They are typically not very impontdor every-day use.

e For many of the I/O files RADMC-3D can read and write both fott@a (i.e. text style: ascii) files and
fortran-style unformatted files. Whether a file is text-stfiser-readable) or fortran-style-unformatted (more
compact data storage) is specified by the file extension:

1. Filesendingininp ,.dat or.out are writtenin textstyle, i.e.they are ascii files (“forneatoutput”).
They are human-readable lists of numbers or symbols. Typitas I/O style is useful for testing and
getting used to the code, so that the user can see exactlygéoyng the 1/0 files in an editor) what
numbers are being processed. But the severe drawback ibéisatfiles are very large compared to the
information they contain.

2. Filesendinginuinp ,.udat or.uout are writtenin fortran-stylenformattedorm. Here each double-
precision variable takes up 8 bytes, each single-precisidable 4 bytes, each normal integer 4 bytes,
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each long integer 8 bytes etc. This form of 1/0 is much more gachthan the unformatted style and
thus preferable for big models. Note that not all files havs tinformatted option. Also note that
fortran-style unformatted files work wittecords in contrast to C-style unformatted (whichrisally
unformatted). This makes the fortran-style unformatt€d/bit more tricky. Each write statement in
fortran produces a single record. A record is stored in tleeafil a block of data that starts with 2 bytes
telling which length the record has (in bytes), then corgdive data that are written, and ends with
another 2 bytes giving the same length of the record thatit closes. C-style unformatted files only
write the actual data. So for each unformatted write statemmefortran 4 more bytes are stored which
are essentially useless (and can be confusing). In IDL tisemespecial keywor¢f77 _unformatted

that you can add to thepen statement to make IDL read unformatted files like fortranthed these
additional bytes are read and ignored or written. Note thiatescompilers may write 4 bytes at the start
and end of a record (gfortran used to do this, but this is naowettl back for backward compatibility
reasons). But most compilers stick (fortunately) to theluyte at start and end of a record convention.
Because of the complexity of the fortran record-based W@ sand because these records therefore have
a maximum length (which is 65536 bytes) the unformatted f®ADMC-3D is a bit subtle. Details
are described in the sections below for each file, and the tditimes are equipped to read/write the
correct form of these files.

INPUT: radmc3d.inp

Theradmc3d.inp file is a namelist file with the main settings for RADMC-8Drhe namelist is not a standard
Fortran namelist style, but a simpt@me = valudist. If a name is not specified, the default values are takenif
theradmce3d.inp  file is empty, then all settings are standard. Note that sdmtigese settings can be overwritten
by command-line options!! Here is a non-exhaustive lishefvariables that can be set.

incl _dust (default: depends on which input files are present)

Normally RADMC-3D will recognize automatically whether sticontinuum emission, absorption and scat-
tering must be included: if e.g. a file calledstopac.inp  is present, it assumes that the dust must be
included. But with this flag you can explicitly tell RADMC-3@hether it must be included (1) or not (0).

incl _lines (default: depends on which input files are present)

Normally RADMC-3D will recognize automatically whethené emission and absorption must be included:
if e.g. a file calledines.inp is present, it assumes that molecular/atomic lines musidleded. But with
this flag you can explicitly tell RADMC-3D whether it must beciuded (1) or not (0).

incl _freefree  (default: 0)
If 1, then include free-free emission and absorption (Bgraklung). For this, the gas temperature must be
known (but see optiotyas _eq_tdust below).

nphot ornphot _therm (default: 200000)
The number of photon packages used for the thermal Mont® Gemlulation.

nphot _scat (default: 2700000)
The number of photon packages for the scattering Monte Garlalations, done before image-rendering.

nphot _spec (default: 10000)

The number of photon packages for the scattering Monte Gamolations, done during spectrum-calculation.
This is actually the same functionality as faehot _scat , but it is used (and only used) for the spectrum and
SED calculations. The reason to have a separate value $oistthiat for spectra you may not need as many
photon packages as for imaging, because you anyway integvat the images. Many of the annoying
“stripe noise” in images when using insufficiently langghot _scat will cancel each other out in the flux
calculation. Saphot _spec is usually taken smaller thaiphot _scat .

iseed (default: -17933201)Fine-tuning only]
A starting value of the random seed for the Monte Carlo sitiia

10riginally this was called theadmec.inp  file. If noradmc3d.inp s present, butadmec.inp  is present, then RADMC-3D will
read the latter. But if both are present, then RADMC-3D vétd theradmc3d.inp ~ file.
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ifast  (default: O)[Fine-tuning only]
By setting this to 1 or 2 you will get a faster Monte Carlo siatidn, at the cost of being less accurate.

enthres (default: 0.01)Fine-tuning only]

This is the fraction by which the energy in each cell may iaseebefore the temperature is recalculated in
the Monte Carlo simulation. The smaller this value, the mameurate the thermal Monte Carlo simulation,
but the more computationally costly. 0.01 has proven to ke fin

itempdecoup (default: 1)
If set to 0, then the temperatures of all coexisting dustisgesre always forced to be the same. If 1, then
each dust species is thermally independent of the other.

istar _sphere (default: 0)

If 0 (=default), then all stars are treated as point-sourkfdls then all stars are treated as finite-size spheres.
This mode is more accurate and more realistic, but the agiflits are a bit more restricted. Such finite-size
stars are (for technical reasons) not always allowed angsiheéhe model. But for problems of circumstellar
disks and envelopes in spherical coordinates, it is recamdegtto set this to 1. Typically, if a star is outside
the grid (in spherical coordinates this can also be at thgirodf the coordinate system, as long as the inner
radius of the coordinate system is larger than the steltfiusd) the use of the finite-size star mode is always
possible. But if the star is on the grid, there are techniotations.

ntemp (default: 1000]Fine-tuning only]

The temperatures are determined in the Monte Carlo methiad tebulated pre-computed integrals. This
saves time. This is the number of temperatures for whichidtpsecalculated. The temperatures are sampled
in a logarithmic way, i.e. log(temp) is linearly equally spd between log(temp0) and log(templ), see below.

tempO (default: 0.01)Fine-tuning only]
The lowest pre-calculated temperature.

templ (default: 1e5]Fine-tuning only]
The highest pre-calculated temperature.

scattering _mode_max

Whenradmc3d reads the dust opacity files it checks if one or more of the ibpfiles has scattering opacity
included. If yes, thescattering  _mode will automatically be set to 1. It will also check if one or neor
includesanisotropicscattering. If yes, thecattering _mode will automatically be set to 2. But the user
may nevertheless want to exclude anisotropic scattering oludgcscattering altogether (for instance for
testing purposes, or if the user knows from experience tteastattering or anisotropic nature of scattering is
not important for the problem at hand). Rather than editirggdpacity files to remove the scattering and/or
Henyey-Greensteig-factors, you can limit the value theadmc3d is allowed to makecattering  _mode

by setting the variablecattering _mode_.max. If you setscattering _mode_max=0 then no matter what
opacity files you have, scattering will not be treated. If \w&liscattering _mode_max=1, then no matter
what opacity files you have, scattering will be treated insmtrbpic way.

unformatted  (default: 0)

If this is set to 0, then all outputiat and.out files will be written in ascii format. If this is set to 1, then
some of thedat and.out files (only the big ones) will be written in fortran-style wmmatted. NOTE: For
the input (inp ) files and when intermediatedat ) files are read into RADMC-3D, the the extension of the
file automatically tells if the file is formatted or unformedt any file ending inuinp or.udat or.uout is

in unformatted style, while any file endinginp or.dat or.out isin ascii style. NOTE: The unformatted
I/O is subtle, because of fortran-style record-based |&2. tBe subsections on the various input/output files
for details.

camera _tracemode (default: 1)

If camera _tracemode =-1, the images that are rendered by RADMC-3D will insteadh®/column depth
traced along each ray. ¢hmera _tracemode =-2, the images that are rendered by RADMC-3D will instead
by the continuum optical depth traced along each ray. Byuliefamera _tracemode =1, which is the normal
mode, where real images are being created.
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camera _nrrefine  (default: 100)

For images: to assure that flux is correctly sampled, the énpaxels will not just be rendered one ray per
pixel. Instead, if necessary, a pixel will spawn 2x2 subefsxecursively (each of which can split again into
2x2 until the required resolution is obtained) so as to asthat the flux in each pixel is correct. Nrrefine tells
how deep RADMC-3D is allowed to recursively refine. 100 ig#fere effectively infinite. Putting this to 0
means that you go back to 1 ray per pixel, which is fast, but sesipusly misrepresent the flux in each pixel.
NOTE: The recursive pixel refinement is done internally dreditser will not notice it except for getting better
answers. In the output image only the original pixels arewshall subpixels have been integrated over to get
the flux of the original pixel. So you can keep this to the d&fealue of 100 without having to worry about
handling complex data structures. The only drawback isitimay take longer to compute. See Sectoé
for more details.

camera _refine  _criterion (default: 1.0)fFine-tuning only]

Setting this value to smaller than 1 means that you refinegihigrsive pixeling until a tighter criterion is met.
The smaller this value, the more accurate the fluxes in exeh, put the longer it takes to render. See Section
9.6for more details.

camera _incl _stars (default: 1)
If 0, then only the interstellar/circumstellar materiatémdered for the images and spectra. If 1, then also the
stellar flux is included in the spectra and images. So fars siiee treated always as point sources.

camera _starsphere  _nrpix (default: 20)[Fine-tuning only]

For rectangularimages and for the spectra/SEDs (but nepkxtra/SEDs created with circular pixel arrange-
ments), this number tells RADMC-3D how much it should do gixeling over the stellar surface. That is:
20 means that at least 20 sub-pixels are assured over ttae steface. This is important for flux conservation
(see Sectiod.6).

camera _spher _cavity _relres (default: 0.05)JFine-tuning only]
Determines the size of sub-pixels inside the inner gridusidi spherical coordinates.

camera _localobs _projection  (default: 1)
(Only for local observer mode) The type of projection on thkeeye of observation.

camera _min _dangle (default 0.05)Fine-tuning only]
Fine-tuning parameter for recursive subpixeling, for @ coordinates, assuring that not too fine subpix-
eling would slow down the rendering of images or spectra tochm

camera _max_dangle (default 0.3)Fine-tuning only]
Fine-tuning parameter for recursive subpixeling, for spa coordinates, preventing that too coarse subpix-
eling would reduce the accuracy.

camera _min _dr (default 0.003]Fine-tuning only]
Fine-tuning parameter for recursive subpixeling, for @ coordinates, assuring that not too fine subpix-
eling would slow down the rendering of images or spectra tochm

camera _diagnostics  _subpix (default: 0)

Setting this to 1 forces RADMC-3D to write out a file callegbpixeling  _diagnostics.out which con-
tains four columns, for respectivlpx,py,pdx,pdy  , i.e. the pixel position and its size. This is for all pixels,
including the sub-pixels created during the recursive suhpg procedure (Sectiof.6.2. This allows the
user to find out if the recursive subpixeling went well or ifteén areas were over/under-resolved. This is
really only meant as a diagnostic.

camera _secondorder  (default: 0)

If set to 1, RADMC-3D will interpolate all emission/absaoigrt quantities to the cell corners, and then use
a second order integration routine with bilinear interpiolaof the source terms to integrate the ray-tracing
formal transfer equations. See Sect@® for more information about the second order integrationis It
recommended to read it!

camera _interpol  _jnu (default: O)[Fine-tuning only]
Fine-tuning parameter for ray-tracing, only used for whesosid order integration is done (i.ecéfimera _secondorder
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If O (default), then the source functid) is the one that is interpolated on the grid, while if 1, thes ¢mis-
sivity j,, is the one that is interpolated on the grid. The differencesy@nimal, but if strange results appear
(when using second order integration) then you may wantpe®ment a bit with this parameter.

mc.weighted _photons (default: 1)[Fine-tuning only]

If mcweighted _photons =1 (default) then in Monte Carlo simulations not all phot@tkages will have the
same energy. The energy will be weighted such that eachistanigsion mechanism will emit, on average,
the same number of photon packages. As an example: If youdatelar binary consisting of an O-star
surrounded by a Brown Dwarf, but the Brown Dwarf is surrouhidg a disk, then although the O star is much
brighter than the O-star, the very inner regions of the Br@warf disk is still predominantly heated by the
Brown Dwarf stellar surface, because it is much closer torteterial. If you do not have weighted photon
packages, then statistically the Brown Dwarf would emithags 1 or 2 photon packages, which makes the
statistics of the energy balance in the inner disk very bag.mBweighted _photons =1 both the Brown
Dwarf and the O-star will each emit the same number of photkages; just the energy of the photon
packages emitted by the Brown Dwarf are much less enerdpaticthose from the O-star. This now assures
a good photon statistics everywhere.

optimized _motion (default: O)[Fine-tuning only]

If optimized _motion is setto 1, then RADMC-3D will try to calculate the photon imatinside cells more
efficiently. This may save computational time, but since itill not very well tested, please use this mode
with great care! It is always safer not to use this mode.

lines _mode (default: -1)
This mode determines how the level populations for linedfanare computed. The default is -1, which
means: Local Thermodynamic Equilibrium (LTE). For otherdas, please consult Chapier

lines _maxdoppler (default: 0.3)Fine-tuning only]
If the doppler catching mode is used, this parameter tellsfire RADMC-3D must sample along the ray, in
units of the doppler width, when a line is doppler-shiftingrey the wavelength-of-sight.

lines _partition  _ntempint (default 1000]Fine-tuning only]
Number of temperature sampling points for the internallgwated partition function for molecular/atomic
lines.

lines _partition  _temp0 (default 0.1)Fine-tuning only]
Smallest temperature sampling point for the internallycelted partition function for molecular/atomic
lines.

lines _partition  _templ (default 1IE5)Fine-tuning only]
Largest temperature sampling point for the internally glated partition function for molecular/atomic lines.

lines _show_pictograms (default 0)
If 1, then print a pictogram of the levels of the moleculasfas.

tgas _eq_tdust (default: 0)

By settingtgas _eq_tdust=1 you tell radmc3d to simply read thelust _temperature.inp file and then
equate the gas temperature to the dust temperature. Ifpheuttiist species are present, only the first species
will be used.

subbox _nx, subbox _ny, subbox _nz, subbox _x0, subbox x1, subbox _y0O, subbox _yl, subbox _zO,
subbox z1
Parameters specifying the subbox size for the subbox éitraSee Sectiot5.1for details.

INPUT (required): amr _grid.inp,amr _grid.uinp

This is the file that specifies what the spatial grid of the nhdémtzks like. See ChaptetQ. This file is essential,
because most othénp and.dat files are simple lists of numbers which do not contain anyrimfation about the
grid. Allinformation about the grid is contained in ther_grid.inp  , also for non-AMR regular grids. Note that in
the future we will also allow for unstructured grids. Theresponding grid files will then be named differently. Both
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the formatted style of this fileagnr_grid.inp ) and the unformatted stylerfir _grid.uinp ) have the following
information. Each line represents a row in the formattetbsind a record in the unformatted style.

There are three possible AMR grid styles:

e Regular grid: No mesh refinement. This is grid style 0.

e Oct-tree-style AMR (“Adaptive Mesh Refinement”, althougi fiow it is not really “adaptive”). This is grid
style 1.

e Layer-style AMR. This is grid style 10.

A.2.1 Regular grid

For a regular grid, without grid refinement, ther _grid.inp  looks like:

iformat <=== Typically 1 at present
0 <=== Grid style (regular = 0)
coordsystem

gridinfo

incl_x incl_y incl_z

nx ny nz

xi[1] xi[2] xi[3] xi[nx+1]

yi[1] yi[2] yilg] yilny+1]

zi[1] zi[2] zi[3] zi[nz+1]

The meaning of the entries are:

iformat: The format number, at present 1. For unformatted files thistine 4-byte integer.

coordsystem: If coordsystem <100 the coordinate system is cartesian. If £8Qoordsystem <200 the
coordinate system is spherical (polar). If 20€coordsystem <300 the coordinate system is cylindrical.
For unformatted files this must be 4-byte integer.

gridinfo: If gridinfo  ==1 there will be abundant grid information written intogHile, possibly useful for
post-processing routines. Typically this is redundardrimfation, so it is advised to sgtidinfo =0 to save
disk space. In the following we will assume thaidinfo =0. For unformatted files this must be 4-byte
integer.

incl x, incly, incl_z: These are either 0 or 1. If O then this dimension is not acteeupon grid refinement no
refinement in this dimension is done). If 1 this dimensionig/factive, even if the number of base grid cells
in this direction is just 1. Upon refinement the cell will alse splitted in this dimension. For unformatted
files these numbers must be 4-byte integer.

nx, ny, nz: These are the number of grid cells on the base grid in eacteséttlimensions. For unformatted
files these numbers must be 4-byte integer.

xi[1] ... xilnx+1]: The edges of the cells of the base grid in x-direction. #ogrid cells we havexx+1 cell
walls, hencenx+1 cell wall positions. For unformatted files these numberstrbes8-byte reals (=double
precision).

yi[1] ... yi[ny+1]: Same as above, but now for y-direction.

zi[1] ... zi[nz+1]: Same as above, but now for z-direction.

Example of a simple 2x2x2 regular grid in cartesian coorigisa
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A.2.2 Oct-tree-style AMR grid

For a grid with oct-tree style grid refinement, thar_grid.inp  looks like:

iformat <=== Typically 1 at present

1 <=== Grid style (1 = Oct-tree)
coordsystem

gridinfo

incl_x incl_y incl_z

nx ny nz

levelmax nleafsmax nbranchmax <=== This line only if grid st yle == 1
xi[1] xi[2] xXi[3] xi[nx+1]

yi[1] yi[2] yilg] yilny+1]

zi[1] zi[2] zi[3] zi[nz+1]

(0/1) <=== QO=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== Q=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== QO=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== QO=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== Q=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== QO=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== Q=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== QO=leaf, 1=branch (only if amrstyle==1)

(0/1) <=== Q=leaf, 1=branch (only if amrstyle==1)

The keywords have the same meaning as before, but in addigdrave:

(0/1): NOTE: Only for amrstyle==1These are numbers that are either 0 or 1. If 0, this meansuthernt cell

is a leaf (= a cell that is not refined and is therefore a “trugl)cIf 1, the current cell is a branch with 2 (in
1-D), 4 (in 2-D) or 8 (in 3-D) daughter cells. In that case tlegt(0/1) numbers are for these daughter cells.
In other words, we immediately recursively follow the tr&®e order in which this happens is logical. In 3-D
the first daughter cell is (1,1,1), then (2,1,1), then (3,2lfen (2,2,1), then (1,1,2), then (2,1,2), then (1,2,2)
and finally (2,2,2), where the first entry represents thergation, the second the y-direction and the third the
z-direction. If one or more of the daughter cells is also eifi.e. has a value 1), then first this sub-tree is
followed before continuing with the rest of the daughteiscelf we finally return to the base grid at some
point, the next (0/1) number is for the next base grid celafagossibly going into this tree if the value is 1).
The order in which the base grid is scanned in this way is ftdmnx in the innermost loop, fror to ny in

the middle loop and from to nz in the outermost loop. For unformatted files these numbest bri4-byte
integers, one record per number.

NOTE: For this file the unformatted style is presumably nouseful, because for technical reasons each of the
(0/1) numbers must be a separate record, requiring 12 byitee.formatted version is smaller: each line being only
2 bytes (one character 0 or 1 and a return). In the future | wilto make this more efficient, but for now the user
is advised to just use the unformatted style.

Example of a simple 1x1x1 grid which is refined into 2x2x2 amidvhich the (1,2,1) cell is refined again in 2x2x2:

1
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A.2.3 Layer-style AMR grid

For a grid with layer-style grid refinement, thar_grid.inp

iformat
10
coordsystem
gridinfo
incl_x
nx
nrlevels
xi[1]
yi[1]
zi[1]
parentid
parentid
parentid
parentid

incl_y
ny
nrlayers
xi[2]
yi[2]
zi[2]
ix iy
ix iy
ix iy
ix iy

iz
iz
iz
iz

incl_z

Xi[3]
yi[3]

Zi[3]

nx ny
nx ny
nx ny
nx ny

nz
nz
nz
nz

<===

<===

<=== This
Xi[nx+1]
yilny+1]
zi[nz+1]

looks like:

Typically 1 at present
Grid style (10 = layer-style)

line only if grid style == 10

The keywords have the same meaning as before, but in addigdrave:

nrlevels: How many levels you plan to go, where nrlevels==0 means noaefent, nrlevels==1 means one

level of refinement (factor of 2 in resolution), etc.

nrlayers: How many layers do you have, with nrlayers==0 means no regm¢mrlayers==1 means one layer

of refinement (factor of 2 in resolution), etc.

parentid: (For each layer) The parent layer for this layer. parent@imeans parent is base grid. First layer

has id==1.

ix, iy, iz: (For each layer) The location in the parent layer where theeatilayer starts.

nx, ny, nz: (For each layer) The size of the layer as measured in uniteedfie parent layer. So the actual size
of the current layer will be (in 3-DR+*nx, 2 =ny, 2 *nz. In 2-D, with only the x- and y- dimensions active,

we have a size af+nx, 2 =ny with of course size 1 in z-direction.

As you can see, this is a much easier and more compact way tifyspgesh refinement. But it is also less
“adaptive”, as it is always organized in square/cubic pagclBut it is much easier to handle for the user than full

oct-tree refinement.

Note that this layer-style refinement is in fact, internalignslated into the oct-tree refinement. But you, as the use

will not notice any of that. The code will input and outputiesly in layer style.

NOTE:The layers must be specify in increasing refinement leveth8dirst layer (layer 1) must have the base grid
(layer 0) as its parent. The second layer can have eitherabe d¢rrid (layer 0) or the first layer (layer 1) as parent,

etc. In other words: the parent layer must always alreadg baen specified before.

Example of a simple 2-D 4x4 grid which has a refinement pat¢hermiddle of again 4x4 cells (=2x2 on the parent

grid), and a patch of 2x2 (=1x1 on the parent grid) startinthenupper left corner:

1
100
1
0
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This has just one level of refinement, but two patches at fevel

Anothe example: two recursive layers. Again start with a 2x@ grid, now refine it in the middle with again a 4x4
sub-grid (=2x2 on the parent grid = layer 0) and then agairepeelayer of 4x4 (=2x2 on the parent grid = layer 1)
this time starting in the corner:
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Note that with this layer-style grid, the input data will leato be speficied layer-by-layer: first the base grid, then
the first layer, then the second etc. This is worked out inideadust _density.inp in SectionA.3. This will
include redundant data, because you specify the data omtine kase grid, also the cells that later will be replaced
by a layer. Same is true for any layer that has sub-layers.daétethat is specified in these regions will be simply
ignored. But for simplicity we do still require it to be predgeso that irrespective of the deeper layers, the data
in any layer (including the base grid, which is layer numbgeisGsimply organized as a simple data cube. This
redundancy makes the input and output files larger thartlgtriecessary, but it is much easier to handle as each
layer is a datacube. For memory/hardisk-friendly storamemust use the oct-tree refinement instead. The layers
are meant to make the AMR much more accessible, but are somhevdie memory consuming.

A.3 INPUT (required for dust transfer): dust _density.inp, dustdensity.uinp

This is the file that contains the dust densities. It is meagigt of numbers. Their association to grid cells is via
the fileamr_grid.(u)inp . Each dust species will have its own density distributiammpletely independently of
the others. That means that at each position in space seletadpecies can exist, and the density of these can be
fully freely specified. The structure of this file is as follewFor formatted styled(ist _density.inp  ):

iformat <=== Typically 1 at present

nrcells

nrspec
density[1,ispec=1]

density[nrcells,ispec=1]
density[1,1,1,ispec=2]

density[nrcells,ispec=nrspec]

Herenrspec is the number of independent dust species densities thatevijiven here. It can be 1 or larger. If it

is 1, then of course théensity[1,1,1,ispec=2] and following lines are not present in the file. Tireells

is the number of cells. For different kinds of grids this cawvéndifferent meaning. Moreover, for different kinds of
grids the order in which the density values are given is aifferdnt. So let us now immediately make the following
distinction (See Chaptdi0 on the different kinds of grids):
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e For regular grid and oct-tree AMR grids:
The value ofircells  denotes the number trie cells, excluding the cells that are in fact the parents ok2x2
subcells; i.e. the sum of the volumes of all true cells (=d¢afdds up to the volume of the total grid). The
order of these numbers is always the same “immediate reewsabtree entry” as in themr_grid.(u)inp
(SectionA.2).

e For layer-style AMR grids:
The value ofnrcells  denotes the number of values that are specified. This is ginarbit more than
the true number of cells specified in the oct-tree style AM&(above). In the layer-style AMR mode you
specify the dust density (or any other value) first at allcefithe base grid (whether a cell is refined or not
does not matter), the at all cells of the first layer, then teoad layer etc. Each layer is a regular (sub-)grid,
so the order of the values is simply the standard order (sarfar aegular grids). This means, however, that
the values of the density in the regular grid cells that aptaiced by a layer are therefore redundant. See
Section10.4.1for a discussion of this redundancy. The main advantagei®falier-style grid refinement is
that the input and output always takes placeaegular grids and subgrids (=layers). This is much easier to
handle than the complexities of the oct-tree AMR.

A.3.1 Example:dust _density.inp for a regular grid

Now let us look at an example ofdust _density.inp file, starting with one for the simplified case of a regular
3-D grid (see Sectiona.2.1and10.1):

iformat <=== Typically 1 at present

nrcells

nrspec

density[1,1,1,ispec=1]

density[2,1,1,ispec=1]

density[nx,1,1,ispec=1]
density[1,2,1,ispec=1]

density[nz,ny,nz,ispec=1]
density[1,1,1,ispec=2]

density[nz,ny,nz,ispec=nrspec]

For unformatted styled(ist _density.uinp ) the structure is:

iformat reclen

nrcells nrspec

density[1,ispec=1] ... density[reclen,ispec=1]

density[reclen+1,ispec=1] ... density[2 *reclen,ispec=1]

..... density[nrcells,ispec=1] ... 0 0 0 <==== fill with 0 un til end of record
density[1,ispec=2] ... density[reclen,ispec=2]

density[reclen+1,ispec=2] ... density[2 *reclen,ispec=2]

..... density[nrcells,ispec=2] ... 0 0 0 <==== fill with 0 un til end of record

All integers {format ,reclen ,nrcells andnrspec ) are 8-byte integers. Hereclen is a somewhat arbitrary
number between 8 and 65536 which denotes the record lengytés. It must be a multiple of 8 (which is the
length of the double precision real). The data of the densistored as series of double-precision (8-byte) reals
organizedin records oéclen /8 numberslong. Since the total number of ceitells  is not necessarily divisible

by reclen /8, it can be that the last record is not full. It will be paddeith zeroes until the (fixed) record length is
reached. Example: we have a 2x2x2 regular grid and two desiep The grid contains 8 cells (irecells =8).
Suppose we chooseclen =48, i.e. each record contains 6 double precision numbdiesn The first record contains
the densities of dust species 1 in cells (1,1,1), (2,1,12.0, (2,2,1), (1,1,2), (2,1,2), and the second record wil
contain the density of dust species 1 in cells (1,2,2) ariiZ2and four double precision zeroes to pad the record to
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Figure A.1. Example of a regular 2-D grid withx =4 andny =3 (as Fig10.1), with the order of the cells shown as
numbers in the cells.

6 numbers. Then we repeat the procedure for the second de@espagain yielding a record with 6 densities and
one with 2 densities and padded with four zeroes.

A.3.2 Example:dust _density.inp for an oct-tree refined grid

For the case when you have an oct-tree refined grid (see Bgétia.2 and10.3, the order of the numbers is the
same as the order of the cells as specified irathegrid.(u)inp file (SectionA.2). Let us take the example of a
simple 1x1x1 grid which is refined into 2x2x2 and for which {ie?,1) cell is refined again in 2x2x2 (this is exactly
the same example as shown in Sec#oR.2, and for which theamr_grid.inp  is given in that section). Let us also
assume that we have only one dust species. Thedutfte_density.inp file would be:

iformat <=== Typically 1 at present

15 <=== 2x2x2 - 1 + 2x2x2 = 15

1 <=== Let us take just one dust spec
density[1,1,1] <=== This is the first base grid cell
density[2,1,1]

density[1,2,1;1,1,1] <=== This is the first refined cell

density[1,2,1;2,1,1]

density[1,2,1;1,2,1]

density[1,2,1;1,2,1]

density[1,2,1;1,1,2]

density[1,2,1;2,1,2]

density[1,2,1;1,2,2]

density[1,2,1;1,2,2] <=== This is the last refined cell
density[2,2,1]

density[1,1,2]

density[2,1,2]

density[1,2,2]

density[2,2,2] <=== This is the last base grid cell
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Figure A.2. Example of a 2-D grid with oct-tree refinement (as Fi§.2 with the order of the cells shown as
numbers in the cells.

A more complex example is shown in Fi§.2. An unformatted version is also available, in the standaay (8ee
above).

A.3.3 Example:dust _density.inp for a layer-style refined grid

For the case when you have an layer-style refined grid (se#o8s4.2.3 and 10.4) you specify the density in a
series of regular boxes (=layers). The first box is the baisk tipe second the first layer, the third the second layer
etc. The valuarcells  now tells the combined sizes of the all the boxes. If we takestttond example of Section
A.2.3 a simple 2-D 4x4 grid which has a refinement patch (=layethémiddle of again 4x4 cells, and again one
patch of 4x4 this time, however, starting in the upper lefhes (see thamr_grid.inp  file given in SectiorA.2.3),
then thedust _density.inp file has the following form:

iformat <=== Typically 1 at present
48 <=== 4x4 + 4x4 + 4x4 = 48
1 <=== Let us take just one dust spec

density[1,1,1,layer=0]
density[2,1,1,layer=0]
density[3,1,1,layer=0]
density[4,1,1,layer=0]
density[1,2,1,layer=0]
density[2,2,1,layer=0] <=== This a redundant value
density[3,2,1,layer=0] <=== This a redundant value
density[4,2,1,layer=0]
density[1,3,1,layer=0]
density[2,3,1,layer=0] <=== This a redundant value
density[3,3,1,layer=0] <=== This a redundant value
density[4,3,1,layer=0]
density[1,4,1,layer=0]
density[2,4,1,layer=0]
density[3,4,1,layer=0]
density[4,4,1,layer=0]
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density[1,1,1,layer=1] <=== This a redundant value
density[2,1,1,layer=1] <=== This a redundant value
density[3,1,1,layer=1]
density[4,1,1,layer=1]
density[1,2,1,layer=1] <=== This a redundant value
density[2,2,1,layer=1] <=== This a redundant value
density[3,2,1,layer=1]
density[4,2,1,layer=1]
density[1,3,1,layer=1]
density[2,3,1,layer=1]
density[3,3,1,layer=1]
density[4,3,1,layer=1]
density[1,4,1,layer=1]
density[2,4,1,layer=1]
density[3,4,1,layer=1]
density[4,4,1,layer=1]
density[1,1,1,layer=2]
density[2,1,1,layer=2]
density[3,1,1,layer=2]
density[4,1,1,layer=2]
density[1,2,1,layer=2]
density[2,2,1,layer=2]
density[3,2,1,layer=2]
density[4,2,1,layer=2]
density[1,3,1,layer=2]
density[2,3,1,layer=2]
density[3,3,1,layer=2]
density[4,3,1,layer=2]
density[1,4,1,layer=2]
density[2,4,1,layer=2]
density[3,4,1,layer=2]
density[4,4,1,layer=2]

An unformatted version is also available, in the standarygl see above).

Itis clear that 48 is now the total number of values to be reduich is 16 values for layer O (= base grid), 16 values
for layer 1 and 16 values for layer 2. It is also clear that seaiaes are redundant (they can have any value, does
not matter). But it at least assures that each data blockimp@lesregular data block, which is easier to handle.
Note that these values (marked as redundant in the abovepddanustbe present in the file, but they can have any
value you like (typically 0).

Note that if you have multiple species of dust then we will stave 48 as the value afrcells . The number of
values to be read, if you have 2 dust species, is then simpie@fs = 2*48 = 96.

A.4 INPUT/OUTPUT: dust _temperature.dat, dusttemperature.udat

The dust temperature file is an intermediate result of RADRIZCand follows from the thermal Monte Carlo
simulation. It can be used by the user for other purposes detgrmination of chemical reaction rates), but also
by RADMC-3D itself when making ray-traced images and/orctfze The user can also produce his/her own
dust _temperature.(u)dat file (without invoking the Monte Carlo computation) if she/has her/his own way
of computing the dust temperature.

The structure of this file is identical to that dfist _density.inp or dust _density.uinp (SectionA.3), but
with density replaced by temperature. We refer to seclidhfor the details. See ChaptBrfor more details on
unformatted I/O.

A.5 INPUT/OUTPUT (only if required): electron _.numdens.inp, electronnumdens.uing

For various gasopacity issues (see Chafji#ne number density of free electrons may be required. Thetstre of
this file is identical to that odlust _density.inp ordust _density.uinp (SectionA.3), but with density replaced
by the electron number density in units of 1/tm/\e refer to chapte8 for the details. See ChaptBrfor more
details on unformatted 1/O.
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A.6 INPUT/OUTPUT (only if required): ion _numdens.inp, ionnumdens.uinp,

For various gasopacity issues (see Chaf¢ine number density of ions may be required. The structuthisfile

is identical to that ofiust _density.inp or dust _density.uinp (SectionA.3), but with density replaced by the
ion number density in units of 1/cm Here we need the overal ion number density. We refer to en&dor the
details. See Chapt& for more details on unformatted I/O.

A.7 INPUT (mostly required): stars.inp

This is the file that specifies the number of stars, their st radii, and spectra. Stars are sources of netto energy.
For the dust continuum Monte Carlo simulation these are acgoof photon packages. This file exists only in
formatted (ascii) style. Its structure is:

iformat <=== Put this to 2 !
nstars nlam
rstar[1] mstar[1] xstar[1] ystar[1] zstar[1]

rstar[nstars mstar[nstars] xstar[nstars] ystar[nstars] zstar[nstars]
lambda[1]

lambda[nlam]
flux[1,star=1]

flux[nlam,star=1]
flux[1,star=2]

flux[nlam,star=2]

flux[nlam,star=nstar]

which is valid only ififormat ==2. The meaning of the variables:

iformat: The format number, at present better keep it at 2. If you gotit the list of wavelengths (see below)
will instead be a list of frequencies in Herz.

nstars: The number of stars you wish to specify.

nlam: The number of frequency points for the stellar spectra. Aspent this must be identical to the number
of walvelength points in the filwavelength _micron.inp  (see Sectioi\.11).

rstar[i]: The radius of staf in centimeters.

mstar[i]: The mass of starin grams. This is not important for the current version of RAD-3D, but may
be in the future.

xstar[i]l: Thex-coordinate of staf in centimeters (in spherical or cylindrical coordinateis tould be the-
coordinate).

ystar[i]: They-coordinate of staf (in cartesian coordinateg:in cm, in spherical coordinates: tidecoordi-
nate, in cylindrical coordinates: thiecoordinate).

zstarfi]: Thez-coordinate of staf (in cartesian coordinates:in cm, in spherical coordinates: tigecoordi-
nate, in cylindrical coordinates: thecoordinate in cm).

lambdali]: Wavelength point (where:i € [1,nlam]) in microns. This must be identical (!) to the equivalent
pointin the filewavelength _micron.inp  (see Sectioi.11). If not, an error occurs.
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fluxfi,star=n]: The flux F,, at wavelength point for starn in units of erg cn? s™! Hz~! as seen from a
distance of 1 parsec3:08572 x 10'® cm (for normalization).

Sometimes it may be sufficient to assume simple blackbodstispéor these stars. If for any of the stars the first

(1) flux number (lux[1,star=n] ) is negative, then the absolute value of this number is téikée the blackbody
temperature of the star, and no further values for this searead. Example:

2

1 100

6.96e10 1.99e33 0. 0. 0.

0.1

1000.

-5780.

will make one star, at the center of the coordinate systeth,avie solar radius, one solar mass, on a wavelength grid
ranging from 0.1 micron to 1000 micron (100 wavelength pgiahd with a blackbody spectrum with a temperature
equal to the effective temperature of the sun.

A.8 INPUT (optional): stellarsrc_templates.inp

This is the file that specifies the template spectra for theotimgtellar source distributions. See Sectldn3 The
file exists only in formatted (ascii) style. Its structure is

iformat <=== Put this to 2 !
ntempl

nlam

lambda[1]

lambda[nlam]
flux[1,templ=1]

flux[nlam,templ=1]
flux[1,templ=2]

flux[nlam,templ=2]

flux[nlam,templ=ntempl]

which is valid only ififormat ==2. The meaning of the variables:

iformat: The format number, at present better keep it at 2. If you guotit the list of wavelengths (see below)
will instead be a list of frequencies in Herz.

ntempl: The number of stellar templates you wish to specify.

nlam: The number of frequency points for the stellar template speét present this must be identical to the
number of walvelength points in the filgavelength _micron.inp  (see Sectio.11).

lambdali]: Wavelength point (wherei € [1,nlam]) in microns. This must be identical (!) to the equivalent
pointin the filewavelength _micron.inp  (see Sectioi.11). If not, an error occurs.

flux[i,templ=n]: The “flux” at wavelength for stellar template:. The units are somewhat tricky. It is given
in units of erg / sec / Hz / gram-of-star. So multiply this by #hensity of stars in units of gram-of-star / tm
and divide by 4*pi to get the stellar source function in ueit®erg / src / Hz / cm / steradian.

112



Sometimes it may be sufficient to assume simple blackbodstspfor these stellar sources. If for any of the stellar
sources the first (1) flux numbefix[1,templ=n] ) is negative, then the absolute value of this number is taken
to be the blackbody temperature of the stellar source, amébtlowing two numbers are interpreted as the stellar
radius and stellar mass respectively. From that, RADMC-3Dthen internally compute the stellar template.
Example:

2

1

100
0.1

1000.

-5780.
6.9600000e+10
1.9889200e+33

will tell RADMC-3D that there is just one stellar templatessamed to have a blackbody spectrum with solar
effective temperature. Each star of this template has dae igalius, one solar mass.

A.9 INPUT (optional): stellarsrc_density.inp, stellarsrc.density.uinp

This is the file that contains the smooth stellar source tiessif you have the filatellarsrc _templates.inp
specified (see Sectign8) then younustalso specify eithestellarsrc ~ _density.inp  orstellarsrc  _density.uinp
The format of these files are very similardaost _density.inp or dust _density.uinp (SectionA.3), but in-
stead different dust species, we have different templdtesthe rest we refer to Sectigh3 for the format. Just
replaceispec (the dust species) witlempl  (the template). See Chaptgifor more details on unformatted 1/0.

A.10 INPUT (optional): external_source.inp

This is the file that specifies the spectrum and intensity @fetkternal radiation field, i.e. the “interstellar radiatio
field” (see Sectior11.4). Its structure is:

iformat <=== Put this to 2 !
nlam
lambda[1]

lambda[nlam]
Intensity[1]

Intensity[nlam]

which is valid only ififormat ==2. The meaning of the variables:

iformat: The format number, at present better keep it at 2. If you gotit the list of wavelengths (see below)
will instead be a list of frequencies in Herz.

nlam: The number of frequency points for the stellar template speét present this must be identical to the
number of walvelength points in the filgavelength _micron.inp  (see Sectio\.11).

lambdali]: Wavelength point (wherei € [1,nlam]) in microns. This must be identical (!) to the equivalent
point in the filewavelength _micron.inp  (see Sectio\.11). If not, an error occurs.

Intensity[i]: The intensity of the radiation field at wavelengtim units of erg / cmd / sec / Hz / steradian.
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A.11 INPUT (required): wavelength_micron.inp

This is the file that sets the discrete wavelength pointsHercontinuum radiative transfer calculations. Note that
this is not the same as the wavelength grid used for e.g. éidative transfer. See Sectiénl2 and/or Chapter
for that. This file is only in formatted (ascii) style. It'satture is:

nlam
lambda[1]

lambda[nlam]

where

nlam: The number of frequency points for the stellar spectra.

lambdali]: Wavelength point (wherei € [1,nlam ]) in microns.

The list of wavelengths can be in increasing order or deargasder, but must be monotonically increasing/decregsin

IMPORTANT: Itis importantto keep in mind that the wavelength coveragstinclude the wavelengths at which
the stellar spectra have most of their energy, and at whiglltist cools predominantly. This in practice means that
this should go all the way from 0,2m to 1000um, typically logarithmically spaced (i.e. equally spaceddg)).

A smaller coverage will cause serious problems in the Moatiéoadun and dust temperatures may then be severely
miscalculated. Note that the Quin is OK for stellar temperatures below 10000 K. For higherderatures a shorter
wavelength lower limit must be used.

A.12 INPUT (optional): camera.wavelengthmicron.inp

The wavelength points in theavelength _micron.inp  file are the global continuum wavelength points. On this
grid the continuum transfer is done. However, there may b®mwa reasons why the user may want to gener-
ate spectra on a different (usually more finely spaced) veagth grid, or make an image at a wavelength that
is not available in the global continuum wavelength grid.tiea than redoing the entire model with a different
wavelength _micron.inp , which may involve a lot of reorganization and recomputatithe user can specify a
file calledcamera _wavelength _micron.inp . If this file exists, it will be read into RADMC-3D, and the usgn
now ask RADMC-3D to make images in those wavelength or makeatsum in those wavelengths.

If the user wants to make images or spectra of a model thalvies@as lines (such as atomic lines or molecular
rotational and/or ro-vibrational lines), the use @fanera wavelength _micron.inp file allows the user to do the
line+dust transfer (gas lines plus the continuum) on thecHje wavelength grid. For line transfer there are also
other ways by which the user can specify the wavelength gae Chapter), and it is left to the user to choose
which method to use.

The structure of theamera _wavelength _micron.inp  file is identical to that ofvavelength _micron.inp  (see
SectionA.11).

Note that there are also various other ways by which the wselet RADMC-3D choose wavelength points, many
of which may be even simpler and more preferable than theadethscribed here. See SectiA.

A.13 INPUT (required for dust transfer): dustopac.inp and dustkappa_*.inp
or dust_optnk_*.inp

These files specify the dust opacities to be used. More thartan be specified, meaning that there will be more
than one co-existing dust species. Each of these specidsawvé its own dust density specified (see Sechads).
The opacity of each species is specified in a separate fileafdr gpecies. Theustopac.inp  file tells which file

to read for each of these species.
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A.13.1 The dustopac.inp file

The filedustopac.inp  has the following structure, where an example of 2 separategpecies is used:

iformat <=== Put this to 2

nspec

inputstyle[1]

iqguantum[1] <=== Put to 0 in this example

<name of dust species 1>

inputstyle[2]
iqguantum[2] <=== Put to 0 in this example
<name of dust species 2>

where:

iformat: Currently the format number is 2, and in this manual we alvasgime it is 2.
nspec: The number of dust species that will be loaded.
inputstyle[i]: This number tells in which form the dust opacity of dust spstis to be read:
-1 Use thedustopac _<name>.inp input file style (see below). Here the opacity is specifiedthatexact

wavelength points given in the fileavelength _micron.inp

1 Use thedustkappa _<name>.inp input file style (see below). Here the opacity is specifiedi®mivn
wavelength grid, and will then be mapped by RADMC-3D by usatdrpolation onto the wavelength
grid of wavelength _micron.inp . Typically one then specifies the opacity here on a fine wagghe
grid, so that the mapping onto the (usually courser) glolzalalength grid is easy and without artifacts.

100 Use thedustoptnk _<name>.inp input file style (see below). Here the optical constants eagl on
their own wavelength grid. Using Mie theory or CDE the opasitare then computed internally and
mapped onto the global continuum wavelength grid fromvtheelength _micron.inp  file.

iquantum[i]: For normal thermal grains this is 0. If, however, this grgeaes is supposed to be treated as a
guantum-heated grain, then non-zero values are to be gue®NOTE: At the moment the quantum heating
is not yet implemented. Will be done in the near future. Uhgh, please set this to 0.

<name of dust species: This is the name of the dust species (without blank spacelsis mame is then
glued to the base name of the opacity file (see above). Faaniost if the name ignstatite , and
inputstyle  ==1, then the file to be read éistkappa _enstatite.inp

A.13.2 The dustopac<name>.inp files

If for dust speciescname> theinputstyle in thedustopac.inp  fileis setto -1, then the file dustopamame>.inp
is sought and read. The structure of this file is:

nlam dummy
kappa_abs[1]

ka[')pa_abs[nlam]
kappa_scat[1]

ka[')pa_scat[nlam]
The meaning of these entries is:

nlam: The number of frequency (wavelength) points. This mustibeticalto those of thevavelength _micron.inp
file or else the code stops.

dummy: Put this number to 1. Itis here for historic reasons (and Wwac# compatibility with older RADMC
incarnations).
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kappa_ abs[il: The absorption opacity at wavelength pointf the wavelength _micron.inp ~ wavelength
grid, in units of cn? per gram of dust.

kappa_scat[i]l: The scattering opacity at wavelength poindf the wavelength _micron.inp  wavelength
grid, in units of cn? per gram of dustNOTE: Here isotropic scattering is assumed.

Note that the opacities listed in this kind of file belong te tiavelength points in the fileavelength _micron.inp
So if you change theavelength _micron.inp  file, you also must change the dustopagame>.inp files. This
is why this kind of opacity specification is somewhat lessilfikx

A.13.3 The dustkappa<name>.inp files

If for dust speciescname> theinputstyle inthedustopac.inp  fileis setto 1, then the file dustkappaname>.inp
is sought and read. The structure of this file is:
# Any amount of arbitrary

# comment lines that tell which opacity this is.
# Each comment line must start with an # or ; or ! character

iformat <== This example is for iformat==2
nlam

lambda[1] kappa_abs[1] kappa_scat[1]

lambda[nlam] kappa_abs[nlam] kappa_scat[nlam]

The meaning of these entries is:

iformat: If iformat==1, then only the lambda and kapphs colums are present. In that case the scattering
opacity is assumed to be 0, i.e. a zero albedo is assumedariiat==2 (which is what is used in the above
example) also kappscat is read (third column)ln the future also iformat==3 will be active, in which a
fourth column is read which lists the Henyey-Greensteisa@mndpy factor.

nlam: The number of wavelength points in this file. This can be anyloer, and does not have to be the
same as those of theavelength _micron.inp . It is typically advisable to have a rather large number of
wavelength points.

lambda[i]: The wavelength pointin micron. This does not have to be (and indeed typically 3 the same
as the values in th&avelength _micron.inp ~ file. Also for each opacity this list of wavelengths can be
different (and can be a different quantity of points).

kappa_abs[i]: The absorption opacity in units of énper gram of dust.

kappa_scat[i]: The scattering opacity in units of énper gram of dust. Note that this column should only be
included if iformat==2 or higher.

Once this file is read, the opacities will be mapped onto thbalwavelength grid of theavelength _micron.inp

file. Since this mapping always involve uncertainties ardrsr a filedustkappa _<name>.inp _used is created
which lists the opacity how it is remapped onto the global éemgth grid. This is only for you as the user, so
that you can verify what RADMC-3D has internally done. Ndtattif the upper or lower edges of the wavelength
domain of thedustkappa _<name>.inp file is within the domain of thevavelength _micron.inp  grid, some
extrapolation will have to be done. At short wavelength thi simply be constant extrapolation while at long
wavelength a powerlaw extrapolation is done. Have a lookeaddstkappa _<name>.inp _used file to see how
RADMC-3D has done this in your particular case.

A.13.4 The dustoptnk <name>.inp files

If for dust speciescname> theinputstyle in thedustopac.inp  fileis setto 100, then the file dustoptriname>.inp
is sought and read.

NOTE: For now we discourage this mode as it is insufficiertbyed.
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A.14 OUTPUT: spectrum.out

Any spectrum that is made with RADMC-3D will be either callggbctrum.out  or spectrum<somename.out
and will have the following structure:

iformat <=== For now this is 1
nlam

lambda[1] flux[1]

lambda[nlam]  flux[nlam]
where:

iformat: This format number is currently set to 1.

nlam: The number of wavelength points in this spectrum. This dag@sacessarily have to be the same as
those in theavavelength _micron.inp  file. It can be any number.

lambda[i]: Wavelength in micron. This does not necessarily have todsdime as those in thavelength _micron.inp
file. The wavelength grid of a spectrum file can be completetiependent of all other wavelength grids.

For standard SED computations for the continuum typicdise will be indeed the same as those in the
wavelength _micron.inp file. Butfor line transfer or for spectra based ont¢hmera _wavelength _micron.inp
they are not.

fluxi]: Flux in erg cnm2 s~! Hz~! at this wavelength as measured at a standard distance o$dcp(ust as
a way of normalization).

NOTE: Maybe in the future a new iformat version will be pokesithere more telescope information is given in the
spectrum file.

A.15 OUTPUT: image.out or image****.out

Any images that are produced by RADMC-3D will be written inla Gialledimage.out  orimage _<somename>.out .
Unformatted versions are also possibleu( being thenuout ). The unformattedCHECK THIS: SHOULD
THIS NOT BE “FORMATTED"?] versions have the following structure:

iformat <=== For now this is 1
im_nx im_ny

nlam

pixsize_x pixsize_y

lambda[1l] ......... lambda[nlam+1]

image[ix=1,iy=1,img=1]
image[ix=2,iy=1,img=1]

image[ix=im_nx,iy=1,img=1]
image[ix=1,iy=2,img=1]

imége[ix:im_nx,iy:2,img:1]
image[ix=1,iy=im_ny,img=1]

imége[ix:im_nx,iy:im_ny,img:nlam]

image[ix=1,iy=1,img=1]

imége[ix:im_nx,iy:im_ny,img:nlam]
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In most cases the nr of images (nr of wavelengths) is just Aning only one image is written (i.e. the img=2, ....
img=nlam are not there, only the img=1). The meaning of th@ua entries is:

iformat: This format number is currently set to 1.
im_nx, im_ny: The number of pixels in x and in y direction of the image.

nlam: The number of images at different wavelengths that are mfile. You can make a series of images
at different wavelengths in one go, and write them in this fillie wavelength belonging to each of these
images is listed below. Th@dam can be any number from 1 to however large you want. Mostly ppieally
just makes an images at one wavelength, meanmiarg =1.

pixsizex, pixsizely: The size of the pixels in cm (!!). This means that the sizeveigin model units (distance
within the 3-D model) and the user can, for any distance, edrkis into arcseconds: pixel size in arcsec = (
pixel size in cm / 1.496E13) / (distance in parsec). The pia is the full size from the left of the pixel to
the right of the pixel (or from bottom to top).

lambda[i]: Wavelengths in micron belonging to the various images in fite. In casenlam =1 there will
be here just a single number. Note that this set of wavelsnggh be completely independent of all other
wavelength grids.

imagel[ix,iy,img]: Intensity in the image at pixex , iy at wavelengthiimg (of the above listed wavelength
points) in units of erg cm? s~! Hz~! ster . The pixels are ordered from left to right (in x) and from loott
to top (in y).

A.16 INPUT: (minor input files)

There is a number of lesser important input files, or inpusfiteat are only read under certain circumstances (for
instance when certain command line options are given). Heyeare described.

A.16.1 Thecolor _inus.inp file (required with comme-line option ’loadcolor’)

The file color _inus.inp  will only be read by RADMC-3D if on the command line the optimadcolor  or
color is specified, and if the main actioniisage .

iformat <=== For now this is 1
nlam
ilam[1]

ilam[nlam]

iformat: This format number is currently set to 1.
nlam: Number of wavelength indices specified here.

ilam[i]: The wavelength index for image i (the wavelength index eterthe list of wavelengths in the
wavelength _micron.inp  file.

A.16.2 INPUT: aperture _info.inp

If you wish to make spectra with wavelength-dependent ctilig area, i.e. aperture (see Sect®8.2, then you
must prepare the fileperture _info.inp . Here is its structure:

iformat <=== For now this is 1
nlam
lambda[1] rcol_as[1]

lambda[nlam] rcol_as[nlam]
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with

iformat: This format number is currently set to 1.

nlam: Number of wavelength indices specified here. This duoshave to be the same as the number of
wavelength of a spectrum or the number of wavelengths spddifithe filewavelength _micron.inp . It
can be any number.

lambda[i]: Wavelength sampling point, in microns. You can use a courigk gs long as the range of
wavelengths is large enough to encompass all wavelengthewy wish to include in spectra.

rcol_as[i]: The radius of the circular image mask used for the apertugeinm units of arcsec.

A.17 For developers: some details on the internal workings

There are several input files that can be quite large. Redbewg files into RADMC-3D memory can take time,

so it is important not to read files that are not required fer eélxecution of the particular command at hand. For
instance, if a model exists in which both dust and molecitaslare included, but RADMC-3D is called to merely

make a continuum SED (which in RADMC-3D never includes timnedi), then it would be a waste of time to let

RADMC-3D read all the gas velocity and temperature data anel lpopulation data into memory if they are not

used.

To avoid unnecessary reading of large files the reading sEtfikes is usually organized in a ‘read when required’
way. Any subroutine in the code that relies on e.g. line dathe present in memory can simply call the routine
read _lines _all(action) with argumentction being 1, i.e.:

call read_lines_all(1)

This routine will check if the data are present: if no, it widlad them, if yes, it will return without further action.
This means that you can caflad _lines _all(1) as often as you want: the line data will be read once, and only
once. If you look through the code you will therefore find thadnyread _+++ routines are called abundantly,
whenever the program wants to make sure that certain datasst. The advantage is then that the programmer
does not have to have a grand strategy for when which databeustid in memory: he/she simply inserts a call to
the read routines for all the data she/he needs at that plartigoint in the program, (always with action=1), and it
will organize itself. If certain data is nowhere neededythdl not be read.

All theseread _#* routines with argumendction can also be called withction=2 . This will force the
routine to (re-)read these data. But this is rarely needed.
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Appendix B

More information about fortran-style
unformatted data files

B.1 Overview

Some input and output files are so big that it is useful to tnyitibe them as compact as possible. Unformatted 1/0
is much more compact than formatted 1/0O, as we shall expteBeictiorB.2. RADMC-3D offers unformatted input
and output formats for some of the largest files. Here is as(prably incomplete) list of files that have unformatted
versions:

Name formatted| unformatted| unformatted
double-prec.| single-prec.

dust _density .inp .uinp

dust _temperature .inp .uinp

dust _temperature .dat .udat

gas _density .np .uinp

gas _temperature .np .uinp

electron _numdens .inp .uinp

ion _numdens .inp .uinp

levelpop  _xxx .inp .uinp .usinp

numberdens _x* .inp .uinp .usinp

gas _velocity .inp .uinp .usinp

microturbulence .inp .uinp .usinp

stellarsrc _density .inp .uinp

The.inp or.dat ending means that the file is in ASCII format. If the endinguisp or.udat then the file is
FORTRAN-style unformatted (see below) and the data are ubkoprecision. If the ending issinp  or .usdat

then the file is FORTRAN-style unformatted (see below) areldhta are in single precision. The latter (single
precision) saves roughly a factor of 2 in file size, so thatlranseful for big simulations.

The unformatted file styles are complicated. In fact, they‘'annecessarily” complicated as a result of FORTRAN’s
old-fashioned record-based I/O. That is why we devote araettapter to this file format, because it can be very
confusing for the RADMC-3D-user.

B.2 Why is unformatted I/O more compact than formatted?

In formatted 1/0 each number is represented as an ASCligstwhere each digit of the number is a separate byte.
The integer number 10398 is thus 5 bytes, plus a separatpaa ®r a return), totalling 6 bytes. If we would write
1000 such numbers to a file in ASCII format, then we would abgafile of 6000 bytes, roughly 6 kB. However,
numbers between -16535 and 16536 are stored, in computeomeas 2-byte integers. If we could write these
exact integers to the file, then the 1000 numbers would ocoupy 2000 bytes and the file would only be 2 kB
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large. That is a factor of 3 smaller. Note: normally integaes at least 4 bytes long in computer memory. You can
also declare 8-byte integers for very large integer numbers

Another example: a floating point number 3.59932E+03 is 9932E+03" as a string variable, occupying 13 bytes
as a string, but only 4 bytes as a floating point number in mgmviriting this number in formatted form (as ASCII)
requires thus 13 bytes per number, while if we could writdriéetly in unformatted form, it would require only 4
bytes. Note: a double precision float requires 8 bytes inumdtted form.

For files that tend to become extremely large it is therefarethwhile to use unformatted 1/O to reduce the size of
the files by a factor of about two to four.

B.3 Whatis FORTRAN-style record-based unformatted 1/O?

In most programming languages you can read and write unftechaata exactly as you think it should be: If
you write a single double-precision number to a file, the #legith would be exactly 8 bytes long. Unfortunately,
FORTRAN is an exception. Fortran uses a record-based I/ wiyich originates still from the old days, which
we will discuss below. When they drastically improved Famtto Fortran-90 and Fortran-95, most problems of
Fortran-77 (such as lack of pointers, lack of allocatabtaya) were solved. But they forgot to solve the problem
with record-based 1/0. This problem was only solved in theraa-2003 version, but this fortran version has not
yet become full standard yet. For reasons of portability w@okt want to move to Fortran-2003 until Fortran-2003
has become the defacto standard of Fortran on all platfofimsrefore we are stuck, for the moment, with old-style
Fortran I/O, which is record-based.

So what is record-based unformatted I/0? The idea is thateats or writes data in blocks, called records, from/to
files. Each record starts with a four-bytes intégtiiat tells how long the record is (in units of bytes). Then the
data of the record comes, and after the end of the data thefsaimbyte integer is written again. The next record
then starts also with a four-byte integer, givitglength, followed by the data, and ending again with the foyte
integer. This file structure was useful in the days of tapeadsy but is no longer useful today. Typically each time
you write some data to a file, e.g.

write(1) a,b,c

where a, b and c are single-precision floats, Fortran wnitgsettwo extra bytes. The file would thus have a length
of 4+3*4+4=20 bytes. Try the following fortran-90 program:

program testwrite
real :: ab,c
a=30487003.0
b=45645.2
c=-234.0
open(unit=1,file="myfile’,form="unformatted’)
write(1) a,b,c
write(1) a,b,c
close(1)
end program testwrite

This gives a file of 40 bytes long. A similar output with a C-gram would give a 24 bytes long file.

Normally you do not need to worry about these records or thelsgte headers and footers. You will not notice
it at all under normal circumstances. For instance nilgéile file from the above program can be read with the
following program:

program testread
real :: ab,c,d,ef
open(unit=1,file="myfile’,form="unformatted’)
read(1l) a,b,c
read(1l) d,ef
close(1)
write( *, *) a,b,c,d,e,f

end program testread

Things go wrong, however, if you do not read according to résoFor instance, if we would have done

IFour bytes for 64-bit computers and two bytes for 32-bit catas, as far as | know.
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program testread
real :: a,b,c,d,ef
open(unit=1,file="myfile’,form="unformatted’)
read(1l) a
read(1) b
read(l) c
read(1l) d
read(l) e
read(1) f
close(1)
write( *, *) a,b,c,d,e,f
end program testread

Then the program aborts due to end-of-file at the point wheres to read 'c’. This is the curse of fortran record-
based /0.

B.4 Strategy of writing FORTRAN-unformatted files

To keep files small, we want to use unformatted 1/0. But we Is@en that Fortran uses records and this can make
things complicated. The simplest solution, technicallpuld be to write each number as a separate record. In
that way we never get into troubles as shown in the last examuigram of SectioB.3. But it would make the

file unnecessarily long: for each 4-byte float we would havé=Bxbytes extra: the record header and footer. This
means that the file would become 3x longer than needed, anduwig lcave just as well written ASCII.

Therefore: we want to make records relatively long, so thatatddition of 2x4 bytes is, percentally, only a small

addition. Example: If we pack a 1000 single-precision fldatis a single record, then on-disk this leads to a file of
length 1000x4+2x4=4008 bytes. This is almost as long as @@ Hytes that C would have used. Therefore: the
longer the record, the more compact the data storage.

Ideally you may want to make the record as long as the entiigeyau want to write or read. That is in principle
possible. For 64-bit compilers the record length integdrg/tes, so this allows up to 4 GB of data to be stored in
a single record. But for very large data files even this maydieenough. Also, as far as | know, there may still be
compilers that use the 2-byte record header/footer. Indhse: the limit of the data in a single record is just 65536.
For that reason we allow in RADMC-3D that the data is writteséveral records. The record length can be set by
the user, and will be written as an integer somewhere neatineof the file (for details, see below).

B.5 General unformatted file structure used by RADMC-3D

All of the unformatted files listed in Sectid. 1 follow the same general structure.

e The very first record contains two 8-byte integers: The fgghe format numbeiformat ), which is usu-
ally simply 1, but in later developments of RADMC-3D whenteén file structures may change, could be
upgraded to 2 or 3 or whatever. This number is just there foDRIE-3D to recognize old file structures (a
backward compatibility feature). The second integexién ) is the general record length (in bytes) used for
the main data of this file. See below for more information.

e The second record contains either one or two 8-byte integésfirst of these is (always) the number of cells
of the model (i.e. the number of cells for which this file congadata). For some files there is this second
integer. For instance, falust _density.uinp this second integer tells the number of dust species.

e Forlevelpop =+ .uinp (or.usinp ) there is a next record containing a single 8-byte integatr gives the
number of levels for which the populations are given in eagth Eor other files no such record exists.

e Now the main data records follow.
The number of records that follow can be calculated as falowetnfloats be the number of floating point

(either double or single) numbers per grid point for this.fileet reclend be the number of cells for which
the data fits in a record (please make sure that this fits gXacHor double precision one thus haslend =
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reclen /(nfloats *8) (relevant for files ending iruinp or.udat ). For single precision one thus ha&slend
=reclen /(nfloats =4) (relevantfor files ending irusinp or.usdat ). For a double precision velocity field we
have three double precision numbers per cell, so weegkeind =reclen /(3 +8). Letncells be the number of
cells. Then the number of required records is then

nrecords = ( (ncells-1) / reclend ) + 1

whereinteger divisionis used, in which e.g. 5/4=1 while 3/4=0. The -1 and +1 areetherassure that we have
enough space. For instance if we have 5 celtel(s=5 ) and we haveeclend=4 (i.e. the data of 4 cells fit into
a single record) then we need 2 records, the second of whithamitain only one cell (the rest being padded with
0).

Here are a few things to keep in mind:

1. Be sure thateclen (the length of each data record in units of bytes) is exaatlynéeger number times
the required data storage of each cell. Example: Fodtise _density.uinp file each cell contains only a
single number: the density of ddstf we want to pack 1024 cells into a single record, theslen must be
exactly 8192.

2. It can happen that the last record is not fully filled. Fatamce, if we have 5 cells, but records of 4 cells each,
then the file contains 2 data records, the first one filled wataaf 4 cells, the second one only containing
data of 1 cell. In the current version of RADMC-3®@u must still write the full record length: so simply pad
the unused part with 0 or whatever.

3. Because of the previous point (the padding) it is wise t&AGHER one of the following:

e Make the record length exactly as big as needed to fit in adl ofed single record.

e Take the record length moderate so that if you have a neamtyeracord at the end you won't waste
too much space (but again, don't take it too small eitherhat you don’t waste too much space with
the record headers and footers). If you talelend =32 or so (meaningeclen =256 for a double
precision scalar field aeclen =768 for a double precision vector field) then you are on tlfe siae.

| apologise for the complicated stuff here. As soon as for2@03 is fully the standard on all platforms and for the
GNU fortran compilers, then | will simplify the unformatt&®.

2Different dust species are written in the outermost loop, $ectionA.3.
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Appendix C

Command-line options

This chapter deals with all the possible command-line ostione can give when calling thadmc3d code.

C.1 Main commands

In addition to the radmc3d.inp file, which contains manyeésieg’ parameters, one can (and even must) give
RADMC-3D also command-line options. The most importand(anmpulsory) options are the 'command’ what
RADMC-3D should do. At the moment you can choose from:

mctherm: Runs RADMC-3D for computing the dust temperatures usiegMionte Carlo method. See
chaptel6.
spectrum: Runs RADMC-3D for making a spectrum based on certain gtinrhis option requires

further command-line specifications. See chapter

sed Runs RADMC-3D for making a SED based on certain settingss dption requires further
command-line specifications. Note that a SED is like a spattbut for continuum processes
only (no lines). See chapt8rfor more details.

image Runs RADMC-3D for making an image. This option requiregtier command-line specifi-
cations. See chaptér

movie: Like image , but now for a series of different vantage points. Usefulrf@king movies in
one go, without having to call RADMC-3D time and agaiNOTE: This command is still
under developmenSee chapted.

mcmona (Only expect use). Runs RADMC-3D for computing the localiation field at each location
in the model. This is only useful for when you wish to couple B®MC-3D to models of
chemistry or so, which need the local radiation field. Sedi&®6.4

Example:
radmc3d mctherm

runs the RADMC-3D code for computing the dust temperatuesy@here using the Monte Carlo method.

There are also some additional commands that may be usefilibfgnostics:

subbox**** . where **** js one of the following:dust _density , dust _temperature . But other quan-
tities will follow in later versions. However, it may be bettto use this option from within
IDL. See Sectiori5.1
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linelist: Write a list of all the lines included in this model.

C.2 Additional arguments: general

Here is a list of command line options, on top of the abovedishain commands (Note: We'll try to be complete,
but as the code develops we may forget to list new optionghere

npix: [for images] The next number specifies the number of pixelsath x and y direction, as-
suming a square image.

Npixx: [for images] The next number specifies the number of pixelsdirection only.

npixy: [for images] The next number specifies the number of pixeisdirection only.

nrrefine: [for images and spectra] Specifies a maximum depth of remeif the pixels (see Section
9.6).

fluxcons [for images and spectra] Puts nrrefine (see above) to alalge to assue flux conservation
(see Sectio®.6).

norefine: [for images and spectra] Puts nrrefine (see above) to 0 $edch pixel of the image corre-
sponds only to 1 ray. This is fast but not reliable and theeefimt recommended (see Section
9.6).

nofluxcons [for images and spectra] Asrefine  above.

noscat This option makes RADMC-3D ignore the dust scattering pssqthough not the scattering

ilambda orinu:

extinction!) in the images, spectra and Monte Carlo sinifest For images and spectra this
means that no scattering Monte Carlo run has to be performiidedeach image ray tracing
(see Sectio.5.4. This can speed up the making of images or spectra enorgnollsk is
even more so if you make images/spectra of gas lines with LVE, or ESCP methods, be-
cause if no scattering Monte Carlo needs to be made, raingraan be done multi-frequency
for each ray, and the populations can be calculated oncemasdl, and used for all frequen-
cies. That can speed up the line rendering enormously — e§eai the cost of not including
dust scattering. For lines in the infrared and submillimet&o large grains are present, this
is usually OK, because small grains (smaller than about tamjchave very low scattering
albedos in the infrared and submillimeter.

[for images] Specify the index of the wavelength from th@&elength _micron.inp  file

for which a ray-trace image should be made.

color: [for images] Allows you to make multiple images (each atféedént wavelength) in one go.
This will make RADMC-3D read the fileolor _inus.inp  (see SectiorA.16) which is a
list of indicesi referring to thewavelength _micron.inp  file for which the images should
be made. See Secti@W for details.

loadcolor: [for images] Same aslor .

loadlambda: [for images] Allows you to make multiple images (each atféedént wavelength) in one go.

This will make RADMC-3D read the fileamera -wavelength _micron.inp
(whichever is present) to read the precise wavelength painivhich you wish to make the
images. In contrast twadcolor , which only allows you to pick from the global set of
wavelength used by the Monte Carlo simulation (in the fiteelength _micron.inp  or
frequency.inp ), with thecamera _wavelength _micron.inp  orcamera _frequency.inp

files you can specify any wavelength you want, and any numittéeon. See Sectiof.4for
details.
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sizeau

sizepc

zoomau

zoompc

truepix:

truezoom:

pointau:

pointpc:

incl:

phi:

[for images and spectra] The next number specifies the irsizgen model space in units of
AU (=1.496E13 cm). This image size is measured from the intagéer to the left or right
or top or bottom. This gives always square images. This infedfesize in au is observer
distance independent. The corresponding image half sizecsec is: image half size in
arcsec = image half size in AU / (distance in parsec).

[for images and spectra] Samesigeau , but now in parsec units.

[forimages and spectra] The next four numbers set the imaggow precisely by specifying
the xleft, xright, ybottom, ytop of the image in units of AUh& zero point of the image (the
direction of the 2-D image point located at (0.0,0.0) in im&gordinates) stays the same (i.e.
it aims toward the 3-D point in model space givengmjntau or pointpc ). In this way
you can move the image window left or with or up or down withbaving to change the
pointau or pointpc  3-D locations. Also for local perspective images it is diffiet if you
move the image window in the image plane, or if you actuallgrae the direction in which
you are looking (for images from infinity this is the sam&lote that if you use this option
without thetruepix ~ option RADMC-3D will always make square pixels by adaptipigx

or npixy such that together with theomau image size you get approximately square pixels.
Furthermore, iftruezoom is not set, RADMC-3D will alleviate the remaining tiny ddica
from square pixel shape by slightly (!) adapting #tvemau window to obtain exactly square
pixels.

[for images and spectra] Same a®mau, but now the four numbers are given in units of
parsec.

[for images and spectra] If withoomau or zoompc the image window is not square then
when specifyingipix one gets non-square pixels. Without theepix option RADMC-

3D will adapt thenpixx or npixy number, and subsequently modify the zoom window a
bit such that the pixels are square. With thepix option RADMC-3D will not change
npixx nornpixy and will allow non-square pixels to form.

[for images and spectra] If set, RADMC-3D will always assthrat the exact zoom window
(specified withzoomau or zoompc) will be used, i.e. ifruepix  is notset buttruezoom is
set, RADMC-3D will only () adaptpixx or npixy to getapproximatelysquare pixels.

[forimages and spectra] The subsequent three numberi$yspé&eD location in model space
toward which the camera s pointing forimages and spectra.(7,0) coordinate in the image
plane corresponds by definition to a ray going right throunysh 3-D point.

[for images and spectra] Samemgntau  but now in units of parsec.

[for images and spectra] For the case when the camera ifiratyir{i.e. at a large distance so
that no local perspective has to be taken into account)isliation specifies the direction
toward which the camera for images and spectra is positiofredd = 0 means toward the
positive z-axis (in cartesian space), incl=90 means toward a positidhe z-y-plane and
incl=180 means toward the negatix«axis. The angle is given in degrees.

[for images and spectra] Likimcl , but now the remaining angle, also given in degrees.
Examples:incl =90 andphi =0 means that the observer is located at infinity toward the
negativey axis;incl =90 andphi =90 means that the observer is located at infinity toward
the negativer axis;incl =90 andphi =180 means that the observer is located at infinity
toward the positivey axis (looking back in negativg direction). Rotation of the observer
around the object around theaxis goes in clockwise direction. The starting point okthi
rotation is such that foincl =0 andphi=0 the (z,y) in the image plane correspond to the
(z,y) in the 3-D space, with: pointing toward the right ang pointing upward. Examples: ]

if we fix the position of the observer at for instarioel =0 (i.e. we look at the object from
the top from the positive-axis at infinity downward), then increasipgi means rotating
the object counter-clockwise in the image plane.
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posang
imageunform:
imageformatted:

circ:

tracetau:

tracecolumn:

tracenormal:

apert or useapert

noapert:

nphot_therm:

nphot_scat

nphot_mcmona

[for images] This rotates the camera itself around(th®) point in the image plane.
Write out images in unformatted form
Write out images in text form (default)

When spectra or SEDs are made, and when spherical coardiaat used, then this option
will make RADMC-3D use a circular arrangement of pixels. Sligsian emulation of RADMC
(the predecessor code), and has some advantages in terpeedf @ver RADMC-3D sub-
pixeling method. See Sectién9.

[for images] If this option is set, then instead of ray-traca true image, the camera will
compute the optical depth at the wavelength given byieug.and puts this into an image
output as if it were a true image. Can be useful for analysmadels.

[for images] Liketracetau  but instead of the optical depth the simple column depth is
computed in g/crh NOTE: for now only the column depth of the dust.

[for images: Default] Only if you specifielacetau  or tracecolumn  before, and you are
in child mode, you may sometimes want to reset to normal intagiode.

[forimages/spectra] Use the image-plane aperture indgion from the fileaperture  _info.inp
[for images/spectra] Daotuse an image-plane aperture.

[for MC] The nr of photons for the thermal Monte Carlo sintida. But it is better to use
theradmc3d.inp  for this (see SectioA.1), because then you can see afterward with which
photon statistics the run was done.

[for MC] The nr of photons for the scattering Monte Carlo siation done before each image
(and thus also in the spectrum). But it is better to usedbmc3d.inp  for this (see Section
A.1), because then you can see afterward with which photosttatihe run was done.

[for MC] The nr of photons for the monochromatic Monte Caglmulation. But it is better
to use theadmc3d.inp  for this (see SectioA.1), because then you can see afterward with
which photon statistics the run was done.

C.3 Switching on/off of radiation processes

You can switch certain radiative processes on or off withfttlewing commands (though often thedmc3d.inp

file also allows this):

inclstar:

nostar:

inclline:

noline:

incldust:

nodust

inclfreefree:

[for images and spectra] Include stars in spectrum or irrage

[for images and spectra] Dwotinclude stars in spectrum or images. Only the circumstéllar
interstellar material is imaged as if a perfect coronogliapised.

Include line emission and extinction in the ray tracing (foages and spectra).
Do not include line emission and extinction in the ray trac{for images and spectra).

Include dust emission, extinction and (unless it is svattbff) dust scattering in ray tracing
(forimages and spectra).

Do notinclude dust emission, extinction and scatteringyrtracing (forimages and spectra).

Include the gas continuum free-free emission (Bremsktrgf). See chapte.

127



nofreefree

inclgascont

nogascont

Do not include the gas continuum free-free emission.

Include all gas continuum processes known by RADMC-3Dhfrigpw this is only free-free,
as of 04.07.2010, but this could become more in later ves$ion

Do not include the gas continuum.

C.4 Commands for child mode

Here is a list of options that are only useful for when you ugéRIC-3D in child mode (Chaptet2):

child:

exit or quit:

enter:

writeimage:

writespec

This prevents RADMC-3D from exiting after each main comihadone. Instead, RADMC-
3D will wait for further commands being given on the RADMC-3iernal command line.
This can be useful if multiple actions are to be taken, andufee does not want to wait for
long file input reading. It is in fact used by thi@wimage.pro  GUI (see chaptet4) for
making images. Note that with RADMC-3D command line each w@md has to be on a
separate line (i.e. ending with a return).

In child mode you can finish the command-line mode by entering exitidr q

In child mode enter says RADMC-3D that it can start executing theskeisof commands.
After it is done a new set of commands (each on a new line) cayiMea, again ending with
the word enter (on a separate line).

In child mode an image can be written to the standard output (in asii)f with this
command.

In child mode a spectrum can be written to the standard output (in fasm) with this
command.
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Appendix D

Which options are mutually incompatible?

For algorithmic reasons not all options / coordinate systand all grids are compatible with each other. Here is an
overview of which options/methods work when. Note that ampyions/methods for which this is a possible issue
are listed.

D.1 Coordinate systems

Option/Method:

Second order ray-tracing (Seéx9)
Isotropic scattering
An-isotropic scattering for thermal Monte Carlo

Some coordinate systems exclude certain possibilitiese ide list. An-isotropic scattering for monochromatic Monte Carlo

An-isotropic scattering for images and spectra
Gas lines
Gas lines and Doppler-shift line catching

Circular images (backward compatibility with RADMC)

D.2 Scattering off dust grains

The inclusion of the effect of scattering off dust grainsnmaiges and spectra typically requires a separate Monte
Carlo computation for each image. This is done automayitall RADMC-3D. But it means that there are some
technical limitations.

Option/Method: No scattering Isotropic approximation  Full anisotropiatsering
Fast multi-frequency ray tracing for spectra (auto) yes no o n

Multiple images at different vantage point at once (Setl) yes yes yes

Local observer (Se®@.10 yes yes no

Whereever there is “(auto)” this means that the user doeseed to set/choose anything: RADMC-3D will auto-
matically make the choice correctly. It is listed here jusirtake clear to the user why things may work differently
under different circumstances.

D.3 Local observer mode

The local observer mode (Seétl10 is a special mode for putting the observer in the near-fiélth@ object, or
even right in the middle of the object. It is not meant to bdlyear science use (though it can be used for it, to a
certain extent), but instead for public outreach stuff. ldaer, it is kept relatively basic, because to make this mode
compatible with all the functions of RADMC-3D would requimauch more development and that is not worth it at
the moment. So here are the restrictions:
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Option/Method:

Local observer mode

Dust isotropic scattering
Dust an-isotropic scattering

Multiple images at different vantage point at once (Setl)

Second-order ray-tracing (Sex:8)
Doppler-catching of lines (Se¢.6)
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