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Chapter 1

Introduction, copyright and disclaimer

1.1 Introduction

RADMC-3D is a software package for astrophysical radiativetransfer calculations in arbitrary 1-D, 2-D or 3-D
geometries. It is mainly written for continuum radiative transfer in dusty media, but also includes modules for gas
line transfer and gas continuum transfer.

RADMC-3D is a new incarnation of an older software package called RADMC. The original RADMC package
was written in Fortran 77 and was only for axially symmetric problems in spherical coordinates. Because it was
written in Fortran 77, the arrays had a fixed maximum size, so whenever a new grid was necessary, the code
had to be recompiled. RADMC was also ageing in many other ways, in the sense that it used input formats that
stemmed from the very early developing phase, and were not particularly practical. Also, RADMC’s limitation to
axisymmetric configurations and rigid gridding made it not capable of dealing with more complex 3-D models that
are now becoming ever more mainstream. For these reasons I decided to make a huge make-over of the code, or
more precise: to build a new incarnation of RADMC, called RADMC-3D, almost completely from scratch.

At the moment RADMC-3D is still in the development phase, butis is already reasonably mature. Here is a list of
current and planned features. Those features that are now already working are marked with [+], while those which
are not yet (!!) built in are marked with [-]. Those that are currently being developed are marked with [.] and those
that are ready, but are still in the testing phase are marked with [t].

• Coordinate systems:

[+] Cartesian coordinates (3-D)

[+] Spherical coordinates (1-D, 2-D and 3-D)

• Gridding systems (regular and adaptive mesh refinement grids are available for cartesianandspherical coor-
dinates):

[+] Regular

[+] Adaptive Mesh Refinement: oct-tree style

[+] Adaptive Mesh Refinement: layered (’patch’) style

[-] Delaunay gridding[To be implemented on request]

[-] Voronoi gridding[To be implemented on request]

• Radiation mechanisms:

[+] Dust continuum, thermal emission

[t] Dust continuum scattering:

[+] ...in isotropic approximation

[t] ...with full anisotropy
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[-] Dust quantum heated grains[To be implemented on request]

[-] Polarized light[To be implemented on request]

[t] Gas line transfer (LTE)

[-] Gas line transfer (non-LTE: LVG)

[-] Gas line transfer (non-LTE: full transfer)

[t] Gas line transfer with user-defined populations

[+] Gas continuum opacity and emissivity sources

• Radiation netto sources for continuum:

[+] Discrete stars positioned at will

[t] Continuous ’starlike’ source

[-] Continuous ’dissipation’ source

[t] External ’interstellar radiation field’

• Imaging options:

[+] Easy-to-use IDL front-end widget interface for imaging

[+] Observer from ’infinite’ distance

[+] Zoom-in at will

[+] Flux-conserving imaging, i.e. pixels are recursively refined

[+] A movie-making tool

[+] Multiple wavelengths in a single image

[+] Local observer with perspective view (for PR movies!)

• Spectrum options:

[+] SED spectrum (spectrum on ’standard’ wavelength grid)

[+] Spectrum on any user-specified wavelength grid

[+] Spectrum of user-specified sub-region (pointing)

[t] Specification of size and shape of a primary ’beam’ for spectra

• User flexibility:

[+] Free model specification via tabulated input files

[+] Easy special-purpose compilations of the code (optional)

• Front-end IDL packages:

[+] Example model setups

[+] Image viewing GUI (graphical user interface)

• Miscellaneous:

[+] Stars can be treated as point-sources or as spheres

[+] Option to calculate the mean intensityJν(~x) in the model

[-] Support for parallel computing
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1.2 Copyright and disclaimer

The use of this software is free of charge. However, it is not allowed to distribute this package without prior
consent of the lead author (C.P. Dullemond). Please refer any interested user to the web site of this software
where the package is available, which is currently:

http://www.mpia.de/homes/dullemon/radmc-3d/index.php

IMPORTANT NOTICE 1: I/We reject all responsibility for the u se of this package. The package is provided
as-is, and we are not responsible for any damage to hardware or software, nor for incorrect results that
may result from the software. The user is fully responsible for any results from this code, and we strongly
recommend thorough testing of the code before using its results in any scientific papers.

IMPORTANT NOTICE 2: Any publications which involve the use of this software must mention the name
of this software package and cite the accompanying paper once it is published (Dullemond et al. in prep), or
before that the above mentioned web site.

IMPORTANT NOTICE 3: If you use this software, you may want to notify the lead author (C.P. Dullemond)
so that you are put on an email list. This ensures that you are always up to date with major bug reports and
major updates. This mail list is only used for important enough news, so you will not be flooded with emails
and you can always unsubscribe.
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Chapter 2

Quick-Start

In general I recommend reading the manual fully, but it is often useful to get a quick impression of the package with
a quick-start. To make your first example model, this is what you do:

1. When you read this you have probably already unzipped thispackage. You should find, among others, asrc/

directory and aexamples/ directory. Go into thesrc/ directory.

2. Edit thesrc/Makefile file, and make sure to set theFF variable to the Fortran-90 compiler you have
installed on your system.

3. Typemake. If all goes well, this should compile the entire code and create an executable calledradmc3d .

4. Typemake install . If all goes well this should try to create a link toradmc3d in your∼/bin/ directory.
If this directory does not exist, it will ask to make one.

5. Make sure to have the∼/bin/ directory in your path. If you use, for instance, thetcsh shell, you do this by
setting thepath variable:set path = ( ∼/bin $path ) in your∼/.tcshrc file. If you change these
things you may have to open a new shell to make sure that the shell now recognizes the new path.

6. Check if the executable is OK by typingradmc3d in the shell. You should get a small welcoming message
by the code.

7. Now enter the directoryexamples/run simple 1/ .

8. Copy all standard IDL (see Section3.2about IDL) routines from the../../idl/ directory into the current
directory by typing in the tcsh or bash shellcp ../../idl/ * .pro ./ . NOTE: This is a quick-and-dirty way
of using the IDL routines, only meant to get the stuff runningquickly without going through the somewhat
more involved IDL routines installation procedure described in Section4.4. For the the proper use of the
RADMC-3D package, it is recommended to follow the procedures described in Section4.4.

9. Enter IDL.

10. Type (in IDL).r problem setup.pro , and after thatexit to exit IDL again.

11. Typeradmc3d mctherm . This should let the code do a Monte Carlo run. You should seePhoton nr 1000 ,
followed byPhoton nr 2000 , etc until you reachPhoton nr 1000000 . The Monte Carlo modeling for
the dust temperatures has now been done.

12. Go into IDL again and type.r viewimage.pro followed by viewimage . This should bring an image
viewer on the screen and show what the simple model looks likewhen rendered at some angle1. The model
is very simple: a spherical blob, so do not expect to see much in this simple example.

1Note: on some systems there is an apparent problem with the communication pipe betweenradmc3d and IDL which causes things to
freeze. Try typingviewimage,/nochild in that case, which should fix the problem, although the viewer may then be substantially
slower. I am working on figuring out how the problem can be fixed, but have so far been not succesful.
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If you experience troubles with the above steps, and you cannot fix it, please read the next chapters for more details.

Tip: If the code unexpectedly quits or freezes while usingviewimage , please have a look at the fileradmc3d.out

which contains the messages that RADMC-3D outputs. This maygive hints what went wrong. Note that this file is
only written if RADMC-3D is used in child mode, which is the case when it is spawned from viewimage. Otherwise
this output will be written to screen. Also, when viewimage is called with the option,/nochild the output will also
be written to screen instead of the fileradmc3d.out .
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Chapter 3

Overview of the RADMC-3D package

3.1 Introduction

The RADMC-3D code is written in fortran-90 and should compile with most f90 compilers without problems. It
needs to be compiled only once for each platform.Note that the code is developed for Unix-based systems such as
linux machines or Mac OS X machines. It may also work on Windows machines, but this is not guaranteed, and
throughout this manual a Unix-based machine is assumed, with a csh, tcsh or bash shell. User-level knowledge of
Unix-like operating systems is required.

The executable is calledradmc3d and it performs all the model calculations of the RADMC-3D package, for
instance the Monte Carlo simulations, ray-tracing runs (images, spectra), etc. There is also a set of useful subroutines
written in the IDL1 language to use theradmc3d code, butradmc3d can also run without IDL. In that case the user
will have to write his/her own pre- and post-processing subroutines in e.g. python or other data processing languages.

3.2 Requirements

This package runs under linux/unix/MacOSX, but has not beentested under Windows. The following pre-installed
software is required:

• make or gmake

This is the standard tool for compiling packages on all Unix/Linux-based systems.

• perl

This is a standard scripting language available on most or all Unix/Linux-based systems. If you are in doubt:
typewhich perl to find the location of theperl executable. Seehttp://www.perl.org/ for details on
perl, should you have any problems. But on current-day UNIX-type operating systems perl is nearly always
installed in the/usr/bin/ directory.

• A fortran-90 compiler

Preferably thegfortran compiler (which the current installation assumes is present on the system). Web
site: http://gcc.gnu.org/fortran/ . Other compilers may work, but have not been tested yet.

• The IDL package (Interactive Data Language)

IDL is a software package similar to MatLab, and it is not free. While RADMC-3D can be used with-
out IDL, all examples and all post-processing scripts are written in IDL, so it would require the user to
rewrite them into other languages (fortran, c, c++, perl, python or whatever). The website for IDL is:
http://www.ittvis.com/ . If IDL is not present on your system, and your system administrators cannot
install this package due to lack of funding, you can also use an open source clone calledGDL(Gnu Data Lan-
guage) which can be readily downloaded from the web (http://gnudatalanguage.sourceforge.net/ ).

1IDL is a commercial data processing package used frequentlyamong astrophysicists. Seehttp://www.ittvis.com/idl/ for
more information.
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This GDL package misses some libraries and features, but theRADMC-3D code can be used with GDL with
the exception that the Graphical User Interfaces of RADMC-3D (such as viewimage.pro) cannot be used.

Note that the Monte Carlo code RADMC-3D itself is in Fortran-90. Only the creation of the input files (and hence
the problem definition) and the analysis of the output files isdone in IDL. The user is of course invited to use other
ways to create the input files for RADMC-3D if he/she is not able to use IDL. Therefore IDL are not strictly required
for the use of this code.

3.3 The archive, how to unzip it, and what it contains

The package of RADMC-3D is packed in a zip archive calledradmc-3d v* . ** ##.##.##.zip where the* . **
is the version number and##.##.## is the date of this version in dd.mm.yy format. To unpack on a linux, unix or
Mac OS X machine you type:

unzip <this archive file>

i.e. for example for radmc-3dv0.07 27.07.09.zip you type

unzip radmc-3d_v0.07_29.07.09.zip

A directoryradmc-3d is created which has the following subdirectory structure:

radmc-3d/
src/
idl/
examples/

run_simple_1/
run_simple_1_userdef/
run_simple_1_userdef_refined/
.
.
.

manual/

The first directory,src/ , contains the fortran-90 source code for RADMC-3D. The second directory,idl/ , contains
a set of IDL routines that are useful for model preparation and post-processing. The third directory contains a series
of example models. The fourth directory contains this manual.

3.4 Units: RADMC3D uses CGS

The RADMC-3D package is written such that all units are in CGS(length in cm, time in sec, frequency in Hz,
energy in erg, angle in steradian). There are exceptions:

• Wavelength is usually written in micron

• Sometimes angles are in degrees (internally in radian, but input as degrees)
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Chapter 4

Compilation and installation of radmc3d

Although the RADMC-3D package contains a lot of different software, the main code is located in thesrc/ di-
rectory, and is written in Fortran-90. The executable isradmc3d . Here we explain how to compile the fortran-90
source codes and create the executableradmc3d .

4.1 Compiling the code with ’make’

To compile the code, enter thesrc/ directory in your shell (we assume a tcsh shell here, but bashor other Unix-
shells are also fine). You nowmayneed to edit theMakefile in this directory using your favorite text editor and
replace the line

FF = gfortran

with a line specifying your own compiler. If, of course, you use gfortran, you can keep this line. But if you use,
e.g., ifort, then replace the above line by

FF = ifort

If you save this file, and you are back in the shell, you can compile the radmc3d code by typing

make

in the shell. If all goes well, you have now created a file called radmc3d in thesrc/ directory.

4.2 The install.perl script

If instead of typing just ‘make’ you type

make install

(or you first type ‘make’ and then ‘make install’, it’s the same), then in addition to creating the executable, it also
automatically executes a perl script calledinstall.perl (located also in thesrc/ directory) that installs the code
in such a way that it can be conveniently used in any directory. What it does is:

1. It checks if abin/ directory is present in your home directory (i.e. a∼/bin/ directory). If not, it asks if you
want it to automatically make one.

2. It checks if the∼/bin/ directory is in the ’path’ of the currently used shell. This is important to allow the
computer to look for the program ’radmc3d’ in the∼/bin/ directory. If you use a csh or tcsh shell, then you
can add the following line to your∼/.tcshrc file:

16



set path=($HOME/bin $path)

3. It creates a fileradmc3d in this∼/bin/ directory with the correct executable permissions. This file is merely
a dummy executable, that simply redirects everything to thetrueradmc3d executable located in your current
src/ directory. When you now open a new shell, the path contains the∼/bin/ directory, and the command
radmc3d is recognized. You can also typesource ∼/.tcshrc followed byrehash . This also makes sure
that your shell recognizes theradmc3d command.

4. It checks if aidl/ subdirectory exists in the above mentionedbin directory, i.e. a∼/bin/idl/ directory.
If not, it asks if you want it to automatically create one.

5. If yes, then it will copy all the files ending with.pro in the idl/ directory of the distribution to that
∼/bin/idl/ directory. This is useful to allow you to make anIDL PATHentry to allow idl to find these
idl scripts automatically (see Section4.4).

Note that this perl script installs the code only for the userthat installs it. A system-wide installation is, in my view,
not useful, because the code package is not very big and it should remain in the control of the user which version of
the code he/she uses for each particular problem.

If all is ’normal’, then theperl.install script described here is called automatically once you typemake

install following the procedure in Section4.1.

Before the installation is recognized by your shell, you must now either typerehash in the shell or simply open a
new shell.

How do you know that all went OK? If you typeradmc3d in the shell the RADMC-3D code should now be executed
and give some comments. It should write:

=================================================== =============
WELCOME TO RADMC-3D: A 3-D CONTINUUM RT SOLVER

This is the 3-D version of the 2-D RADMC code
(c) 2008 Cornelis Dullemond

=================================================== =============

Nothing to do... Use command line options to generate action :
mctherm : Do Monte Carlo simul of thermal radiation
mcscat : Do Monte Carlo simul only for scattering
spectrum : Make continuum spectrum
image : Make continuum image

on the screen (or for newer versions of RADMC-3D perhaps somemore or different text). This should also work
from any other directory.

4.3 What to do if this all does not work?

In case the above compilation and installation does not work, here is a proposed procedure to do problem hunting:

• First, answer the following questions:

– Did you typemake install in thesrc/ directory? I mean, did you not forget theinstall part?

– Did you put∼/bin/ in your path (see above)?

– If you just added∼/bin/ to your path, did you follow the rest of the procedure (eitherclosing the
current shell and opening a new shell or typing thesource andrehash commands as described above)?

If this does not help, then continue:

• Close the shell, open a new shell.

• Go to the RADMC-3Dsrc/ directory.
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• Type./radmc3d . This should give the above message. If not, then make sure that the compilation went right
in the first place:

– Typerm -f radmc3d , to make sure that any old executable is not still present.

– Typemake clean . This should return the sentenceOBJECT and MODULE files removed.

– Then typemake. This should produce a set of lines, each representing a compilation of a module, e.g.
gfortran -c -O2 ./amr module.f90 -o amr module.o , etc. The final line should be something
like gfortran -O2 main.o rtglobal module.o montecarlo module.o dust module.o quantum module.o

mathroutines module.o ioput module.o stars module.o amr module.o amrray module.o

constants module.o camera module.o lines module.o namelist module.o userdef module.o

gascontinuum module.o -o radmc3d . If instead there is an error message, then do the following:

∗ Check if the compiler used (by defaultgfortran ) is available on your computer system.
∗ If you use an other compiler, check if the compiler options used are recognized by your compiler.

– Check if the executableradmc3d is now indeed present. If it is not present, then something must
have gone wrong with the compilation. So then please check the compilation and linking stage again
carefully.

If you followed all these procedures, but you still cannot get even the executable in thesrc/ directory to run
by typing (in thesrc/ directory)./radmc3d (don’t forget the dot slash!), then please contact the author.

• At this point I assume that the previous point worked. Now go to another directory (any one), and type
radmc3d . This should also give the above message. If not, but theradmc3d executable was present, then
apparently the shell path settings are wrong. Do this:

– Check if, in the current directory (which is now notsrc/ ) there is by some accident another copy of the
executableradmc3d . If yes, please remove it.

– Typewhich radmc3d to find out if it is recognized at all, and if yes, to which location it points.

– Did you make sure that the shell path includes the∼/bin/ directory, as it should? Otherwise the shell
does not know where to find the∼/bin/radmc3d executable (which is a perl link to thesrc/radmc3d

executable).

– Does the file∼/bin/radmc3d perl file exist in the first place? If no, check why not.

– Typeless ∼/bin/radmc3d and you should see a text with first line being#!/usr/bin/perl and the
second line being someting likesystem("/Users/user1/radmc-3d/version 0.12/src/radmc3d

@ARGV"); where the/Users/user1 should of course be the path to your home directory, in fact tothe
directory in which you installed RADMC-3D.

If this all brings you no further, please first ask your systemadministrators if they can help. If not, then please
contact the author.

4.4 Installing the IDL analysis tools

In the package there is a directory containing a whole seriesof analysis tools for analyzing the results of RADMC-
3D. They are highly recommended, but not essential for usingRADMC-3D. These tools are described in detail in
Chapter14.

The tools are written in IDL and you can find them in theidl/ directory. To use them in a convenient way one must
let IDL know where to find these routines. Since the install.perl script described above copies all these files to the
∼/bin/idl/ directory, it is advisable to put that directory as theIDL PATHinstead of the localidl directory. The
reason is that if you have multiple versions of RADMC-3D on your system, you always are assured that IDL finds
the idl routines belonging to the latest installation of RADMC-3D (note: only assured if that latest compilation was
done withmake install ).

In IDL here are two ways how you can make sure that IDL automatically finds the RADMC-3D scripts:

1. Under Unix/Linux/MacOSX you can set theIDL PATHdirectly in your.cshrc or .tcshrc or .bashrc file.
For example: in.tcshrc (if you use the tcsh shell) you can write:
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setenv IDL_PATH "/myhomedirectory/bin/idl:/Applicatio ns/itt/idl70/lib:\
/Applications/itt/idl70/lib/iTools:\
/Applications/itt/idl70/lib/iTools/framework:\
/Applications/itt/idl70/lib/iTools/components:\
/Applications/itt/idl70/lib/iTools/ui_widgets"

(wheremyhomedirectory should be replaced by your home directory name). Note that the entire IDL
default path also has to be added, as it is done here, otherwise most of IDL libraries are not working anymore.
The disadvantage of this method is that if IDL adds further directories to its default path in the future, you
would have to add them by hand here.

2. You can set theIDL PATHin a more elegant way directly from within IDL with the command:

PREF_SET, ’IDL_PATH’, ’/myhomedirectory/bin/idl:<IDL_ DEFAULT>’,/COMMIT

(wheremyhomedirectory should be replaced by your home directory name). Of course, you do not want to
have to type this line every time you start up IDL. So you can make a startup script that IDL executes every
time it is started or reset. The way to do this is:

(a) Make a script file, e.g. called.idl startup in your home directory (Note: by starting the name with a
“.” it will remain invisible under Unix/Linux unless you type ls -a ), containing the above line (i.e. con-
tainingPREFSET, ’IDL PATH’, ’/myhomedirectory/bin/idl: <IDL DEFAULT>’,/COMMIT ).

(b) In your.tcshrc or .bashrc file in your home directory set theIDL STARTUPenvironment variable to
/myhomedirectory/.idl startup . For .tcshrc this works by adding a line
setenv IDL STARTUP /myhomedirectory/.idl startup .

If all goes well, if you now start IDL you should be able to haveaccess to the IDL routines of RADMC-3D
directly. To test this, try typing.r viewimage in IDL. If this gives an error message thatviewimage.pro

cannot be found, then please ask your system administratorshow to solve this.

NOTE: You can also ignore all of this, and not copy any of the IDL routines to this central location, and instead
simply copy all the* .pro files of theidl/ directory that you use to the local model directory (see Section 5.6
for what we mean with ‘model directory’). Or you could, in IDL, give the full path to each of the files. But these
solutions are a lot messier.

4.5 Making special-purpose modified versions of RADMC-3D (optional)

For most purposes it should be fine to simply compile the latest version of RADMC-3D once-and-for-all, and simply
use the resultingradmc3d executable for all models you make. Normally there is no reason to have to modify the
code, because models can be defined quite flexibly by preparing the various input files for RADMC-3D to your
needs. So if you are an average user, you can skip to the next subsection without problem.

But sometimes thereis a good reason to want to modify the code. For instance to allowspecial behavior for a
particular model. Or for a model setup that is simply easier made internally in the code rather than by preparing
large input files. One can imagine some analytic model setup that might be easier to create internally, so that one
can make use of the full AMR machinery to automatically refinethe grid where needed. Having to do so externally
from the code would require you to set up your own AMR machinery, which would be a waste of time.

The problem is that if the user would modify the central code for each special purpose, one would quickly lose track
of which modification of the code is installed right now.

Here is how this problem is solved in RADMC-3D:

• For most purposes you can achieve your goals by only editing the fileuserdef module.f90 . This is a set
of standard subroutines that the main code calls at special points in the code, and the user can put anything
he/she wants into those subroutines. See Chapter13 for more information about these standard subroutines.
This method is the safest way to create special-purpose codes. It means (a) that you know that your mod-
ification cannot do much harm unless you make really big blunders, because these subroutines are meant
to be modified, and (b) you have all your modificationsonly in one single file, leaving the rest of the code
untouched.
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• You can create alocal version of the code, without touching the main code. Supposeyou have a model
directoryrun mymodel and for this model you want to make a special-purpose versionof the code. This is
what you do:

1. Copy the Makefile from thesrc/ directory intorun mymodel .

2. Copy the.f90 file(s) you want to modify from thesrc/ directory intorun mymodel . Usually you
only want to modify theuserdef module.f90 file, but you can also copy any other file if you want.

3. In therun mymodel/Makefile replace theSRC = . line with SRC = XXXXXX, whereXXXXXXshould
be thefull path to thesrc/ directory. An example line is given in the Makefile, but is commented out.

4. In therun mymodel/Makefile make sure that all the.f90 files that should remain as they are have
a $(SRC)/ in front of the name, and all the.f90 files that you want to modify (and which now have
a copy in therun mymodel directory) have a./ in front of the name. By default all.f90 files have
$(SRC)/ in front of the name, except theuserdef module.f90 file, which has a./ in front of the
name because that is the file that is usually the one that is going to be edited by you.

5. Now edit the local.f90 files in therun mymodel directory in the way you want. See Chapter13 for
more details.

6. Now inside the run mymodel directory you can now typemake and you will create your own local
radmc3d executable. NOTE: Do not typemake install in this case, because it should remain a local
executable, only inside therun mymodel directory.

7. If you want (though this is not required) you can clean up all the local.o and.mod files by typingmake

clean , so that yourrun mymodel directory is not filled with junk.

8. You can now use this special purpose version ofradmc3d by simply calling on the command line:
./radmc3d , with any command-line options you like. Just beware that, depending on the order in
which you have your paths set (in tcsh or bash) typing justradmc3d mayinstead use the global version
(that you may have created in thesrc/ directory withmake install ). So to be sure to use thelocal
version, just put the./ in front of theradmc3d .

Note: In chapter13 there is more information on how to set up models internally in the code using the method
described here.

Note: You can usemake clean to remove all the .o and .mod files from your model directory, because they can be
annoying to have hanging around. By typingmake cleanmodel you remove, in addition to the .o and .mod files,
also all model input and output files, with the exception of dust opacity or molecular data files (because these latter
files are usually not created locally by theproblem setup.pro script). By typingmake cleanall you remove
everythingexceptthe basic files such as theMakefile , any.f90 files, any.pro files, the dust opacity or molecular
data files andREADMEfiles.
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Chapter 5

Basic structure and functionality

RADMC-3D is a very versatile radiative transfer package with many possibilities. As a consequence it is a rather
complex package. However, we have tried to keep it still as easy as possible to use as a first-time user. We tried to
do so by keeping many of the sophisticated options “hidden” and having many default settings already well-chosen.
The idea is that one can already use the code at an entry level,and then gradually work oneself into the more fancy
options.

RADMC-3D is a general-purpose package, so there are no ’built-in’ models inside theradmc3d executable1. For
instance, if you want to model a protoplanetary disk, then you would have to design the grid and density structure
of the disk on this grid yourself. To make it easier for the user, we have provided several IDL-scripts as examples.
Among these examples is indeed a protoplanetary disk model.So this is as close as we go to ’built-in’ models: we
provide, for some cases, already well-developed example models that you, the user, can use out-of-the-box, or that
you can adapt to your needs.

In this chapter we give an overview of the rough functionality of the code in its simplest form: ignoring all the
hidden fancy options and possibilities. For the details we then refer to the chapters ahead.

5.1 Radiative processes

Currently RADMC-3D handles the following radiative processes:

• Dust thermal emission and absorption
RADMC-3D can compute spectra and images in dust continuum. The dust temperature must be known in
addition to the dust density. In typical applications you will know the dust density distribution, but not the dust
temperature, because the latter is the results of a balance between radiative absorption and re-emission. So in
order to make spectra and images of a dusty object we must firstcalculate the dust temperature consistently.
This can be done with RADMC-3D by making it perform a “thermalMonte Carlo” simulation (see Chapter
6). This can be a time-consuming computation. But once this isdone, RADMC-3D writes the resulting dust
temperatures out to the filedust temperature.dat , which it can then later use for images and spectra.
We can then call RADMC-3D again with the command to make an image or a spectrum (see Chapter6). To
summarize: a typical dust continuum radiative transfer calculation goes in two stages:

1. A thermal Monte Carlo simulation with RADMC-3D to computethe dust temperatures.

2. A spectrum or image computation using ray-tracing with RADMC-3D.

• Dust scattering
Dust scattering is automatically included in the thermal Monte Carlo simulations described above, as well as
in the production of images and spectra. For more details, consult Chapter6.

• Gas atomic/molecular lines
RADMC-3D can compute spectra and images in gas lines (see Chapter 7). The images are also known

1Except if you insert one yourself using the userdef module, see Chapter13.
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as “channel maps”. To compute these, RADMC-3D must know the population densities of the various
atomic/molecular levels. For now there are two options how to let RADMC-3D know these values:

– Tell RADMC-3D to assume that the molecules or atoms are in “Local Thermodynamic Equilibrium”
(LTE), and specify the gas temperature at each location to allow RADMC-3D to compute these LTE level
populations.Note that in principle one is now faced with the same problem as with the dust continuum:
we need to know the gas temperature, which we typically do notknow in advance.However, computing
the gas temperature self-consistently is very difficult, because it involves many heating and cooling
processes, some of which are very complex. That’s why most line radiative transfer codes assume that
the user gives the gas temperature as input. We do so as well. If you like, you can tell RADMC-3D to
use the (previously calculated) dust temperature as the gastemperature, for convenience.

– Deliver RADMC-3D an input file with all the level populationsthat you have calculated youself using
some method.

– Tell RADMC-3D to compute the level populations according tosome simple local non-LTE prescrip-
tion such as the Sobolev approximation (“Large Velocity Gradient method”) or the Escape Probability
Method. (This is still under development!)

Currently RADMC-3D does not have a full non-local non-LTE computation method implemented. The reason
is that it is very costly, and for many applications presumably not worth the computational effort. But we are
working on a full non-LTE mode. Stay tuned!

• Gas continuum opacities
We are currently working on implementing gas continuum opacities as well. Again we are faced with the
question how to compute the gas temperature. For now we simply require you to specify the gas temperature
yourself.

Remark:We are thinking of methods to compute gas temperatures self-consistently in some special situations. Stay
tuned...

5.2 Coordinate systems

With RADMC-3D you can specify your density distribution in two coordinate systems:

• Cartesian coordinates
The simplest coordinate system is the Cartesian coordinatesystem(x, y, z). For now each model must be 3-D
(i.e. you must specify the densities and other quantities asa function ofx, y andz). But in the near future we
plan to also include the possibility of 1-D plane-parallel models.

• Spherical coordinates
You can also specify your model in spherical coordinates(r, θ, φ). These coordinates are related to the
cartesian ones by:

x = r sin θ cosφ (5.1)

y = r sin θ sin φ (5.2)

z = r cos θ (5.3)

This means that the spatial variables (density, temperature etc) are all specified as a function of(r, θ, φ).
However, the location of the stars, the motion and directionof photon packages etc. are still given in cartesian
coordinates(x, y, z). In other words: any function of spacef(~x) will be in spherical coordinatesf(r, θ, φ),
but any point-like specification of position~x will be given as Cartesian coordinates~x = (x, y, z). This hybrid
method allows us to do all physics in cartesian coordinates:photon packages or rays are treated always in
cartesian coordinates, and so is the physics of scattering,line emission etc. Only if RADMC-3D needs to
know what the local conditions are (dust temperature, gas microturbulence, etc) RADMC-3D looks up which
coordinates(r, θ, φ) belong to the current(x, y, z) and looks up the value of the density, microturbulence etc.
at that location in the(r, θ, φ) grid. And the same is true if RADMC-3D updates or calculates for instance the
dust temperature: it will compute the(r, θ, φ) belong to the current(x, y, z) and update the temperature in the
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cell belonging to(r, θ, φ). For the rest, all the physics is done in the Cartesian coordinate system. This has
the major advantage that we do not need different physics modules for cartesian and spherical coordinates.
Most parts of the code don’t care which coordinate system is used: they will do their own work in Cartesian
coordinates. When using spherical coordinates, please read Section10.2.

5.3 The spatial grid

To specify the density or temperature structure (or any other spatial variable) as a function of spatial location we
must have a grid. There are two basic types of grids:

• Structured grids (AMR grids)
The standard gridding is a simple rectangular grid.

– Cartesian coordinates:When cartesian coordinates are used, this simply means thateach cell is defined
asxl < x < xr, yl < y < yr andzl < z < zr, wherel andr stand for the left and right cell walls
respectively.

– Spherical coordinates:When spherical coordinates are used, this simply means thateach cell is defined
asrl < r < rr , θl < θ < θr andφl < φ < φr. Note therefore that the shape of the cells in spherical
coordinates is (in real space) curved. For spherical coordinates the following four modes are available:

∗ 1-D Spherical symmetry:All spatial functions depend only onr.
∗ 2-D Axial symmetry:All spatial functions depend only onr andθ.
∗ 2-D Axial symmetry with mirror symmetry:All spatial functions depend only onr andθ, where

the θ grid only covers the part above thez = 0 plane. Internally it is in this mode assumed that
all quantities below thez = 0 plane are equal to those above the plane by mirror symmetry inthe
z = 0 plane. This saves a factor of two in computational effort forMonte Carlo calculations, as well
as in memory useage. Note that also the resulting output filessuch asdust temperature.dat

will only be specified forz > 0.
∗ 3-D: All spatial functions depend on all three variablesr, θ andφ.
∗ 3-D with mirror symmetry:All spatial functions depend on all three variablesr, θ andφ, but like

in the 2-D case only the upper part of the model needs to be specified: the lower part is assumed to
be a mirror copy.

When using spherical coordinates, please read Section10.2.

In all cases these structured grids allow for oct-tree-style grid refinement, or its simplified version: the layer-
style grid refinement. See SectionA.2 and Chapter10 for more information about the gridding and the
(adaptive) mesh refinement (AMR).

• Unstructured grids (for now: cartesian coordinates only)
For some applications it may be more convenient to specify spatial variables not on a structured grid, but on
a semi-random set of points in 3-D space. RADMC-3D will (hopefully) soon feature a mode in which it can
handle such a situation, and use a Delaunay triangulation toproduce atriangulationon the basis of this set of
points, thus creating anunstructured grid. Unfortunately, for now this mode is not yet ready. Stay tuned...

5.4 Computations that RADMC-3D can perform

The code RADMC-3D (i.e. the executableradmc3d ) is onecode formanyactions. Depending on which command-
line arguments you give, RADMC-3D can do various actions. Here is a list:

• Compute the dust temperature:
With radmc3d mctherm you call RADMC-3D with the command of performing a thermal Monte Carlo
simulation to compute the dust temperature under the assumption that the dust is in radiative equilibrium with
its radiation field. This is normally a prerequisite for computing SEDs and images from dusty objects (see
“computing spectra and images” below). The output file of this computation isdust temperature.dat

which contains the dust temperature everywhere in the model.
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• Compute a spectrum or SED:
With radmc3d sed you call RADMC-3D with the command of performing a ray-tracing computation to
compute the spectral energy distribution (SED) for the model at hand. Typically you first need to have called
radmc3d mctherm (see above) beforehand to compute dust temperatures (unless you have created the file
dust temperature.dat yourself because you have a special way of computing the dusttemperature). With
radmc3d sed the spectrum is computed for the wavelengths points given inthe filewavelength micron.inp ,
which is the same wavelength grid that is used forradmc3d mctherm . If you want to compute the spec-
trum at wavelength other than those used for the thermal Monte Carlo simulation, you should instead call
radmc3d spectrum , and you have the full freedom to choose the spectral wavelengths points at will, and
you can specify these in various ways described in Section9.4. Most easily you can create a file called
camera wavelength micron.inp (see SectionA.12) and call RADMC-3D usingradmc3d spectrum

loadlambda . In all these cases the vantage point (where is the observer)can of course be set as well, see
Section6.2and Chapter9.

• Compute an image:
With radmc3d image you call RADMC-3D with the command of performing a ray-tracing computation to
compute an image. You must specify the wavelength(s) at which you want the image by, for instance, calling
RADMC-3D asradmc3d image lambda 10 , which makes the image atλ =10µm. But there are other
ways by which the wavelength(s) can be set, see Section9.4. In all these cases the vantage point (where is the
observer) can of course be set as well, see Section6.2and Chapter9.

• Compute the local radiation field inside the model:
With radmc3d mcmono you call RADMC-3D with the command of performing a wavelength-by-wavlength
monochromaticMonte Carlo simulation (at the wavelengths that you specify in the filemcmonowavelength micron.inp ).
The output file of this computation ismean intensity.out which contains the mean intensityJν as a func-
tion of the (x, y, z) (cartesian) or(r, θ, φ) (spherical) coordinates at the frequenciesνi ≡ 104c/λi where
λi are the wavelengths (inµm) specified in the filemcmonowavelength micron.inp . The results of this
computation can be interesting for, for instance, models ofphotochemistry. But if you use RADMC-3D only
for computing spectra and images, then you will not use this.

In addition to the above main methods, you can ask RADMC-3D todo various minor things as well, which will be
described throughout this manual.

5.5 How a model is set up and computed: a rough overview

A radiative transfer code such as RADMC-3D has the task of computing synthetic images and spectra of a model
that you specify. You tell the code what the dust and/or gas density distribution in 3-D space is and where the star(s)
are, and the code will then tell you what your cloud looks likein images and/or spectra. That’s basically it. That’s
the main task of RADMC-3D2.

First you have to tell RADMC-3D what 3-D distribution of dustand/or gas you want it to model. For that you must
specify a coordinate system (cartesian or spherical) and a spatial grid. For cartesian coordinates this grid should be
3-D (although there are exceptions to this), while for spherical coordinates it can be 1-D (spherical symmetry), 2-D
(axial symmetry) or 3-D (no symmetry). RADMC-3D is (for mostpart) a cell-based code, i.e. your grid devides
space in cells and you have to tell RADMC-3D what the average densities of dust and/or gas are in these cells.

The structure of the grid is specified in a fileamr grid.inp (see SectionA.2). All the other data, such as dust
density and/or gas density are specified in other files, but all assume that the grid is given byamr grid.inp .

We can also specify the locations and properties of one or more stars in the model. This is done in thestars.inp

(see SectionA.7) file.

Now suppose we want to compute the appearance of our model in dust continuum. We will describe this in detail in
Chapter6, but let us give a very rough idea here. We write, in addition to theamr grid.inp andstars.inp files,
a file dust density.inp which specifies the density of dust in each cell (see SectionA.3). We also must write
the main input fileradmc3d.inp (see SectionA.1), but we can leave it empty for now. We must give RADMC-3D
a dust opacity table in the filesdustopac.inp and for instancedustkappa silicate.inp (see SectionA.13).

2It can/will, of course, do much more, but that is described later in this manual.
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And finally, we have to give RADMC-3D a table of discrete wavelengths in the filewavelength micron.inp that
it will use to perform its calculations on. We then call theradmc3d code with the keywordmctherm (see Chapter
6) to tell it to perform a Monte Carlo simulation to compute dust temperatures everywhere. RADMC-3D will write
this to the filedust temperature.dat . If we now want to make a spectral energy distribution, for instance, we
call radmc3d sed (see Section9.3) and it will write a file calledspectrum.out which is a list of fluxes at the
discrete wavelengths we specified inwavelength micron.inp . Then we are done: we have computed the spectral
energy distribution of our model. We could also make an imageat wavelength 10µm for instance withradmc3d

image lambda 10 (see Section9.1). This will write out a fileimage.out containing the image data (see Section
A.15).

As you see, RADMC-3D reads all its information from tables invarious files. Since you don’t want to make large
tables by hand, you will have to write a little computer program that generates these tables automatically. You can do
this in any programming language you want. But in the examplemodels (see Section5.7) we use the programming
language IDL (see Section3.2) for this. This is a very simple (BASIC-like) programming language that makes it
easy to create the above input files. It is easiest to indeed have a look at the example models to see how this is (or
better: can be) done.

We will explain all these things in much more detail below, and we will discuss also many other radiative transfer
problem types. The above example is really just meant to givean impression of how RADMC-3D works.

5.6 Organization of model directories

The general philosophy of the RADMC-3D code package is the following. The core of everything is the fortran
coderadmc3d . This is the main code which does the hard work for you: it makes the radiative transfer calculations,
makes images, makes spectra etc. Normally you compile this code just once-and-for-all (see Chapter4), and then
simply use the executableradmc3d for all models. There is an exception to this ‘once-and-for-all’ rule described in
Section4.5, but in the present chapter we will not use this (see Chapter13 for this instead). So we will stick here to
the philosophy of compiling this code once and using it for all models.

So how to set up a model? The trick is to presentradmc3d with a set of input files in which the model is described
in all its details. The procedure to follow is this:

1. The best thing to do (to avoid a mess) is to make a directory for each model: one model, one directory. Since
radmc3d reads multiple input files, and also outputs a number of files,this is a good way to keep organized
and we recommend it strongly. So if we wish to make a new model,we make a new directory, or copy an old
directory to a new name (if we merely want to make small changes to a prior model).

2. In this directory we generate the input files according to their required format (see ChapterA). You can create
these input files in any way you want. But since many of these input files will/must contain huge lists of
numbers (for instane, giving the density at each location inyour model), you will typically want to write
some script or program in some language (be it either C, C++, Fortran, IDL, GDL, perl, python, you name
it) that automatically creates these input files.We recommend using IDL, because we provide examples and
standard subroutines in the programming language IDL; see below for more details. But IDL is not a strict
requirement for using RADMC-3D.Section5.7describes how to use the example IDL scripts to make these
input files with IDL.

3. When all the input files are created, and we make sure that weare inside the model directory, we callradmc3d

with the desired command-line options (see ChapterC). This will do the work for us.

4. Once this is done, we can analyze the results by reading theoutput files (see ChapterA). To help you reading
and analyzing these output files you can use a set of IDL routines that we created for the user (see Chapter14
and Section4.4). But here again, you are free to use any other plotting software and/or data postprocessing
packages (many people favor python, for instance).
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5.7 Running the example models

Often the fastest and easiest way to learn a code is simply to analyze and run a set of example models. They are
listed in theexamples directory. Each model occupies a separate directory. This is also the style we normally
recommend: each model should have its own directory. Of course there are also exceptions to this rule, and the user
is free to organize her/his data in any way he/she pleases. But in all the examples and throughout this manual each
model has its own directory.

To run an example model, go into the directory of this model, and follow the directions that are written in the
READMEfile in each of these directories.This is under the assumption that you have IDL installed on your system,
and that you have a license for it.

Let us do for instancerun simple 1/ :

cd examples/run_simple_1

Now we must create all the input files for this model. These input files are all described in chapterA, but let us here
just ’blindly’ follow the example. In this example most (allexcept one) of the input files are created using an IDL
script calledproblem setup.pro . To execute this script, this is what you do:

idl
IDL> .r problem_setup.pro
IDL> exit

or in words: you go into IDL andwithin the IDL promptyou type.r problem setup.pro , and if this is ready,
you can leave IDL again (the latter is not required of course)3. This IDL script has now created a whole series of
input files, all ending with the extension.inp . To see which files are created, type the following in the shell:

ls -l * .inp

There is one file that this example does not create, and that isthe file dustkappa silicate.inp . This is a file
that contains the dust opacity in tabulated form. This is a file that you as the user should provide to the RADMC-3D
code package. The filedustkappa silicate.inp is merely an example, which is an amorphous spherical silicate
grain with radius 0.1 micron. But see SectionA.13 for more information about the opacities.

Now that the input files are created we must runradmc3d :

radmc3d mctherm

This tells RADMC-3D to do the thermal Monte Carlo simulation. This may take some time. When the model is
ready, the prompt of the shell returns. To see what files have been created by this run of the code, type:

ls -l * .dat

You will find the dust temperature.dat containing the dust temperature everywhere in the model. See again
chapterA for details of these files. To create a spectrum:

radmc3d sed incl 45.

This will create a filespectrum.dat . To analyze these data you can use the IDL routines deliveredwith the code
(see Chapter14and Section4.4).

There is a fileMakefile in the directory. This is here only meant to make it easy to clean the directory. Typemake

cleanmodel to clean all the output from the radmc3d code. Typemake cleanall to clean the directory back to
basics.

Let us now do for instance modelrun simple 1 userdef/ :

cd examples/run_simple_1_userdef

3Note that this does not work in IDL demo mode, which is what youget if you use IDL without a license, because files will be written, which
is not possible in demo mode.
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This is the same model as above, but now the grid and the dust density are set upinsideradmc3d , using the file
userdef module.f90 which is present in this directory. See Chapter13for details and follow the directions in the
READMEfile. In short: first edit the variableSRCin theMakefile to point to thesrc/ directory. Then typemake.
Then go into IDL and run theproblem setup.pro script (which now only sets up the frequency grid, the star and
theradmc3d.inp file and some small stuff). Now you can run the model.

Please read the README file in each of the example model directories. Everything is explained there, including
how to make the relevant plots.
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Chapter 6

Dust continuum radiative transfer

Many of the things related to dust continuum radiative transfer have already been said in the previous chapters. But
here we combine these things, and expand with more in-depth information.

Most users simply want RADMC-3D to compute images and spectra from a model. This is done in a two-stage
procedure:

1. First compute the dust temperature everywhere using the thermal Monte Carlo computation (Section6.1).

2. Then making the images and/or spectra (Section6.2).

You can then view the output spectra and images with the IDL tools or use your own plotting software.

Some expert users may wish to use RADMC-3D for something entirely different: to compute the local radiation field
insidea model, and use this for e.g. computing photochemistry rates of a chemical model or so. This is described in
Section6.4.

You may also use the thermal Monte Carlo computation of the dust temperature to help estimating thegastemper-
ature for the line radiative transfer. See Chapter7 for more on line transfer.

6.1 The thermal Monte Carlo simulation: computing the dust tempera-
ture

RADMC-3D can compute the dust temperature using the Monte Carlo method of Bjorkman & Wood (2001, ApJ
554, 615) with various improvements such as the continuous absorption method of Lucy (1999, A&A 344, 282).
Once a model is entirely set up, you can askradmc3d to do the Monte Carlo run for you by typing in a shell:

radmc3d mctherm

if you use the standardradmc3d code, or

./radmc3d mctherm

if you have created a local version ofradmc3d (see Section4.5).

What the method does is the following: First all the netto sources of energy (or more accurately: sources of lumi-
nosity) are identified. The following net sources of energy can be included:

• Stars:You can specify any number of individual stars: their position, and their spectrum and luminosity (See
SectionA.7). This is the most commonly used source of luminosity, and asa beginning user we recommend
to use only this for now.
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• Continuum stellar source:For simulations of galaxies it would require by far too many individual stars to
properly include the input of stellar light from the billions of stars in the galaxy. To overcome this problem
you can specify a continuously spatially distributed source of stars.NOTE: Still in testing phase.

• Viscous heating / internal heating:Sometimes the dust grains acquire energy directly from the gas, for in-
stance through viscous heating of the gas or adiabatic compression of the gas. This can be included as a
spatially distributed source of energy.NOTE: Still in progress... Not yet working.

To compute the dust temperature we must have at least one source of luminosity, otherwise the equilibrium dust
temperature would be everywhere 0.

The next step is that this total luminosity is divided intonphot packages, wherenphot is 100000 by default, but can
be set to any value by the user (see the fileradmc3d.inp described in SectionA.1). Then these photon packages
are emitted by these sources one-by-one. As they move through the grid they may scatter off dust grains and thus
change their direction. They may also get absorbed by the dust. If that happens, the photon package is immediately
re-emitted in another direction and with another wavelength. The wavelength is chosen according to the recipe by
Bjorkman & Wood (2001, ApJ 554, 615). The luminosity fraction that each photon package represents remains,
however, the same. Each time a photon package enters a cell itincreases the “energy” of this cell and thus increases
the temperature of the dust of this cell. The recipe for this is again described by Bjorkman & Wood (2001, ApJ
554, 615), but contrary to that paper we increase the temperature of the dust always when a photon package enters
a cell, while Bjorkman & Wood only increase the dust temperature if a discrete absorption event has taken place.
Each photon package will ping-pong through the model and never gets lost until it escapes the model through the
outer edge of the grid (which, for cartesianl coordinates, is any of the grid edges inx, y or z, and for spherical
coordinates is the outer edge ofr). Once it escapes, a new photon package is launched, until also it escapes. After
all photon packages have been launched and escaped, the dusttemperature that remains is the final answer of the
dust temperature.

One must keep in mind that the temperature thus computed is anequilibriumdust temperature. It assumes that each
dust grain acquires as much energy as it radiates away. This is for most cases presumably a very good approximation,
because the heating/cooling time scales for dust grains aretypically very short compared to any time-dependent
dynamics of the system. But there might be situations where this may not be true: in case of rapid compression of
gas, near shock waves or in extremely optically thick regions.

6.2 Making SEDs, spectra, images for dust continuum

You can use RADMC-3D for computing spectra and images in dustcontinuum emission. This is described in detail
in Chapter9. RADMC-3D needs to know not only the dust spatial distribution (the filedust density.inp ) but
also the dust temperature (the filedust temperature.dat ). The latter is normally computed by RADMC-3D
itself through the thermal Monte Carlo computation (see Section 6.1). But if you, the user, wants to specify the dust
temperature at each location in the model youself, then you can simply create your own filedust temperature.dat

and skip the thermal Monte Carlo simulation and go straight to the creation of images or spectra.

The basic command to make a spectrum at the global grid of wavelength (specified in the filewavelength micron.inp ,
see SectionA.11) is:

radmc3d sed

You can specify the direction of the observer withincl andphi :

radmc3d sed incl 20 phi 80

which means: put the observer at inclination 20 degrees andφ-angle 80 degrees.

You can also make a spectrum for a given grid of wavelength (independent of the global wavelength grid). You
first create a filecamera wavelength micron.inp , which has the same format aswavelength micron.inp .
You can put any set of wavelengths in this file without modifying the global wavelength grid (which is used by the
thermal Monte Carlo computation). Then you type

radmc3d spectrum loadlambda
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and it will create the spectrum on this wavelength grid. Moreinformation about making spectra is given in Chapter
9.

For creating an image you can type

radmc3d image lambda 10

which creates an image at wavelengthλ=10µm. More information about making images is given in Chapter9.

Important note:To handle scattering of light off dust grains, the ray-tracing is preceded by a quick Monte Carlo run
that is specially designed to compute the “scattering source function”. This Monte Carlo run is usuallymuchfaster
than the thermal Monte Carlo run, but must be done at each wavelength. It can lead, however, to slight spectral
noise, because the random photon paths are different for each wavelength. See Section6.5for details.

6.3 Overview of input data for dust radiative transfer

In order to perform any of the actions described in Sections6.1, 6.4or 6.2, you must give RADMC-3D the following
data:

• amr grid.inp: The grid file (see SectionA.2).

• wavelength micron.inp: The global wavelength file (see SectionA.11).

• stars.inp: The locations and properties of stars (see SectionA.7).

• dust density.inp: The spatial distribution of dust on the grid (see SectionA.3).

• dustopac.inp: A file with overall information about the various species of dust in the model (see Section
A.13). One of the main pieces of information here is (a) how many dust species are included in the model
and (b) the tag names of these dust species (seedustkappa XXX.inp below). The filedust density.inp

must contain exactly this number of density distributions:one density distribution for each dust species.

• dustkappa XXX.inp: One or more dust opacity files (whereXXXshould in fact be a tag name you define,
for instancedustkappa silicate.inp ). The labels are listed in thedustopac.inp file. ee SectionA.13
for more information.

• camera wavelength micron.inp (optional): This file is only needed if you want to create a spectrum
at a special set of wavelengths (otherwise useradmc3d sed ).

• mcmonowavelength micron.inp (optional): This file is only needed if you want to compute the
radiation field inside the model by callingradmc3d mcmono (e.g. for photochemistry).

Other input files could be required in certain cases, but you will then be asked about it by RADMC-3D.

6.4 Special-purpose feature: Computing the local radiation field

If you wish to use RADMC-3D for computing the radiation fieldinside the model, for instance for computing
photochemical rates in a chemical model, then RADMC-3D can do so by calling RADMC-3D in the following
way:

radmc3d mcmono

This computes the mean intensityJν as a function of the(x, y, z) (cartesian) or(r, θ, φ) (spherical) coordinates at
frequenciesνi ≡ 104c/λi whereλi are the wavelengths (inµm) specified in the filemcmonowavelength micron.inp .
The results of this computation can be interesting for, for instance, models of photochemistry. But if you use
RADMC-3D only for computing spectra and images, then you will not use this.
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Note that if your model is very large, the computation of the radiation field on a large set of wavelength could easily
overload the memory of the computer. However, often you are in the end not interested in the entire spectrum at
each location, but just in integrals of this spectrum over some cross section. For instance, if you want to compute
the degree to which dust shields molecular photodissociation lines in the UV, then you only need to compute the
total photodissociation rate, which is an integral of the photodissociation cross section times the radiation field. In
Section13.3it will be explained how you can create a userdef subroutine (see Chapter13) that will do this for you
in a memory-saving way.

There is an important parameter for this Monochromatic Monte Carlo that you may wish to play with:

• nphot mono

The parameternphot mono sets the number of photon packages that are used for the Monochromatic Monte
Carlo simulation. It has as default 100000, but that may be too little for 3-D models. You can set this value in
two ways:

– In theradmc3d.inp file as a linenphot mono = 1000000 for instance.

– On the command-line by addingnphot mono 1000000 .

6.5 More about scattering of photons off dust grains

Photons can not only be absorbed and re-emitted by dust grains: They can also be scattered. Scattering does
nothing else than change the direction of propagation of a photon. Strictly speaking it may also slightly change its
wavelength, if the dust grains move with considerable speedthey may Doppler-shift the wavelength of the outgoing
photon (which may be relevant, if at all, when dust radiativetransfer is combined with line radiative transfer, see
chapter7), but this subtle effect is not treated in RADMC-3D. For RADMC-3D scattering is just the changing of
direction of a photon.

6.5.1 Three modes of treating scattering

RADMC-3D has three main levels of treatment of scattering:

1. No scattering: If either thedustkappa XXX.inp files do not contain a scattering opacity or scattering is
switched off by settingscattering mode max to 0 in theradmc3d.inp file, then scattering is ignored. It
is then assumed that the dust grains have zero albedo.

2. Isotropic scattering:If either thedustkappa XXX.inp files do not contain information about the anisotropy
of the scattering or anisotropic scattering is switched offby settingscattering mode max to 1 in the
radmc3d.inp file, then scattering is treated as isotropic scattering. Note that this can be a bad approxi-
mation in certain cases.

3. Full anisotropic scattering:If the dustkappa XXX.inp files contain the scattering opacity and information
about the anisotropy, andscattering mode max to 2 or higher in theradmc3d.inp file (2 is the default,
which will be used if no setting is specified ofscattering mode max) then the full anisotropic scattering is
treated. This is clearly the most physically correct.

So in summary: the dust opacity files themselves tell how detailed the scattering is going to be included. If no scat-
tering information is present in these files, RADMC-3D has nochoice but to ignore scattering. If they only contain
scattering opacities but no phase information, then RADMC-3D will treat scattering in the isotropic approximation.
Only if all scattering information is present in these inputfiles, will RADMC-3D do the full thing. BUT even if this
information is present, you can limit the realism of scattering by setting thescattering mode max to 1 or 0 in the
file radmc3d.inp . This can be useful to speed up the calculations or be sure to avoid certain complexities of the
full phase-function treatment of scattering.

At the moment there are some limitations to the full anisotropic scattering treatment:
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• Anisotropic scattering in 1-D and 2-D Spherical coordinates:
For 1-D and 2-D Spherical coordinates there is currently no possibility of treating anisotropic scattering in
the image- and spectrum-making. The reason is that the scattering source function (see Section6.5.4) must
be stored in an angle-dependent way. However, in 2-D spherical coordinates, each cell is in fact a ring around
the symmetry axis, and the angular dependence of the scattering source function would depend on which
position along the ring the scattering takes place (with respect to the location of the observer).This will be
fixed hopefully later by storing the scattering source function for different angles in each cell; stay tuned!

6.5.2 Scattering of photons in the Thermal Monte Carlo run

So how is scattering treated in practice? In the thermal Monte Carlo model (Section6.1) the scattering has only one
effect: it changes the direction of propagation of the photon packages whenever such a photon package experiences
a scattering event. This may change the results for the dust temperatures subtly. In special cases it may even change
the dust temperatures more strongly, for instance if scattering allows “hot” photons to reach regions that would have
otherwise been in the shadow. It may also increase the optical depth of an object and thus change the temperatures
accordingly. But this is all there is to it.

6.5.3 Scattering of photons in the Monochromatic Monte Carlo run

For the monochromatic Monte Carlo calculation (Section6.4) the scattering has the same effect as for the thermal
Monte Carlo model: it changes the direction of photon packages. In this way “hot” radiation may enter regions
which would otherwise have been in a shadow. And by increasing the optical depth of regions, it may increase
the local radiation field by the greenhouse effect or decrease it by preventing photons from entering it. As in the
thermal Monte Carlo model the effect of scattering in the monochromatic Monte Carlo model is simply to change
the direction of motion of the radiation field, but for the rest nothing differs to the case without scattering.

6.5.4 Scattered light in images and spectra: The “Scattering Monte Carlo” computation

For making images and spectra with the ray-tracing capabilities of RADMC-3D (see Section6.2 and Chapter9)
the role of scattering is a much more complex one than in the thermal and monochromatic Monte Carlo runs. The
reason is that the scattered radiation will eventually end up on your images and spectra. The ray-tracing transfer
equation along each ray is:

dIν

ds
= jtherm

ν + jscat
ν − (αabs

ν + αscat
ν )Iν (6.1)

whereαabs
ν andαscat

ν are the extinction coefficients for absorption and scattering. Let us assume, for convenience
of notation, that we have just one dust species with density dstributionρ, absorption opacityκabs

ν and scattering
opacityκscat

ν . We then have

αabs
ν ≡ ρκabs

ν (6.2)

αscat
ν ≡ ρκscat

ν (6.3)

jtherm
ν = αabs

ν Bν(T ) (6.4)

whereBν(T ) is the Planck function. The last equation is an expression ofKirchhoff’s law. For isotropic scattering
the scattering source functionjscat

ν is given by

jscat
ν = αscat

ν

1

4π

∮
IνdΩ (6.5)

where the integral is the integral over solid angle. In this casejscat
ν doesnotdepend on solid angle. For anisotropic

scattering we must introduce the scattering phase functionΦ(∆Ω), where∆Ω is the angle between incoming and
outgoing photon, and the scattering phase function is normalized to unity:

1

4π

∮
Φ(∆Ω) = 1 (6.6)
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Then the scattering source function becomes:

jscat
ν (Ω′) = αscat

ν

1

4π

∮
Iν(Ω)Φ(∆Ω)dΩ (6.7)

which is angle-dependent. The angular dependence means: a photon package has not completely forgotten from
which direction it came before hitting the dust grain.

If we want to make an image or a spectrum, then for each pixel wemust integrate Eq. (6.1) along the 1-D ray
belonging to that pixel. If we performed the thermal Monte Carlo simulation beforehand (or if we specified the
dust temperatures by hand) we know the thermal source function through Eq. (6.4). But we have, at that point,
no information yet about the scattering source function. The thermal Monte Carlo calculationcould have also
stored this function at each spatial point and each wavelength and each observer direction, but that would require
gigantic amounts of memory (for a typical 3-D model it might be many Gbytes, going into the Tbyte regime). So in
RADMC-3D the scattering source function isnotcomputed during the thermal Monte Carlo run.

In RADMC-3D the scattering source functionjscat
ν (Ω′) is computedjust prior to the ray-tracing through a brief

“Scattering Monte Carlo” run. This is doneautomaticallyby RADMC-3D, so you don’t have to worry about this.
Whenever you ask RADMC-3D to make an image (and if the scattering is in fact included in the model, see Section
6.5.1), RADMC-3D will automatically realize that it requires knowledge ofjscat

ν (Ω′), and it will start a brief single-
wavelength Monte Carlo simulation for computingjscat

ν (Ω′). This single-wavelength “Scattering Monte Carlo”
simulation is relatively fast compared to the thermal MonteCarlo simulation, because photon packages can be
destroyed by absorption. So photon packages do not bounce around for long, as they do in the thermal Monte
Carlo simulation. This Scattering Monte Carlo simulation is in fact very similar to the monochromatic Monte Carlo
model described in Section6.4. While the monochromatic Monte Carlo model is called specifically by the user
(by calling RADMC-3D withradmc3d mcmono), the Scattering Monte Carlo simulation is not something the user
must specify him/her-self: it is automatically done by RADMC-3D if it is needed (which is typically before making
an image or during the making of a spectrum). And while the monochromatic Monte Carlo model returns the mean
intensity inside the model, the Scattering Monte Carlo simulation provides the raytracing routines with the scattering
source function but doesnotstore this function in a file.

You can see this happen if you have a model with scattering opacity included, and you make an image with RADMC-
3D, you see that it prints1000 , 2000 , 3000 , ... etc., in other words, it performs a little Monte Carlo simulation
before making the image.

There is an important parameter for this Scattering Monte Carlo that you may wish to play with:

• nphot scat

The parameternphot scat sets the number of photon packages that are used for the Scattering Monte Carlo
simulation. It has as default 100000, but that may be too little for 3-D models and/or cases where you wish to
reduce the “streaky” features sometimes visible in scattered-light images when too few photon packages are
used. You can set this value in two ways:

– In theradmc3d.inp file as a linenphot scat = 1000000 for instance.

– On the command-line by addingnphot scat 1000000 .

• nphot spec

The parameternphot spec is actually exactly the same asnphot scat , but is used (and used only!) for
the creation of spectra. The default is 10000, i.e. substantially smaller thannphot scat . The reason for this
separate parameter is that if you make spectra, you integrate over the image to obtain the flux (i.e. the value
of the spectrum at that wavelength). Even if the scattered light image may look streaky, the integral may still
be accurate. We can thus afford much fewer photon packages when we make spectra than when we make
images, and can thus speed up the calculation of the spectrum. You can set this value in two ways:

– In theradmc3d.inp file as a linenphot spec = 100000 for instance.

– On the command-line by addingnphot spec 100000 .

NOTE: It may be possible to get still very good results with even smaller values ofnphot spec than the
default value of 10000. That might speed up the calculation of the spectrum even more in some cases. On
the other hand, if you notice “noise” on your spectrum, you may want to increasenphot spec . If you are

33



interested in an optimal balance between accuracy (high value ofnphot spec ) and speed of calculation (low
value ofnphot spec ) then it is recommended to experiment with this value. If youwant to be on the safe
side, then setnphot spec to a high value (i.e. set it to 100000, asnphot spec ).

WARNING:At wavelengths where the dominant source of photons is thermal dust emission but scattering is still
important (high albedo), it cannot be excluded that the “scattering monte carlo” method used by RADMC-3D
produces very large noise. Example: a very optically thick dust disk consisting of large grains (10µm size),
producing thermal dust emission in the near infrared in its inner disk regions. This thermal radiation can scatter off
the large dust grains at large radii (where the disk is cold and where the only “emission” in the near-infrared is thus
the scattered light) and thus reveal the outer disk in scattered light emerging from the inner disk. However, unless
nphot scat is huge, most thermally emitted photons from the inner disk will be emitted so deeply in the disk
interior (i.e. below the surface) that they will be immediately reabsorbed and lost. This means that that radiation
that does escape is extremely noisy. The corresponding scattered light source function at large radii is therefore very
noisy as well, unlessnphot scat is taken to be huge. Currently no elegant solution is found, but maybe there will
in the near future. Stay tuned...

6.5.5 Warning when using an-isotropic scattering

An important issue with anisotropic scattering is that if the phase function is very forward-peaked, then you may get
problems with thespatialresolution of your model: it could then happen that one grid cell may be too much to the
left to “beam” the scattered light into your line of sight, while the next grid point will be too much to the right. A
proper treatment of strongly anisotropic scattering therefore requires also a good check of the spatial resolution of
your model. There are, however, also two possible tricks (approximations) to prevent problems. They both involve
slight modifications of the dust opacity files:

1. You can simply assure in the opacity files that the forward peaking of the phase function has some upper limit.

2. Or you can simply treat extremely forward-peaked scattering as no scattering at all (simply setting the scat-
tering opacity to zero at those wavelengths).

Both “tricks” are presumably reasonable and will not affectyour results, unless you concentrate in your modeling
very much on the angular dependence of the scattering.

6.5.6 For experts: Some more background on scattering

The inclusion of the scattering source function in the images and spectra is a non-trivial task for RADMC-3D
because of memory constraints. If we would have infinite random access memory, then the inclusion of scattering
in the images and spectra would be relatively easy, as we could then store the entire scattering source function
jscat(x, y, z, ν, Ω) and use what we need at any time. But as you see, this function is a 6-dimensional function: three
spatial dimensions, one frequency and one angular direction (which consists of two angles). For any respectable
model this function is far too large to be stored. So nearly all the “numerical logistic” complexity of the treatment
of scattering comes from various ways to deal with this problem. In principle RADMC-3D makes the choices of
which method to use itself, so the user is not bothered with it. But depending on which kind of model the user sets
up, the performance of RADMC-3D may change as a result of thisissue.

So here are a few hints as to the internal workings of RADMC-3Din this regard. You do not have to read this, but
it may help understanding the performance of RADMC-3D in various cases.

• Scattering in spectra and multi-wavelength images
If no scattering is present in the model (see Section6.5.1), then RADMC-3D can save time when making spec-
tra and/or multi-wavelength images. I will then do each integration of Eq. (6.1) directly for all wavelengths at
once before going to the next pixel. This saves some time because RADMC-3D then has to calculate the geo-
metric stuff (how the ray moves through the model) just once for each ray. If, however, scattering is included,
the scattering source function must be computed using the Scattering Monte Carlo computation. Since for
large models it would be too memory consuming (in particularfor 3-D models) to store this function for all
positionsandall wavelengths, it must do this calculation one-by-one foreach wavelength, and calculate the
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image for that wavelength, and then go off to the next wavelength. This means that for each ray (pixel) the
geometric computations (where the ray moves through the model) has to be redone for each new wavelength.
This may slow down the code a bit.

• Anisotropic scattering and multi-viewpoint images
Suppose we wish to look at an object at one single wavelength,but from a number of different vantage points.
If we haveisotropicscattering, then we need to do the Scattering Monte Carlo calculation just once, and we
can make multiple images at different vantage points with the same scattering source function. This saves
time, if you use the “movie” mode of RADMC-3D (Section9.11). However, if the scattering is anisotropic,
then the source function would differ for each vantage point. In that case the scattering source function must
be recalculated for each vantage point. There is, deeply hidden in RADMC-3D, a way to compute scattering
source functions for multiple vantage points within a single Scattering Monte Carlo run, but for the moment
this is not yet activated.

6.6 Polarization, Stokes vectors and full phase-functions

As of version 0.26 RADMC-3D can deal with polarization of continuum radiation. Radiative transfer of polarized
radiation is a relatively complex issue. A good and extensive review on the details of polarization is given in the
book by Mishchenko, Travis & Lacis, “Scattering, Absorption and Emission of Light by Small Particles”, 2002,
Cambridge University Press (also electronically available on-line). For some discussions on how polarization can
be built in into radiative transfer codes, see e.g. Wolf, Voshchinnikov & Henning (2002, A&A 385, 365).

When we wish to include polarization in our model we must follow not just the intensityI of light (or equivalently,
the energyE of a photon package), but the full Stokes vector(I, Q, U, V ) (see review above for definitions, or any
textbook on radiation processes). If a photon scatters off adust grain, then the scattering angular probability density
function depends not only on the scattering angleµ, but also on the input state of polarization, i.e. the valuesof
(I, Q, U, V ). And the output polarization state will be modified. In addition to this, for some circumstances the
thermally emitted light is already polarized to begin with,and differently polarized radiation will be absorbed with
different extinction coefficients. Moreover, even if we would not be interested in polarization at all, but wedowant
to have a correct scattering phase function, we need to treatpolarization, because a first scattering wil polarize the
photon, which will then have different angular scattering probability in the next scattering event. Normally these
effects are very small, so if we are not particularly interested in polarization, one can usually ignore this effect
without too high a penalty in reliability. But if one wants tobe accurate, there is no way around a full treatment of
the(I, Q, U, V ), even if the end-result polarization state is of no particular interest to the user of the code.

Interaction between polarized radiation with matter happens through so-called Müller matrices, which are 4×4
matrices that can be multiplied by the(I, Q, U, V ) vector. More on this later.

It is important to distinguish between two situations:

1. The simplest case (and fortunately applicable in many cases) is if all dust particles arerandomly oriented,
and there isno preferential helicity of the dust grains (i.e. for each particle shape there are equal numbers
of particles with that shape and with its mirror copy shape).This is also automatically true if all grains are
spherically symmetric. In this case the problem of polarized radiative transfer simplifies in several ways:

• The scattering Müller matrix simplifies, and contains only6 independent matrix elements. Moreover,
these matrix elements depend only on a single angle: the scattering angleθ, and of course on the wave-
length. This means that the amount of information is small enough that these Müller matrix elements
can be stored in computer memory in tabulated form.

• The total scattering cross section is independent of the input polarization state. Only the angular depen-
dence (i.e. in which direction the photon will scatter) depends on the input polarization state.

• The absorption cross section is the same for all components of the (I, Q, U, V )-vector. In other words:
the absorption Müller matrix is the usual scalar absorption coefficient times the unit matrix.

The last two points assure that most of the structure of the RADMC-3D code for non-polarized radiation can
remain untouched. Only for computing the new direction and polarization state of a photon after a scattering
event in the Monte Carlo module, as well as for computing the scattering source function in the Monte Carlo
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module (for use in the camera module) we must do extra work. Thermal emission and thermal absorption
remain the same, and computing optical depths remains also the same.

2. A (much!) more complex situation arises if dust grains arenon-sphericaland are somehowaligned due to
external forces. For instance, particles tend to align themselves in the interstellar medium if strong enough
magnetic fields are present. Or particles tend to align themselves due to the combination of gravity and friction
if they are in a planetary/stellar atmosphere. Here are the ways in which things become more complex:

• All the scattering Müller matrix components will become non-zero and independent. We will thus get
16 independent variables.

• The matrix elements will depend on four angles, of which one can, in some cases, be removed due to
symmetry (e.g. if we have gravity, there is still a remainingrotational symmetry; same is true of particles
are aligned by a~B-field; but if both gravity and a~B-field are present, this symmetry may get lost). It will
in most practical circumstances not be possible to precalculate the scattering Müller matrix beforehand
and tabulate it, because there are too many variables. The matrix must be computed on-the-fly.

• The total scattering cross section nowdoesdepend on the polarization state of the input photon, and on
the incidence angle. This means that scattering extinctionbecomes anisotropic.

• Thermal emission and absorption extinction will also no longer be isotropic. Moreover, they are no
longer scalar: they are described by a non-trivial Müller matrix.

The complexity of this case is rather large, and a proper treatment requires substantial departures of the
standard structure of the scalar radiative transfer methodin RADMC-3D. In particular this requires drastic
changes in the Monte Carlo module. We may, at some point, include this in its full glory in RADMC-3D, but
for now we will allow aligned grains only for the computationof thermal emission in images/spectra in the
camera module.And for the moment, in version 0.26, we are still working on the implementation of this.

THIS SECTION MUST BE STILL MUCH EXPANDED
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Chapter 7

Line radiative transfer

RADMC-3D is capable of modeling radiative transfer in molecular and/or atomic lines. Due to the complexity of
line radiative transfer, and the huge computational and memory requirements of full-scale non-LTE line transfer,
RADMC-3D has various different modes of line transfer. Somemodes are very memory efficient, but slower, while
others are faster, but less memory efficient, yet others are more accurate but much slower and memory demanding.
The default mode (and certainly recommended initially) is LTE ray-tracing in the slow but memory efficient way:
thesimple LTE mode(see Section7.2). Since this is the default mode, you do not need to specify anything to have
this selected.

7.1 Quick start for adding line transfer to images and spectra

Do properly model line transfer requires dedication and experimentation. This isnot a simple task. See Section
7.5 for an analysis of several pitfalls one may encounter. However, nothing is better than experimenting and thus
gaining hands-on experience. So the easiest and quickest way to start is to start with one of the simple line transfer
test models in theexamples/ directory.

So simply visitexamples/run test lines 1/ , examples/run test lines 2/ orexamples/run test lines 3/

and follow the directions in theREADMEfile. The main features of adding line ray tracing to a model isto add the
following files into any previously constructed model with dust radiative transfer:

• lines.inp : A control file for line transfer.

• molecule co.inp : or any other molecular data file containing properties of the molecule or atom.

• gas temperature.inp : The gas temperature at each grid cell. You do not need to specify this file if you
add the keywordtgas eq tdust = 1 into theradmc3d.inp file.

and then start theviewimage viewer (see Section14.3) with keyword “/lines ”. Or you can use themakeimage

or doimage routines from thereadradmc.pro .

7.2 Line transfer modes and how to activate the line transfer

Here is a list of the various modes for line transfer:

1. Simple LTE mode (=default mode):In this mode the line radiative transfer is done under LTE assumptions.
The level populations will be calculated on-the-fly while doing the ray-tracing. It is therefore cheap in mem-
ory (the level populations do not have to be stored), but slower than thefast LTE mode, as the populations
continuously have to be re-calculated on the fly. Thesimple LTE modeis default. NOTE: The simple LTE
mode allows the use of “line lists” instead of full moleculardata input files. See Section7.3.3.
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2. Fast LTE mode:This is likesimple LTE mode, but here the LTE populations are pre-computed. This requires
some more memory, but can be done still quite efficiently if a subset of levels is chosen in thelines.inp

file, in particular if for a particular line just the upper andlower level is chosen.

3. Simple LVG mode:IN PROGRESS!

4. Fast LVG mode:Not yet ready

5. Full non-LTE modes:Not yet ready

Which model of line transfer is used is specified in the radmc3d.inp file. If no option is given, then thesimple LTE
modeis used. For each of the modes (including the default one) there is a switch that can be set to 1 to select that
mode:

• simplelte=1 selects thesimple LTE mode(default, so you do not need to set this).

• fastlte=1 selects thefast LTE mode.

NOTE 1: Line emission is automatically included in the images and spectra if RADMC-3D finds the filelines.inp

in the model directory. You can switch off the lines with the command-line option’noline’ .

NOTE 2: Theviewimage.pro image viewer also automatically includes line emission. But you would have to
seek the precise wavelength of the lines yourself. If, however, you callviewimage with option/lines , then some
extras appear that allow you to directly find the right wavelength of the lines. Try it out, and you will see how it
works.

7.3 The various input files for line transfer

7.3.1 INPUT: The line transfer entries in the radmc3d.inp file

Like all other modules ofradmc3d , also the line module can be steered through keywords in theradmc3d.inp

file. Here is a list:

• tgas eq tdust (default: 0)
Normally you must specify the gas temperature at each grid cell using thegas temperature.inp file (or
directly in theuserdef module.f90 , see Chapter13). But sometimes you may want to compute first the
dust temperature and then set the gas temperature equal to the dust temperature. You can do this obviously by
hand: read the output dust temperature and create the equivalent gas temperature input file from it. But that is
cumbersome. By settingtgas eq tdust=1 you tell radmc3d to simply read thedust temperature.inp

file and then equate the gas temperature to the dust temperature. If multiple dust species are present, only the
first species will be used.

7.3.2 INPUT: The line.inp file

Like with the dust (which has thisdustopac.inp master file, also the line module has a master file:lines.inp . It
specifies which molecules/atoms are to be modeled and in which file the molecular/atomic data (such as the energy
levels and the EinsteinA coefficients) are to be found.

iformat <=== Put this to 1
N Nr of molecular or atomic species to be modeled
molname1 inpstyle1 iduma1 idumb1 Which molecule used as spe cies 1, where to read it?
.
.
.
molnameN inpstyleN idumaN idumbN Which molecule used as spe cies N, where to read it?

The N is the number of molecular or atomic species you wish to model. Typically this is 1. But if you want to
simultaneouslymodel for instance the ortho-H2O and para-H2O infrared lines, you would need to set this to 2.
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The N lines following N (i.e. lines 3 to N+2) specify the molecule or atom, the kind of input file format (explained
below), and two integers which, at least for now, can be simply set to 0 (see Section7.7 for the meaning of these
integers - for experts only).

The molecule name can be e.g.co for carbon monoxide. The file containing the data should thenbe called
molecule co.inp (even if it is an atom rather than a molecule; I could not find a good name which means both
molecule or atom). This file should be either generated by theuser, or (which is obviously the preferred option)
taken from one of the databases of molecular/atomic radiative properties. Since there are a number of such databases
and I want the code to be able to read those files without the need of casting them into some special RADMC-3D
format,radmc3d allows the user to select whichkindof file themolecule co.inp (for CO) file is. At present only
one format is supported: the Leiden database. But more will follow. To specify toradmc3d to use the Leiden style,
you put theinpstyle to “leiden”. So here is a typical example of alines.inp file:

1
1
co leiden 0 0

This means: one molecule will be modeled, namely CO (and thusread from the filemolecule co.inp ), and the
data format is the Leiden database format.

7.3.3 INPUT: The moleculeXXX.inp file

As mentioned in Section7.3.2the atomic or molecular fundamental data such as the level diagram and the radiative
decay rates (Einstein A coefficients) are read from a file (or more than one files) namedmolecule XXX.inp , where
theXXXis to be replaced by the name of the molecule or atom in question. In thelines.inp you can specify which
style this file has. Currently the following input style is supported: the Leiden database. More will follow.

INPUT: The Leiden database format of moleculeXXX.inp

The precise format of the Leiden database data files is of course described in detail on their web page1. Here we
only give a very brief overview, based on an example of CO in which only the first few levels are specified:

#leiden
!MOLECULE
CO
!MOLECULAR WEIGHT
28.0
!NUMBER OF ENERGY LEVELS
10
!LEVEL + ENERGIES(cmˆ-1) + WEIGHT + J

1 0.000000000 1.0 0
2 3.845033413 3.0 1
3 11.534919938 5.0 2
4 23.069512649 7.0 3
5 38.448164669 9.0 4
6 57.670329083 11.0 5
7 80.735459105 13.0 6
8 107.642407981 15.0 7
9 138.390328288 17.0 8

10 172.978074417 19.0 9
!NUMBER OF RADIATIVE TRANSITIONS
9
!TRANS + UP + LOW + EINSTEINA(sˆ-1) + FREQ(GHz) + E_u(K)

1 2 1 7.203e-08 115.2712018 5.53
2 3 2 6.910e-07 230.5380000 16.60
3 4 3 2.497e-06 345.7959899 33.19
4 5 4 6.126e-06 461.0407682 55.32
5 6 5 1.221e-05 576.2679305 82.97
6 7 6 2.137e-05 691.4730763 116.16
7 8 7 3.422e-05 806.6518060 154.87
8 9 8 5.134e-05 921.7997000 199.11
9 10 9 7.330e-05 1036.9123930 248.88

!BELOW CAN FOLLOW MORE DATA, FOR INSTANCE COLLISION RATE DATA

1http://www.strw.leidenuniv.nl/∼moldata/
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!WHICH ARE USEFUL FOR NON-LTE STUFF. BUT PLEASE REFER TO THE
!LEIDEN DATABASE INFORMATION ABOUT THAT.

The very first line is optional: it shows that we are dealing with a file from the leiden database.

The next first few lines are self-explanatory. The first of thetwo tables is about the levels. Column one is simply a
numbering. Column 2 is the energy of the levelEk, specified in units of1/cm. To get the energy in erg you multiply
this number withhc/k whereh is the Planck constant,c the light speed andk the Boltzmann constant. Column 3 is
the degeneration number, i.e. the theg parameter of the level. Column 4 is redundant information, not used by the
code.

The second table is the line list. Column 1 is again a simple counter. Column 2 and 3 specify which two levels the
line connects. Column 4 is the radiative decay rate in units of 1/seconds, i.e. the EinsteinA coefficient. The last
two columns are redundant information that can be easily derived from the other information.

7.3.4 INPUT: The number density of each molecular species

For the line radiative transfer we need to know how many molecules of each species are there per cubic centimeter.
For molecular/atom speciesXXXthis is given in the filenumberdens XXX.inp (formatted) ornumberdens XXX.uinp

(fortran-style unformatted). For each molecular/atomic species listed in thelines.inp file there must be a corre-
spondingnumberdens XXX.inp or numberdens XXX.uinp file. The structure of the file is very similar (though
not identical) to the structure of the dust density input filedust density.inp (SectionA.3). For the precise way
to address the various cells in the different AMR modes, we refer to SectionA.3, where this is described in detail.

For formatted style (numerdens XXX.inp ):

iformat <=== Typically 1 at present
nrcells
numberdensity[1]
..
numberdensity[nrcells]

The number densities are to be specified in units of molecule per cubic centimeter.

For unformatted input we have again a very similar structureas withdust density.uinp (see ChapterB for more
details on unformatted I/O)

iformat reclen
nrcells
numberdensity[1] ... numberdensity[reclen]
numberdensity[reclen+1] ... numberdensity[2 * reclen]
..
..... numberdensity[nrcells] ... 0 0 0 <==== fill with 0 unti l end of record

All integers (iformat , reclen andnrcells are 8-byte integers. The data of the number density is storedas series
of double-precision (8-byte) reals organized in records ofreclen /8 numbers long. If the last double precision
number ends before the end of its record, then the remainder of the record is filled with 0 until the end (see example
above). For details on this unformatted structure, please read the last part of SectionA.3.

7.3.5 INPUT: The gas temperature

For line transfer we need to know the gas temperature. You specify this in the filegas temperature.inp (format-
ted) orgas temperature.uinp (fortran-style unformatted). The structure of this file is identical to that described
in Section7.3.4, but of course with number density replaced by gas temperature in Kelvin. For the precise way to
address the various cells in the different AMR modes, we refer to SectionA.3, where this is described in detail.

Note: see ChapterB for more details on unformatted I/O.

Note: Instead of literally specifying the gas temperature you can also tellradmc3d to copy the dust temperature (if
it know it) into the gas temperature. See the keywordtgas eq tdust described in Section7.3.1.

40



7.3.6 INPUT: The velocity field

Since gas motions are usually the main source of Doppler shift or broadening in astrophysical settings, it is obliga-
tory to specify the gas velocity. This can be done with the filegas velocity.inp (formatted) orgas velocity.uinp

(unformatted) orgas velocity.usinp (unformatted, single precision). The structure is again similar to that de-
scribed in Section7.3.4, but now with three numbers at each grid point instead of justone. The three numbers
are the velocity inx, y andz direction for Cartesian coordinates, or inr, θ andφ direction for spherical coordi-
nates. Note that both in cartesian coordinates and in spherical coordinatesall velocity components have the same
dimension of cm/s. For spherical coordinates the conventions are: positivevr points outwards, positivevθ points
downward (toward largerθ) for 0 < θ < π (where “downward” is toward smallerz), and positivevφ means velocity
in counter-clockwise direction in thex, y-plane.

For the precise way to address the various cells in the different AMR modes, we refer to SectionA.3, where this is
described in detail.

The unformatted style is similar in structure as that ofdust density.uinp , but now with three numbers at each
grid point. See ChapterB for more details on unformatted I/O.

7.3.7 INPUT: The local microturbulent broadening (optional)

The radmc3d code automatically includes thermal broadening of the line. But sometimes it is also useful to spec-
ify a local (spatially unresolved) turbulent width. This isnot obligatory (if it is not specified, only the thermal
broadening is used) but if you want to specify it, you can do soin the file microturbulence.inp (formatted)
or microturbulence.uinp (unformatted). Same structure as described in Section7.3.4. For the precise way to
address the various cells in the different AMR modes, we refer to SectionA.3, where this is described in detail.

The unformatted style is similar in structure as that ofdust density.uinp . See ChapterB for more details on
unformatted I/O.

7.3.8 INPUT for LTE line transfer: The partition function (o ptional)

If you use the LTE mode (eithersimple LTEor fast LTE), then the partition function is required to calculate, for
a given temperature the populations of the various levels. Since this involves a summation overall levels of all
kinds that can possibly be populated, and since the molecular/atomic data file may not include all these possible
levels, it may be useful to look the partition function up in some literature and give this toradmc3d . This can be
done with the filepartitionfunction XXX.inp , where againXXX is here a placeholder for the actual name of
the molecule at hand. If you do not have this file in the presentmodel directory, thenradmc3d will compute the
partition function itself, but based on the (limited) set oflevels given in the molecular data file. The structure of the
partitionfunction XXX.inp file is:

iformat ; The usual format number, currently 1
ntemp ; The number of temperatures at which it is specified
temp(1) pfunc(1)
temp(2) pfunc(2)

. .

. .

. .
temp(ntemp) pfunc(ntemp)

7.4 Making images and spectra with line transfer

Making images and spectra with/of lines works in the same wayas for the continuum. RADMC-3D will check if
the file lines.inp is present in your directory, and if so, it will automatically switch on the line transfer. If you
insist onnot having the lines switched on, in spite of the presence of thelines.inp file, you can add the option
noline to radmc3d on the command line. If you don’t, then lines are normally automatically switched on, except
in situations where it is obviously not required.
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You can just make an image at some wavelength and you’ll get the image with any line emission included if it is
there. For instance, if you have the molecular data of CO included, then

radmc3d image lambda 2600.757

will give an image right at the CO 1-0 line center. The code will automatically check if (and if yes, which) line(s)
are contributing to the wavelength of interest. Also it willinclude all the continuum emission (and absorption) that
you would usually obtain.

There is, however, an exception to this automatic line inclusion: If you make a spectral energy distribution (with the
commandsed , see Section9.3), then lines are not included. The same is true if you use theloadcolor command.
But for normal spectra or images the line emission will automatically be included. So if you make a spectrum at
wavelength around some line, you will get a spectrum including the line profile from the object, as well as the dust
continuum.

It is not always convenient to have to know by heart the exact wavelengths of the lines you are interested in. So
RADMC-3D allows you to specify the wavelength by specifyingwhich line of which molecule, and at which
velocity you want to render:

radmc3d image iline 2 vkms 2.4

If you have CO as your molecule, then iline 2 means CO 2-1 (the second line in the rotational ladder).

By default the first molecule is used (if you have more than onemolecule), but you can also specify another one:

radmc3d image imolspec 2 iline 2 vkms 2.4

which would select the second molecule instead of the first one.

If you wish to make an entire spectrum of the line, you can do for instance:

radmc3d spectrum iline 1 widthkms 10

which produces a spectrum of the line with a passband going from -10 km/s to +10 km/s. By default 40 wavelength
points are used, and they are evenly spaced. You can set this number of wavelengths:

radmc3d spectrum iline 1 widthkms 10 linenlam 100

which would make a spectrum with 100 wavelength points, evenly spaced around the line center. You can also shift
the passband center:

radmc3d spectrum iline 1 widthkms 10 linenlam 100 vkms -10

which would make the wavelength grid 10 kms shifted in short direction.

For more details on how to specify the spectral sampling, please read Section9.4. Note that keywords such asincl ,
phi , and any other keywords specifying the camera position, zooming factor etc, can all be used in addition to the
above keywords.

7.4.1 Speed versus realism of rendering of line images/spectra

As usual with numerical modeling: including realism to the modeling goes at the cost of rendering speed. A “fully
realistic” rendering of a model spectrum or image of a gas line involves (assuming the level populations are already
known):

1. Doppler-shifted emission and absorption.

2. Inclusion of dust thermal emission and dust extinction while rendering the lines.

3. Continuum emission scattered by dust into the line-of-sight
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4. Line emission from (possibly obscured) other regions is allowed to scatter into the line-of-sight by dust grains
(see Section7.4.2).

RADMC-3D always includes the Doppler shifts. By default, RADMC-3D also includes dust thermal emission and
extinction, as well as the scattered continuum radiation. The scattering of line emission into the line of sight can
only be done if the level populations are pre-computed (thefastmode, see SectionXXXX ), so it is by default not
included (since by default RADMC-3D renders lines in the memory-savingslowmode).

If we use the memory-savingslowmode of line rendering, then the default inclusion of scattererd continuum light
can slow down the rendering enormously, if spectra or multi-wavelength images are made!The reason is that,
again for saving memory, the scattering Monte Carlo simulation (see Section6.5.4) will be done once for each
wavelength, and the different wavelength images are rendered one at a time (each preceded by a scattering Monte
Carlo simulation). At each image rendering, the local levelpopulations along the ray have to be re-computed
(because in the memory-savingslowmode they are not stored). This can be very time-consuming.

For many lines, however, dust continuum scattering is a negligible portion of the flux, so you can speed things up by
not including dust scattering!This can be easily done by adding thenoscat option on the command-line when you
issue the command for a line spectrum or multi-frequency image. This way, the scattering source function is not
computed (is assumed to be zero), and no scattering Monte Carlo runs are necessary. This means that the ray-tracer
can now render all wavelength simultaneously (each ray doing all wavelength at the same time), and the local level
populations along each ray can now be computed once, and be used for all wavelengths.This may speed up things
drastically, and for most purposes virtually perfectly correct. Just beware that when you render short-wavelength
lines (optical) or you use large grains, i.e. when the scattering albedo at the wavelength of the line is not negligible,
this may result in a mis-estimation of the continuum around the line.

7.4.2 Line emission scattered off dust grains

NOTE: The contents of this subsection may not be 100% implemented yet.

Also any line emission from obscured regions that get scattered into the line of sight by the dust (if dust scattering is
included) will be included. Note, however, that any possible Doppler shiftinducedby this scattering isnot included.
This means that if line emission is scattered by a dust cloud moving at a very large speed, then this line emission will
be scattered by the dust, but no Doppler shift at the projected velocity of the dust will be added. Only the Doppler
shift of the line-emitting region is accounted for. This is rarely a problem, because typically the dust that may scatter
line emission is located far away from the source of line emission and moves at substantially lower speed.

7.5 What can go wrong with line transfer?

Even the simple task of performing a ray-tracing line transfer calculation with given level populations (i.e. the so-
calledformal transfer equation) is a non-trivial task in complex 3-D AMR models with possibly highly supersonic
motions. I recommend the user to do extensive and critical experimentation with the code and make many simple
tests to check if the results are as they are expected to be. Inthe end a result must be understandable in terms of
simple argumentation. If weird effects show up, please do some detective work until you understand why they show
up, i.e. that they are either areal effect or a numerical issue. There are many numerical artifacts that can show up
that arenot a bug in the code. The code simply does a numerical integration of the equations on some spatial- and
wavelength-grid. If the user chooses these grids unwisely,the results may be completely wrong even if the code is
formally OK. These possible pitfalls is what this section isabout.

So here is a list of things to check:

1. Make sure that the line(s) you want to model are indeed in the molecular data file you use. Also make sure
that it/they are included in the line selection (if you are using this option; by default all lines and levels from
the molecular/atomic data files are included; see Section7.7).

2. If you do LTE line transfer, and you do not letradmc3d read in a special file for the partition function, then the
partition function will be computed internally byradmc3d . The code will do so based on the levels specified
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Figure 7.1. Left: Pictographic representation of the doppler jumping problem withray-tracing through a model
with strong cell-to-cell velocity differences. Right: Pictographic representation of the doppler catching method to
prevent this problem: First of all, second order integration is done instead of first order. Secondly, the method
automatically detects a possibly dangerous doppler jump and makes sub-steps to neatly integrate over the line that
shifts in- and out of the wavelength channel of interest.

in themolecule XXX.inp file for moleculeXXX. This requires of course that all levels that may be excited
at the temperatures found in the model are in fact present in the molecule XXX.inp file. If, for instance,
you model 1.3 mm and 2.6 mm rotational lines of CO gas of up to 300 K, and your filemolecule co.inp

only contains the first three levels because you think you only need those for your 1.3 and 2.6 mm lines, and
you don’t specify the partition function explicitly, thenradmc3d will compute the partition function for all
temperatures including 300 K based on only the first three levels. This is evidently wrong. The nasty thing
is: the resulting lines won’t be totally absurd. They will just be too bright. But this can easily go undetected
by you as the user. So please keep this always in mind. Note that if you make aselectionof the first three
levels (see Section7.7) but the filemolecule XXX.inp contains many more levels, then this problem will not
appear, because the partition function will be calculated on the original data from themolecule XXX.inp

file, not from the selected levels. Of course it is safer to specify the true partition function directly through
the filepartitionfunction XXX.inp (see Section7.3.8).

3. If you have a model with non-zero gas velocities, and if these gas velocities have cell-to-cell differences that
are larger than or equal to the intrinsic (thermal+microturbulent) line width, then the ray-tracing will not be
able to pick up signals from intermediate velocities. In other words, because of the discrete gridding of the
model, only discrete velocities are present, which can cause numerical problems. See Fig.7.1-Left for a
pictographic representation of this problem. There are twopossible solutions. One is the wavelength band
method described in Section9.5. But a more systematic method is the “doppler catching” method described
in Section7.6(which can be combined with the wavelength band method of Section 9.5to make it even more
perfect).

7.6 Preventing doppler jumps: The “doppler catching method”

If the local co-moving line width of a line (due to thermal/fundamental broadning and/or local subgrid “microtur-
bulence”) is much smaller than the typical velocity fields inthe model, then a dangerous situation can occur. This
can happen if the co-moving line width is narrower than the doppler shift between two adjacent cells. When a
ray is traced, in one cell the line can then have a doppler shift substantially to the blue of the wavelength-of-sight,
while in the next cell the line suddenly shifted to the red side. If the intrinsic (= thermal + microturbulent) line
width is smaller than these shifts, neither cell gives a contribution to the emission in the ray. See Fig.7.1-Left for a
pictographic representation of this problem. In reality the doppler shift between these two cells would be smooth,
and thus the line would smoothly pass over the wavelength-of-sight, and thus make a contribution. Therefore the
numerical integration may thus go wrong.

The problem is described in more detail in Section9.5, and one possible solution is proposed there. But that solution
does not always solve the problem.

RADMC-3D has a special method to catch situations like the above, and when it detects one, to make sub-steps in
the integration of the formal transfer equation so that the smooth passing of the line through the wavelength-of-sight
can be properly accounted for. Here this is called “doppler catching”, for lack of a better name. The technique was
discussed in great detail in Pontoppidan et al. (2009, ApJ 704, 1482). The idea is that the method automatically tests
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if a line might “doppler jump” over the current wavelength channel. If so, it will insert substeps in the integration at
the location where this danger is present. See Fig.7.1-Left for a pictographic representation of this method. Note
that this method can only be used with the second order ray-tracing (see Section9.8); in fact, as soon as you switch
the doppler catching on, RADMC-3D will automatically also switch on the second order ray-tracing.

To switch on doppler catching, you simply add the command-line optiondoppcatch to the image or spectrum
command. For instance:

radmc3d spectrum iline 1 widthkms 10 doppcatch

(again: you do not need to addsecondorder , because it is automatic whendoppcatch is used).

The Doppler catching method will assure that the line is integrated over with small enough steps that it cannot
accidently get jumped over. How fine these steps will be can beadjusted with thecatch doppler resolution

keyword in theradmc3d.inp file. The default value is 0.2, meaning that it will make the integration steps small
enough that the doppler shift over each step is not more than 0.2 times the local intrinsic (thermal+microturbulent)
line width. That is usually enough, but for some problems it might be important to ensure that smaller steps are
taken. By adding a line

catch_doppler_resolution = 0.05

to theradmc3d.inp file you will ensure that steps are small enough that the doppler shift is at most 0.05 times the
local line width.

So why is doppler catching anoption, i.e. why would this not be standard? The reason is that doppler catching
requires second order integration, which requires RADMC-3D to first map all the cell-based quantities to the cell-
corners. This requires extra memory, which for very large models can be problematic. It also requires more CPU
time to calculate images/spectra with second order integration. So if you do not need it, i.e. if your velocity gradients
are not very steep compared to the intrinsic line width, thenit saves time and memory to not use doppler catching.

It is, however, important to realize that doppler catching is not the golden bullet. Even with doppler catching it
might happen that some line flux is lost, but this time as a result of too low image resolution. This is less likely to
happen in problems like ISM turbulence, but it is pretty likely to happen in models of rotating disks. Suppose we
have a very thin local line width (i.e. low gas temperature and no microturbulence) in a rotating thin disk around a
star. In a given velocity channel (i.e. at a given observer-frame frequency) a molecular line in the disk emits only in
a very thin “ear-shaped” ring or band in the image. The thinner the intrinsic line width, the thinner the band on the
image. See Pontoppidan et al. (2009, ApJ 704, 1482) and Pavlyuchenkov et al. (2007, ApJ 669, 1262) for example.
If the pixel-resolution of the image is smaller than that of this band, the image is simply underresolved. This has
nothing to do with the doppler jumping problem, but can be equally devastating for the results if the user is unaware
of this. There appears to be only one proper solution: assurethat the pixel-resolution of the image is sufficiently
fine for the problem at hand. This is easy to find out: The image would simply look terribly noisy if the resolution is
insufficient. However, if you are not interested in the images, but only in the spectra, then some amount of noisiness
in the image (i.e. marginally sufficient resolution) is OK, since the total flux is an integral over the entire image,
smearing out much of the noise. It requires some experimentation, though.

Here are some additional issues to keep in mind:

• The doppler catching method uses second order integration (see Section9.8), and therefore all the relevant
quantities first have to be interpolated from the cell centers to the cell corners. Well inside the computational
domain this amounts to linear interpolation. But at the edges of the domain it would requireextrapolation2

RADMC-3D does does not do extrapolation but simply takes theaverage values of the nearest cells. Also
the gas velocity is treated like this. This means that over the edge cells the gradient in the gas velocity tends
to be (near) 0. Since for the doppler catching it is the gradient of the velocity that matters, this might yield
some artifacts in the spectrum if the density in the border cells is high enough to produce substantial line
emission. Avoiding this numerical artifact is relatively easy: One should then simply put the number density
of the molecule in question to zero in the boundary cells.

• If you are using RADMC-3D on a 3-D (M)HD model which has strongshocks in its domain, then one must

2In 1-D this is more easily illustrated, because there the cell corners are in fact cell interfaces. Cellsi andi + 1 share cell interfacei + 1/2.
If we haveN cells, i.e. cellsi = 1, · · · , N , then we haveN + 1 interfaces, i.e. interfacesi =

1

2
, · · · , N +

1

2
. To get physical quantities from

the cell centers to cell interfacesi =
3

2
, · · · , N −

1

2
requires just interpolation. But to find the physical quantities at cell interfacesi =

1

2
and

i = N +
1

2
one has to extrapolate or simply take the values at the cell centersi = 1 andi = N .
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be careful that (magneto-)hydrodynamic codes tend to smearout the shock a bit. This means that there will
be some cells that have intermediate density and velocity inthe smeared out region of the shock. This is
unphysical, but an intrinsic numerical artifact of numerical hydrodynamics codes. This might, under some
conditions, lead to unphysical signal in the spectrum, because there would be cells at densities, temperatures
and velocities that would be in between the values at both sides of the shock and would, in reality, not be
there. It is very difficult to avoid this problem, and even to find out if this problem is occurring and by
how much. One must simply be very careful of models containing strong shocks and do lots of testing.
One way to test is to use the doppler catching method and vary the doppler catching resolution (using the
catch doppler resolution keyword inradmc3d.inp ).

7.7 For experts: Selecting a subset of lines

If you use standard molecular/atomic data files from e.g. theLeiden database3, then you may have many more lines
than you are actually interested in. This is no problem if youuse thesimple LTE mode(see Section7.2) because
thenradmc3d will anyway only work with those lines that happen to be closeto the wavelength of interest. But if
you use other modes of line transfer, the level populations may need to be stored into memory. If you have a large
spatial grid, and for each grid point you have to store a 100 level populations, you can easily run out of memory. For
non-LTE modes (such as the LVG or escape probability modes that will be implemented later) it may be unavoidable
to store these, but if you already know in advance that temperatures will never be high enough to populate the levels
above, say, 20, then you may want to be able to tellradmc3d not to use all 100 levels, but only the first 20. One
can do this of course by editing the molecular data file by handand simply strip all the levels and lines you don’t
need. But a more elegant way is to specify in thelines.inp file that radmc3d.inp should use only a subset of
the levels.

The way to do this is to replace, in the exampleline.inp file of Section7.3.2, the line

co leiden 0 0

with

co leiden 0 10

where the 10 now says that only levels 1 (=ground) to 10 are to be used. That’s it!

7.8 For developers: some details on the internal workings

[This section is only interesting for developers]

7.8.1 Automatic selection of sub-sets of levels and lines for optimal performance

The line module is optimized such that at any time the code only uses those lines and levels that are in fact important
for carrying out the task at hand. For example: if an image at one special wavelength is made (a “channel map”) then
the code will check which lines and levels are ‘active’ in thesense that they potentially contribute to the emission at
that particular wavelength. This means that before the ray-tracing is done the code will make a selection of levels
and lines that it will need to consider. If the lines / level lists are large, this may save a lot of computer time. Note
that this is in addition to the possibility that the user makes its own sub-set selection of levels. So what happens is
that at the start of the code the molecular fundamental data are read, then a subset of these levels can be chosen by
the user (if not, the entire level list is used), and after that, when a specific wavelength or wavelength range is chosen
for the camera routines, another subset from this subset (a “sub-sub-set”) is automatically selected by RADMC-3D.
The latter automatic sub-sub-set selection is redone when (during the same run, see calling RADMC-3D in child
mode, Chapter12) a new wavelength domain is chosen by the user. The user-specified sub-set of levels is, however,
only done once, when the molecular data is read.

This subset and subsubset selection makes the line module a bit complex to read and understand. But it is essential

3http://www.strw.leidenuniv.nl/∼moldata/
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for high efficiency, because if the line module has to walk through the entire line lists and level lists for each action
is wants to do, and if the line/level lists are large, the codewill slow down enormously.

The matter gets a bit more complicated due to the methods of ray-tracing for images and spectra (See Chapter
9). For the treatment of multi-wavelength images (method 1 inwhich in which all wavelength are traced within
a single call to the ray-tracing routine and method 2 in whichan image is made for each wavelength separetely)
this is done differently: For method 1 the automatic subsubset selection is done for the complete set of wavelength
simultaneously; For method 2 the automatic subsubset selection is made for each wavelength separately. Also for
the way the rays are traced (sequential [method A] or as 1-D prepared rays [method B]) there are differences: For
method A the automatic subsubset selection is done at the start of the image making routine, while for method B it
is done at the start of each ray-trace (i.e. for each pixel separately). The latter (for each pixel separately) is useful
when there are small regions in the model which have very hightemperatures or very large velocities while by far
the most of the model has low temperatures and velocities: then the possibility for line overlapping is only realistic
in parts of the image that probe these high-T/velocity regions, while for the rest no overlapping has to be expected,
and hence a smaller subsubset can be selected. That will speed up the calculation. But this works only for method
B (the 1-D prepared ray method).
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Chapter 8

Gas continuum opacities and emissivities

In addition to dust and line radiative transfer, RADMC-3D can also handle gas continuum opacities. Here is a list
of features that are now already working, marked with [+], and those which are not yet (!!) built in, marked with
[-]. Those that are currently being developed are marked with [.] and those that are ready, but are still in the testing
phase are marked with [t].

The following processes are included:

[t] Gas free-free absorption/emission

[.] Gas bound-free absorption/emission

[.] Self-consistent determination of the gas temperature,based on the continuum opacity and possibly also the
lines. Perhaps also various non-thermal heating processes(photoelectric heating etc) will be included. But
this is future work.

8.1 Gas continuum opacities and emissivities

While under most circumstances gas emission is mostly in theform of lines, there are also continuum sources of
emission and opacity. Gas continuum opacities can be included in a way very similar to the dust opacities. Since
currently we envisage thermalized gas (i.e. no acceleratedparticle distributions, for instance), we can then use
Kirchhoff’s law to compute, with the gas temperature, the emissivities. Normally the user will have to determine
all the locally required quantities, including the gas temperature, the ion and/or electron density etc. In the first
version(s) of this module the gas temperature will not be computed self-consistently, but instead have to be given
by the user. The processes will be discussed one-by-one below.

Each process can be switched on or off independently:
Process: Command-line switch on Command-line switch offradmc3d.inp variable (0/1)
All processes inclgascont nogascont incl gascont

Thermal free-free inclfreefree nofreefree incl freefree

The main switch is theincl gascont . If this is 0, all gas continuum processes are switched off. If it is 1, then
gas continuum processes that have their own switch on will beincluded. Typically, by switching on one of the
processes, the main switch will also be automatically switched on. But the reverse is not true: if you switch off one
of the processes, the main switch remains on.

8.1.1 Thermal free-free emission/absorption

The process of thermal free-free emission and absorption isgiven by the following formula (Eq. 2.96 of Gordon &
Sorochenko, 2002, Kluwer Academic Publishers):

αff
ν = 0.2120

NeNi

ν2.1T 1.35
(8.1)
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in units of cm−1 (i.e. the mean free photon path is1/αff
ν ).

This mode requires theelectronnumdens(:), ion numdens(:), andgastemp(:)arrays to be set. This is typically done by
providing the fileselectronnumdens.inp, ion numdens.inpandgastemperature.inp(see ChapterA), or by allocating and
setting the arrays directly in theuserdef module.f90 .

8.2 Self-consistent gas temperature iteration

In future versions of RADMC-3D the gas temperature can, likethe dust temperature, be determined through a
Monte Carlo procedure. In contrast to the dust, however, thegas opacities change with temperature. The Monte
Carlo simulation must therefore be repeated a few times to converge on the right temperatures.

At the moment this method is, however, not yet implemented. Instead, the gas temperature must be set by the user,
either in the form of a file calledgas temperature.inp or in theuserdef module.f90 module.
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Chapter 9

Making images and spectra

Much has already been said about images and spectra in the chapters on dust radiative transfer and line radiative
transfer. But here we will combine all this and go deeper intothis material. So presumably you do not need to read
this chapter if you are a beginning user. But for more sophisticated users (or as a reference manual) this chapter
may be useful and presents many new features and more in-depth insight.

9.1 Basics of image making with RADMC-3D

Images and spectra are typically made after the dust temperature has been determined using the thermal Monte
Carlo run (see Chapter6). An image can now be made with a simple call toradmc3d 1:

radmc3d image lambda 10

This makes an image of the model at wavelengthλ = 10µm and writes this to the fileimage.out 2. The vantage
point is at infinity at a default inclination of 0, i.e. pole-on view. You can change the vantage point:

radmc3d image lambda 10 incl 45 phi 30

which now makes the image at inclination 45 degrees (betweenpole-on and edge-on) and withφ-angle 30 degrees
in the x-y plane. Note that this ‘inclination’ and ‘φ angle’ are just ways to specify angles in the x-y-z space. These
are angles with respect to the x-y plane. You can also rotate the camera with

radmc3d image lambda 10 incl 45 phi 30 posang 20

which rotates the camera by 20 degrees. Up to now the camera always pointed to one single point in space: the
point (0,0,0). You can change this:

radmc3d image lambda 10 incl 45 phi 30 posang 20 pointau 3.2 0. 1 0.4

which now points the camera at the point (3.2,0.1,0.4), where the numbers are in units of AU. The same can be done
in units of parsec:

radmc3d image lambda 10 incl 45 phi 30 posang 20 pointpc 3.2 0. 1 0.4

Note thatpointau andpointpc are always 3-D positions specified in cartesian coordinates. This remains also true
when the model-grid is in spherical coordinates and/or whenthe model is 2-D (axisymmetric) or 1-D (spherically
symmetric): 3-D positions are always specified in x,y,z.

Let’s now drop the pointing again, and also forget about theposang , and try to change the number of pixels used:

radmc3d image lambda 10 incl 45 phi 30 npix 100

1Please also read Section14.1.3for IDL routines that do all of this for you conveniently. Thechoice is up to you: you can either do this
directly as described here, or use the IDL routines.

2We refer to SectionA.15 for details of this file and how to interpret the content. See Chapter14 for an extensive IDL tool set that make it
easy to read and handle these files.
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This will make an image of 100x100. You can also specify the x-and y- direction number of pixels separately:

radmc3d image lambda 10 incl 45 phi 30 npixx 100 npixy 30

Now let’s forget again about the number of pixels and change the size of the image, i.e. which zooming factor we
have:

radmc3d image lambda 10 incl 45 phi 30 sizeau 30

This makes an image which has 30 AU width and 30 AU height (i.e.15 AU from the center in both directions).
Same can be done in units of parsec

radmc3d image lambda 10 incl 45 phi 30 sizepc 30

Although strictly speaking redundant is the possibility tozoom-in right into a selected box in this image:

radmc3d image lambda 10 incl 45 phi 30 zoomau -10 -4. 0 6

which means that we zoom in to the box given by−10 ≤ x ≤ −4 AU and0 ≤ y ≤ 6 AU on the original image
(note thatzoomau -15 15 -15 15 gives the identical result assizeau 30 ). This possibility is strictly speaking
redundant, because you could also change thepointau andsizeau to achieve the same effect (unless you want to
make a non-square image, in which case this is the only way). But it is just more convenient to do any zooming-in
this way. Please note that when you make non-square images with zoomau or zoompc , the code will automatically
try to keep the pixels square in shape by adapting the number of pixels in x- or y- direction in the image and adjusting
one of the sizes a tiny bit to assure that both x- and y- size arean integer times the pixel size. These are very small
adjustments (and only take place for non-square zoom-ins).If you want to force the code to takeexactlythe zoom
area, and you don’t care that the pixels then become slightlynon-square, you can force it withtruezoom :

radmc3d image lambda 10 incl 45 phi 30 sizeau 30 zoomau -10 -4. 0 3.1415 truezoom

If you do not want the code to adjust the number of pixels in x- and y- direction in its attempt to keep the pixels
square:

radmc3d image lambda 10 incl 45 phi 30 sizeau 30 zoomau -10 -4. 0 3.1415 npixx 100 npixy 4 truepix

Now here are some special things. Sometimes you would like tosee an image of just the dust, not including stars
(for stars in the image: see Section9.7). So blend out the stars in the image, you use thenostar option:

radmc3d image lambda 10 incl 45 phi 30 nostar

Another special option is to get a ‘quick image’, in which thecode does not attempt assure flux conservation in the
image (see Section9.6 for the issue of flux conservation). Doing the image with flux conservation is slower than
if you make it without flux conservation. Making an image without flux conservation can be useful if you want to
have a ‘quick look’, but is strongly discouraged for actual scientific use. But for a quick look you can do:

radmc3d image lambda 10 incl 45 phi 30 nofluxcons

Note: In the IDL widget interfaceviewimage.pro the default is to use this ‘quick look’ option, because you
typically want to make images quickly if you use theviewimage.pro interface. But there is a button (called
“preview”) that if you unclick it, it will do flux-conservingimaging.

Finally, if you want to produce images with a smoother look (and which also are more accurate), you can ask
RADMC-3D to use second order integration for the images:

radmc3d image lambda 10 incl 45 phi 30 secondorder

NOTE: The resulting intensities may be slightly different from the case when first order integration (default) is used,
in particular if the grid is somewhat course and the objects of interest are optically thick. Please consult Section9.8
for more information.

Note: All the above commands callradmc3d separately. If it needs to load a large model (i.e. a model with many
cells), then the loading may take a long time. If you want to make many images in a row, this may take too much
time. Then it is better to callradmc3d as a child process and pass the above commands through the biway pipe (see
Chapter12).
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9.2 Making multi-wavelength images

Sometimes you want to have an image of an object at multiple wavelength simultaneously. Rather than calling
RADMC-3D separately to make an image for each wavelength, you can make all images in one command. The
only thing you have to do is to tell RADMC-3D which wavelengths it should take. There are various different ways
you can tell RADMC-3D what wavelengths to take. This is described in detail in Section9.4. Here we will focus
as an example on just one of these methods. Type, for instance,

radmc3d image incl 45 phi 30 lambdarange 5. 20. nlam 10

This will create 10 images at once, all with the same viewing perspective, but at 10 wavelengths regularly distributed
between 5µm and 20µm. All images are written into a single file,image.out (See SectionA.15 for its format).

In IDL you simply type:

.r readradmc
a=readimage()

and you will get all images at once. To plot one of them:

plotimage,a,ilam=3

which will plot image number 3 (out of images number 0 to 9). Tofind out which wavelength this image is at:

print,a.lambda[3]

which will return 7.9370053 in this example.

Note that all of the commands in Section9.1are of course also applicable to multi-wavelength images, except for
the lambda keyword, as this conflicts with the other method(s) of specifying the wavlengths of the images. Now
please turn to Section9.4 for more information on how to specify the wavelengths for the multiple wavelength
images.

9.3 Making spectra

The standard way of making a spectrum withradmc3d is in fact identical to making 1x1 pixel images with flux
conservation (i.e. recursive sub-pixeling, see Section9.6) at multiple frequencies. You can askradmc3d to make a
spectral energy distribution (SED)with the command

radmc3d sed incl 45 phi 30

This will put the observer at inclination 45 degrees and angle phi 30 degrees, and make a spectrum with wavelength
points equal to those listed in thewavelength micron.inp file.

The output will be a file calledspectrum.out (see SectionA.14). In Section14.4it is discussed how to read this
file into IDL.

You can also make a spectrum on a set of wavelength points of your own choice. There are multiple ways by which
you can specify the set of frequencies/wavelength points for which to make the spectrum: they are described in
Section9.4. If you have made your selection in such a way, you can make thespectrum at this wavelength grid by

radmc3d spectrum incl 45 phi 30 <COMMANDS FOR WAVELENGTH SELECTION>

where the last stuff is tellingradmc3d how to select the wavelengths (Section9.4). An example:

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20. nlam 100

will make a spectrum with a regular wavelength grid between 5and 20µm and 100 wavelength points. But see
Section9.4for more details and options.

The output filespectrum.out will have the same format as for thesed command.
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9.3.1 What is “in the beam” when the spectrum is made?

As mentioned above, a spectrum is simply made by making a rectangular image at all the wavelengths points,
and integrating over these images. The resulting fluxes at each wavelength point is then the spectral flux at that
wavelength point. This means that the integration area of flux for the spectrum is (a) rectangular and (b) of the same
size at all wavelengths.

So, whatis the size of the image that is integrated over? The answer is: it is the same size as the default size of an
image. In fact, if you make a spectrum with

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20. nlam 10

then this is the same as if you would type

radmc3d image incl 45 phi 30 lambdarange 5. 20. nlam 10

and read in the fileimage.out in into IDL (see Section9.2) or your favorite other data language, and integrate the
images to obtain fluxes. In other words: the commandspectrum is effectively the same as the commandimage

but then instead of writing out animage.out file, it will integrate over all images and write aspectrum.out file.

If you want to have a quick look at the area over which the spectrum is to be computed, but you don’t want to
compute all the images, just type e.g.:

radmc3d image lambda 10 incl 45 phi 30

then you see an image of your source atλ = 10µm, and the integration area is precisely this area – at all wavelengths.
Like with the images, you can specify your viewing area, and thus your integration area. For instance, by typing

radmc3d image lambda 10 incl 45 phi 30 zoomau -2 -1 -0.5 0.5

makes an image of your source atλ = 10µm at inclination 45 degrees, and orientation 30 degrees, andzooms in at
an are from -2 AU to -1 AU in x-direction (in the image) and from-0.5 AU to 0.5 AU in y-direction (in the image).
To make an SED within the same integration area:

radmc3d sed incl 45 phi 30 zoomau -2 -1 -0.5 0.5

In this case we have an SED with a “beam size” of 1 AU diameter, but keep in mind that the “beam” is square, not
circular.

9.3.2 Can one specify more realistic “beams”?

Clearly, a wavelength-independent beam size is unrealistic, and also the square beam is unrealistic. So is there a
way to do this better? In reality one should really know exactly how the object is observed and how the flux is
measured. If you use an interferometer, for instance, maybeyour flux is meant to be the flux in a single synthesized
beam. For a spectrum obtained with a slit, the precise flux is dependent on the slit width: the wider the slit, the more
signal you pick up, but it is a signal from a larger area.

So if you really want to be sure that you know exactly what you are doing, then the best method is to do this youself
by hand. You make multi-wavelength images:

radmc3d image incl 45 phi 30 lambdarange 5. 20. nlam 10

and integrate over the images in the way you think best mimicsthe actual observing procedure. You can do so, for
instance, in IDL. See Section9.2for more information about multi-wavelength images.

But to get some reasonable estimate of the effect of the wavelength-dependent size and circular geometry of a
“beam”, RADMC-3D allows you to make spectra with a simplistic circular mask, the radius of which can be
specified as a function of wavelength in the fileaperture info.inp (see SectionA.16.2). This file should con-
tain a table of mask radii at various wavelengths, and when making a spectrum with the command-line keyword
useapert the mask radii will be found from this table by interpolation. In other words: the wavelength points
of theaperture info.inp file do not have to be the same as those used for the spectrum. But their rangemust
be larger or equal than the range of the wavelengths used for the spectrum, because otherwise interpolation does
not work. In the most extreme simplistic case theaperture info.inp file contains merely two values: one for a
very short wavelength (shorter than used in the spectrum) and one for a very long wavelength (longer than used in

53



the spectrum). The interpolation is then done double-logarithmically, so that a powerlaw is used between sampling
points. So if you use a telescope with a given diameter for theentire range of the spectrum, two sampling points
would indeed suffice.

You can now make the spectrum with the aperture in the following way:

radmc3d sed useapert dpc 100

The keyworddpc 100 is the distance of the observer in units of parsec3, here assumed to be 100. This distance is
necessary because the aperture information is given in arcseconds, and the distance is used to convert this is image
size.

Important note:Although you specify the distance of the observer here, thespectrum.out file that is produced is
still normalized to a distance of 1 parsec.

Note also that in the above example you can add any other keywords as shown in the examples before, as long as
you add theuseapert keyword and specifydpc .

A final note: the default behavior of RADMC-3D is to use the square field approach described before. You can
explicitly turn off the use of apertures (which may be usefulin the child mode of RADMC-3D) with the keyword
noapert , but normally this is not necessary as it is the default.

9.4 Specifying custom-made sets of wavelength points for the camera

If you want to make a spectrum at a special grid of wavelengths/frequencies, with thespectrum command (see
Section9.3), you must tellradmc3d which wavelengths you want to use. Here is described how to dothis in various
ways.

9.4.1 Usinglambdarange and (optionally) nlam

The simplest way to choose a set of wavelength for a spectrum is with thelambdarange and (optionally)nlam

command line options. Here is how to do this:

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20.

This will make a spectrum between 5 and 20µm. It will use by default 100 wavelength points logarithmically
spaced between 5 and 20µm. You can change the number of wavelength points as well:

radmc3d spectrum incl 45 phi 30 lambdarange 5. 20. nlam 1000

This will do the same, but creates a spectrum of 1000 wavelength points.

9.4.2 Usingloadcolor

By giving the commandloadcolor on the command line,radmc3d will search for the filecolor inus.inp .
This file contains integers selecting the wavelengths from the filewavelength micron.inp . The file is described
in SectionA.16.1.

9.4.3 Usingloadlambda

By giving the commandloadlambda on the command line,radmc3d will search for the filecamera wavelength micron.inp .
This file contains a list of wavelengths in micron which constitute the grid in wavelength. This file is described in
SectionA.12.

3This is still (and only) valid in the observer-at-infinity default mode. But the distance is necessary for internal computations as described in
the text.
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9.4.4 Usingiline , imolspec etc (for when lines are included)

By adding for instanceiline 3 to the command line you specify a window around line number 3 (by default of
molecule 1). By also specifying for instanceimolspec 2 you select line 3 of molecule 2. By addingwidthkms

3 you specify how wide the window around the line should be (3 km/s in this example). Withvkms 2 you set
the window offset from line center by 2 km/s in this example. By addinglinenlam 30 you set the number of
wavelength points for this spectrum to be 30 in this example.So a complete (though different) example is:

radmc3d spectrum incl 45 phi 30 iline 2 imolspec 1 widthkms 6. 0 vkms 0.0 linenlam 40

9.5 Heads-up: In reality wavelength are actually wavelength bands

In a radiative transfer program likeRADMC-3Dthe images or spectral fluxes are calculated atexactwavelengths.
This would correspond to making observations with infinitely narrow filters, i.e. filters with∆λ = 0. This is not
how real observations work. In reality each wavelength channel has a finite width∆λ and the measured flux (or
image intensity) is an average over this range. To be even more precise, each wavelength channeli has some profile
Φi(λ) defined such that ∫

∞

0

Φi(λ)dλ = 1 (9.1)

For wide filters such as the standard photometric systems (e.g. UVBRI in the optical and JHK in the near infrared)
these profiles span ranges with a width of the order ofλ itself. Many instruments have their own set of filters.
Usually one can download these profiles as digital tables. Itcan, under some circumstances, be important to include
a treatment of these profiles in the model predictions. As an example take the N band. This is a band that includes
the 10µm silicate feature, which is a strong function of wavelengthwithin the N band. If you have a wide filter
in the N band, then one cannot simply calculate the model spectrum in one single wavelength. Instead one has to
calculate it for a properly finely sampled set of wavelengthsλi for 1 ≤ i ≤ n, wheren is the number of wavelength
samples, and then compute the filter-averaged flux with:

Fband =

∫
∞

0

Φi(λ)F (λ)dλ =

n∑
i=1

ΦiFiδλ (9.2)

whereδλ is the wavelength sampling spacing used. The same is true forimage intensities.RADMC-3Dwill not do
this automatically. You have to tell it theλi sampling points, let it make the images or fluxes, and you willthen have
to perform this sum yourself.Note that this will not always be necessary!In many (most?) cases the dust continuum
is not expected to change so dramatically over the width of the filter that such degree of accuracy is required. So
you are advised to think carefully: “do I need to take care of this or can I make do with a single wavelength sample
for each filter?”. If the former, then do the hard work. If the latter: then you can save time.

9.5.1 Using channel-integrated intensities to improve line channel map quality

When you make line channel maps you may face a problem that is somehow related to the above issue of single-
λ-sampling versus filter-integrated fluxes/intensities. Ifthe model contains gas motion, then doppler shift will shift
the line profile around. In your channel map you may see regions devoid of emission because the lines have doppler
shifted out of the channel you are looking at. However, as described in Section7.5, if the intrinsic line width of
the gas is smaller than the cell-to-cell velocity differences, then the channel images may look very distorted (they
will look “blocky”, as if there is a bug in the code). Please refer to Section7.5 for more details and updates on this
important, but difficult issue. It is not a bug, but a general problem with ray-tracing of gas lines in models with large
velocity gradients.

As one of theβ-testers ofRADMC-3D, Rahul Shetty, has found out, this problem can often be alleviated a lot if you
treat the finite width of a channel. By taking multipleλi points in each wavelength channel (i.e. multiplevi points in
each velocity channel) and simply averaging the intensities (i.e. assuming a perfectly squareΦ function) and taking
the width of the channels to be not smaller (preferably substantially wider) than the cell-to-cell velocity differences,
this “blocky noise” sometimes smoothes out well. However, it is always safer to use the “doppler catching” mode
(see Section7.6) to automatically prevent such problems (though this mode requires more computer memory).
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9.6 The issue of flux conservation: recursive sub-pixeling

9.6.1 The problem of flux conservation in images

If an image of nx×ny pixels is made simply by ray-tracing one single ray for each pixel, then there is the grave
danger that certain regions with high refinement (for instance with AMR in cartesian coordinates, or near the center
of the coordinate system for spherical coordinates) are notproperly ’picked up’. An example: suppose we star with
a circumstellar disk ranging from 0.1 AU out to 1000 AU. Most of the near infrared flux comes from the very inner
regions near 0.1 AU. If an image of the disk is made with 100x100 pixels and image half size of 1000 AU, then
none of the pixels in fact pass through these very bright inner regions, for lack of spatial resolution. The problem is
then that the image, when integrated over the entire image, does not have the correct flux. Whatshouldbe is that the
centermost pixels contain the flux from this innermost region, even if these pixels are much larger than the entire
bright region. In other words, the intensity of these pixelsmust represent the average intensity, averaged over the
entire pixel. Strictly speaking one should trace an infinitecontinuous 2-D series of rays covering the entire pixel
and then average over all these rays; but this is of course notpossible. In practice we should find a way to estimate
the average intensity with only a finite number of rays.

9.6.2 The solution: recursive sub-pixeling

In RADMC-3D what we do is to use some kind of ’adaptive grid refinement’ of the pixels of the image. For each
pixel in the image the intensity is computed through a call toa subroutine calledcamera compute one pixel() .
In this subroutine a ray-tracing is performed for a ray that ends right in the middle of our pixel. During the ray-
tracing, however, we check if we pass regions in the model grid that have grid cells with sizesS that are smaller than
the pixel size divided by some factorfref (where pixel size is, like the model grid size S itself, measured in centime-
ters4). If this is foundnot to be true, then the pixel size was apparently ok, and the intensity resulting from the ray-
tracing is now returned as the final intensity of this pixel. If, however, this conditionis found to be true, then the re-
sult of this ray is rejected, and instead 2x2 sub-pixels are computed by calling thecamera compute one pixel()

subroutine recursively. We thus receive the intensity of each of these four sub-pixels, and we return the average of
these 4 intensities.

Note, by the way, that each of these 2x2 subpixels may be spliteven further into 2x2 sub-pixels etc until the desired
resolution is reached, i.e. until the condition thatS is larger or equal to the pixel size divided byfref is met. By
this recursive calling, we always end up at the top level withthe average intesity of the entire top-level pixel. This
method is very similar to quad-tree mesh refinement, but instead of retaining and returning the entire complex mesh
structure to the user, this method only returns the final average intensity of each (by definition top level) pixel in
the image. So the recursive sub-pixeling technique described here is all done internally in the RADMC-3D code,
and the user will not really notice anything except that thissub-pixeling can of course be computationally more
expensive than if such a method is not used.

Note that the smaller we choosefref the more accurate our image becomes. In theradmc3d.inp file the value of
fref can be set by setting the variablecamera refine criterion to the value you wantfref to be. Not setting
this variable means RADMC-3D will use the default value which is reasonable as a choice (default is 1.0). The
smaller you setcamera refine criterion , the more accurate and reliable the results become (but the heavier
the calculation becomes, too).

NOTE:The issue of recursive sub-pixeling becomes tricky when stars are treated as spheres, i.e. non-point-like (see
Section9.7and Chapter11).

9.6.3 A danger with recursive sub-pixeling

It is useful to keep in mind that for each pixel the recursive sub-pixeling is triggered if the ray belonging to that
pixel encounters a cell that is smaller than the pixel size. This normallyworks well if fref is chosen small enough.
But if there exist regions in the model where one big non-refined cell lies adjacent to a cell that is refined, say, 4
times (meaning the big cell has neighbors that are 16 times smaller!), then if the ray of the pixel just happens to miss

4This is not possible for images for local observers, but see Section9.10for details.
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the small cells and only passes the big cell, it won’t “notice” that it may need to refine to correctly capture the tiny
neighboring cells accurarely.

Such a problem only happens if refinement levels jump by more than 1 between adjacent cells. If so, then it may be
important to makefref correspondingly smaller. A bit of experimentation may be needed here.

9.6.4 Recursive sub-pixeling in spherical coordinates

In spherical coordinates the recursive sub-pixeling has a few issues that you may want to be aware of. First of all,
in 1-D spherical coordinates each cell is in fact a shell of a certain thickness. In 2-D spherical coordinates cells are
rings. In both cases the cells are not just local boxes, but have 2 or 1 (respectively) extended dimensions. RADMC-
3D takes care to still calculate properly how to define the recursive sub-pixeling scale. But for rays that go through
the central cavity of the coordinate system there is no uniquely defined pixel resolution to take. The global variable
camera spher cavity relres (with default value 0.05) defines such a relative scale. You can change this value
in theradmc3d.inp file.

A second issue is when the user introduces extreme “separable refinement” (see Section10.2) in theR coordinate.
This may, for instance, be necessary near the inner edge of a dusty disk model in order to keep the first cell optically
thin. This may lead, however, to extremely deep sub-pixeling for rays that skim the inner edge of the grid. This
leads to a huge slow-down of the ray-tracing process although it is likely not to give much a different result. To
avoid this RADMC-3D has a global variablecamera min aspectratio (default value is 0.05) that limits this.
You can change it in theradmc3d.inp file. The smaller you make this number, the more accurate and reliable the
results.It may be prudent to experiment with smaller values for models with extremely optically thick inner edges,
e.g. a protoplanetary disk with an abrupt inner edge and a high dust surface density.

9.6.5 How can I find out which pixels RADMC-3D is recursively refining?

Sometimes you notice that the rendering of an image or spectrum takes much more time than you expected. When
recursive sub-pixeling is used for imaging, RADMC-3D will give diagnostic information about how many more
pixels it has rendered than the original image resolution. This factor can give some insight if extreme amount of
sub-pixeling refinement has been used. But it does not say where in the image this occurs. If you want to see exactly
which pixels and subpixels RADMC-3D has rendered for some image, you can use the following command-line
option:

radmc3d image lambda 10 diag_subpix

This diag subpix option will tell RADMC-3D to write a file calledsubpixeling diagnostics.out which
contains four columns: One for the x-coordinate of the (sub-)pixel, one for the y-coordinate of the (sub-)pixel, one
for the x-width of the (sub-)pixel and a final one for the y-width of the (sub-)pixel. In IDL, if you use for instance
the astrolib library, you can use thereadcol procedure to read these columns. Soinside IDLyou then type

.r readcol
readcol,’subpixeling_diagnostics.out’,px,py
plot,px,py,psym=3

and you get a plot of all the pixel-centers and sub-pixel-centers used.

9.6.6 Alternative to recursive sub-pixeling

As an alternative to using this recursive sub-pixeling technique to ensure flux conservation, one can simply enhance
the spatial resolution of the image. This has the clear advantage that the user gets the complete information of
the details in the image (while in the recursive sub-pixeling technique only the averages are retained). The clear
disadvantages are that one may need rediculously high-resolution images (i.e. large data sets) to resolve all the
details and one may waste a lot of time rendering parts of the image which do not need that resolution. The latter is
typically an issue when images are rendered from models thatuse AMR techniques.
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Figure 9.1. Pictographic representation of the integration of the transfer equation along a ray (red line with arrow
head) through an AMR grid (black lines). The grid cuts the rayinto ray segments A, B, C and D. At the bottom it
is shown how the integrands are assumed to be along these foursegments. Left: When using first order integration.
The emissivity functionjν and extinction functionαν are constant within each cell and thus constant along each ray
segment. Right: When using second order integration. The emissivity functionjν and extinction functionαν are
given at the cell corners (solid blue circles), and linearlyinterpolated from the cell corners to the locations where the
ray crosses the cell walls (open blue circles). Then, along each ray segment the emissivity and extinction functions
are assumed to be linear functions, so that the integration result is quadratic. The thin blue horizontal dashed lines
are the same as those in the Left panel, and are just there for comparison. Note that these figures are 2-D, whereas
this actually happens in 3-D. See Section9.8for more information.

9.7 Stars in the images and spectra

Per default, stars are still treated as point sources. That means that none of the rays of an image can be intercepted
by a star. Starlight is included in each image as a post-processing step. First the image is rendered without the stars
(though with of course all the emission of dust, lines etcinducedby the stars) and then for each star a ray tracing
is done from the star to the observer (where only extinction is taken into account, because the emission is already
taken care of) and the flux is then added to the image at the correct position. You can switch off the inclusion of the
stars in the images or spectra with thenostar command line option.

However, as of version 0.17, stars can also be treated as the finite-size spheres they are. This is done with setting
stars sphere = 1 in radmc3d.inp . However, this mode can slow down the code a bit or even substantially.
And it may still be partly under development, so the code may stop if it is required to handle a situation it cannot
handle yet. See Chapter11 for details.

9.8 Second order ray-tracing (Important information!)

Ideally we would like to assure that the model grid is sufficiently finely spaced everywhere. But in many cases of
interest one does not have this luxury. One must live with thefact that, for memory and/or computing time reasons,
the grid is perhaps a bit coarser than would be ideal. In such acase it becomes important to consider the “order” of
integration of the transfer equation. By default, for images and spectra, RADMC-3D uses first order integration: The
source term and the opacity in each cell are assumed to be constant over the cell. This is illustrated in Fig.9.1-Left.
The integration over each cell proceeds according to the following formula:

Iresult = Istarte
−τ + (1 − e−τ )S (9.3)
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whereS = j/α is the source function, assumed constant throughout the cell, τ = α ∆s is the optical depth along
the path that the ray makes through the cell, andIstart is the intensity upon entering the cell. This is the default
used by RADMC-3D because the Monte Carlo methods also treat cells as having constant properties over each cell.
This type of simple integration is therefore the closest to how the Monte Carlo methods (thermal MC, scattering
MC and mono MC) “see” the grid. However, with first order integration the images look somewhat “blocky”: you
can literally see the block structure of the grid cells in theimage, especially if you make images at angles aligned
with the grid. For objects with high optical depths you may even see grid patterns in the images.

RADMC-3D can also use second order integration for its images and spectra. This is illustrated in Fig.9.1-Right.
This is done with a simple “secondorder ” option added on the command line, for instance:

radmc3d image lambda 10 secondorder

The integration now follows the formula (Olson et al. 1986):

Iresult = Istarte
−τ + (1 − e−τ − β)Sstart + βSend (9.4)

with

β =
τ − 1 + e−τ

τ
(9.5)

and
τ =

αstart + αend

2
∆s (9.6)

For τ → 0 we have the limitβ → τ/2, while for τ → ∞ we have the limitβ → 1.

The values ofα, S etc., at the “start” position are obtained at the cell interface where the ray enters the cell. The
values at the “end” position are obtained at the cell interface where the ray leaves the cell. The above formulas
represent the exact solution of the transfer equation alongthis ray-section if we assume that all variables are linear
functions between the “start” and “end” positions.

The next question is: How do we determine the physical variables at the cell interfaces (“start” and “end”)? After
all, initially all variables are stored for each cell, not for each cell interface or cell corner. The way that RADMC-3D
does this is:

• First create a “grid of cell corners”, which we call thevertex grid(see the solid blue dots in Fig.9.1-Right).
The cell grid already implicitly defines the locations of allthe cell corners, but these corners are, by default,
not explicitly listed in computer memory. When thesecondorder option is given, however, RADMC-3D
will explicitly find all cell corners and assign an identity (a unique integer number) to each one of them.
NOTE: Setting up this vertex grid costs computer memory!

• At each vertex (cell corner) the physical variables of the (up to) 8 cells touching the vertex are averaged with
equal weight for each cell. This now maps the physical variables from the cells to the vertices.

• Whenever a ray passes through a cell wall, the physical variables of the 4 vertices of the cell wall are in-
terpolated bilinearly onto the point where the ray passes through the cell wall (see the open blue circles in
Fig. 9.1-Right). This gives the values at the “start” or “end” points.

• Since the current “end” point will be the “start” point for the next ray segment, the physical variables need
only be obtained once per cell wall, as they can be recycled for the next ray segment. Each set of physical
variables will thus be used twice: once for the “end” and oncefor the “start” of a ray segment (except of
course at the very beginning and very end of the ray).

If you compare the images or spectra obtained with first orderintegration (default) or second order integration
(Fig. 9.2) you see that with the first order method you still see the cellstructure of the grid very much. Also
numerical noise in the temperature due to the Monte Carlo statistics is much more prominent in the first order
method. The second order method makes much smoother results.

For line transfer the second order mode can be even improved with the “doppler catching method”, see Section7.6.
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Figure 9.2. First-order integration of transfer equation in ray-tracing (left two panels), versus second order in-
tegration (right two panels). Upper: 60 degrees inclination, Lower: 4 degrees inclination. Shown here is the
run simple 1 layers model (in theexamples directory) atλ = 10 µm at some zoom factor. See Section
9.8for more information.

9.9 Using circularly arranged pixels for spectra (special topic)

In the predecessor code (RADMC) the issue with flux conservation was dealt with using a trick different from
subpixeling: Rather than arranging the pixels of the imagesin rows and columns, the pixels were arranged in
concentric circles. The radii of these circles are tuned to the radii of the spherical coordinate system. In this way
the huge dynamic range of scales of the model could be dealt with automatically.

Here, in RADMC-3D, we do not really need this trick, because of the new technique of recursive subpixeling (see
Section9.6.2).

But it might sometimes nevertheless be useful to use this circular pixel arrangement, because it is faster (though less
reliable) than the recursive subpixeling. Also, the results would be easier to compare to the results of RADMC. But
this mode works only when you use spherical coordinates! Also, there is no recursive subpixeling done when you
use this mode, so if you use spherical coordinateandAMR grid refinement, then the refined regions may be not
well resolved and flux may not be well conserved. And it works only for spectra. Images will remain rectangular
pixel arrangements.

You can active it by the command-line optioncirc , iff you specifiedspectrum or sed as well.

9.10 For public outreach work: local observers inside the model

While it may not be very useful for scientific purposes (though there may be exceptions), it is very nice for public
outreach to be able to view a model from the inside, as if you, as the observer, were standing right in the middle of
the model cloud or object. One can then use physical or semi-physical or even completely ad-hoc opacities to create
the right ’visual effects’. RADMC-3D has a viewing mode for this purpose. You can use different projections:

• Projection onto flat screen:
The simplest one is a projection onto a screen in front (or behind) the point-location of the observer. This gives
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an image that is good for viewing in a normal screen. This is the default (camera localobs projection=1 ).

• Another projection is a projection onto a sphere, which allow fields of view that are equal or larger than2π of
the sky. It may be useful for projection onto an OMNIMAX dome.This is projection modecamera localobs projection=2 .

You can set the variablecamera localobs projection to 1 or 2 by adding on the command lineprojection

2 (or 1), or by setting it in theradmc3d.inp as a linecamera localobs projection = 2 (or 1).

To use the local projection mode you must specify the following variables on the command line:

• sizeradian :
This sets the size of the (square) image in radian. Setting this will make the image square (like settingsizeau

in the observer-at-infinity mode, see Section9.1).

• zoomradian :
Insteadof sizeradian you can also specifyzoomradian , which is the local-observer version ofzoomau

orzoompc (see Section9.1).

• posang :
The position angle of the camera. Has the same meaning as in the observer-at-infinity mode.

• locobsau or locobspc :
Specify the 3-D location of the local observer inside the model in units of AU or parsec. This requires 3
numbers which are the x, y and z positions (also when using spherical coordinates for the model setup: these
are still the cartesian coordinates).

• pointau or pointpc :
These have the same meaning as in the observer-at-infinity model. They specify the 3-D location of the point
of focus for the camera (to which point in space is the camera pointing) in units of AU or parsec. This requires
3 numbers which are the x, y and z positions (also when using spherical coordinates for the model setup: these
are still the cartesian coordinates).

Settingsizeradian , zoomradian , locobsau or locobspc on the command line automatically switches to the
local observer mode (i.e. there is no need for an extra keyword setting the local observer mode on). To switch back
to observer-at-infinity mode, you specify e.g.incl or phi (the direction toward which the observer is located in the
observer-at-infinity mode). Note that if you accidently specify both e.g.sizeradian andincl , you might end up
with the wrong mode, because the mode is set by the last relevant entry on the command line.

The images that are produced using the local observer mode will have the x- and y- pixel size specifications in radian
instead of cm. The first line of an image (the format number of the file) contains then the value 2 (indicating local
observer image with pixel sizes in radian) instead of 1 (which indicates observer-at-infinity image with pixel sizes
in cm).

NOTE: For technical reasons dust scattering is (at least fornow) not included in the local observer mode! It is
discouraged to use the local observer mode for scientific purposes.

9.11 Multiple vantage points: the “Movie” mode

It can be useful, both scientifically and for public outreach, to make movies of your model, for instance by show-
ing your model from different vantage points or by “travelling” through the model using the local observer mode
(Section9.10). For a movie one must make many frames, each frame being an image created by RADMC-3D’s
image capabilities. If you callradmc3d separately for each image, then often the reading of all the large input files
takes up most of the time. One way to solve this is to callradmc3d in “child mode” (see Chapter12). But this
is somewhat complicated and cumbersome. A better way is to use RADMC-3D’s “movie mode”. This allows you
to ask RADMC-3D to make a sequence of images in a single call. The way to do this is to callradmc3d with the
movie keyword:

radmc3d movie
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This will makeradmc3d to look for a file calledmovie.inp which contains the information about each image it
should make. The structure of themovie.inp file is:

iformat
nframes
<<information for frame 1>>
<<information for frame 2>>
<<information for frame 3>>
...
<<information for frame nframes>>

The iformat is an integer that is described below. Thenframes is the number of frames. The<<information

for frame xx >> are lines containing the information of how the camera should be positioned for each frame of
the movie (i.e. for each imag). It is also described below.

There are multiple ways to tell RADMC-3D how to make this sequence of images. Which if these ways RADMC-
3D should use is specified by theiformat number. Currently there are 2, but later we may add further possibilities.
Here are the current possibilities

• iformat=1:
The observer is at infinity (as usual) and the<<information for frame xx >> consists of the following
numbers (separated by spaces):

pntx pnty pntz hsx hsy pa incl phi

These 8 numbers have the following meaning:

– pntx,pnty,pntz

These are the x, y and z coordinates (in units of cm) of the point toward which the camera is pointing.

– hsx,hsy

These are the image half-size in horizontal and vertical direction on the image (in units of cm).

– pa

This is the position angle of the camera in degrees. This has the same meaning as for a single image.

– incl,phi

These are the inclination and phi angle toward the observer in degrees. These have the same meaning as
for a single image.

• iformat=-1:
The observer is local (see Section9.10) and the<<information for frame xx >> consists of the fol-
lowing numbers (separated by spaces):

pntx pnty pntz hsx hsy pa obsx obsy obsz

These 9 numbers have the following meaning:

– pntx,pnty,pntz,hsx,hsy,pa

Same meaning as for iformat=1.

– obsx,obsy,obsz

These are the x, y and z position of the local observer (in units of cm).

Apart from the quantities that are thus set for each image separately, all other command-line options still remain
valid.

Example, let us make a movie of 360 frames of a model seen at infinity while rotating the object 360 degrees, and
as seen at a wavelength ofλ = 10µm with 200x200 pixels. We construct themovie.inp file:

1
360
0. 0. 0. 1d15 1d15 0. 60. 1.
0. 0. 0. 1d15 1d15 0. 60. 2.
0. 0. 0. 1d15 1d15 0. 60. 3.
.
.
.
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0. 0. 0. 1d15 1d15 0. 60. 358.
0. 0. 0. 1d15 1d15 0. 60. 359.
0. 0. 0. 1d15 1d15 0. 60. 360.

We now call RADMC-3D in the following way:

radmc3d movie lambda 10. npix 200

This will create image filesimage 0001.out , image 0002.out , all the way toimage 0360.out . The images
will have a full width and height of2 × 1015cm (about 130 AU), will always point to the center of the image, will
be taken at an inclination of 60 degrees and with varyingφ-angle.

Another example: let us move through the object (local observer mode), approaching the center very closely, but
not precisely:

-1
101
0. 0. 0. 0.8 0.8 0. 6.d13 -1.0000d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 -0.9800d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 -0.9600d15 0.
.
.
0. 0. 0. 0.8 0.8 0. 6.d13 -0.0200d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 0.0000d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 0.0200d15 0.
.
.
0. 0. 0. 0.8 0.8 0. 6.d13 0.9600d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 0.9800d15 0.
0. 0. 0. 0.8 0.8 0. 6.d13 1.0000d15 0.

Here the camera automatically rotates such that the focus remains on the center, as the camera flies by the center of
the object at a closest-approach to the center of6 × 1013cm. The half-width of the image is 0.8 radian.

9.12 For developers: some details on the internal workings

[This section is only interesting for developers]

9.12.1 Multi-wavelength images and spectra: two methods (1and 2)

[TO BE COMPLETED]

9.12.2 Ray-tracing: two methods (A and B)

The camera module of RADMC-3D features two different ways oftracing a ray for making images and spectra:

• Method A: Tracing in a sequential step-by-step fashion, whereby at each step the opacities are computed, the
intensities are updated and the next position of the ray in the 3-D model is determined. This is the method by
default, and it the simplest method. But it may not always be the most optimized in terms of speed.

• Method B: First find out how the ray goes through the 3-D model, and prepare a 1-D array of dust tempetures
and densities, line transfer quantities (such as level populations etc) and∆s values (length of ray elements).
Then compute the opacities at each point. Then finally do the 1-D formal transfer. This method has the
advantage that it lends itself well for parallellization ona GPU (which only gives speed-up if method 2 is
used for multi-wavelength images and spectra, see Section9.12.1). Also, by scouting the entire ray before
doing the full transfer – the automatic line/level subsubset selection for the line transfer (see Section7.8.1) –
can be done and may give some speed up in some cases for the lineray-tracing.
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Chapter 10

More information about the gridding

We already discussed the various types of grids in Section5.3, and the grid input file structure is described in Section
A.2. In this chapter let us take a closer look at the gridding possibilities and things to take special care of.

10.1 Regular grids

A regular grid is called “grid style 0” in RADMC-3D. It can be used in Cartesian coordinates as well as in spherical
coordinates (Section5.2).

A regular grid, in our definition, is a multi-dimensional grid which is separable inx, y andz (or in spherical coordi-
nates inr, θ andφ). You specify a 1-D monotonically increasing array of valuesx1, x2, · · · , xnx+1 which represent
the cell walls inx − direction. You do the same for the other directions:y1, y2, · · · , yny+1 andz1, z2, · · · , znz+1.
The value of, say,x2 is the same for every position iny andz: this is what we mean with “separable”.

In Cartesian coordinates RADMC-3D enforces perfectly cubic grid cells (i.e. linear grids). But that is only to
make the image sub-pixeling easier (see Section9.6.2). For spherical grids this is not enforced, and in fact it is
strongly encouraged to use non-linear grids in spherical coordinates. Please read Section10.2if you use spherical
coordinates!

In a regular grid you specify the grids in each direction separately. For instance, the x-grid is given by specifying
the cell walls in x-direction. If we have, say, 10 cells in x-direction, we must specify 11 cell wall positions. For
instance:xi = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. For they-direction andz-direction likewise. Fig.10.1shows
an example of a 2-D regular grid of 4x3 cells. In Cartesian coordinates wemustdefine our model in full 3-D (proper
2-D and 1-D modes are not available, but see Section10.6how to simulate a 1-D plane-parallel mode). In Cartesian
coordinates the cell sizesmustbe perfectly cubical, i.e. the spacing in each direction must be the same. If you need
a finer grid in some location, you can use the AMR capabilitiesdiscussed below.

In spherical coordinates you can choose between 1-D spherically symmetric models, 2-D axisymmetric models
or fully 3-D models. In spherical coordinates you donot have restrictions to the cell geometry or grid spacing.
You can choose any set of numbersr1, · · · , rnr as radial grid, as long as this set of numbers is larger than 0 and
monotonically increasing. The same is true for theθ-grid and theφ-grid.

The precise way how to set up a regular grid using theamr grid.inp file is described in SectionA.2.1. The input
of any spatial variables (such as e.g. the dust density) usesthe sequence of grid cells in the same order as the cells
are specified in thatamr grid.inp file.

10.2 Separable grid refinement in spherical coordinates (important!)

Spherical coordinates are a very powerful way of dealing with centrally-concentrated problems. For instance, col-
lapsing protostellar cores, protoplanetary disks, disk galaxies, dust tori around active galactic nuclei, accretiondisks
around compact objects, etc. In other words: problems in which a single central body dominates the problem, and

64



yc[2]

ix=1 ix=2 ix=3 ix=4

xi[1] xi[3] xi[4]xi[2] xi[5]
xc[1] xc[2] xc[3] xc[4]

iy=3

iy=1

iy=2

yi[1]

yi[3]

yi[2]

yi[4]

yc[1]

yc[3]

Figure 10.1.Example of a regular 2-D grid withnx =4 andny =3.

material at all distances from the central body matters. Forexample a disk around a young star goes all the way
from 0.01 AU out to 1000 AU, covering 5 orders of magnitude in radius. Spherical coordinates are the easiest way
of dealing with such a huge radial dynamic range: you simply make a radial grid, where the grid spacingri+1 − ri

scales roughly withri.

This is called alogarithmic radial grid. This is a grid whith a spacing in which(ri+1 − ri)/ri is constant withr.
In this way you assure that you have always the right spatial resolution inr at each radius. In spherical coordinates
it is highly recomended to use such a log spacing. But you can also refine ther grid even more (in addition to the
log-spacing). This is also strongly recommended near the inner edge of a circumstellar shell, for instance. Or at the
inner dust rim of a disk. There you must refine ther grid (by simply making the spacing smaller as you approach the
inner edge from the outside) to assure that the first few cellsare optically thin and that there is a gradual transition
from optically thin to optically thick as you go outward. This is particularly important for, for instance, the inner
rim of a dusty disk.

In spherical coordinates you can vary the spacing inr, θ andφ completely freely. That means: you could have for
instancer to be spaced as1.00, 1.01, 1.03, 1.05, 1.1, 1.2, 1.35, · · ·. There is no restriction, as long as the coordinate
points are monotonically increasing.

For models of accretion disks it can, for instance, be usefulto make sure that there are more grid points ofθ near
the equatorial planeθ = π/2. So the grid spacing betweenθ = 0.0 andθ = 1.0 may be very coarse while between
θ = 1.0 andθ = π/2 you may put a finer grid. All of this “grid refinement” can be done without the “AMR”
refinement technique: this is the “separable” grid refinement, because you can do this separately forr, for θ and for
φ.

Sometimes, however, separable refinement may not help you torefine the grid where necessary. For instance: if you
model a disk with a planet in the disk, then you may need to refine the grid around the planet. You could refine the
grid in principle in a separable way, but you would then have alarge redundancy in cells that are refined by far away
from the planet. Or if you have a disk with an inner rim that is not exactly atr = rrim, but is a rounded-off rim. In
these cases you need refinement exactly located at the regionof interest. For that you need the “AMR” refinement
(Sections10.3and10.4).
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Figure 10.2. Example of a 2-D grid with oct-tree refinement. The base grid hasnx =4 andny =3. Three levels of
refinement are added to this base grid.

10.3 Oct-tree Adaptive Mesh Refinement

An oct-tree refinened grid is called “grid style 1” in RADMC-3D. It can be used in Cartesian coordinates as well as
in spherical coordinates (Section5.2).

You start from a normal regular base grid (see Section10.1), possibly even with “separable refinement” (see Section
10.2). You can then split some of the cells into 2x2x2 subcells (ormore precisely: in 1-D 2 subcells, in 2-D 2x2
subcells and in 3-D 2x2x2 subcells). If necessary, each of these 2x2x2 subcells can also be split into further subcells.
This can be repeated as many times as you wish until the desired grid refinement level is reached. Each refinement
step refines the grid by a factor of 2 in linear dimension, which means in 3-D a factor of 8 in volume. In this way
you get, for each refined cell of the base grid, a tree of refinement. The base grid can have any size, as long as the
number of cells in each direction is an even number. For instance, you can have a 6x4 base grid in 2-D, and refine
cell (1,2) by one level, so that this cell splits into 2x2 subcells.

Note that it is important to set which dimensions are “active” and which are “non-active”. For instance, if you have
a 1-D model with 100 cells and you tell RADMC-3D (see SectionA.2.2) to make a base grid of 100x1x1 cells, but
you still keep all three dimensions “active” (see SectionA.2.2), then a refinement of cell 1 (which is actually cell
(1,1,1)) will split that cell into 2x2x2 subcells, i.e. it will also refine in y and z direction. Only if you explicitly
switch the y and z dimensions off the AMR will split it into just 2 subcells.

Oct-tree mesh refinement is very powerful, because it allowsyou to refine the grid exactly there where you need
it. And because we start from a regular base grid like the gridspecified in Section10.1, we can start designing our
model on a regular base grid, and then refine where needed. SeeFig. 10.2

The AMR stand for “Adaptive Mesh Refinement”, which may suggest that RADMC-3D will refine internally. At
the moment this is not yet the case. The “adaptive” aspect is left to the user: he/she will have to “adapt” the grid
such that it is sufficiently refinened where it is needed. In the future we may allow on-the-fly adaption of the grid,
but that is not yet possible now.

One problem with oct-tree AMR is that it is difficult to handlesuch grids in external plotting programs, or even in
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programs that set up the grid. While it is highly flexible, it is not very user-friendly. Typically you may use this
oct-tree refinement either because you import data from a hydrodynamics code that works with oct-tree refinement
(e.g. FLASH, RAMSES), or when you internally refine the grid using theuserdef module.f90 (see Chapter13).
In the former case you are anyway forced to manage the complexities of AMR, while in the latter case you can
make use of the AMR modules of RADMC-3D internally to handle them. But if you do not need to full flexibility
of oct-tree refinement and want to use a simpler kind of refinement, then you can use RADMC-3D’s alternative
refinement mode: the layer-style AMR described in Section10.4below.

The precise way how to set up such an oct-tree grid using theamr grid.inp file is described in SectionA.2.2. The
input of any spatial variables (such as e.g. the dust density) uses the sequence of grid cells in the same order as the
cells are specified in thatamr grid.inp file.

10.4 Layered Adaptive Mesh Refinement

A layer-style refinened grid is called “grid style 10” in RADMC-3D. It can be used in Cartesian coordinates as well
as in spherical coordinates (Section5.2).

This is an alternative to the full-fledged oct-tree refinement of Section10.3. The main advantage of the layer-style
refinement is that it is far easier to handle by the human brain, and thus easier for model setup and the analysis of
the results.

The idea here is that you start again with a regular grid (likethat of Section10.1), but you can now specify a
rectangular region which you want to refine by a factor of 2. The way you do this is by choosing the starting indices
of the rectangle and specifying the size of the rectangle by setting the number of cells in each direction from that
starting point onward. For instance, setting the starting point at (2,3,1) and the size at (1,1,1) will simply refine just
cell (2,3,1) of the base grid into a set of 2x2x2 sub-cells. But setting the starting point at (2,3,1) and the size at
(2,2,2) will split cells (2,3,1), (3,3,1), (2,4,1), (3,4,1), (2,3,2), (3,3,2), (2,4,2) and (3,4,2) each into 2x2x2 subcells.
This in fact is handled as a 4x4x4 regular sub-grid patch. Andsetting the starting point at (2,3,1) and the size at
(4,6,8) will make an entire regular sub-grid patch of 8x12x16 cells. Such a sub-grid patch is called alayer.

The nice thing of these layers is that each layer (i.e. subgrid patch) is handled as a regular sub-grid. The base grid is
layer number 0, and the first layer is layer number 1, etc. Eachlayer (including the base grid) can contain multiple
sub-layers. The only restriction is that each layer fits entirely inside its parent layer, and layers with the same parent
layer should not overlap. Each layer can thus have one or moresub-layers, each of which can again be divided into
sub-layers. This builds a tree structure, with the base layer as the trunk of the tree (this is contrary to the oct-tree
structure, where each base gridcell forms the trunk of its own tree). In Fig.10.3an example is shown of two layers
with the same parent (= layer 0 = base grid), while in Fig.10.4an example is shown of two nested layers.

If you now want to specify data on this grid, then you simply specify it on each layer separately, as if each layer
is a separate entity. Each layer is treated as a regular grid,irrespective of whether it contains sub-layers or not. So
if we have a base grid of 4x4x4 grid cells containing two layers: one starting at (1,1,1) and having (2,2,2) size and
another starting at (3,3,3) and having (1,1,2) size, then wefirst specify the data on the 43=64 base grid, then on
the (2*2)3=64 grid cells of the first layer and then on the 2x2x4=16 cellsof the second layer. Each of these three
layers are regular grids, and the data is inputted/outputted in the same way as if these are normal regular grids (see
Section10.1). But instead of just one such regular grid, now the data file (e.g.dust density.inp ) will contain
three successive lists of numbers, the first for the base grid, the second for the first layer and the last for the second
layer. You may realize at this point that this will introducea redundancy. See Subsection10.4.1for a discussion of
this redundancy.

The precise way how to set up such an oct-tree grid using theamr grid.inp file is described in SectionA.2.3. The
input of any spatial variables (such as e.g. the dust density) uses the sequence of grid cells in the same order as the
cells are specified in thatamr grid.inp file.

10.4.1 On the “successively regular” kind of data storage, and its slight redundancy

With the layered grid refinement style there will beredundantdata in the data files (such as e.g. thedust density.inp

file. Each layer is a regular (sub-)grid and the data will be specified in each of these grid cells of that regular (sub-
)grid. If then some of these cells are overwritten by a higher-level layer, these data are then redundant. We could
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Figure 10.3. Example of a 2-D base grid withnx =4 andny =3, with two AMR-layers added to it. This example
has just one level of refinement, as the two layers (brown and gree) are on the same level (they have the same parent
layer = layer 0).
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Figure 10.4. Example of a 2-D base grid withnx =4 andny =3, with two nested AMR-layers added to it. This
example has two levels of refinement, as layer 1 (brown) is theparent of layer 2 (green).
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of course have insistent that only the data in those cells that are not refined by a layer should be written to (or read
from) the data files. But this would require quite some cleverprogramming on the part of the user to a-priori find
out where the layers are and therefore which cells should be skipped. We have decided that it is far easier to just
insist that each layer (including the base grid, which is layer number 0) is simply written to the data file as a regular
block of data. The fact that some of this data will be not used (because they reside in cells that are refined) means
that we write more data to file than really exists in the model.This makes the files larger than strictly necessary, but
it makes the data structure by far easier. Example: suppose you have a base grid of 8x8x8 cells and you replace the
inner 4x4x4 cells with a layer of 8x8x8 cells (each cell beinghalf the size of the original cells). Then you will have
for instance adust density.inp file containing 1024 values of the density: 83=512 values for the base grid and
again 83=512 values for the refinement layer. Of the first 83=512 values 43=64 values are ignored (they could have
any value as they will not be used). The file is thus 64 values larger than strictly necessary, which is a redundancy of
64/1024=0.0625. If you would have used the oct-tree refinement style for making exactly the same grid, you would
have only 1024-64=960 values in your file, making the file 6.25% smaller. But since 6.25% is just a very small
difference, we decided that this is not a major problem and the simplicity of our “successively regular” kind of data
format is more of an advantage than the 6.25% redundance is a disadvantage.

10.5 Unstructured grids

In a future version of RADMC-3D we will include unstructuredgridding as a possibility. But at this moment such
a gridding is not yet implemented.

10.6 1-D Plane-parellel grid

Sometimes it can be useful to make simple 1-D plane parallel models, for instance if you want to make a simple 1-D
model of a stellar atmosphere. RADMC-3D doesnothave a 1-D plane-parallel mode.Butyou can simulate a plane-
parallel mode by making a 1-D spherically symmetric model inwhich you make, for instance, a radial grid in which
rnr/r1−1 ≪ 1. An example:r = {10000.0, 10000.1, 10000.2, · · · , 10001.0}. This is not perfectly plane-parallel,
but sufficiently much so that the difference is presumably indiscernable. The spectrum is then automatically that
of the entire large sphere, but by dividing it by the surface area, you can recalculate the local flux. In fact, since
a plane-parallel model usually is meant to approximate a tiny part of a large sphere, this mode is presumably even
more realistic than a truly 1-D plane-parallel model.

70



Chapter 11

More information about the treatment of
stars

How stars are treated in RADMC-3D is perhaps something that needs some more background information. This is
the structure:

1. Stars as individual objects:
The most standard way of injecting stellar light into the model is by putting one or more individual stars in
the model. A star can be placed anywhere, both inside the gridand outside. The main input file specifying
their location and properties is:stars.inp . The stars can be treated in two different ways, depending onthe
setting of the variablestars sphere that can be set to 0 or 1 in the fileradmc3d.inp file.

• The default is to treat stars as zero-size point sources. This is the way it is done if (as is the default)
stars sphere=0 . The stars are then treated as point sources in spite of the fact that their radius is
specified as non-zero in thestars.inp file. This default mode is the easiest and quickest. For most
purposes it is perfectly fine. Only if you have material very close to a stellar surface it may be important
to treat the finite size(s) of the star(s).

• If stars sphere=1 in theradmc3d.inp file, then all stars are treated as spheres, their radii beingthe
radii specified in thestars.inp file. This mode can be tricky, so please read Section11.2.

2. Smooth distributions of zillions of stars:
For modeling galaxies or objects of that size scale, it is of course impossible and unnecessary to treat each star
individually. Soin addition to the individual starsyou can specify spatial distributions of stars, assuming that
the number of stars is so large that there will always be a verylarge number of them in each cell. Please note
that using this possibility doesnot exclude the use of individual stars as well. For instance, for a galaxy you
may want to have distributions of unresolved stars, but one single “star” for the active nucleus and perhaps
a few individual “stars” for bright star formation regions or O-star clusters or so. The distribution of stars is
described in Section11.3.

3. An external “interstellar radiation field”:
Often an object is affected not only by the stellar radiationfrom the stars inside the object itself, but also by the
diffuse radiation from the many near and far stars surrounding the object. This “Interstellar Radiation Field”
can be treated by RADMC-3D as well. This is called the “external source” in RADMC-3D. It is described in
Section11.4.

11.1 Stars treated as point sources

By default the stars are treated as point-sources. Even if the radius is specified as non-zero in thestars.inp file,
they are still treated as points. The reason for this is that it is much easier and faster for the code to treat them as
point-sources. Point sources cannot occult anything in thebackground, and nothing can partly occult them (they are
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only fully or not occulted, of course modulo optical depth ofthe occulting object). This approximation is, however,
not valid if the spatial scales you are interested in are not much larger (or even the same or smaller) than the size of
the star. For instance, if we are interested in modeling the radiative transfer in a disk around a Brown Dwarf, where
dust can survive perhaps even all the way down to the stellar surface, we must take the non-point-like geometry of
the star into account. This is because due to its size, the star can shinedownonto the disk, which would not be
possible if the star is treated as a point source. However, for a dust disk arounda Herbig Ae star, where the dust
evaporation radius is at about 0.5 AU, the star can be treatedas a point-source without problems.

So if you just use RADMC-3D as-is, or if you explicitly setstars sphere = 0 in the fileradmc3d.inp , then the
stars are all treated as point sources.

11.2 Stars treated as spheres

For problems in which the finite geometrical size of the star (or stars) is/are important, RADMC-3D has a mode
by which the stars are treated as spheres. This can be necessary for instance if you model a disk around a Brown
Dwarf, where the dusty disk goes all the way down to the stellar surface. The finite size of the star can thus shine
downonto the disk, but only if its finite size is treated as such. Inthe default point-source approximation the surface
layers of such a disk would be too cold, because this “shiningdown onto the disk” phenomenon is not treated.

You can switch this mode on by settingistar sphere = 1 in the fileradmc3d.inp . Note that no limb darkening
or brightening is included in this mode, and currently RADMC-3D does not have such a mode available.

This mode is, however, somewhat complex. A sphere can partlyoverlap the grid, while being partly outside the
grid. A sphere can also overlap multiple cells at the same time, engulfing some cells entirely, while only partly
overlapping others. The correct and fast treatment of this makes the code a bit slower, and required some complex
programming. So the user is at the moment advised to use this mode only if necessary and remain aware of possible
errors for now (as of version 0.17).

For the Monte Carlo simulations the finite star size means that photon packages are emitted from the surface of the
sphere of the star. It also means that any photon that re-enters the star during the Monte Carlo simulation is assumed
to be lost.

11.3 Distributions of zillions of stars

For models of galaxies it is important to be able to have distributed stellar sources instead of individual stars. The
way to implement this in a model for RADMC-3D is to

1. Prepare one or moretemplate stellar spectra, for instance, one for each stellar type you wish to include.These
must be specified in the filestellarsrc templates.inp (see SectionA.8). Of course the more templates
you have, the more memory consuming it becomes, which is of particular concern for models on large grids.
You can of course also take a sum of various stellar types as a template. For instance, if we wish to include
a ’typical’ bulge stellar component, then you do not need to treat each stellar type of bulge stars separately.
You can take the ’average spectrum per gram of average star’ as the template and thus save memory.

2. For each template you must specify thespatial distribution, i.e. how many stars of each template star are
there per unit volume in each cell. The stellar density is, infact, given as gram-of-star/cm3 (i.e. not as number
density of stars). The stellar spatial densities are specified in the filestellarsrc density.inp (see Section
A.9).

Note that if you have a filestellarsrc templates.inp in your model directly, then the stellar sources are
automatically switched on. If you do not want to use them, then you must delete this file.

The smooth stellar source distributions are nothing else than source functions for the radiative transfer with the
spectral shape of the template stellar spectra from thestellarsrc templates.inp . You will see that if you
make a spectrum of your object, then even if the dust temperature etc is zero everywhere, you still see a spectrum:
that of the stellar template(s). In the Monte Carlo simulations these stellar templates act as net sources of photons,
that subsequently move through the grid in a Monte Carlo way.
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Note that the smooth stellar source distributions assume that the zillions of stars that they represent are so small that
they do not absorb any appreciable amount of radiation. Theyare therefore pure sources, not sinks.

11.4 The interstellar radiation field: external source of energy

You can include anisotropic interstellar radiation field in RADMC-3D. This will take effect both in the making of
spectra and images, as well as in the Monte Carlo module.

The way to activate this is to make a fileexternal source.inp and fill it with the information needed (see Section
A.10).

11.4.1 Role of the external radiation field in Monte Carlo simulations

For the Monte Carlo simulations this means that photons may be launched from outside inward. The way that this
is done is that RADMC-3D will make a sphere around the entire grid, just large enough to fit in the entire grid but
not larger. Photon packages can freely leave this sphere. But if necessary, photon packages can be launched from
this sphere inward. RADMC-3D will then calculate the total luminosity of this sphere, which isL = 4π2Ir2

sphere

whereI is the intensity. For monochromatic Monte Carlo it is simplyI = Iν , while for the thermal Monte Carlo it
is I =

∫
∞

0
Iνdν, whereIν is the intensity as specified in the fileexternal source.inp . Note that if the sphere

would have been taken larger, then the luminosity of the external radiation field would increase. This may seem
anti-intuitive. The trick, however, is that if the sphere islarger, then also more of these interstellar photons never
enter the grid and are lost immediately. That is why it is so important that RADMC-3D makes the sphere as small
as possible, so that it limits the number of lost photon packages. It also means that you, the user, would make
the grid much larger than the object you are interested in, then RADMC-3D is forced to make a large sphere, and
thus potentially many photons will get lost: they may enter the outer parts of the grid, but there they will not get
absorbed, nor will they do much.

In fact, this is a potential difficulty of the use of the external sources: since the photon packages are lauchned
from outside-inward, it may happen that only few of them willenter in the regions of the model that you, the user,
are interested in. For instance, you are modeling a 3-D molecular cloud complex with a few dense cold starless
cores. Suppose that no stellar sources exist in this model, only the interstellar radiation field. The temperature in
the centers of these starless cores will be determined by theinterstellar radiation field. But since the cores are very
small compared to the total model (e.g. you have used AMR to refine the grid around/in these cores), the chance of
each external photon package to ‘hit’ the starless core is small. It means that the larger the grid or the smaller the
starless core, the more photon packages (nphot , see Section6.1) one must use to make sure that at least some of
them enter the starless cores. If you choosenphot too small in this case, then the temperature in these cores would
remain undetermined (i.e. they will be zero in the results).

11.4.2 Role of the external radiation field in images and spectra

The interstellar radiation field also affects the images andspectra that you make. Every ray will start at minus-
infinity with the intensity given by the external radiation field, instead of 0 as it would be if no external radiation
field is specified. If you make an image, the background of yourobject will then therefore not be black. You can
even make silhouette images like those of the famous silhouette disks in Orion.

But there is a danger: if you make spectra, then also the background radiation is inside the beam, and will thus
contribute to the spectrum. In fact, the larger you make the beam the more you will pick up of the background. This
could thus lead to the spectrum of your source to be swamped bythe background if you do not specify a beam in
the spectrum.
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Chapter 12

Using RADMC-3D in child mode (optional)

For large datasets it may take a considerable amount of time for RADMC-3D to read the entire dataset into mem-
ory. Having to wait such a long time for every action one wantsto take (e.g. re-making an image at a different
vantage point or a different wavelength) quickly gets on one’s nerves and strongly inhibits the interactivity between
RADMC-3D and the user. The “child mode” is designed to circumvent this problem. It allows RADMC-3D to be
started as a child process of another process, stay in memory(with all the data loaded once-and-for-all) for as long
as the parent process lives, and have communication with itsparent process via a bi-way pipe. A bi-way pipe is like
a file to which you can write or from which you can read. Your parent process, which calls RADMC-3D as a child,
can give RADMC-3D the command to do something by writing to the pipe file unit, and then receiving the results
from RADMC-3D by reading from that same file unit.

The IDL programviewimage.pro (see chapter14), which is part of the RADMC-3D package, calls RADMC-3D
as a child process and communicates with it in precisely thisway.

NOTE: Currently there appears to be a problem when trying to use RADMC-3D in child mode on some systems. For
instance, viewimage may freeze. This appears to be a problemwith buffering of the standard I/O unit. I have been
trying to figure out what causes this, and particularly, why it happens on some machines and not on other machines
(in fact it happened on one Macbook but not on another, while the systems were seemingly identical). I will continue
to work on this. When calling viewimage and the thing freezes, try calling viewimage,/nochild. That is slower, but
should work.

In IDL this is done with the keywordunit=unit in thespawn command. For instance, in viewimage.pro there is
a line

spawn,’nice radmc3d child’,unit=iounit

The nice is simply to let RADMC-3D run at a low priority under Linux or Mac OS X, thechild command
line option is a RADMC-3D specific command line option that tells RADMC-3D that it should not exit after its
first action, but wait further orders. Theunit=iounit gets the file unit through which we can communicate with
RADMC-3D. Of course, by virtue of the fact that RADMC-3D is called by IDL in the first place, it is naturally
IDL’s child process. But by asking RADMC-3D not to exit afterthe first action, and by getting the file unit from the
keywordunit= , RADMC-3D will wait for our commands and only exit when we tell it so by giving it the command
quit .

The way we can communicate with RADMC-3D is by writing to the file iounit commands like the ones on the
command line. But contrary to the normal command line, they are now given one word per line. For instance, to let
RADMC-3D make an image at wavelength numberilambda (from IDL):

printf,iounit,’image’
printf,iounit,’npix’
printf,iounit,strcompress(string(npix),/remove_all)
printf,iounit,’ilambda’
printf,iounit,strcompress(string(ilambda),/remove_a ll)
printf,iounit,’incl’
printf,iounit,strcompress(string(incl),/remove_all)
printf,iounit,’phi’
printf,iounit,strcompress(string(phi),/remove_all)
printf,iounit,’enter’
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The enter is meant to tell RADMC-3D: now go and do your work. In fact, yourarely have to interact like this
with RADMC-3D youself, because you can use the IDL subroutinemakeimage() in thereadradmc.pro file that
does all these things for you; just set the keywordiounit to the value you obtained from startingradmc3d in child
mode.

In child mode the results fromradmc3d are not returned immediately to the parent. To askradmc3d for the results
of its latest calculation (for instance an image), you do:

printf,iounit,’writeimage’

followed by

iformat=0
nx=0
ny=0
nf=0
readf,iounit,iformat
readf,iounit,nx,ny
readf,iounit,nf
readf,iounit,sizepix_x,sizepix_y
lambda=dblarr(nf)
readf,iounit,lambda
image=fltarr(nx,ny,nf)
readf,iounit,image

But again you don’t have to do this complex stuff yourself. Instead this is done for you by thereadimage() IDL
routine in thereadradmc.pro file, again wheniounit is specified.

So IDL users can simply do (in IDL):

.r readradmc
;
; Start RADMC-3D
;
spawn,’nice radmc3d child’,unit=iounit
;
; Make an image
;
makeimage,incl=45.,phi=10.,npix=200,ifreq=10,iounit =iounit
;
; Read the image from RADMC-3D
;
a=readimage(iounit=iounit)
;
; Plot the image on the screen
;
plotimage,a
;
; ...and here many more images or spectra...
; ....
; ....
;
; And when we are done, quit RADMC-3D and free the file number
;
printf,iounit,’quit’
close,iounit
free_lun,iounit

Tip: If you use RADMC-3D in child mode, then all the usual output that normally would go to screen will now be
redirected to a separate file calledradmc3d.out . This is useful for debugging the code when using it in child mode.
So if RADMC-3D fails somehow when in child mode, then have a look atradmc3d.out to see what went wrong.
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Chapter 13

Using the userdefmodule.f90 file for
internal model setup (optional)

It has been mentioned several times before that as an alternative to the standard ‘compile once-and-for-all’ philoso-
phy, one can also use RADMC-3D by modifying the code directlyso thatradmc3d will have new functionality that
might be of use for you. We refer to Section4.5for an in-depth description of how to modify the code in a way that
is non-invasiveto the main code. We urge the reader to read Section4.5first before continuing to read this chapter.
In all of the following we assume that the editings to the fortran files are done in the local way described in Section
4.5so that the original source files in thesrc/ directory stay unaffected, and only local copies are edited.

The most common reason for editing the code itself is for setting up the modelinternally rather than reading in
all data via input files. This is what this chapter is about. For a list of advantages and disadvantages of setting
models up internally as opposed to the standard way, see Section 13.2 below. This is done by editing the file
userdef module.f90 . This file contains a set of standard subroutines that are called by the main program at
special points in the code. Each subroutine has a special purpose which will be described below. By keeping a
subroutine empty, nothing is done. By filling it with your owncode lines, you can set up the density, temperature or
whatever needs to be set up for the model. In addition to this you can do the following as well:

• Add new variables or arrays in the module header (above thecontains command), which you can use in
the subroutines of theuserdef module.f90 module. You are completely free to add any new variables you
like. A small tip: it may be useful (though not required) to start all their names with e.g.userdef to make
sure that no name conflicts with other variables in the code happen.

• Add new subroutines at will (below thecontains command) which you can call from within the standard
subroutines.

• Introduce your ownradmc3d command-line options (see Section13.1).

• Introduce your ownradmc3d.inp namelist variables (see Section13.1).

13.1 The pre-defined subroutines of the userdefmodule.f90

The idea of theuserdef module.f90 is that it contains a number of standard pre-defined subroutines that are
called from themain.f90 code (andonly from there). Just browse through themain.f90 file and search for the
sequence “call userdef ” and you will find all the points where these standard routines are called. It means that
at these points you as the user have influence on the process ofmodel setup. Here is the list of standard routines and
how they are used. They are ordered roughly in chronologicalorder in which they are called.

• userdef defaults()

This subroutine allows you to set the default value of any newparameters you may have introduced. If neither
on the command line nor in theradmc3d.inp file the values of these parameters are set, then they will simply
retain this default value.
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• userdef commandline(buffer,numarg,iarg,fromstdi,gotit)

This subroutine allows you to add your own command-line options for radmc3d . The routine has a series
of standard arguments which you are not allowed to change. The buffer is a string containing the current
command line option that is parsed. You will check here if it is an option of your module, and if yes, activate
it. An example is listed in the code. You an also require a second argument, for which also an example is
listed in the original code.

• userdef commandline postprocessing()

After the command line options have been read, it can be useful to check if the user has not asked for con-
flicting things. Here you can do such checks.

• userdef parse main namelist()

Here you can add your own namelist parameters that read from the radmc3d.inp file. An example is pro-
vided in the original code.

• userdef main namelist postprocessing()

Also here, after the entireradmc3d.inp file has been read and interpreted, you can do some consistency
checks and postprocessing here.

• userdef prep model()

This routine can be used if you wish to set up the grid not from input files but internally. You will have
to know how to deal with theamr module.f90 module. You can also set your own global frequency grid
here. And finally, you can set your own stellar sources here. In all cases, if you set these things here (which
requires you to make the proper memory allocations, or in case of the gridding, let theamr module.f90 do
the memory allocations for you) the further course ofradmc3d will skip any of its own settings (it will simply
detect if these arrays are allocated already, and if yes, it will simply not read or allocate them anymore).

• userdef setup model()

This is the place where you can actually make your own model setup. By the time this subroutine is called, all
your parameters have been read in, as well as all of the other parameters from the originalradmc3d code. So
you can now set up the dust density, or the gas velocity or you name it. For all of these things you will have
to allocate the arrays youself (!!!). Once you did this, the rest of theradmc3d code won’t read those data
anymore, because it detects that the corresponding arrays have already been allocated (by you). This allows
you to completely circumvent the reading of any of the following files by making these data yourself here at
this location:

– amr grid.inp or amr grid.uinp or in the future the input files for any of the other griding types.

– dust density.inp or dust density.uinp

– dust temperature.dat or dust temperature.udat

– gas density.inp or gas density.uinp

– gas temperature.inp or gas temperature.uinp

– gas velocity.inp or gas velocity.uinp

– microturbulence.inp or microturbulence.uinp

– levelpop XXX.inp or levelpop XXX.uinp

– numberdens XXX.inp or numberdens XXX.uinp

To learn how to set up a model in this way, we refer you for now totheioput module.f90 or lines module.f90

and search for the above file names to see how the arrays are allocated and how the data are inserted. I apolo-
gise for not explaining this in more detail at this point. Butexamples are or will be given in theexamples/

directory.

• userdef dostuff()

This routine will be called by the main routine to allow you todo any kind of calculation after the main
calculation (for instance after the monte carlo simulation). This is done within the execution-loop, so that if
you use RADMC-3D in child mode, this routine will be called after each calculation.
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• userdef myaction()

If RADMC-3D is called asradmc3d myaction , then the user-defined routineuserdef myaction() is
called, just like the spectrum making routine is called if you type radmc3d sed . This allows the user to
make RADMC-3D do special things on demand. Note that this canbe used in combination with many of the
above subroutines to interpret command-line options andradmc3d.inp entries.Not yet working in version
0.15.

• userdef compute levelpop()

This is a subroutine that can be called by the camera module for on-the-fly calculation of level populations
according to your own recipe. This may be a bit tricky to use, but I hope to be able to provide some example(s)
in the near future.

• userdef writemodel()

This allows the user to dump any stuff to file that the user computed in this module. You can also use
this routine to write out files that would have been used normally as input file (like amr grid.inp or
dust density.inp ) so that the IDL routines can read them if they need. In particular the grid informa-
tion may be needed by these external analysis tools. Here is alist of standard subroutines you can call for
writing such files:

– write grid file()

– write dust density()

– ...more to come...

• userdef reset flags()

If the user wants some flags to be reset after each command (in the child mode, see Chapter12), then here it
can be done.

For now this is it, more routines will be included in the future.

Note that theuserdef compute levelpop() subroutine, in contrast to all the others, is called not fromthe
main.f90 program but from thecamera module.f90 module. This is why the camera module is the only module
that is higher in compilation ranking than the userdef module (i.e. the userdef module will be compiled before the
camera module). For this reason the userdef module has no access to the variables of the camera module. For the
rest, the userdef module has access to the variables in all other modules.

Note also that not all input data is meant to be generated in this way. The following types of data are still supposed
to be read from file:

• Dust opacity data

• Molecular fundamental data

Please have a look in theexamples/ directory for models which are set up in this internal way.

13.2 Some caveats and advantages of internal model setup

Setting up the models internally has several advantages as well as disadvantages compared to the standard way of
feeding the models intoradmc3d via files. The advantages are, among others:

• You can modify the model parameters inradmc3d.inp and/or in the command line options (depending on
how you allow the user to set these parameters, i.e. in theuserdef parse main namelist() routine and/or
in theuserdef commandline() routine. You then do not need to run IDL anymore (except for setting up
the basic files; see examples). Some advantages of this:

1. It allows you, for instance, to create a version of theradmc3d code that acts as if it is a special-purpose
model. You can specify model parameters on the command line (rather than going through the cumber-
some IDL stuff).
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2. It is faster: even a large model is built up quickly and doesnot require a long read from large input files.

• You can make use of the AMR module routines such as theamr branch refine() routine, so you can
adaptively refine the grid while you are setting up the model.

Some of the disadvantages are:

• The model needs to be explicitly written out to file and read into IDL or any other data plotting package before
you can analyze the density structure to test if you’ve done it right. You can explicitly ask./radmc3d to call
theuserdef writemodel() subroutine (which is supposed to be writing out all essential data; but that is
the user’s responsibility) by typing./radmc3d writemodel .

• Same is true for the grid, and this is potentially even more dangerous if not done. You can explicitly
ask ./radmc3d to write out the grid file by typing./radmc3d writegridfile . Note that if you call
the write grid file() subroutine from withinuserdef writemodel() , then you do not have to ex-
plicitly type ./radmc3d writegridfile as well. Note also thatradmc3d will automatically call the
write grid file() subroutine when it writes the results of the thermal Monte Carlo computation, iff it
has its grid from inside (i.e. it has not read the grid from thefile amr grid.inp .

• It requires a bit more knowledge of the internal workings of the radmc3d code, as you will need to directly
insert code lines in theuserdef module.f90 file.

13.3 Using the userdef module to compute integrals ofJν

With the monochromatic Monte Carlo computation (see Section 6.4) we can calculate the mean intensityJν at every
location in the model at a user-defined set of wavelengths. However, as mentioned before, for large models and large
numbers of wavelengths this could easily lead to a data volume that is larger than what the computer can handle.
Since typically the main motivation for computingJν is to compute some integral of the the form:

Q =

∫
∞

0

JνKνdν (13.1)

whereKν is some cross section function or so, it may not be necessary to store the entire functionJ as a function
of nu. Instead we would then only by interested in the result of this integral at each spatial location.

So it would be useful to allow the user to do this computation internally. We should start by initializingQ(x, y, z) =
0 (or Q(r, θ, φ) = 0 if you use spherical coordinates). Then we call the monochromatic Monte Carlo routine for the
first wavelength we want to include, and multiply the resulting mean intensities with an appropriate∆ν and add this
to Q(x, y, z). Then we do the monochromatic Monte Carlo for the next wavelength and again add toQ everywhere.
We repeat this until our integral (at every spatial locationon the grid) is finished, and we are done. This saves a
huge amount of memory.

Since this is somewhat hard to explain in this PDF document, we refer to the example modelrun example jnu integral/ .

STILL IN PROGRESS.

13.4 Some tips and tricks for programming user-defined subroutines

Apart from the standard subroutines thatmustbe present in theuserdef module.f90 file (see Section13.1), you
are free to add any subroutines or functions that you want, which you can call from within the predefined subroutines
of Section13.1. You are completely free to expand this module as you wish. You can add your own variables, your
own arrays, allocate arrays, etc.

Sometimes you may need to know “where you are” in the grid. Forinstance, the subroutineuserdef compute levelpop()

is called with an argumentindex . This is the index of the current cell from within which the subroutine has been
called. You can now address, for instance, the dust temperature at this location:

temp = dusttemp(1,index)
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(for the case of a single dust species). You may also want to know the coordinates of the center of the cell. For this,
you must first get a pointer to the AMR-tree structure of this cell. The pointerb is declared as

type(amr_branch), pointer :: b

Then you can point the pointer to that cell structure

b => amr_index_to_leaf(index)%link

And now you can get the x,y,z-coordinates of the center of thecell:

xc = amr_finegrid_xc(b%ixyzf(1),1,b%level)
yc = amr_finegrid_xc(b%ixyzf(2),2,b%level)
zc = amr_finegrid_xc(b%ixyzf(3),3,b%level)

Or the left and right cell walls:

xi_l = amr_finegrid_xi(b%ixyzf(1),1,b%level)
yi_l = amr_finegrid_xi(b%ixyzf(2),2,b%level)
zi_l = amr_finegrid_xi(b%ixyzf(3),3,b%level)
xi_r = amr_finegrid_xi(b%ixyzf(1)+1,1,b%level)
yi_r = amr_finegrid_xi(b%ixyzf(2)+1,2,b%level)
zi_r = amr_finegrid_xi(b%ixyzf(3)+1,3,b%level)
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Chapter 14

Model analysis (I): The IDL model analysis
tool set

While the code RADMC-3D is written in fortran-90, there is anextensive set of tools written in IDL that make it
easier for the user to set up models and interpret results. See Section4.4 for where they are and how they can be
properly installed so that they are easy to use. Here we describe these tools.

14.1 The readradmc.pro tools

The readradmc.pro program file contains a series of subroutines for reading RADMC-3D output into IDL so
that the user can do post-processing and analysis on these data. The file also contains subroutines for operating
RADMC-3D directly from within IDL.

14.1.1 Function readimage

Thereadimage() function reads the latest produced image into IDL. This image is (i.e. should be) located in the
file image.out , which is produced by RADMC-3D. Thereadimage() function returns an IDL structure contain-
ing the image (be it a single-frequency image or a multi-frequency image) in units of intensity (erg/s/cm2/Hz/ster),
as well as information about the pixel grid and at which frequency(ies) the image was taken. With the “help”
command you can see the full contents of the returned structure:

.r readradmc.pro
a=readimage()
help,a,/str

This will show you the contents of the structure. Here is a quick summary of these contents:

nx, ny : The number of pixels in x- and y- direction in the image

nrfr : The number of frequencies (wavelengths), i.e. the number of images at different wavelengths

sizepix x, y : The size of the pixels in x- and y- directions in units of centimeters. This is of course only
possible for images at semi-infinity (the default). For images made as a local observer, see Section9.10for
details.

image : The nx×ny array of intensities of the image. If multiple colors (wavelengths, frequencies) are present,
then theimage array will be three-dimensional: nx×ny×nrfr. The intensities are in units of erg/cm2/s/Hz/ster.

flux : The integral of the intensity over the entire image, i.e. the flux in the image. The units are erg/cm2/s/Hz
for an observer at 1 parsec distance. This “1 parsec” is just anormalization distance. If you make images
of objects much larger than 1 parsec in size, this doesnot mean that the image is made by a local observer
(unless explicitly specified, see Section9.10). It is just so that you can compute the actually observed flux
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by multiplying the flux by a factor(pc/d)2, whered is the true distance of the observer (which must then be
much larger than the size of the object to keep the far-field limit valid).

x,y : The actual image coordinates in cm (unless local observer,see Section9.10). These are in principle
redundant because you can calculate them yourself from thesizepix x, y andnx, ny values. They are
here just for convenience.

lambda : The wavelength (in micron) at which this image was made. Formultiple colors/freqs/wavelengths
this is an array.

The readimage() function can also be used to read from a pipe between IDL and RADMC (see “child mode” in
Chapter12). One then gives it as an argument the file number of the pipe (see example shown in Chapter12). This
is in fact what is done byviewimage.pro below.

14.1.2 Subroutine plotimage

The subroutineplotimage plots the image read byreadimage() to screen (or postscript file) in a proper way.
Check out the following example (to be executed only after the dust temperatures have been written to filedust temperature.dat ):

.r readradmc.pro
a=readimage()
plotimage,a,/au

This subroutine is in fact used by theviewimage.pro below to display images on the drawing pane of the GUI
widget. Theplotimage subroutine has a large number of optional arguments:

/au or /pc : Display spatial scales in units of AU or parsec.

/log : Display the image using logarithmic spacing of the brightness levels. This allows you to gain far
greater depth in the image.

/contour : Overplot contours over the image

nlevels : Number of levels for the contours

/noimage : If set, only plot axes

position : An array of 4 numbers specifying position of plot on the canvas. Like position keyword in typical
IDL plotting routines.

maxlog : Set the maximum number of factors of 10 the log brightness color coding will span

saturate : Allows you to enhance the contrast of very weak emission regions by saturating bright regions

/jpg : Write the image to a JPEG file

lgrange : A two-valued array specifying the range in brightness (in 10-log) that the image will show

filenr : (For case of /jpg): if set to e.g. 6 it will write the JPEG image to file image 6.jpg .

ilam : If the image is a multi-color image, ilam specfies which of the images you wish to plot

coltune : If set to 1, then rescale the brightness of all channels the same value, to get the best color depth. If
set to a 3-element array, you can directly specify the weightof each color. In this way you can really fine-tune
the colors.

zoom: If set to a 4-valued array, it makesplotimage put the proper x- and y- axis scaling for the particular
zoom-in. Normally the center of the image is taken to be(0, 0), but with this zoom keyword you can set
exactly what the x- and y-axes should display. Warning: it overrides the pixel size specifications in the image.
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14.1.3 Subroutine makeimage

The subroutinemakeimage allows the user to interact with RADMC-3D for making images in an easy way, although
a direct calling of theradmc3d command with the corresponding keywords is almost just as easy. So one can also
consider this as an example routine for calling RADMC-3D formaking images. From within IDL you can call
makeimage as follows:

makeimage,incl=34.,phi=40.,lambda=11.3

Here are the keywords:

incl : The inclination of the object on the sky of the observer.incl =0 means a view from the northpole
downward,incl =180 means a view from the southpole upward andincl =90 means an edge-on view.

phi : The rotation of the object along its z-axis. A positivephi means that the object rotates counter-
clockwise, i.e. that the observer rotates clockwise aroundthe object.

npix : Number of pixels (assumed to be the same for x and y)

sizecm / sizeau / sizepc : The size of the image in units of centimeter / AU / parsec. Thesize means
the full width and full height of the square image.

posang : The rotation of the image in the image plane, i.e. the position angle of the image on the sky. Default
is 0.

nofluxcons : If set to 1 (/nofluxcons ) we use the fast ray-tracing method, while if not set (default) we use
the accurate method with sub-pixeling for flux conservation(see Section9.6).

pointcm / pointau / pointpc : A three-valued array giving the 3-D coordinates of the point toward
which we aim our camera. Default is (0.,0.,0.). Units are cm /AU / parsec.

ifreq : If specifying ifreq (putting it to an integer value of 1 or higher) then the wavelength at which the
image is going to be taken is taken from the global frequency array from thewavelength micron.inp file.
The integerifreq is then the index of the wavelength you want to use. Note that this integer starts with 1
(fortran convention).

lambda : If lambda is specified, this will be the wavelength at which the image isto be taken. This wavelength
does not have to be part of the global frequency array. It can be any value, even a value in between wavelength
grid points of the dust opacity files or so. In that case, a linear interpolation of these opacities will then allow
RADMC-3D to nevertheless make the image. So any positive value oflambda is allowed. NOTE: You cannot
specify bothlambda andifreq simultaneously.

nostar : If set, then the star(s) in the model are not included in the images.

zoomau / zoompc : Specify the precise window on the image plane which you liketo zoom in to. Note
that (0., 0.) is the location in the image plane that points to the pointinglocation specified bypointcm

/ pointau / pointpc . NOTE: You cannot specify bothsizecm / sizeau / sizepc andzoomau /

zoompc simultaneously.

plottau : If set to 1, the images will not show the emission at that wavelength but instead the total integrated
optical depth of the ray at that wavelength. This is only useful for debugging purposes.

iounit : For child mode (See chapter12).

NOTE: If you want to make multiple images of the same object, then it may be much too slow if each time a new
image is to be taken, the RADMC-3D code must be restarted and the entire model must be re-read into RADMC-
3D. You can use RADMC-3D in ”child mode” to have it start up just once (and reading all input data just once)
and keeping alive until explicitly told to end. By communicating with it via a pipe you can then quickly get your
images one-by-one while having the slow I/O only once. You dothis by starting RADMC-3D in the way described
in Chapter12, and then callingmakeimage with keywordiounit equal to the unit of the pipe. See chapter12 for
an example.
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14.1.4 Subroutine readdata()

It is always useful to analyze the dust temperature structure that RADMC-3D produces. The functionread data()
(or readdata() in abbreviated form) is meant to do that. In IDL, the way it works is:

.r readradmc
a=read_data(/dtemp)

The /dtemp stands for “read the dust temperature”. You can also read thedust density (which is an input, not an
output of RADMC-3D):

a=read_data(/ddens)

You can find what is contained in the structurea by

help,a,/struct

The structurea contains a sub-structuregrid :

help,a.grid,/struct

which contains all the information of the grid. We come back to that later.

If you just read the dust temperature (with/dtemp ) then you can see that the structure contains a large array called
a.temp . Its dimensionality depends on which kind of grid you are using:

• Regular grid:
The arraya.temp (or any other data array) will have dimensionsa.temp(nx,ny,nz,nspec) , wherenx,ny,nz

are the number of cells in x, y and z direction andnspec is the number of dust species. Ifnspec=1 , then the
array automatically becomesa.temp(nx,ny,nz) (this is IDL convention).

• Oct-tree AMR grid:
The arraya.temp (or any other data array) will have dimensionsa.temp(ncells,nspec) , wherencells

is the number of real cells (excluding the branches that are divided into subcells: only the leafs count) in the
AMR oct-tree. How the (complex!) oct-tree is structured is specified ina.grid . Thenspec is again the
number of dust species.

• Layer-style AMR grid:
The arraya.temp (or any other data array) will have dimensionsa.temp(nxmax,nymax,nzmax,nspec,nlayers+1) ,
wherenxmax,nymax,nzmax are the maximum of number of cells in x, y and z direction of allthe layers (in-
cluding the base grid). Thenspec is again the number of dust species. Thenlayers is the number of
refinement layers (patches), where 0 means that there is onlythe base grid, 1 means there is one single patch
of refinement, etc. The last index of thea.temp array goes from 0 tonlayers . Here 0 means the base grid, 1
the first layer of refinement, etc. Note that if you just read the dust temperature in this way, the regions in the
parent layers (including the base grid) that are replaced bya refined layer will have the value 0. This makes a
“hole” in the dust temperature distribution. If you want IDLto fill these holes with the rebinned values of the
refined layers, then you can callread data with the/fill keyword, i.e.read data(/dtemp,/fill) .

Now coming back to thea.grid sub-structure. This contains all the information about thegrid. Again the content
of this structure depends on which gridding you use:

• Regular grid:
The structure containsx,y,z which are 1-dimensional arrays with the cell-centered x, y and z coordinates
(for spherical coordinates they arer, θ andφ, but then the grid also contains, for your convenience, the entries
r , theta andphi ). It also containsxi,yi,zi which are again 1-D arrays with the x, y and z coordinates of
the cell walls (for spherical coordinatesri , thetai andphii ). nx, ny, nz are the number of cells in x, y
and z direction.
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• Oct-tree AMR grid:
Thex,y,z andxi,yi,zi (and in addition to that in spherical coordinatesr , theta , phi , ri , thetai and
phii ) still have the same meaning as in the regular grid case. In this case, however, this “regular grid” is
just the “base grid” of the oct-tree refinement. The oct-treestructure is now specified by the 1-D byte-array
octtree , which contains only the values 0 and 1. See SectionA.2 for details about their meaning. The order
of the values of the data are the same as the order of the cells given byocttree .

• Layer-style AMR grid:
Again, as in the oct-tree case, thex,y,z andxi,yi,zi and their spherical-coordinates counterparts now
have their meaning for the base grid. Thenlayers tells how many layers (in addition to the base grid)
there are. Theiparent(nlayers+1) give the parent layer for each layer, where 0 means base grid.The
ixyz(3,nlayers+1) give the starting point of the layer in the parent grid,nxyz(3,nlayers+1) the
size of the layer in the parent grid andnnxyz(3,nlayers+1) the size of the layer in its own grid. The
layer x(nxmax,nlayers+1) , layer y(nxmax,nlayers+1) , layer z(nxmax,nlayers+1) , layer xi(nxmax,nlayers+1)

layer yi(nxmax,nlayers+1) and layer zi(nxmax,nlayers+1) are like thex,y,z andxi,yi,zi ,
but now for each layer separately. Note that e.g.layer x[ * ,0] = x[ * ] , etc, because layer 0 is identical to
the base grid. Note also thatixyz[ * ,0] andnxyz[ * ,0] have no meaning, butnnxyz[ * ,0] are the same
asnx, ny, nz .

For all the above griddings, the following additional elements are present ina.grid . For instance,gridstyle

(=0,1,10) specifies which of the above griddings is used,coordsys is the coordinate system,mirror (=0,1)

a flag whether equatorial mirror symmetry is present (only for spherical coordinates),ncell gives you the total
number of actual cells,ncellinp gives you the total number of read-in cell values (in case of layer-type refinement
this is generally larger thanncell , incx, incy, incz (=0,1) are flags whether the x, y or z dimensions are
active or not.

Note that even if you have e.g. a regular grid, theixyz etc elements are still in the structure, but they are simply 0.

14.2 Support for FITS

Many people in astronomy use the FITS format (Flexible ImageTransport System) for analyzing images or other
observational data. Many software packages are geared toward reading and processing FITS data. For instance, the
ds9 image viewer1 is very powerful, but requires its images in FITS format.

We provide a conversion routine from the standardimage.out image format produced by RADMC-3D to FITS
format. The routine is calledradmcimage to fits and is located in the fileidl/radmc3dfits.pro . To use this,
you must have the ASTROLIB2 library of IDL installed.

To convert to FITS format, you must specify the distance at which the observer stands from the object. The reason
is that theimage.out file produced by RADMC-3d isdistance independent!The pixel size inimage.out is
specified in centimeters, not as an angular size. Theradmcimage to fits routine automatically converts this to
pixel scale in degrees, but it must know the distance.

Here is how you convertimage.out into image.fits . First go into IDL and then:

.r radmc3dfits
radmcimage_to_fits,’image.out’,’image.fits’,140.

where the last number (140.) is the distance to the object in units of parsec. In the FITS file the unit of the intensity
is Jansky/Pixel. The pixel sizes are specified in degrees. Once you have made this conversion, you can, for instance,
useds9 (if it is installed on your system!) to view your image. From the unix shell you type:

ds9 image.fits

Just for your information, in case you want to know more aboutthe FITS conversion: The FITS header looks for
example like this:

SIMPLE = T /image conforms to FITS standard

1http://hea-www.harvard.edu/RD/ds9/
2http://idlastro.gsfc.nasa.gov/
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BITPIX = -64 /bits per data value
NAXIS = 2 /number of axes
NAXIS1 = 100 /
NAXIS2 = 100 /
EXTEND = T /file may contain extensions
BTYPE = ’Intensity’
BUNIT = ’JY/PIXEL’
CDELT1 = 6.9418601352850E-07
CUNIT1 = ’deg ’
CRPIX1 = 5.0000000000000E+01
CDELT2 = 6.9418601352850E-07
CUNIT2 = ’deg ’
CRPIX2 = 5.0000000000000E+01
RESTFREQ= 2.997924580000E+13
END

which you can see if you typeless image.fits in the Unix shell and rescale the width of your shell window to
80 characters. If you want to know more about the details of the FITS format, please consult the various papers by
E.W. Greisen, for instance Greisen & Calabretta (2002) A&A 395, 1061-1075.

14.3 The image viewing GUI: viewimage.pro

Making images of a model can be done “by hand” using the tools in thereadradmc.pro file (see Section14.1). But
it is much more convenient to use the fully widget-based graphical user interfaceviewimage.pro (see Fig.14.1)3.
This interface can be used once the dust temperatures (in case of dust continuum radiative transfer) have been com-
puted using e.g. the thermal monte carlo method (i.e. after having calledradmc3d mctherm ). Or more precisely:
the filedust temperature.dat should be present and consistent with the other files. If thisis satisfied, then one
can go into IDL (does not work on the IDL-clone “GDL”) and type:

.r viewimage
viewimage

and one should get the GUI shown in Fig. (14.1). NOTE: It may take a while for RADMC-3D to load all the data
into memory the first time, so before the first image appears onthe screen it may take some time. From that point
on, further ray-trace actions should go much quicker. Here is a list of controls and their functions:

• ‘‘Quit Viewer’’ button: Ends this viewer and quits RADMC-3D.

• ‘‘Write Image’’ button: Writes a idl.ps postscript version of the plot on the screen.

• ‘‘mouse rotate’’ switch: If unset (default), the mouse clicks on the plotting pane actto select a zoom-
in box. If set, the mouse clicks on the plotting pane act to rotate the object. Note that the rotation can also
be done by hand by setting the values of‘‘Inclination’’ and‘‘Phi’’ and redoing an image rendering
with the ‘‘Render Image’’ button.

• ‘‘lin’’ switch: Switch between linear color table of intensity and logarithmic color table of intensity.

• ‘‘preview’’ switch: If set (default) then the ray-traced image is done without sub-pixeling in regions
where the model has higher spatial resolution than the imageresolution can resolve. This is a fast mode (i.e.
hence the name “preview”). If unset, then the ray-tracer always ensures that if a pixel of the image does
not resolve details of the model, it will internally refine the pixel in 2x2 (and recursively repeat this until the
resolution matches that of the model), and finally integratethe flux of all the sub-pixels to find the flux of the
parent pixel. The intensity it then puts into this pixel is then the true average intensity over all the pixel. The
sub-pixels will never be seen by the user. They are only made internally in RADMC-3D to ensure the correct
flux in the pixel, and then dropped again. For science-quality images the‘‘preview’’ button should be
unset. It may take longer, however, to render. Please read Section9.6for details about this procedure.

3NOTE: Currently there appears to be a problem that viewimagewill freeze, which happens on some machines and not on other machines (in
fact it happened on one Macbook but not on another, while the systems were seemingly identical). This is somehow related to the way radmc3d
and IDL communicate with each other in child mode (see chapter 12): it must be a buffering problem. So far I could not figure out what is going
wrong, but I will continue to work on this. If you experience this problem, try calling viewimage,/nochild. That is slower, but should work.

86



• ‘‘contour’’ switch: If set: overplot contours.

• ‘‘star’’ switch: If set (default): Include the flux of all the point-source stars in the image. Not setting it
has the potential advantage that you can concentrate on the circumstellar material and not be ’blinded’ by the
strong starlight.

• slider in this box: The slider in the same box as the above switches selects the IDL color table for
monochromatic images.

• ‘‘MaxLog’’ textbox (editable): The maxlog is the maximum number of factors of 10 that we will
include in the color table. A high number gives more extreme “depth” to the image, but may also wash out
details.

• ‘‘Saturate’’ textbox (editable): Saturate the image with this factor. Default is 1.0, i.e. no satura-
tion.

• ‘‘Nr Cont’’ textbox (editable): Set how many contours you want if the contour switch is ’on’.

• ‘‘Render Spectrum’’ button: Render a complete SED. This may take a long time!

• ‘‘Render Image’’ button: Render a single image. See entries below for the settings.

• ‘‘Unzoom’’ button: If you are zoomed in, and you want to zoom out again, push this button. Note:
Zoomin in is done by selecting a region with the moise in the image pane (make sure the “mouse rotate”
switch is off) and pressing‘‘Render Image’’ .

• ‘‘Npix’’ textbox (editable): The number of x and y pixels of the image.

• ‘‘Size’’ textbox (editable): The size of the image.[BUG HERE: This does not seem to work.]

• ‘‘Inclination’’ textbox (editable): The inclination where the observer is placed (at large dis-
tance).

• ‘‘Phi’’ textbox (editable): The azimuthal angle where the observer is placed (at large distance).

• slider below: The wavelength slider. These are the wavelengths from thewavelength micron.inp file
and using the slider you can select one of these values. BUT: you can also select the wavelength by directly
editing the textbox next to it, see below.

• textbox next to slider: The current wavelength in micron. This is automatically setwhen the slider is
moved. BUT you can also put in any value of the wavelength you want and type return to get the image at the
precise wavelength of interest. That may be a wavelength that is not one of thewavelength micron.inp

values, but somewhere in between or even outside that grid. You can try any value.

The image is of course independent of observer distance (except for the local observer mode). The total flux,
however, is a distance-dependent quantity. Written in the image is the total flux, normalized to a distance of 1
parsec. Clearly, if the model is far bigger than 1 parsec, then this number has no physical meaning. But by scaling
the image flux to a reasonale distance you will get reasonableanswers.

Theviewimage routines will print to the command line theradmc3d command sequence used to make the image
you see now on your screen. This is just for the user’s convenience, that it is clearly seen which commandsradmc3d

receives. You can simply copy-paste such a line to the shell command line and you will see that RADMC-3D will
do precisely that command (note that if already another RADMC-3D is running a huge model, you may get memory
problems when doing this in parallel to that model).

Note also that each time a new image is made and is shown in the viewer, the same image is also stored in the file
image.out in the current directory. This means that you can read the latest image using thereadimage() routine
in thereadradmc.pro file. As an example of such a complete sequence:

.r viewimage
viewimage
<<< NOW MAKE WITH THIS WIDGET SOME NICE IMAGE YOU WANT TO STUDYMORE >>>
.r readradmc
a=readimage()
window,0
surface,a.image
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Figure 14.1.The graphical user interface (GUI) to the ray-trace-based imager module of RADMC-3D.

In this example you make a surface plot in window 0 of the imageyou see in the viewer.

There are further capabilities ofviewimage , which can be switched on with keyword options to theviewimage

subroutine. Here is a list of such keyword options (i.e. typee.g.viewimage,/color to enable the first option):

/color : When/color is set then you will find three wavelength sliders which can beindependently shifted.
These three sliders represent the red, green and blue channels of the image. This way you can make false
color images.

/au / /pc : When setting either/au or /pc the axis will not be drawn with centimeter units, but instead
with AU or parsec units.

/small : If set, the widget will be smaller, so that it fits on low-resolution screens.

/verti : If set, the widget will put the controls below the image instead of next. Can be useful on high-
resolution screens to save screen real estate.

/nochild : When setting/nochild , the RADMC-3D code will be called separately for each image render-
ing. This can be very slow, but it has the advantage that in case of problems the debugging might be easier,
because all I/O of theradmc3d executable will then go to screen.

/lines : This includes entry fields such asimol , iline andvkms to make it easier to specify the precise
wavelength of the image in case of lines.

Tip: If viewimage unexpectedly quits or freezes, please have a look at the fileradmc3d.out which contains the
messages that RADMC-3D outputs. This may give hints what went wrong. If you have called viewimage with the
option /nochild, then the output will have been written to screen, not toradmc3d.out .

Another thing to keep in mind is that when RADMC-3D makes images, it will run a small Monte Carlo simulation
beforehand to compute the scattering source function (see ).

14.4 Making and reading spectra with IDL

[THIS STILL HAS TO BE WRITTEN]
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Figure 14.2.The graphical user interface (GUI)render3d.pro that allows you to analyze 3-D regularly spaced
datacubes. In Chapter15 it is described how to create regularly spaced datacubes of any variable in the model from
a complex AMR-based model. Shown in this figure is in fact therun disk 1/ model, which is an AMR-based
model, in which the trick of Chapter15 is applied to create a regularly spaced box.

14.5 A general-purpose 3-D datacube analysis GUI

Although this is not specific for RADMC-3D, we thought it would anyway be useful to provide this: a super-fast
interactive IDL GUI for analyzing 3-D data cubes calledrender3d.pro . This code is a general-purpose adaption
of one of IDL’s example codes, so this is not in any way copyrighted by the RADMC-3D authors, even though we
made extensive changes to it for the better. The tool can be used also for any other 3-D datacube data: it is not at all
limited to RADMC-3D.

The render3d.pro tool can only handle 3-D regularly spaced data. No AMR-basedmodels can bedirectly ana-
lyzed in this way. But in Chapter15we describe a feature of theradmc3d code that allows you to easily create 3-D
regularly spaced boxes from anywhere in your model at any spatial resolution you like. You can then subsequently
feed that datablock intorender3d.pro for 3-D viewing.

Usingrender3d.pro is simple:

q = <some 3-D array of floats or double precisions>
.r render3d
render3d,q

Have fun! For all the functionality, just try things out. It should be reasonably self-explanatory. See Fig.14.2for
a screen-shot. Note: Apart from all the sliders and buttons,try also out how you can interactively rotate the 3-D
datacube with the mouse: just click on the plotting window and drag while keeping clicked.
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Chapter 15

Model analysis (II): Tools inside of
radmc3d, steered by IDL

There are also some special purpose features in the Fortran-90 radmc3d code that can be useful for analyzing
complex AMR-gridded models. You do not have to directly interact with radmc3d to use these features, as there
are IDL routines that do this for you. If you do not have IDL, you will have to directly interact withradmc3d to use
these features.

15.1 Making a regularly-spaced datacube (‘subbox’) of AMR-based mod-
els

Because handling AMR-based models in IDL or other data analysis packages can be rather cumbersome, we decided
that it would be useful to create the possibility inradmc3d to generate 1-D, 2-D or 3-D regularly spaced ‘cut-outs’
or ‘sub-boxes’ (whatever you want to call them) of any variable of the model. An example of how this all works,
and how these 1-D, 2-D or 3-D sub-boxes can be used with therender3d.pro tool set described in Section14.5,
is given in the modelexamples/run disk 1/ .

15.1.1 Creating and reading a subbox from within IDL

If all the IDL tools are set up properly, you can make use of this datacube creation feature ofradmc3d entirely
through IDL. An example, type in IDL:

.r readradmc.pro
q=subbox(’dust_density’)

This creates a box with the size of the original model box, butthis time regularly spaced. The data is inq.data .
You can see this by typing:

help,q,/str

You will see thatq.data is a 3-D array of 64x64x64 (default size).

The box contains the dust density. You can specify the size and the number of grid points of the regularly-spaced
box:

.r readradmc.pro
@natconst.pro
q=subbox(’dust_density’,nxyz=64,size=2 * 100* AU)
.r render3d.pro
render3d,alog10(q.data>1d-20)

NOTE: Thesize keyword is thefull-width size of the box! So if you want to capture a disk with radius 100AU,
then you must have a box size of 200 AU.
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You can also make and read in separate steps:

.r readradmc.pro
@natconst.pro
makesubbox,’dust_density’,nxyz=64,size=200 * AU
q=readsubbox(’dust_density_subbox.out’)
.r render3d.pro
render3d,alog10(q.data>1d-20)

You can specify the box location with the keywordpos :

q=subbox(’dust_density’,nxyz=64,size=200 * AU,pos=[30,30,30] * AU)

or by specifying the corners of the box directly:

q=subbox(’dust_density’,nxyz=64,box=[-1,1,-1,1,-1,1 ] * 80* AU)

Note that if you haveradmc3d already running in the background using thechild mode (see Chapter12) then
you can do the above commands more quickly by directly communicating through the pipe by passing the keyword
iounit=<myiounitnumber> (where the thing in between< and> should be the unit number of the biway pipe
to radmc3d ) to the above routinesmakesubbox or subbox .

15.1.2 Creating and reading a subbox by directly communicating with radmc3d

You can callradmc3d directly from the shell asking it to make the subbox. Here is an example:

./radmc3d subbox_dust_density subbox_nxyz 64 64 64 \
subbox_xyz01 -2.d15 2.d15 -2.d15 2.d15 -2.d15 2.d15
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Chapter 16

Creating Protoplanetary Disk Models
using a GUI

Author: A. Juhasz

Attila Juhasz has created an IDL-driven graphical user interface (GUI) for modeling protoplanetary disks. The GUI
for RADMC-3D was developed for YSO disks/envelopes but can also be used (to some extent) as a general purpose
user interface. Or it may serve as a template for other users to create GUIs for their own models. The GUI is
written in IDL and consits of five IDL routines; radmc3dgui.pro, readparamsradmc3d.pro, problemparams.pro,
problemsetupyso.pro, mygapfunction.pro.

• radmc3d gui.pro This file contains all the widget definitions and basically everything related to the visual-
ization.

• read params radmc3d.pro This file contains two functions to read and write the parameters into a file.

• problem params.pro Those, who have actually worked with the 2D version of RADMC,this file should
look familiar. This file contains all parameters required toset up the problem and create the input files for
RADMC 3D.

• problem setup.proThis file has also the same function as in the 2D version of RADMC. On the basis of the
parameters stored in problemparams.pro, it creates the input files to RADMC 3D.

• my gap function.pro This is a small routine to cut a gap in the disk to demonstrate,how one can use this
GUI with one’s own dust density setup.

• my gap2 function.pro This is a small routine to cut a second gap in the disk (in the exact same way as
my gapfunction.pro) to demonstrate, how one can use this GUI with one’s own dust density setup.

16.1 How to run the GUI

The GUI can be run in a very simple way. First an IDL should be started and the radmc3dgui.pro routine should be
compiled.

IDL> .r radmc3d_gui

With this step not only radmc3dgui.pro, but also all other necessary files/routines will becompiled (Note: it
assumes that you are in the examples/runwhatever directory and the readradmc.pro file is located in the ../../idl/
directory). After the compilation the GUI is ready to be run with the command radmc3dgui:

IDL> radmc3d_gui
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Figure 16.1.The graphical user interface for a protoplanetary disk model. Author: A. Juhasz.

After this command has been executed the user should see a window similar to that in Fig16.1.

To make things easy (especially for those ones who use a radiative transfer code for the first time) the GUI comes
with a simple ’default’ setup for the dust density distribution. This setup is based on a common parametrization
of a protoplanetary disk and a surrounding envelope. However, the user may want to change the whole density
distribution or may want to add extension(s) to this setup (e.g. a gap in the disk). One can add his/her own
extension(s) to the model setup so, that the GUI will recognize them and new tabs will automatically open to access
the parameters of these extensions.

16.2 Create your own setup and/or open your own tab

Adding new extension to the code which appears as a new tab in the dust density setup frame is relatively easy, one
only needs to keep a few rules. To make it clear how this can be done it is useful to understand what the GUI does
behind the buttons and windows. In a few steps the GUI does thefollowing;

1. Write the parameter values to problemparams.pro

2. Run problemsetupyso.pro to create all necessary input files for RADMC3D

3. Run RADMC3D mctherm to calculate the temperature structure

4. Run RADMC3D to calculate images/spectra

After Step 2. any arbitrary IDL procedure can be run to modify(or even completely re-create) the dust density
distribution. Such a procedure can be integrated to the GUI in the following way;

• The procedure should not accept any keywords or input variable, instead, the user should add the @problemparams.pro
line after the procedure name, allowing the procedure to access the variables in problemparams.pro;
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pro my_arbitrary_procedure
@problem_params.pro

• Create a new section of parameters in problemparams.pro which will be used in the user’s procedure. For
examle;

;
; My extra function - example
; Cut a gap in the disk reducing the density by an arbitrary fac tor
;
extra_gap_tab_name = ’My gap function’ ; Name of the tab in th e GUI
extra_gap_enable = 1 ; 0-Enable, 1-Disable this function
extra_gap_func = ’my_gap_function’ ; Name of the user defin ed function
extra_gap_rin = 5.0 * AU ; Inner radius of the gap
extra_gap_rout = 10. * AU ; Outer radius of the gap
extra_gap_drfact = 1d-4 ; Density reduction factor in the ga p

• The parameter names should look like; extrasecnamepname. The ’extra’ means that this is an additional
parameter for which a new tab should be opened. The ’secname’will be the identifier of this section of
parameters within the widgets and should be the same for all parameters within this section. The ’pname’ is
the actual parameter name, that can be any arbitrary name.

• Each new section should contain a parameter called ’extrasecnametab name’, which will be the title of the
new tab which will open in the dust density setup frame.

• Each new section should contain a parameter called ’extrasecnamefunc’, which should be the name of the
user’s procedure.

• Each new section should contain a parameter called ’extrasecnameenable’, which should have a value of 0
or 1 and disables or enables the execution of the user’s procedure after problemsetupyso.pro.

If the user followed the instructions above and start the GUIa new tab in the density setup frame should open for
the user’s procedure. Input fields for the parameters will have the parameter names as titles. If one made comments
in problemparams.pro at the end of a line to explain the meaning of the parameter at the beginning of the line, this
explanation/comment will be available in the Help menu under ”Help on parameters”. Two examples were given in
the current problemparams.pro to open gaps in the dust density distribution.
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Chapter 17

How to convert old-style RADMC models
to RADMC-3D

Some users of RADMC-3D may have used the predecessor programRADMC before. The input files of RADMC
are different from those used by RADMC-3D. You may have modelsetups created for RADMC which you would
like to feed into RADMC-3D. The best way would be of course to edit yourproblem *** .pro files and make sure
that they create the RADMC-3D input files instead of the RADMCinput files. But that costs quite some work, and
you may make errors.

We offer the IDL routineradmc2radmc3d.pro in the idl/ directory that automatically converts all the RADMC
input files into RADMC-3D input files. In particular, it will do the following conversion:

RADMC RADMC-3D
radius.inp & theta.inp amr grid.inp

starinfo.inp & starspectrum.inp stars.inp

dustdens.inp dust density.inp

- radmc3d.inp

The fileradmc3d.inp is ignored for now, and instead a freshradmc3d.inp is created. While RADMC-3D would
readradmc3d.inp if no radmc3d.inp is present, the presence ofradmc3d.inp means that RADMC-3D will
readradmc3d.inp (andnot readradmc3d.inp ).

The opacity files are kept as they are. While the recommended style for the opacities is thedustkappa * .inp file,
RADMC-3D can also read the old styledustopac * .inp files. Also thefrequency.inp file is kept as it is.

NOTE: For now the quantum-heated grains are not ported to RADMC-3D. Also some specialties of the RADMC
code may not yet work in RADMC-3D – just keep this in mind.

So if you have a working model for RADMC, and you want to run it with RADMC-3D, then just go into the model
directory, go into IDL and type:

.r radmc2radmc3d.pro

and this should convert the files from RADMC-style to RADMC-3D-style, as described above. Note that you must
now redo the thermal Monte Carlo, because RADMC-3D reads itsown style of dust temperature file. So go out of
IDL and type (on the shell):

radmc3d mctherm

wait until it is finished, and now you can make your spectra andimages.
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Chapter 18

Tips, tricks and problem hunting

18.1 Tips and tricks

RADMC-3Dis a large software package, and the user will in all likelihood not understand all its internal workings.
In this section we will discuss some issues that might be useful to know when you do modeling.

• Things that can drastically slow down ray-tracing:
When you create images or spectra,radmc3d will perform a ray-tracing calculation. You may notice that
sometimes this can be very fast, but for other problems it canbe very slow. This is because, depending on
which physics is switched on, different ray-tracing strategies must be followed. For instance, if you use a dust
opacity without scattering opacity (or if you switch dust scattering off by settingscattering mode max to
0 in theradmc3d.inp file), and you make dust continuum images, or make SEDs, this may go very rapidly:
less than a minute on a modern computer for grids of 256x256x256. However, when you include scattering,
it may go slower. Why is that? That is because at each wavelength radmc3d will now have to make a quick
Monte Carlo scattering model to compute the dust scatteringsource function. This costs time. And it will
cost more time if you havenphot scat set to a high value in theradmc3d.inp file, although it will create
better images. Furthermore, if youalso include gas lines using the simple LTE or simple LVG methods,then
things become even slower, because each wavelength channelimage is done after each other, and each time
all the populations of the molecular levels have to be re-computed. If dust scattering would be switched off
(which is for some wavelength domains presumably not a bad approximation; in particular for the millimeter
domain), then no scattering Monte Carlo runs have to be done for each wavelength. Then the code can ray-
trace all wavelength simultaneously: each ray is traced only once, for all wavelength simultaneously. Then the
LTE/LVG level populations have to be computed only once at each location along the ray. So if you use dust
and lines simultaneously, it can be advantageous for speed if you can afford to switch off the dust scattering,
for instance, if you model sub-millimeter lines in regions with dust grains smaller than 10 micron or so. If
you must include scattering, but your model is not so big thatyou may get memory limitation problems, then
you may also try the fast LTE or fast LVG modes: in those modes the level populations are pre-computed
before the ray-tracing starts, which saves time. But that may require much memory.

18.2 Bug hunting

Although we of course hope thatradmc3d will not run into troubles or crash, it is nevertheless possible that it will.
There are several ways by which one can hunt for bugs, and we list here a few obvious ones:

• In principle theMakefile should make sure that all dependencies of all modules are correct, so that the most
dependent modules are compiled last. But during the furtherdevelopment of the code perhaps this may be
not 100% guaranteed. So try domake clean followed bymake (or make install ) to assure a clean make.

• In theMakefile you can add (or uncomment) the line
BCHECK = -fbounds-check , if you usegfortran . Find the array boundary check switch on your own
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compiler if it is notgfortran .

• Make sure that in themain.f90 code the variabledebug check all is set to 1. This will do some on-the-fly
checks in the code.

18.3 Some tips for avoiding troubles and for making good models

Here is a set of tips that we recommend you to follow, in order to avoid troubles with the code and to make sure that
the models you make are OK. This list is far from complete! It will be updated as we continue to develop the code.

1. Make a separate directory for each model. This avoids confusion with the many input and output files from
the models.

2. When experimenting: regularly keep models that work, andcontinue experimenting with a fresh model di-
rectory. If things go wrong later, you can always fall back onan older model thatdid work well.

3. Keep model directories within a parent directory of the code, just like it is currently organized. This ensures
that each model is always associated to the version of the code for which it was developed. If you update to a
new version of the code, it is recommended to simply copy the models you want to continue with to the new
code directory (and edit theSRCvariable in theMakefile if you use the techniques described in Section4.5
and Chapter13).

4. If you make a new model, try to start with as clean a directory as possible. This avoids that you accidently
have a old files hanging around, their presence of which may cause troubles in your new model. So if you
make a model update, make a new directory and then copy only the files that are necesary (for instance,
problem setup.pro , dustkappa silicate.inp , Makefile and other necessary files). One way of do-
ing this easily is to write a little perl script or csh script that does this for you.

5. In the example model directories there is always aMakefile present, even if no local* .f90 files are present.
The idea is that by typingmake cleanallyou can safely clean up the model directory and restore it to pre-model
status. This can be useful for safely cleaning model directories so that only the model setup files remain there.
It may save enormous amounts of disk space. But of course, it means that if you revisit the model later, you
would need to redo the Monte Carlo simulations again, for instance. It is a matter of choice between speed of
access to results on the one hand and disk space on the other hand.

6. If you use LVG or escape probability to compute the level populations of molecules, please be aware that you
must include all levels that could be populated, not only thelevels belonging to the line you are interested in.

18.4 For the careful modeler: things you may want to check

In principle RADMC-3D should be fine-tuned such that it produced reliable results in most circumstances. But
radiative transfer modeling, like all kinds of modeling, isnot an entirely trivial issue. Extreme circumstances can
lead to wrong results, if the user is not careful in doing various sanity checks. This section gives some tips that you,
the user, may wish to do to check that the results are ok. This is not an exhaustive list! So please remain creative
yourself in coming up with good tests and checks.

1. When making images or spectra, one important issue is always the proper choice of resolution of the pixels.
This is not only for the pixels you see in your image, but also for the recursive sub-pixeling(see Section
9.6) which ensures proper flux conservation. In principle the recursive sub-pixeling is pre-tuned by us (the
programmers) in a sensible way. But we cannot guarantee thatit works always well under all conditions!
So if you want to be absolutely sure that the image flux is properly accounted for, please read Section9.6)
carefully, and play a bit with the various tuning parameters.

2. When making images or spectrain which dust scattering is important, the scattered light emissivity is com-
puted by a quick Monte Carlo simulation before the ray-tracing (see Section6.5.4). This requires the set-
ting of the number of photon packages used for this (the variable nphot scat for images and equivalently
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nphot spec for spectra, both can be set in theradmc3d.inp file). If you see too much “noise” in your
scattering image, you can improve this by settingnphot scat to a larger value (default = 100000). If your
spectrum contains too much noise, try settingnphot spec to a larger value (default = 10000).

3. For rather optically thick modelsyou may want to experiment with grid resolution and refinement. Strictly
speaking the transition from optically thin to optically thick, as seen both by the radiation entering the object
and by the observer, has to occur over more than one cell. Thatis for very optically thick models, one may
need to introduce grid refinement in various regions. As an example: an optically thick protoplanetary disk
may have an extremely sharp thin-thick transition near the inner edge. To get the spectra and images right, it is
important that these regions are resolved by the grid (note:once well inside the optically thick interior, it is no
longer necessary to resolve individual optical mean free paths, thankfully). It should be said that in practice
it is often impossible to do this in full strictness. But you may want to at least experiment a bit with refining
the grid (using either “separable refinement”, see Section10.2, or AMR refinement, see SectionA.2.2).

18.5 Common problems and how to fix them

When using a complex code such as RADMC-3D there are many things that can go wrong. Here is a list of common
issues and tips how to fix them.

1. After updating RADMC-3D to a new version, some setups don’t work anymore.
This problem can be due to several things:

(a) When your model makes a localradmc3d executable (see Section4.5), for instance when you use the
userdef module.f90 to set up the model, then you may need to edit theSRCvariable in theMakefile

again to point to the new code directory, and typemake clean followed bymake.

(b) Are you sure to have recompiledradmc3d againand installed it (by going insrc/ and typingmake

install )?

(c) Try going back to the old version and recheck that the model works well there. If that works, and the
above tricks don’t fix the problem, then it may be a bug. Pleasecontact the author.

2. After updating RADMC-3D to a new version: the new features are not present/working.
Maybe again theMakefile issue. See point1 above.

3. After updating RADMC-3D to a new version: model based on userdef module fails to compile
If you switch to a new version of the code and try to ’make’ an earlier model that uses the userdefmodule.f90,
it might sometimes happen that the compilation fails because some subroutineuserdef *** is not known
(here*** is some name). Presumably what happened is that a new user-defined functionality has been added
to the code, and the corresponding subroutineuserdef *** has been added to theuserdef module.f90 .
If, however, in your ownuserdef module.f90 this subroutine is not yet built in, then the compiler can’t
find this subroutine and complains. Solution: just add a dummy subroutine to youruserdef module.f90

with that name (have a look at theuserdef module.f90 in the src/ directory). Then recompile and it
should now work.

4. After switching back from the userdef module.f90-driven model setup to the original IDL-driven setup
style, suddenly lots of IDL routines produce problems or do not give the right results.
Check if an oldradmc3d executable is still present. If so, remove it, because the way the IDL tools check
which radmc3d executable to use (local or global) is by checking if a localradmc3d executable is present.

5. The viewimage GUI aborts with message “Aborting: RADMC-3D does not respond...”
This means that theradmc3d code, which is a child process of IDL, has unexpectedly quit.Since the standard
IO channel ofradmc3d is used for commincation with IDL, the usual standard outputis now redirected to
the fileradmc3d.out . Have a look at that file to see what causedradmc3d to abort.

6. RADMC-3D stops with message “ERROR: dustdensity.inp does not have same number of cells as the
grid. -32768 32768” or similar
This message means that the filedust density.inp specifies the dust density in a different number of cells
than which is specified in theamr grid.inp file. In the above example this is in fact caused by the fact that
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in the IDL routines for generating the setup the number of cells got an overflow over the maximum range
of two-byte signed integers. To avoid this, use long integers. In IDL this is done likenx=100L instead of
nx=100 .

7. While reading an input file, RADMC-3D says “Fortran runtime e rror: End of file”
This can of course have many reasons. Some common mistakes are:

• In amr grid.inp you may have specified the coordinates of the nx*ny*nz grid centers instead of
(nx+1)*(ny+1)*(nz+1) grid cell interfaces.

• You may have no line feed at the end of one of the ascii input files. Some fortran compilers can read
only lines that are officially ended with a return or line feed. Solution: Just write an empty line at the
end of such a file.

8. My changes to the main code do not take effect
Did you type, in thesrc/ directory, the fullmake install ? If you type justmake, then the code is compiled
but not installed as the default code.

9. My userdef module.f90 stuff does not work
If you run radmc3d with own userdefined stuff, then you must make sure to run the right executable. Just
typing radmc3d in the shell might cause you to run the standard compilation instead of your special-purpose
one. Try typing./radmc3d instead, which forces the shell to use the local executable.

10. When I make images from the command line, they take longer than with viewimage.pro
If you make images withradmc3d image (plus some keywords) from the command line, the default is that
a flux-conserving method of ray-tracing is used, which is called recursive sub-pixeling (see Section9.6).
This takes, under some circumstances, much longer than if you make images without recursive sub-pixeling.
In the viewimage widget (see Section14.3) the default is to use no sub-pixeling (though by pressing the
“preview” button off, the sub-pixeling is used again). You can make an image without sub-pixeling with the
command-line optionnofluxcons .

11. My line channel maps (images) look bad
If you have a model with non-zero gas velocities, and if thesegas velocities have cell-to-cell differences that
are larger than or equal to the intrinsic (thermal+microturbulent) line width, then the ray-tracing will not be
able to pick up signals from intermediate velocities. In other words, because of the discrete gridding of the
model, only discrete velocities are present, which can cause numerical problems. There are two possible
solutions to this problem. One is the wavelength band methoddescribed in Section9.5. But a more sys-
tematic method is the “doppler catching” method described in Section7.6 (which can be combined with the
wavelength band method of Section9.5to make it even more perfect).

12. My line spectra look somewhat noisy
If you include dust continuum scattering (Section6.5) then the ray-tracer will perform a scattering Monte
Carlo simulation at each wavelength. If you look at lines where dust scattering is still a strong source of
emission, and ifnphot scat (Section6.5.4) is set to a low value, then the different random walks of the
photon packages in each wavelength channel may cause slightly different resulting fluxes, hence the noise.

13. My dust continuum images look very noisy/streaky: many “lines” in the image
There are two possible reasons:

(a) Photon noise in the thermal Monte Carlo run:If you have too few photon packages for the thermal
Monte Carlo computation (see Chapter6), then the dust temperatures are simply not well computed.
This may give these effects. You must then increasenphot in the radmc3d.inp file to increase the
photon statistics for the thermal Monte Carlo run.

(b) Photon noise in the scattering Monte Carlo run:If you are making an image at a wavelength at which
the disk is not emitting much thermal radiation, then what you will see in the image is scattered light.
RADMC-3Dmakes a special Monte Carlo run for scattered light before each image. This Monte Carlo
run has its own variable for setting the number of photon packages:nphot scat . If this value is set too
low, then you can see individual “photon”-trajectories in the image, making the image look bad. It is
important to note that this can only be remedied by increasing nphot scat (in the radmc3d.inp file,
see Section6.5.4), not by settingnphot (which is the number of photon packages for the thermal Monte
Carlo computation).
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Appendix A

Main input and output files of RADMC-3D

RADMC-3D is written in fortran-90. It is written in such a waythat the user prepares input files (ending in.inp )
for the program and then callsradmc3d with some command-line options. The program then reads the input files,
and based on the command-line options will perform a certaincalculation, and finally outputs the results to output
files (ending in.out ) or intermediate files (ending in.dat ) which need further processing. In principle the user
therefore needs to compile the program only once, and can then use the executable from that point onward. In this
chapter we will describe the various input/output and intermediate files and their formats. Just for clarity: the IDL
routines in theidl/ directory are only meant to make it easier for the user to prepare the.inp files, and to make
sense of the.out and.dat files. They are not part of the main coderadmc3d .

A few comments on RADMC-3D input and output files:

• Most (though not all) files start with aformat number. This number simply keeps track of the version of the
way the information is stored the file. The idea is that if new versions of RADMC-3D come out in the future,
it would be good to have the possibility that new informationis added to the files. The format number is there
to tell RADMC-3D whether a file is the new version or still an older version. NOTE: Do not confuseformat
numberwith unformatted/formatted I/O(see below for the latter). These are unrelated issues.

• RADMC-3D is no longer backward compatible with the older RADMC code input files. It has proven to be
too messy to maintain this option.

• RADMC-3D has four types of I/O files:

1. Files ending with.inp or .uinp are input files that allow the user to specify to RADMC-3D which
problem to solve.

2. Files ending with.dat or .udat are intermediate files that are typically created by RADMC-3D it-
self, but can also be read by RADMC-3D for further processing. For instance, the dust temperature is
computed by the Monte Carlo method, but can also be read in later for ray-tracing.

3. Files ending with.out or .uout are final products of RADMC-3D, such as an image or spectrum.

4. File ending with.info are small files containing some numbers that are useful to better interpret the
output files of RADMC-3D. They are typically not very important for every-day use.

• For many of the I/O files RADMC-3D can read and write both formatted (i.e. text style: ascii) files and
fortran-style unformatted files. Whether a file is text-style (user-readable) or fortran-style-unformatted (more
compact data storage) is specified by the file extension:

1. Files ending in.inp , .dat or .out are written in text style, i.e. they are ascii files (“formatted output”).
They are human-readable lists of numbers or symbols. Typically this I/O style is useful for testing and
getting used to the code, so that the user can see exactly (by reading the I/O files in an editor) what
numbers are being processed. But the severe drawback is thatthese files are very large compared to the
information they contain.

2. Files ending in.uinp , .udat or .uout are written in fortran-styleunformattedform. Here each double-
precision variable takes up 8 bytes, each single-precisionvariable 4 bytes, each normal integer 4 bytes,
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each long integer 8 bytes etc. This form of I/O is much more compact than the unformatted style and
thus preferable for big models. Note that not all files have this unformatted option. Also note that
fortran-style unformatted files work withrecords, in contrast to C-style unformatted (which isreally
unformatted). This makes the fortran-style unformatted I/O a bit more tricky. Each write statement in
fortran produces a single record. A record is stored in the file as a block of data that starts with 2 bytes
telling which length the record has (in bytes), then contains the data that are written, and ends with
another 2 bytes giving the same length of the record that it now closes. C-style unformatted files only
write the actual data. So for each unformatted write statement in fortran 4 more bytes are stored which
are essentially useless (and can be confusing). In IDL thereis a special keyword/f77 unformatted

that you can add to theopen statement to make IDL read unformatted files like fortran, sothat these
additional bytes are read and ignored or written. Note that some compilers may write 4 bytes at the start
and end of a record (gfortran used to do this, but this is now turned back for backward compatibility
reasons). But most compilers stick (fortunately) to the old2-byte at start and end of a record convention.
Because of the complexity of the fortran record-based I/O style, and because these records therefore have
a maximum length (which is 65536 bytes) the unformatted I/O of RADMC-3D is a bit subtle. Details
are described in the sections below for each file, and the IDL routines are equipped to read/write the
correct form of these files.

A.1 INPUT: radmc3d.inp

The radmc3d.inp file is a namelist file with the main settings for RADMC-3D1. The namelist is not a standard
Fortran namelist style, but a simplename = valuelist. If a name is not specified, the default values are taken.So if
the radmc3d.inp file is empty, then all settings are standard. Note that some of these settings can be overwritten
by command-line options!! Here is a non-exhaustive list of the variables that can be set.

• incl dust (default: depends on which input files are present)
Normally RADMC-3D will recognize automatically whether dust continuum emission, absorption and scat-
tering must be included: if e.g. a file calleddustopac.inp is present, it assumes that the dust must be
included. But with this flag you can explicitly tell RADMC-3Dwhether it must be included (1) or not (0).

• incl lines (default: depends on which input files are present)
Normally RADMC-3D will recognize automatically whether line emission and absorption must be included:
if e.g. a file calledlines.inp is present, it assumes that molecular/atomic lines must be included. But with
this flag you can explicitly tell RADMC-3D whether it must be included (1) or not (0).

• incl freefree (default: 0)
If 1, then include free-free emission and absorption (Bremsstrahlung). For this, the gas temperature must be
known (but see optiontgas eq tdust below).

• nphot or nphot therm (default: 100000)
The number of photon packages used for the thermal Monte Carlo simulation.

• nphot scat (default: 100000)
The number of photon packages for the scattering Monte Carlosimulations, done before image-rendering.

• nphot spec (default: 10000)
The number of photon packages for the scattering Monte Carlosimulations, done during spectrum-calculation.
This is actually the same functionality as fornphot scat , but it is used (and only used) for the spectrum and
SED calculations. The reason to have a separate value for this is that for spectra you may not need as many
photon packages as for imaging, because you anyway integrate over the images. Many of the annoying
“stripe noise” in images when using insufficiently largenphot scat will cancel each other out in the flux
calculation. Sonphot spec is usually taken smaller thannphot scat .

• iseed (default: -17933201)[Fine-tuning only]
A starting value of the random seed for the Monte Carlo simulation.

1Originally this was called theradmc.inp file. If no radmc3d.inp is present, butradmc.inp is present, then RADMC-3D will
read the latter. But if both are present, then RADMC-3D will read theradmc3d.inp file.
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• ifast (default: 0)[Fine-tuning only]
By setting this to 1 or 2 you will get a faster Monte Carlo simulation, at the cost of being less accurate.

• enthres (default: 0.01)[Fine-tuning only]
This is the fraction by which the energy in each cell may increase before the temperature is recalculated in
the Monte Carlo simulation. The smaller this value, the moreaccurate the thermal Monte Carlo simulation,
but the more computationally costly. 0.01 has proven to be fine.

• itempdecoup (default: 1)
If set to 0, then the temperatures of all coexisting dust species are always forced to be the same. If 1, then
each dust species is thermally independent of the other.

• istar sphere (default: 0)
If 0 (=default), then all stars are treated as point-sources. If 1, then all stars are treated as finite-size spheres.
This mode is more accurate and more realistic, but the applications are a bit more restricted. Such finite-size
stars are (for technical reasons) not always allowed anywhere in the model. But for problems of circumstellar
disks and envelopes in spherical coordinates, it is recommended to set this to 1. Typically, if a star is outside
the grid (in spherical coordinates this can also be at the origin of the coordinate system, as long as the inner
radius of the coordinate system is larger than the stellar radius!) the use of the finite-size star mode is always
possible. But if the star is on the grid, there are technical limitations.

• ntemp (default: 1000)[Fine-tuning only]
The temperatures are determined in the Monte Carlo method using tabulated pre-computed integrals. This
saves time. This is the number of temperatures for which thisis precalculated. The temperatures are sampled
in a logarithmic way, i.e. log(temp) is linearly equally spaced between log(temp0) and log(temp1), see below.

• temp0 (default: 0.01)[Fine-tuning only]
The lowest pre-calculated temperature.

• temp1 (default: 1e5)[Fine-tuning only]
The highest pre-calculated temperature.

• scattering mode max

Whenradmc3d reads the dust opacity files it checks if one or more of the opacity files has scattering opacity
included. If yes, thescattering mode will automatically be set to 1. It will also check if one or more
includesanisotropicscattering. If yes, thescattering mode will automatically be set to 2. But the user
may nevertheless want to exclude anisotropic scattering or exclude scattering altogether (for instance for
testing purposes, or if the user knows from experience that the scattering or anisotropic nature of scattering is
not important for the problem at hand). Rather than editing the opacity files to remove the scattering and/or
Henyey-Greensteing-factors, you can limit the value thatradmc3d is allowed to makescattering mode

by setting the variablescattering mode max. If you setscattering mode max=0 then no matter what
opacity files you have, scattering will not be treated. If yousetscattering mode max=1, then no matter
what opacity files you have, scattering will be treated in an isotropic way.

• unformatted (default: 0)
If this is set to 0, then all output.dat and.out files will be written in ascii format. If this is set to 1, then
some of the.dat and.out files (only the big ones) will be written in fortran-style unformatted. NOTE: For
the input (.inp ) files and when intermediate (.dat ) files are read into RADMC-3D, the the extension of the
file automatically tells if the file is formatted or unformatted: any file ending in.uinp or .udat or .uout is
in unformatted style, while any file ending in.inp or .dat or .out is in ascii style. NOTE: The unformatted
I/O is subtle, because of fortran-style record-based I/O. See the subsections on the various input/output files
for details.

• camera tracemode (default: 1)
If camera tracemode =-1, the images that are rendered by RADMC-3D will instead bythe column depth
traced along each ray. Ifcamera tracemode =-2, the images that are rendered by RADMC-3D will instead
by the continuum optical depth traced along each ray. By default camera tracemode =1, which is the normal
mode, where real images are being created.
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• camera nrrefine (default: 100)
For images: to assure that flux is correctly sampled, the image pixels will not just be rendered one ray per
pixel. Instead, if necessary, a pixel will spawn 2x2 sub-pixels recursively (each of which can split again into
2x2 until the required resolution is obtained) so as to assure that the flux in each pixel is correct. Nrrefine tells
how deep RADMC-3D is allowed to recursively refine. 100 is therefore effectively infinite. Putting this to 0
means that you go back to 1 ray per pixel, which is fast, but mayseriously misrepresent the flux in each pixel.
NOTE: The recursive pixel refinement is done internally and the user will not notice it except for getting better
answers. In the output image only the original pixels are shown; all subpixels have been integrated over to get
the flux of the original pixel. So you can keep this to the default value of 100 without having to worry about
handling complex data structures. The only drawback is thatit may take longer to compute. See Section9.6
for more details.

• camera refine criterion (default: 1.0)[Fine-tuning only]
Setting this value to smaller than 1 means that you refine the recursive pixeling until a tighter criterion is met.
The smaller this value, the more accurate the fluxes in each pixel, but the longer it takes to render. See Section
9.6for more details.

• camera incl stars (default: 1)
If 0, then only the interstellar/circumstellar material isrendered for the images and spectra. If 1, then also the
stellar flux is included in the spectra and images. So far, stars are treated always as point sources.

• camera starsphere nrpix (default: 20)[Fine-tuning only]
For rectangular images and for the spectra/SEDs (but not forspectra/SEDs created with circular pixel arrange-
ments), this number tells RADMC-3D how much it should do sub-pixeling over the stellar surface. That is:
20 means that at least 20 sub-pixels are assured over the stellar surface. This is important for flux conservation
(see Section9.6).

• camera spher cavity relres (default: 0.05)[Fine-tuning only]
Determines the size of sub-pixels inside the inner grid radius of spherical coordinates.

• camera localobs projection (default: 1)
(Only for local observer mode) The type of projection on the sphere of observation.

• camera min dangle (default 0.05)[Fine-tuning only]
Fine-tuning parameter for recursive subpixeling, for spherical coordinates, assuring that not too fine subpix-
eling would slow down the rendering of images or spectra too much.

• camera max dangle (default 0.3)[Fine-tuning only]
Fine-tuning parameter for recursive subpixeling, for spherical coordinates, preventing that too coarse subpix-
eling would reduce the accuracy.

• camera min dr (default 0.003)[Fine-tuning only]
Fine-tuning parameter for recursive subpixeling, for spherical coordinates, assuring that not too fine subpix-
eling would slow down the rendering of images or spectra too much.

• camera diagnostics subpix (default: 0)
Setting this to 1 forces RADMC-3D to write out a file calledsubpixeling diagnostics.out which con-
tains four columns, for respectivly:px,py,pdx,pdy , i.e. the pixel position and its size. This is for all pixels,
including the sub-pixels created during the recursive subpixeling procedure (Section9.6.2). This allows the
user to find out if the recursive subpixeling went well or if certain areas were over/under-resolved. This is
really only meant as a diagnostic.

• camera secondorder (default: 0)
If set to 1, RADMC-3D will interpolate all emission/absorption quantities to the cell corners, and then use
a second order integration routine with bilinear interpolation of the source terms to integrate the ray-tracing
formal transfer equations. See Section9.8 for more information about the second order integration: Itis
recommended to read it!

• camera interpol jnu (default: 0)[Fine-tuning only]
Fine-tuning parameter for ray-tracing, only used for when second order integration is done (i.e. ifcamera secondorder =1).
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If 0 (default), then the source functionSν is the one that is interpolated on the grid, while if 1, then the emis-
sivity jν is the one that is interpolated on the grid. The differences are minimal, but if strange results appear
(when using second order integration) then you may want to experiment a bit with this parameter.

• mc weighted photons (default: 1)[Fine-tuning only]
If mc weighted photons =1 (default) then in Monte Carlo simulations not all photon packages will have the
same energy. The energy will be weighted such that each star or emission mechanism will emit, on average,
the same number of photon packages. As an example: If you havea stellar binary consisting of an O-star
surrounded by a Brown Dwarf, but the Brown Dwarf is surrounded by a disk, then although the O star is much
brighter than the O-star, the very inner regions of the BrownDwarf disk is still predominantly heated by the
Brown Dwarf stellar surface, because it is much closer to that material. If you do not have weighted photon
packages, then statistically the Brown Dwarf would emit perhaps 1 or 2 photon packages, which makes the
statistics of the energy balance in the inner disk very bad. By mc weighted photons =1 both the Brown
Dwarf and the O-star will each emit the same number of photon packages; just the energy of the photon
packages emitted by the Brown Dwarf are much less energetic than those from the O-star. This now assures
a good photon statistics everywhere.

• optimized motion (default: 0)[Fine-tuning only]
If optimized motion is set to 1, then RADMC-3D will try to calculate the photon motion inside cells more
efficiently. This may save computational time, but since it is still not very well tested, please use this mode
with great care! It is always safer not to use this mode.

• lines mode (default: -1)
This mode determines how the level populations for line transfer are computed. The default is -1, which
means: Local Thermodynamic Equilibrium (LTE). For other modes, please consult Chapter7.

• lines maxdoppler (default: 0.3)[Fine-tuning only]
If the doppler catching mode is used, this parameter tells how fine RADMC-3D must sample along the ray, in
units of the doppler width, when a line is doppler-shifting along the wavelength-of-sight.

• lines partition ntempint (default 1000)[Fine-tuning only]
Number of temperature sampling points for the internally calculated partition function for molecular/atomic
lines.

• lines partition temp0 (default 0.1)[Fine-tuning only]
Smallest temperature sampling point for the internally calculated partition function for molecular/atomic
lines.

• lines partition temp1 (default 1E5)[Fine-tuning only]
Largest temperature sampling point for the internally calculated partition function for molecular/atomic lines.

• lines show pictograms (default 0)
If 1, then print a pictogram of the levels of the molecules/atoms.

• tgas eq tdust (default: 0)
By settingtgas eq tdust=1 you tell radmc3d to simply read thedust temperature.inp file and then
equate the gas temperature to the dust temperature. If multiple dust species are present, only the first species
will be used.

• subbox nx, subbox ny, subbox nz, subbox x0, subbox x1, subbox y0, subbox y1, subbox z0,

subbox z1

Parameters specifying the subbox size for the subbox extraction. See Section15.1for details.

A.2 INPUT (required): amr grid.inp,amr grid.uinp

This is the file that specifies what the spatial grid of the model looks like. See Chapter10. This file is essential,
because most other.inp and.dat files are simple lists of numbers which do not contain any information about the
grid. All information about the grid is contained in theamr grid.inp , also for non-AMR regular grids. Note that in
the future we will also allow for unstructured grids. The corresponding grid files will then be named differently. Both
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the formatted style of this file (amr grid.inp ) and the unformatted style (amr grid.uinp ) have the following
information. Each line represents a row in the formatted style and a record in the unformatted style.

There are three possible AMR grid styles:

• Regular grid: No mesh refinement. This is grid style 0.

• Oct-tree-style AMR (“Adaptive Mesh Refinement”, although for now it is not really “adaptive”). This is grid
style 1.

• Layer-style AMR. This is grid style 10.

A.2.1 Regular grid

For a regular grid, without grid refinement, theamr grid.inp looks like:

iformat <=== Typically 1 at present
0 <=== Grid style (regular = 0)
coordsystem
gridinfo
incl_x incl_y incl_z
nx ny nz
xi[1] xi[2] xi[3] ........ xi[nx+1]
yi[1] yi[2] yi[3] ........ yi[ny+1]
zi[1] zi[2] zi[3] ........ zi[nz+1]

The meaning of the entries are:

iformat: The format number, at present 1. For unformatted files this must be 4-byte integer.

coordsystem: If coordsystem <100 the coordinate system is cartesian. If 100<=coordsystem <200 the
coordinate system is spherical (polar). If 200<=coordsystem <300 the coordinate system is cylindrical.
For unformatted files this must be 4-byte integer.

gridinfo: If gridinfo ==1 there will be abundant grid information written into this file, possibly useful for
post-processing routines. Typically this is redundant information, so it is advised to setgridinfo =0 to save
disk space. In the following we will assume thatgridinfo =0. For unformatted files this must be 4-byte
integer.

incl x, incl y, incl z: These are either 0 or 1. If 0 then this dimension is not active (so upon grid refinement no
refinement in this dimension is done). If 1 this dimension is fully active, even if the number of base grid cells
in this direction is just 1. Upon refinement the cell will alsobe splitted in this dimension. For unformatted
files these numbers must be 4-byte integer.

nx, ny, nz: These are the number of grid cells on the base grid in each of these dimensions. For unformatted
files these numbers must be 4-byte integer.

xi[1] ... xi[nx+1]: The edges of the cells of the base grid in x-direction. Fornx grid cells we havenx+1 cell
walls, hencenx+1 cell wall positions. For unformatted files these numbers must be 8-byte reals (=double
precision).

yi[1] ... yi[ny+1]: Same as above, but now for y-direction.

zi[1] ... zi[nz+1]: Same as above, but now for z-direction.

Example of a simple 2x2x2 regular grid in cartesian coordinates:

1
0
1
0
1 1 1
2 2 2
-1. 0. 1.
-1. 0. 1.
-1. 0. 1.
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A.2.2 Oct-tree-style AMR grid

For a grid with oct-tree style grid refinement, theamr grid.inp looks like:

iformat <=== Typically 1 at present
1 <=== Grid style (1 = Oct-tree)
coordsystem
gridinfo
incl_x incl_y incl_z
nx ny nz
levelmax nleafsmax nbranchmax <=== This line only if grid st yle == 1
xi[1] xi[2] xi[3] ........ xi[nx+1]
yi[1] yi[2] yi[3] ........ yi[ny+1]
zi[1] zi[2] zi[3] ........ zi[nz+1]
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
(0/1) <=== 0=leaf, 1=branch (only if amrstyle==1)
...
...

The keywords have the same meaning as before, but in additionwe have:

(0/1): NOTE: Only for amrstyle==1. These are numbers that are either 0 or 1. If 0, this means the current cell
is a leaf (= a cell that is not refined and is therefore a “true” cell). If 1, the current cell is a branch with 2 (in
1-D), 4 (in 2-D) or 8 (in 3-D) daughter cells. In that case the next (0/1) numbers are for these daughter cells.
In other words, we immediately recursively follow the tree.The order in which this happens is logical. In 3-D
the first daughter cell is (1,1,1), then (2,1,1), then (1,2,1), then (2,2,1), then (1,1,2), then (2,1,2), then (1,2,2)
and finally (2,2,2), where the first entry represents the x-direction, the second the y-direction and the third the
z-direction. If one or more of the daughter cells is also refined (i.e. has a value 1), then first this sub-tree is
followed before continuing with the rest of the daughter cells. If we finally return to the base grid at some
point, the next (0/1) number is for the next base grid cell (again possibly going into this tree if the value is 1).
The order in which the base grid is scanned in this way is from1 to nx in the innermost loop, from1 to ny in
the middle loop and from1 to nz in the outermost loop. For unformatted files these numbers must be 4-byte
integers, one record per number.

NOTE: For this file the unformatted style is presumably not souseful, because for technical reasons each of the
(0/1) numbers must be a separate record, requiring 12 bytes.The formatted version is smaller: each line being only
2 bytes (one character 0 or 1 and a return). In the future I willtry to make this more efficient, but for now the user
is advised to just use the unformatted style.

Example of a simple 1x1x1 grid which is refined into 2x2x2 and for which the (1,2,1) cell is refined again in 2x2x2:

1
1
1
0
1 1 1
1 1 1
10 100 100
-1. 1.
-1. 1.
-1. 1.
1
0
0
1
0
0
0
0
0
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0
0
0
0
0
0
0
0

A.2.3 Layer-style AMR grid

For a grid with layer-style grid refinement, theamr grid.inp looks like:

iformat <=== Typically 1 at present
10 <=== Grid style (10 = layer-style)
coordsystem
gridinfo
incl_x incl_y incl_z
nx ny nz
nrlevels nrlayers <=== This line only if grid style == 10
xi[1] xi[2] xi[3] ........ xi[nx+1]
yi[1] yi[2] yi[3] ........ yi[ny+1]
zi[1] zi[2] zi[3] ........ zi[nz+1]
parentid ix iy iz nx ny nz
parentid ix iy iz nx ny nz
parentid ix iy iz nx ny nz
parentid ix iy iz nx ny nz
.
.
.

The keywords have the same meaning as before, but in additionwe have:

nrlevels: How many levels you plan to go, where nrlevels==0 means no refinement, nrlevels==1 means one
level of refinement (factor of 2 in resolution), etc.

nrlayers: How many layers do you have, with nrlayers==0 means no refinement, nrlayers==1 means one layer
of refinement (factor of 2 in resolution), etc.

parentid: (For each layer) The parent layer for this layer. parentid==0 means parent is base grid. First layer
has id==1.

ix, iy, iz: (For each layer) The location in the parent layer where the current layer starts.

nx, ny, nz: (For each layer) The size of the layer as measured in units of the the parent layer. So the actual size
of the current layer will be (in 3-D):2* nx, 2 * ny, 2 * nz . In 2-D, with only the x- and y- dimensions active,
we have a size of2* nx, 2 * ny with of course size 1 in z-direction.

As you can see, this is a much easier and more compact way to specify mesh refinement. But it is also less
“adaptive”, as it is always organized in square/cubic patches. But it is much easier to handle for the user than full
oct-tree refinement.

Note that this layer-style refinement is in fact, internally, translated into the oct-tree refinement. But you, as the user,
will not notice any of that. The code will input and output entirely in layer style.

NOTE:The layers must be specify in increasing refinement level! Sothe first layer (layer 1) must have the base grid
(layer 0) as its parent. The second layer can have either the base grid (layer 0) or the first layer (layer 1) as parent,
etc. In other words: the parent layer must always already have been specified before.

Example of a simple 2-D 4x4 grid which has a refinement patch inthe middle of again 4x4 cells (=2x2 on the parent
grid), and a patch of 2x2 (=1x1 on the parent grid) starting inthe upper left corner:

1
100
1
0
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1 1 0
4 4 1
1 2
-2. -1. 0. 1. 2.
-2. -1. 0. 1. 2.
-0.5 0.5
0 2 2 1 2 2 1
0 1 1 1 1 1 1

This has just one level of refinement, but two patches at level1.

Anothe example: two recursive layers. Again start with a 2-D4x4 grid, now refine it in the middle with again a 4x4
sub-grid (=2x2 on the parent grid = layer 0) and then again a deeper layer of 4x4 (=2x2 on the parent grid = layer 1)
this time starting in the corner:

1
100
1
0
1 1 0
4 4 1
2 2
-2. -1. 0. 1. 2.
-2. -1. 0. 1. 2.
-0.5 0.5
0 2 2 1 2 2 1
1 1 1 1 2 2 1

Note that with this layer-style grid, the input data will have to be speficied layer-by-layer: first the base grid, then
the first layer, then the second etc. This is worked out in detail for dust density.inp in SectionA.3. This will
include redundant data, because you specify the data on the entire base grid, also the cells that later will be replaced
by a layer. Same is true for any layer that has sub-layers. Thedata that is specified in these regions will be simply
ignored. But for simplicity we do still require it to be present, so that irrespective of the deeper layers, the data
in any layer (including the base grid, which is layer number 0) is simply organized as a simple data cube. This
redundancy makes the input and output files larger than strictly necessary, but it is much easier to handle as each
layer is a datacube. For memory/hardisk-friendly storage you must use the oct-tree refinement instead. The layers
are meant to make the AMR much more accessible, but are somewhat more memory consuming.

A.3 INPUT (required for dust transfer): dust density.inp, dust density.uinp

This is the file that contains the dust densities. It is merelya list of numbers. Their association to grid cells is via
the fileamr grid.(u)inp . Each dust species will have its own density distribution, completely independently of
the others. That means that at each position in space severaldust species can exist, and the density of these can be
fully freely specified. The structure of this file is as follows. For formatted style (dust density.inp ):

iformat <=== Typically 1 at present
nrcells
nrspec
density[1,ispec=1]
..
density[nrcells,ispec=1]
density[1,1,1,ispec=2]
..
..
..
density[nrcells,ispec=nrspec]

Herenrspec is the number of independent dust species densities that will be given here. It can be 1 or larger. If it
is 1, then of course thedensity[1,1,1,ispec=2] and following lines are not present in the file. Thenrcells

is the number of cells. For different kinds of grids this can have different meaning. Moreover, for different kinds of
grids the order in which the density values are given is also different. So let us now immediately make the following
distinction (See Chapter10on the different kinds of grids):
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• For regular grid and oct-tree AMR grids:
The value ofnrcells denotes the number oftruecells, excluding the cells that are in fact the parents of 2x2x2
subcells; i.e. the sum of the volumes of all true cells (=leafs) adds up to the volume of the total grid). The
order of these numbers is always the same “immediate recursive subtree entry” as in theamr grid.(u)inp

(SectionA.2).

• For layer-style AMR grids:
The value ofnrcells denotes the number of values that are specified. This is generally a bit more than
the true number of cells specified in the oct-tree style AMR (see above). In the layer-style AMR mode you
specify the dust density (or any other value) first at all cells of the base grid (whether a cell is refined or not
does not matter), the at all cells of the first layer, then the second layer etc. Each layer is a regular (sub-)grid,
so the order of the values is simply the standard order (same as for regular grids). This means, however, that
the values of the density in the regular grid cells that are replaced by a layer are therefore redundant. See
Section10.4.1for a discussion of this redundancy. The main advantage of this layer-style grid refinement is
that the input and output always takes place onregular grids and subgrids (=layers). This is much easier to
handle than the complexities of the oct-tree AMR.

A.3.1 Example: dust density.inp for a regular grid

Now let us look at an example of adust density.inp file, starting with one for the simplified case of a regular
3-D grid (see SectionsA.2.1and10.1):

iformat <=== Typically 1 at present
nrcells
nrspec
density[1,1,1,ispec=1]
density[2,1,1,ispec=1]
..
density[nx,1,1,ispec=1]
density[1,2,1,ispec=1]
..
..
density[nz,ny,nz,ispec=1]
density[1,1,1,ispec=2]
..
..
..
density[nz,ny,nz,ispec=nrspec]

For unformatted style (dust density.uinp ) the structure is:

iformat reclen
nrcells nrspec
density[1,ispec=1] ... density[reclen,ispec=1]
density[reclen+1,ispec=1] ... density[2 * reclen,ispec=1]
..
..... density[nrcells,ispec=1] ... 0 0 0 <==== fill with 0 un til end of record
density[1,ispec=2] ... density[reclen,ispec=2]
density[reclen+1,ispec=2] ... density[2 * reclen,ispec=2]
..
..... density[nrcells,ispec=2] ... 0 0 0 <==== fill with 0 un til end of record
..
..

All integers (iformat , reclen , nrcells andnrspec ) are 8-byte integers. Herereclen is a somewhat arbitrary
number between 8 and 65536 which denotes the record length inbytes. It must be a multiple of 8 (which is the
length of the double precision real). The data of the densityis stored as series of double-precision (8-byte) reals
organized in records ofreclen /8 numbers long. Since the total number of cellsnrcells is not necessarily divisible
by reclen /8, it can be that the last record is not full. It will be paddedwith zeroes until the (fixed) record length is
reached. Example: we have a 2x2x2 regular grid and two dust species. The grid contains 8 cells (i.e.nrcells =8).
Suppose we choosereclen =48, i.e. each record contains 6 double precision numbers. Then the first record contains
the densities of dust species 1 in cells (1,1,1), (2,1,1), (1,2,1), (2,2,1), (1,1,2), (2,1,2), and the second record will
contain the density of dust species 1 in cells (1,2,2) and (2,2,2) and four double precision zeroes to pad the record to
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Figure A.1. Example of a regular 2-D grid withnx =4 andny =3 (as Fig.10.1), with the order of the cells shown as
numbers in the cells.

6 numbers. Then we repeat the procedure for the second dust species, again yielding a record with 6 densities and
one with 2 densities and padded with four zeroes.

A.3.2 Example: dust density.inp for an oct-tree refined grid

For the case when you have an oct-tree refined grid (see SectionsA.2.2 and10.3), the order of the numbers is the
same as the order of the cells as specified in theamr grid.(u)inp file (SectionA.2). Let us take the example of a
simple 1x1x1 grid which is refined into 2x2x2 and for which the(1,2,1) cell is refined again in 2x2x2 (this is exactly
the same example as shown in SectionA.2.2, and for which theamr grid.inp is given in that section). Let us also
assume that we have only one dust species. Then thedust density.inp file would be:

iformat <=== Typically 1 at present
15 <=== 2x2x2 - 1 + 2x2x2 = 15
1 <=== Let us take just one dust spec
density[1,1,1] <=== This is the first base grid cell
density[2,1,1]
density[1,2,1;1,1,1] <=== This is the first refined cell
density[1,2,1;2,1,1]
density[1,2,1;1,2,1]
density[1,2,1;1,2,1]
density[1,2,1;1,1,2]
density[1,2,1;2,1,2]
density[1,2,1;1,2,2]
density[1,2,1;1,2,2] <=== This is the last refined cell
density[2,2,1]
density[1,1,2]
density[2,1,2]
density[1,2,2]
density[2,2,2] <=== This is the last base grid cell
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Figure A.2. Example of a 2-D grid with oct-tree refinement (as Fig.10.2) with the order of the cells shown as
numbers in the cells.

A more complex example is shown in Fig.A.2. An unformatted version is also available, in the standard way (see
above).

A.3.3 Example: dust density.inp for a layer-style refined grid

For the case when you have an layer-style refined grid (see SectionsA.2.3 and10.4) you specify the density in a
series of regular boxes (=layers). The first box is the base grid, the second the first layer, the third the second layer
etc. The valuenrcells now tells the combined sizes of the all the boxes. If we take the second example of Section
A.2.3: a simple 2-D 4x4 grid which has a refinement patch (=layer) inthe middle of again 4x4 cells, and again one
patch of 4x4 this time, however, starting in the upper left corner (see theamr grid.inp file given in SectionA.2.3),
then thedust density.inp file has the following form:

iformat <=== Typically 1 at present
48 <=== 4x4 + 4x4 + 4x4 = 48
1 <=== Let us take just one dust spec
density[1,1,1,layer=0]
density[2,1,1,layer=0]
density[3,1,1,layer=0]
density[4,1,1,layer=0]
density[1,2,1,layer=0]
density[2,2,1,layer=0] <=== This a redundant value
density[3,2,1,layer=0] <=== This a redundant value
density[4,2,1,layer=0]
density[1,3,1,layer=0]
density[2,3,1,layer=0] <=== This a redundant value
density[3,3,1,layer=0] <=== This a redundant value
density[4,3,1,layer=0]
density[1,4,1,layer=0]
density[2,4,1,layer=0]
density[3,4,1,layer=0]
density[4,4,1,layer=0]
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density[1,1,1,layer=1] <=== This a redundant value
density[2,1,1,layer=1] <=== This a redundant value
density[3,1,1,layer=1]
density[4,1,1,layer=1]
density[1,2,1,layer=1] <=== This a redundant value
density[2,2,1,layer=1] <=== This a redundant value
density[3,2,1,layer=1]
density[4,2,1,layer=1]
density[1,3,1,layer=1]
density[2,3,1,layer=1]
density[3,3,1,layer=1]
density[4,3,1,layer=1]
density[1,4,1,layer=1]
density[2,4,1,layer=1]
density[3,4,1,layer=1]
density[4,4,1,layer=1]
density[1,1,1,layer=2]
density[2,1,1,layer=2]
density[3,1,1,layer=2]
density[4,1,1,layer=2]
density[1,2,1,layer=2]
density[2,2,1,layer=2]
density[3,2,1,layer=2]
density[4,2,1,layer=2]
density[1,3,1,layer=2]
density[2,3,1,layer=2]
density[3,3,1,layer=2]
density[4,3,1,layer=2]
density[1,4,1,layer=2]
density[2,4,1,layer=2]
density[3,4,1,layer=2]
density[4,4,1,layer=2]

An unformatted version is also available, in the standard way (see above).

It is clear that 48 is now the total number of values to be read,which is 16 values for layer 0 (= base grid), 16 values
for layer 1 and 16 values for layer 2. It is also clear that somevalues are redundant (they can have any value, does
not matter). But it at least assures that each data block is a simple regular data block, which is easier to handle.
Note that these values (marked as redundant in the above example)mustbe present in the file, but they can have any
value you like (typically 0).

Note that if you have multiple species of dust then we will still have 48 as the value ofnrcells . The number of
values to be read, if you have 2 dust species, is then simply 2*nrcells = 2*48 = 96.

A.4 INPUT/OUTPUT: dust temperature.dat, dust temperature.udat

The dust temperature file is an intermediate result of RADMC-3D and follows from the thermal Monte Carlo
simulation. It can be used by the user for other purposes (e.g. determination of chemical reaction rates), but also
by RADMC-3D itself when making ray-traced images and/or spectra. The user can also produce his/her own
dust temperature.(u)dat file (without invoking the Monte Carlo computation) if she/he has her/his own way
of computing the dust temperature.

The structure of this file is identical to that ofdust density.inp or dust density.uinp (SectionA.3), but
with density replaced by temperature. We refer to sectionA.3 for the details. See ChapterB for more details on
unformatted I/O.

A.5 INPUT/OUTPUT (only if required): electron numdens.inp, electronnumdens.uinp,

For various gasopacity issues (see Chapter8) the number density of free electrons may be required. The structure of
this file is identical to that ofdust density.inp or dust density.uinp (SectionA.3), but with density replaced
by the electron number density in units of 1/cm3. We refer to chapter8 for the details. See ChapterB for more
details on unformatted I/O.
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A.6 INPUT/OUTPUT (only if required): ion numdens.inp, ionnumdens.uinp,

For various gasopacity issues (see Chapter8) the number density of ions may be required. The structure ofthis file
is identical to that ofdust density.inp or dust density.uinp (SectionA.3), but with density replaced by the
ion number density in units of 1/cm3. Here we need the overal ion number density. We refer to chapter 8 for the
details. See ChapterB for more details on unformatted I/O.

A.7 INPUT (mostly required): stars.inp

This is the file that specifies the number of stars, their positions, radii, and spectra. Stars are sources of netto energy.
For the dust continuum Monte Carlo simulation these are a source of photon packages. This file exists only in
formatted (ascii) style. Its structure is:

iformat <=== Put this to 2 !
nstars nlam
rstar[1] mstar[1] xstar[1] ystar[1] zstar[1]

. . . . .

. . . . .
rstar[nstars mstar[nstars] xstar[nstars] ystar[nstars] zstar[nstars]
lambda[1]

.

.
lambda[nlam]
flux[1,star=1]

.

.
flux[nlam,star=1]
flux[1,star=2]

.

.
flux[nlam,star=2]

.

.

.

.
flux[nlam,star=nstar]

which is valid only if iformat ==2. The meaning of the variables:

iformat: The format number, at present better keep it at 2. If you put itto 1, the list of wavelengths (see below)
will instead be a list of frequencies in Herz.

nstars: The number of stars you wish to specify.

nlam: The number of frequency points for the stellar spectra. At present this must be identical to the number
of walvelength points in the filewavelength micron.inp (see SectionA.11).

rstar[i]: The radius of stari in centimeters.

mstar[i]: The mass of stari in grams. This is not important for the current version of RADMC-3D, but may
be in the future.

xstar[i]: Thex-coordinate of stari in centimeters (in spherical or cylindrical coordinates this would be ther
coordinate).

ystar[i]: They-coordinate of stari (in cartesian coordinates:y in cm, in spherical coordinates: theθ coordi-
nate, in cylindrical coordinates: theφ coordinate).

zstar[i]: Thez-coordinate of stari (in cartesian coordinates:z in cm, in spherical coordinates: theφ coordi-
nate, in cylindrical coordinates: thez coordinate in cm).

lambda[i]: Wavelength pointi (wherei ∈ [1,nlam ]) in microns. This must be identical (!) to the equivalent
point in the filewavelength micron.inp (see SectionA.11). If not, an error occurs.
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flux[i,star=n]: The flux Fν at wavelength pointi for starn in units of erg cm−2 s−1 Hz−1 as seen from a
distance of 1 parsec =3.08572× 1018 cm (for normalization).

Sometimes it may be sufficient to assume simple blackbody spectra for these stars. If for any of the stars the first
(!) flux number (flux[1,star=n] ) is negative, then the absolute value of this number is takento be the blackbody
temperature of the star, and no further values for this star are read. Example:

2
1 100
6.96e10 1.99e33 0. 0. 0.
0.1

.

.
1000.
-5780.

will make one star, at the center of the coordinate system, with one solar radius, one solar mass, on a wavelength grid
ranging from 0.1 micron to 1000 micron (100 wavelength points) and with a blackbody spectrum with a temperature
equal to the effective temperature of the sun.

A.8 INPUT (optional): stellarsrc templates.inp

This is the file that specifies the template spectra for the smooth stellar source distributions. See Section11.3. The
file exists only in formatted (ascii) style. Its structure is:

iformat <=== Put this to 2 !
ntempl
nlam
lambda[1]

.

.
lambda[nlam]
flux[1,templ=1]

.

.
flux[nlam,templ=1]
flux[1,templ=2]

.

.
flux[nlam,templ=2]

.

.

.

.
flux[nlam,templ=ntempl]

which is valid only if iformat ==2. The meaning of the variables:

iformat: The format number, at present better keep it at 2. If you put itto 1, the list of wavelengths (see below)
will instead be a list of frequencies in Herz.

ntempl: The number of stellar templates you wish to specify.

nlam: The number of frequency points for the stellar template spectra. At present this must be identical to the
number of walvelength points in the filewavelength micron.inp (see SectionA.11).

lambda[i]: Wavelength pointi (wherei ∈ [1,nlam ]) in microns. This must be identical (!) to the equivalent
point in the filewavelength micron.inp (see SectionA.11). If not, an error occurs.

flux[i,templ=n]: The “flux” at wavelengthi for stellar templaten. The units are somewhat tricky. It is given
in units of erg / sec / Hz / gram-of-star. So multiply this by the density of stars in units of gram-of-star / cm3,
and divide by 4*pi to get the stellar source function in unitsof erg / src / Hz / cm3 / steradian.
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Sometimes it may be sufficient to assume simple blackbody spectra for these stellar sources. If for any of the stellar
sources the first (!) flux number (flux[1,templ=n] ) is negative, then the absolute value of this number is taken
to be the blackbody temperature of the stellar source, and the following two numbers are interpreted as the stellar
radius and stellar mass respectively. From that, RADMC-3D will then internally compute the stellar template.
Example:

2
1
100
0.1

.

.
1000.
-5780.
6.9600000e+10
1.9889200e+33

will tell RADMC-3D that there is just one stellar template, assumed to have a blackbody spectrum with solar
effective temperature. Each star of this template has one solar radius, one solar mass.

A.9 INPUT (optional): stellarsrc density.inp, stellarsrc density.uinp

This is the file that contains the smooth stellar source densities. If you have the filestellarsrc templates.inp

specified (see SectionA.8) then youmustalso specify eitherstellarsrc density.inp orstellarsrc density.uinp .
The format of these files are very similar todust density.inp or dust density.uinp (SectionA.3), but in-
stead different dust species, we have different templates.For the rest we refer to SectionA.3 for the format. Just
replaceispec (the dust species) withitempl (the template). See ChapterB for more details on unformatted I/O.

A.10 INPUT (optional): external source.inp

This is the file that specifies the spectrum and intensity of the external radiation field, i.e. the “interstellar radiation
field” (see Section11.4). Its structure is:

iformat <=== Put this to 2 !
nlam
lambda[1]

.

.
lambda[nlam]
Intensity[1]

.

.
Intensity[nlam]

which is valid only if iformat ==2. The meaning of the variables:

iformat: The format number, at present better keep it at 2. If you put itto 1, the list of wavelengths (see below)
will instead be a list of frequencies in Herz.

nlam: The number of frequency points for the stellar template spectra. At present this must be identical to the
number of walvelength points in the filewavelength micron.inp (see SectionA.11).

lambda[i]: Wavelength pointi (wherei ∈ [1,nlam ]) in microns. This must be identical (!) to the equivalent
point in the filewavelength micron.inp (see SectionA.11). If not, an error occurs.

Intensity[i]: The intensity of the radiation field at wavelengthi in units of erg / cm2 / sec / Hz / steradian.
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A.11 INPUT (required): wavelength micron.inp

This is the file that sets the discrete wavelength points for the continuum radiative transfer calculations. Note that
this is not the same as the wavelength grid used for e.g. line radiative transfer. See SectionA.12 and/or Chapter7
for that. This file is only in formatted (ascii) style. It’s structure is:

nlam
lambda[1]

.

.
lambda[nlam]

where

nlam: The number of frequency points for the stellar spectra.

lambda[i]: Wavelength pointi (wherei ∈ [1,nlam ]) in microns.

The list of wavelengths can be in increasing order or decreasing order, but must be monotonically increasing/decreasing.

IMPORTANT: It is important to keep in mind that the wavelength coverage must include the wavelengths at which
the stellar spectra have most of their energy, and at which the dust cools predominantly. This in practice means that
this should go all the way from 0.1µm to 1000µm, typically logarithmically spaced (i.e. equally spaced in logλ).
A smaller coverage will cause serious problems in the Monte Carlo run and dust temperatures may then be severely
miscalculated. Note that the 0.1µm is OK for stellar temperatures below 10000 K. For higher temperatures a shorter
wavelength lower limit must be used.

A.12 INPUT (optional): camera wavelengthmicron.inp

The wavelength points in thewavelength micron.inp file are the global continuum wavelength points. On this
grid the continuum transfer is done. However, there may be various reasons why the user may want to gener-
ate spectra on a different (usually more finely spaced) wavelength grid, or make an image at a wavelength that
is not available in the global continuum wavelength grid. Rather than redoing the entire model with a different
wavelength micron.inp , which may involve a lot of reorganization and recomputation, the user can specify a
file calledcamera wavelength micron.inp . If this file exists, it will be read into RADMC-3D, and the user can
now ask RADMC-3D to make images in those wavelength or make a spectrum in those wavelengths.

If the user wants to make images or spectra of a model that involves gas lines (such as atomic lines or molecular
rotational and/or ro-vibrational lines), the use of acamera wavelength micron.inp file allows the user to do the
line+dust transfer (gas lines plus the continuum) on this specific wavelength grid. For line transfer there are also
other ways by which the user can specify the wavelength grid (see Chapter7), and it is left to the user to choose
which method to use.

The structure of thecamera wavelength micron.inp file is identical to that ofwavelength micron.inp (see
SectionA.11).

Note that there are also various other ways by which the user can let RADMC-3D choose wavelength points, many
of which may be even simpler and more preferable than the method described here. See Section9.4.

A.13 INPUT (required for dust transfer): dustopac.inp and dustkappa *.inp
or dust optnk *.inp

These files specify the dust opacities to be used. More than one can be specified, meaning that there will be more
than one co-existing dust species. Each of these species will have its own dust density specified (see SectionA.3).
The opacity of each species is specified in a separate file for each species. Thedustopac.inp file tells which file
to read for each of these species.
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A.13.1 The dustopac.inp file

The filedustopac.inp has the following structure, where an example of 2 separate dust species is used:

iformat <=== Put this to 2
nspec
-----------------------------
inputstyle[1]
iquantum[1] <=== Put to 0 in this example
<name of dust species 1>
-----------------------------
inputstyle[2]
iquantum[2] <=== Put to 0 in this example
<name of dust species 2>

where:

iformat: Currently the format number is 2, and in this manual we alwaysassume it is 2.

nspec:The number of dust species that will be loaded.

inputstyle[i]: This number tells in which form the dust opacity of dust speciesi is to be read:

-1 Use thedustopac <name>.inp input file style (see below). Here the opacity is specified at the exact
wavelength points given in the filewavelength micron.inp .

1 Use thedustkappa <name>.inp input file style (see below). Here the opacity is specified on its own
wavelength grid, and will then be mapped by RADMC-3D by use ofinterpolation onto the wavelength
grid of wavelength micron.inp . Typically one then specifies the opacity here on a fine wavelength
grid, so that the mapping onto the (usually courser) global wavelength grid is easy and without artifacts.

100 Use thedustoptnk <name>.inp input file style (see below). Here the optical constants are read on
their own wavelength grid. Using Mie theory or CDE the opacities are then computed internally and
mapped onto the global continuum wavelength grid from thewavelength micron.inp file.

iquantum[i]: For normal thermal grains this is 0. If, however, this grain species is supposed to be treated as a
quantum-heated grain, then non-zero values are to be specified. NOTE: At the moment the quantum heating
is not yet implemented. Will be done in the near future. Untilthen, please set this to 0.

<name of dust species i>: This is the name of the dust species (without blank spaces). This name is then
glued to the base name of the opacity file (see above). For instance, if the name isenstatite , and
inputstyle ==1, then the file to be read isdustkappa enstatite.inp .

A.13.2 The dustopac<name>.inp files

If for dust species<name> theinputstyle in thedustopac.inp file is set to -1, then the file dustopac<name>.inp
is sought and read. The structure of this file is:

nlam dummy
kappa_abs[1]

.

.
kappa_abs[nlam]
kappa_scat[1]

.

.
kappa_scat[nlam]

The meaning of these entries is:

nlam: The number of frequency (wavelength) points. This must beidenticalto those of thewavelength micron.inp

file or else the code stops.

dummy: Put this number to 1. It is here for historic reasons (and backward compatibility with older RADMC
incarnations).
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kappa abs[i]: The absorption opacity at wavelength pointi of the wavelength micron.inp wavelength
grid, in units of cm2 per gram of dust.

kappa scat[i]: The scattering opacity at wavelength pointi of the wavelength micron.inp wavelength
grid, in units of cm2 per gram of dust.NOTE: Here isotropic scattering is assumed.

Note that the opacities listed in this kind of file belong to the wavelength points in the filewavelength micron.inp .
So if you change thewavelength micron.inp file, you also must change the dustopac<name>.inp files. This
is why this kind of opacity specification is somewhat less flexible.

A.13.3 The dustkappa<name>.inp files

If for dust species<name> theinputstyle in thedustopac.inp file is set to 1, then the file dustkappa<name>.inp
is sought and read. The structure of this file is:

# Any amount of arbitrary
# comment lines that tell which opacity this is.
# Each comment line must start with an # or ; or ! character
iformat <== This example is for iformat==2
nlam
lambda[1] kappa_abs[1] kappa_scat[1]

. . .

. . .
lambda[nlam] kappa_abs[nlam] kappa_scat[nlam]

The meaning of these entries is:

iformat: If iformat==1, then only the lambda and kappaabs colums are present. In that case the scattering
opacity is assumed to be 0, i.e. a zero albedo is assumed. If iformat==2 (which is what is used in the above
example) also kappascat is read (third column).In the future also iformat==3 will be active, in which a
fourth column is read which lists the Henyey-Greenstein anisotropy factor.

nlam: The number of wavelength points in this file. This can be any number, and does not have to be the
same as those of thewavelength micron.inp . It is typically advisable to have a rather large number of
wavelength points.

lambda[i]: The wavelength pointi in micron. This does not have to be (and indeed typically is not) the same
as the values in thewavelength micron.inp file. Also for each opacity this list of wavelengths can be
different (and can be a different quantity of points).

kappa abs[i]: The absorption opacity in units of cm2 per gram of dust.

kappa scat[i]: The scattering opacity in units of cm2 per gram of dust. Note that this column should only be
included if iformat==2 or higher.

Once this file is read, the opacities will be mapped onto the global wavelength grid of thewavelength micron.inp

file. Since this mapping always involve uncertainties and errors, a filedustkappa <name>.inp used is created
which lists the opacity how it is remapped onto the global wavelength grid. This is only for you as the user, so
that you can verify what RADMC-3D has internally done. Note that if the upper or lower edges of the wavelength
domain of thedustkappa <name>.inp file is within the domain of thewavelength micron.inp grid, some
extrapolation will have to be done. At short wavelength thiswill simply be constant extrapolation while at long
wavelength a powerlaw extrapolation is done. Have a look at thedustkappa <name>.inp used file to see how
RADMC-3D has done this in your particular case.

A.13.4 The dustoptnk<name>.inp files

If for dust species<name> theinputstyle in thedustopac.inp file is set to 100, then the file dustoptnk<name>.inp
is sought and read.

NOTE: For now we discourage this mode as it is insufficiently tested.

118



A.14 OUTPUT: spectrum.out

Any spectrum that is made with RADMC-3D will be either calledspectrum.out or spectrum<somename>.out
and will have the following structure:

iformat <=== For now this is 1
nlam

lambda[1] flux[1]
. .
. .

lambda[nlam] flux[nlam]

where:

iformat: This format number is currently set to 1.

nlam: The number of wavelength points in this spectrum. This does not necessarily have to be the same as
those in thewavelength micron.inp file. It can be any number.

lambda[i]: Wavelength in micron. This does not necessarily have to be the same as those in thewavelength micron.inp

file. The wavelength grid of a spectrum file can be completely independent of all other wavelength grids.
For standard SED computations for the continuum typically these will be indeed the same as those in the
wavelength micron.inp file. But for line transfer or for spectra based on thecamera wavelength micron.inp

they are not.

flux[i]: Flux in erg cm−2 s−1 Hz−1 at this wavelength as measured at a standard distance of 1 parsec (just as
a way of normalization).

NOTE: Maybe in the future a new iformat version will be possible where more telescope information is given in the
spectrum file.

A.15 OUTPUT: image.out or image****.out

Any images that are produced by RADMC-3D will be written in a file calledimage.out or image <somename>.out .
Unformatted versions are also possible (.out being then.uout ). The unformatted[CHECK THIS: SHOULD
THIS NOT BE “FORMATTED”?] versions have the following structure:

iformat <=== For now this is 1
im_nx im_ny
nlam
pixsize_x pixsize_y
lambda[1] ......... lambda[nlam+1]

image[ix=1,iy=1,img=1]
image[ix=2,iy=1,img=1]

.

.
image[ix=im_nx,iy=1,img=1]
image[ix=1,iy=2,img=1]

.

.
image[ix=im_nx,iy=2,img=1]
image[ix=1,iy=im_ny,img=1]

.

.

.
image[ix=im_nx,iy=im_ny,img=nlam]

image[ix=1,iy=1,img=1]
.
.
.
.

image[ix=im_nx,iy=im_ny,img=nlam]
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In most cases the nr of images (nr of wavelengths) is just 1, meaning only one image is written (i.e. the img=2, ....
img=nlam are not there, only the img=1). The meaning of the various entries is:

iformat: This format number is currently set to 1.

im nx, im ny: The number of pixels in x and in y direction of the image.

nlam: The number of images at different wavelengths that are in this file. You can make a series of images
at different wavelengths in one go, and write them in this file. The wavelength belonging to each of these
images is listed below. Thenlam can be any number from 1 to however large you want. Mostly one typically
just makes an images at one wavelength, meaningnlam =1.

pixsize x, pixsize y: The size of the pixels in cm (!!). This means that the size is given in model units (distance
within the 3-D model) and the user can, for any distance, convert this into arcseconds: pixel size in arcsec = (
pixel size in cm / 1.496E13) / (distance in parsec). The pixelsize is the full size from the left of the pixel to
the right of the pixel (or from bottom to top).

lambda[i]: Wavelengths in micron belonging to the various images in this file. In casenlam =1 there will
be here just a single number. Note that this set of wavelengths can be completely independent of all other
wavelength grids.

image[ix,iy,img]: Intensity in the image at pixelix , iy at wavelengthimg (of the above listed wavelength
points) in units of erg cm−2 s−1 Hz−1 ster−1. The pixels are ordered from left to right (in x) and from bottom
to top (in y).

A.16 INPUT: (minor input files)

There is a number of lesser important input files, or input files that are only read under certain circumstances (for
instance when certain command line options are given). Herethey are described.

A.16.1 Thecolor inus.inp file (required with comm-line option ’loadcolor’)

The file color inus.inp will only be read by RADMC-3D if on the command line the optionloadcolor or
color is specified, and if the main action isimage .

iformat <=== For now this is 1
nlam
ilam[1]

.

.
ilam[nlam]

iformat: This format number is currently set to 1.

nlam: Number of wavelength indices specified here.

ilam[i]: The wavelength index for image i (the wavelength index refers to the list of wavelengths in the
wavelength micron.inp file.

A.16.2 INPUT: aperture info.inp

If you wish to make spectra with wavelength-dependent collecting area, i.e. aperture (see Section9.3.2), then you
must prepare the fileaperture info.inp . Here is its structure:

iformat <=== For now this is 1
nlam
lambda[1] rcol_as[1]

. .

. .
lambda[nlam] rcol_as[nlam]
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with

iformat: This format number is currently set to 1.

nlam: Number of wavelength indices specified here. This doesnot have to be the same as the number of
wavelength of a spectrum or the number of wavelengths specified in the filewavelength micron.inp . It
can be any number.

lambda[i]: Wavelength sampling point, in microns. You can use a course grid, as long as the range of
wavelengths is large enough to encompass all wavelengths you may wish to include in spectra.

rcol as[i]: The radius of the circular image mask used for the aperture model, in units of arcsec.

A.17 For developers: some details on the internal workings

There are several input files that can be quite large. Readingthese files into RADMC-3D memory can take time,
so it is important not to read files that are not required for the execution of the particular command at hand. For
instance, if a model exists in which both dust and molecular lines are included, but RADMC-3D is called to merely
make a continuum SED (which in RADMC-3D never includes the lines), then it would be a waste of time to let
RADMC-3D read all the gas velocity and temperature data and level population data into memory if they are not
used.

To avoid unnecessary reading of large files the reading of these files is usually organized in a ‘read when required’
way. Any subroutine in the code that relies on e.g. line data to be present in memory can simply call the routine
read lines all(action) with argumentaction being 1, i.e.:

call read_lines_all(1)

This routine will check if the data are present: if no, it willread them, if yes, it will return without further action.
This means that you can callread lines all(1) as often as you want: the line data will be read once, and only
once. If you look through the code you will therefore find thatmanyread *** routines are called abundantly,
whenever the program wants to make sure that certain data is present. The advantage is then that the programmer
does not have to have a grand strategy for when which data mustbe read in memory: he/she simply inserts a call to
the read routines for all the data she/he needs at that particular point in the program, (always with action=1), and it
will organize itself. If certain data is nowhere needed, they will not be read.

All these read *** routines with argumentaction can also be called withaction=2 . This will force the
routine to (re-)read these data. But this is rarely needed.
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Appendix B

More information about fortran-style
unformatted data files

B.1 Overview

Some input and output files are so big that it is useful to try towrite them as compact as possible. Unformatted I/O
is much more compact than formatted I/O, as we shall explain in SectionB.2. RADMC-3D offers unformatted input
and output formats for some of the largest files. Here is a (presumably incomplete) list of files that have unformatted
versions:

Name formatted unformatted unformatted
double-prec. single-prec.

dust density .inp .uinp

dust temperature .inp .uinp

dust temperature .dat .udat

gas density .inp .uinp

gas temperature .inp .uinp

electron numdens .inp .uinp

ion numdens .inp .uinp

levelpop *** .inp .uinp .usinp

numberdens *** .inp .uinp .usinp

gas velocity .inp .uinp .usinp

microturbulence .inp .uinp .usinp

stellarsrc density .inp .uinp

The .inp or .dat ending means that the file is in ASCII format. If the ending is.uinp or .udat then the file is
FORTRAN-style unformatted (see below) and the data are in double precision. If the ending is.usinp or .usdat

then the file is FORTRAN-style unformatted (see below) and the data are in single precision. The latter (single
precision) saves roughly a factor of 2 in file size, so that canbe useful for big simulations.

The unformatted file styles are complicated. In fact, they are “unnecessarily” complicated as a result of FORTRAN’s
old-fashioned record-based I/O. That is why we devote an extra chapter to this file format, because it can be very
confusing for the RADMC-3D-user.

B.2 Why is unformatted I/O more compact than formatted?

In formatted I/O each number is represented as an ASCII string, where each digit of the number is a separate byte.
The integer number 10398 is thus 5 bytes, plus a separator (a space or a return), totalling 6 bytes. If we would write
1000 such numbers to a file in ASCII format, then we would obtain a file of 6000 bytes, roughly 6 kB. However,
numbers between -16535 and 16536 are stored, in computer memory, as 2-byte integers. If we could write these
exact integers to the file, then the 1000 numbers would occupyonly 2000 bytes and the file would only be 2 kB
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large. That is a factor of 3 smaller. Note: normally integersare at least 4 bytes long in computer memory. You can
also declare 8-byte integers for very large integer numbers.

Another example: a floating point number 3.59932E+03 is ” 3.59932E+03” as a string variable, occupying 13 bytes
as a string, but only 4 bytes as a floating point number in memory. Writing this number in formatted form (as ASCII)
requires thus 13 bytes per number, while if we could write it directly in unformatted form, it would require only 4
bytes. Note: a double precision float requires 8 bytes in unformatted form.

For files that tend to become extremely large it is therefore worthwhile to use unformatted I/O to reduce the size of
the files by a factor of about two to four.

B.3 What is FORTRAN-style record-based unformatted I/O?

In most programming languages you can read and write unformatted data exactly as you think it should be: If
you write a single double-precision number to a file, the file length would be exactly 8 bytes long. Unfortunately,
FORTRAN is an exception. Fortran uses a record-based I/O style which originates still from the old days, which
we will discuss below. When they drastically improved Fortran to Fortran-90 and Fortran-95, most problems of
Fortran-77 (such as lack of pointers, lack of allocatable arrays) were solved. But they forgot to solve the problem
with record-based I/O. This problem was only solved in the Fortran-2003 version, but this fortran version has not
yet become full standard yet. For reasons of portability we do not want to move to Fortran-2003 until Fortran-2003
has become the defacto standard of Fortran on all platforms.Therefore we are stuck, for the moment, with old-style
Fortran I/O, which is record-based.

So what is record-based unformatted I/O? The idea is that onereads or writes data in blocks, called records, from/to
files. Each record starts with a four-bytes integer1 that tells how long the record is (in units of bytes). Then the
data of the record comes, and after the end of the data the samefour-byte integer is written again. The next record
then starts also with a four-byte integer, givingits length, followed by the data, and ending again with the four-byte
integer. This file structure was useful in the days of tape devices, but is no longer useful today. Typically each time
you write some data to a file, e.g.

write(1) a,b,c

where a, b and c are single-precision floats, Fortran writes twice two extra bytes. The file would thus have a length
of 4+3*4+4=20 bytes. Try the following fortran-90 program:

program testwrite
real :: a,b,c
a=30487003.0
b=45645.2
c=-234.0
open(unit=1,file=’myfile’,form=’unformatted’)
write(1) a,b,c
write(1) a,b,c
close(1)

end program testwrite

This gives a file of 40 bytes long. A similar output with a C-program would give a 24 bytes long file.

Normally you do not need to worry about these records or these4-byte headers and footers. You will not notice
it at all under normal circumstances. For instance, themyfile file from the above program can be read with the
following program:

program testread
real :: a,b,c,d,e,f
open(unit=1,file=’myfile’,form=’unformatted’)
read(1) a,b,c
read(1) d,e,f
close(1)
write( * , * ) a,b,c,d,e,f

end program testread

Things go wrong, however, if you do not read according to records. For instance, if we would have done

1Four bytes for 64-bit computers and two bytes for 32-bit computers, as far as I know.
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program testread
real :: a,b,c,d,e,f
open(unit=1,file=’myfile’,form=’unformatted’)
read(1) a
read(1) b
read(1) c
read(1) d
read(1) e
read(1) f
close(1)
write( * , * ) a,b,c,d,e,f

end program testread

Then the program aborts due to end-of-file at the point where it tries to read ’c’. This is the curse of fortran record-
based I/O.

B.4 Strategy of writing FORTRAN-unformatted files

To keep files small, we want to use unformatted I/O. But we haveseen that Fortran uses records and this can make
things complicated. The simplest solution, technically, would be to write each number as a separate record. In
that way we never get into troubles as shown in the last example program of SectionB.3. But it would make the
file unnecessarily long: for each 4-byte float we would have 2x4=8 bytes extra: the record header and footer. This
means that the file would become 3x longer than needed, and we could have just as well written ASCII.

Therefore: we want to make records relatively long, so that the addition of 2x4 bytes is, percentally, only a small
addition. Example: If we pack a 1000 single-precision floatsinto a single record, then on-disk this leads to a file of
length 1000x4+2x4=4008 bytes. This is almost as long as the 4000 bytes that C would have used. Therefore: the
longer the record, the more compact the data storage.

Ideally you may want to make the record as long as the entire data you want to write or read. That is in principle
possible. For 64-bit compilers the record length integer is4-bytes, so this allows up to 4 GB of data to be stored in
a single record. But for very large data files even this may be not enough. Also, as far as I know, there may still be
compilers that use the 2-byte record header/footer. In thatcase the limit of the data in a single record is just 65536.
For that reason we allow in RADMC-3D that the data is written in several records. The record length can be set by
the user, and will be written as an integer somewhere near thestart of the file (for details, see below).

B.5 General unformatted file structure used by RADMC-3D

All of the unformatted files listed in SectionB.1 follow the same general structure.

• The very first record contains two 8-byte integers: The first is the format number (iformat ), which is usu-
ally simply 1, but in later developments of RADMC-3D when certain file structures may change, could be
upgraded to 2 or 3 or whatever. This number is just there for RADMC-3D to recognize old file structures (a
backward compatibility feature). The second integer (reclen ) is the general record length (in bytes) used for
the main data of this file. See below for more information.

• The second record contains either one or two 8-byte integers. The first of these is (always) the number of cells
of the model (i.e. the number of cells for which this file contains data). For some files there is this second
integer. For instance, fordust density.uinp this second integer tells the number of dust species.

• For levelpop ** .uinp (or .usinp ) there is a next record containing a single 8-byte integer that gives the
number of levels for which the populations are given in each cell. For other files no such record exists.

• Now the main data records follow.

The number of records that follow can be calculated as follows. Let nfloats be the number of floating point
(either double or single) numbers per grid point for this file. Let reclend be the number of cells for which
the data fits in a record (please make sure that this fits exactly!). For double precision one thus hasreclend =
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reclen /(nfloats * 8) (relevant for files ending in.uinp or .udat ). For single precision one thus hasreclend

= reclen /(nfloats * 4) (relevant for files ending in.usinp or .usdat ). For a double precision velocity field we
have three double precision numbers per cell, so we getreclend = reclen /(3 * 8) . Let ncells be the number of
cells. Then the number of required records is then

nrecords = ( (ncells-1) / reclend ) + 1

whereinteger divisionis used, in which e.g. 5/4=1 while 3/4=0. The -1 and +1 are there to assure that we have
enough space. For instance if we have 5 cells (ncells=5 ) and we havereclend=4 (i.e. the data of 4 cells fit into
a single record) then we need 2 records, the second of which will contain only one cell (the rest being padded with
0).

Here are a few things to keep in mind:

1. Be sure thatreclen (the length of each data record in units of bytes) is exactly an integer number times
the required data storage of each cell. Example: For thedust density.uinp file each cell contains only a
single number: the density of dust2. If we want to pack 1024 cells into a single record, thenreclen must be
exactly 8192.

2. It can happen that the last record is not fully filled. For instance, if we have 5 cells, but records of 4 cells each,
then the file contains 2 data records, the first one filled with data of 4 cells, the second one only containing
data of 1 cell. In the current version of RADMC-3Dyou must still write the full record length: so simply pad
the unused part with 0 or whatever.

3. Because of the previous point (the padding) it is wise to doEITHER one of the following:

• Make the record length exactly as big as needed to fit in all data in a single record.

• Take the record length moderate so that if you have a nearly empty record at the end you won’t waste
too much space (but again, don’t take it too small either, so that you don’t waste too much space with
the record headers and footers). If you takereclend =32 or so (meaningreclen =256 for a double
precision scalar field orreclen =768 for a double precision vector field) then you are on the safe side.

I apologise for the complicated stuff here. As soon as fortran-2003 is fully the standard on all platforms and for the
GNU fortran compilers, then I will simplify the unformattedI/O.

2Different dust species are written in the outermost loop, see SectionA.3.
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Appendix C

Command-line options

This chapter deals with all the possible command-line options one can give when calling theradmc3d code.

C.1 Main commands

In addition to the radmc3d.inp file, which contains many ’steering’ parameters, one can (and even must) give
RADMC-3D also command-line options. The most important (and compulsory) options are the ’command’ what
RADMC-3D should do. At the moment you can choose from:

mctherm: Runs RADMC-3D for computing the dust temperatures using the Monte Carlo method. See
chapter6.

spectrum: Runs RADMC-3D for making a spectrum based on certain settings. This option requires
further command-line specifications. See chapter9.

sed: Runs RADMC-3D for making a SED based on certain settings. This option requires further
command-line specifications. Note that a SED is like a spectrum, but for continuum processes
only (no lines). See chapter9 for more details.

image: Runs RADMC-3D for making an image. This option requires further command-line specifi-
cations. See chapter9.

movie: Like image , but now for a series of different vantage points. Useful formaking movies in
one go, without having to call RADMC-3D time and again.NOTE: This command is still
under development. See chapter9.

mcmono: (Only expect use). Runs RADMC-3D for computing the local radiation field at each location
in the model. This is only useful for when you wish to couple RADMC-3D to models of
chemistry or so, which need the local radiation field. See Section 6.4.

Example:

radmc3d mctherm

runs the RADMC-3D code for computing the dust temperatures everywhere using the Monte Carlo method.

There are also some additional commands that may be useful for diagnostics:

subbox **** : where **** is one of the following:dust density , dust temperature . But other quan-
tities will follow in later versions. However, it may be better to use this option from within
IDL. See Section15.1.
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linelist: Write a list of all the lines included in this model.

C.2 Additional arguments: general

Here is a list of command line options, on top of the above listed main commands (Note: We’ll try to be complete,
but as the code develops we may forget to list new options here):

npix: [for images] The next number specifies the number of pixels in both x and y direction, as-
suming a square image.

npixx: [for images] The next number specifies the number of pixels in x direction only.

npixy: [for images] The next number specifies the number of pixels in y direction only.

nrrefine: [for images and spectra] Specifies a maximum depth of refinement of the pixels (see Section
9.6).

fluxcons: [for images and spectra] Puts nrrefine (see above) to a largevalue to assue flux conservation
(see Section9.6).

norefine: [for images and spectra] Puts nrrefine (see above) to 0 so that each pixel of the image corre-
sponds only to 1 ray. This is fast but not reliable and therefore not recommended (see Section
9.6).

nofluxcons: [for images and spectra] Asnorefine above.

noscat: This option makes RADMC-3D ignore the dust scattering process (though not the scattering
extinction!) in the images, spectra and Monte Carlo simulations. For images and spectra this
means that no scattering Monte Carlo run has to be performed before each image ray tracing
(see Section6.5.4). This can speed up the making of images or spectra enormously. This is
even more so if you make images/spectra of gas lines with LTE,LVG or ESCP methods, be-
cause if no scattering Monte Carlo needs to be made, ray-tracing can be done multi-frequency
for each ray, and the populations can be calculated once in each cell, and used for all frequen-
cies. That can speed up the line rendering enormously – of course at the cost of not including
dust scattering. For lines in the infrared and submillimeter, if no large grains are present, this
is usually OK, because small grains (smaller than about 1 micron) have very low scattering
albedos in the infrared and submillimeter.

ilambda or inu: [for images] Specify the index of the wavelength from thewavelength micron.inp file
for which a ray-trace image should be made.

color: [for images] Allows you to make multiple images (each at a different wavelength) in one go.
This will make RADMC-3D read the filecolor inus.inp (see SectionA.16) which is a
list of indicesi referring to thewavelength micron.inp file for which the images should
be made. See Section9.4for details.

loadcolor: [for images] Same ascolor .

loadlambda: [for images] Allows you to make multiple images (each at a different wavelength) in one go.
This will make RADMC-3D read the filecamera wavelength micron.inp orcamera frequency.inp

(whichever is present) to read the precise wavelength points at which you wish to make the
images. In contrast toloadcolor , which only allows you to pick from the global set of
wavelength used by the Monte Carlo simulation (in the filewavelength micron.inp or
frequency.inp ), with thecamera wavelength micron.inp orcamera frequency.inp

files you can specify any wavelength you want, and any number of them. See Section9.4for
details.
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sizeau: [for images and spectra] The next number specifies the imagesize in model space in units of
AU (=1.496E13 cm). This image size is measured from the imagecenter to the left or right
or top or bottom. This gives always square images. This imagehalf size in au is observer
distance independent. The corresponding image half size inarcsec is: image half size in
arcsec = image half size in AU / (distance in parsec).

sizepc: [for images and spectra] Same assizeau , but now in parsec units.

zoomau: [for images and spectra] The next four numbers set the imagewindow precisely by specifying
the xleft, xright, ybottom, ytop of the image in units of AU. The zero point of the image (the
direction of the 2-D image point located at (0.0,0.0) in image coordinates) stays the same (i.e.
it aims toward the 3-D point in model space given bypointau or pointpc ). In this way
you can move the image window left or with or up or down withouthaving to change the
pointau or pointpc 3-D locations. Also for local perspective images it is different if you
move the image window in the image plane, or if you actually change the direction in which
you are looking (for images from infinity this is the same).Note that if you use this option
without thetruepix option RADMC-3D will always make square pixels by adaptingnpixx

or npixy such that together with thezoomau image size you get approximately square pixels.
Furthermore, iftruezoom is not set, RADMC-3D will alleviate the remaining tiny deviation
from square pixel shape by slightly (!) adapting thezoomau window to obtain exactly square
pixels.

zoompc: [for images and spectra] Same aszoomau, but now the four numbers are given in units of
parsec.

truepix : [for images and spectra] If withzoomau or zoompc the image window is not square then
when specifyingnpix one gets non-square pixels. Without thetruepix option RADMC-
3D will adapt thenpixx or npixy number, and subsequently modify the zoom window a
bit such that the pixels are square. With thetruepix option RADMC-3D will not change
npixx nor npixy and will allow non-square pixels to form.

truezoom: [for images and spectra] If set, RADMC-3D will always assure that the exact zoom window
(specified withzoomau or zoompc) will be used, i.e. iftruepix is not set buttruezoom is
set, RADMC-3D will only (!) adaptnpixx or npixy to getapproximatelysquare pixels.

pointau: [for images and spectra] The subsequent three numbers specify a 3-D location in model space
toward which the camera is pointing for images and spectra. The (0,0) coordinate in the image
plane corresponds by definition to a ray going right through this 3-D point.

pointpc: [for images and spectra] Same aspointau but now in units of parsec.

incl: [for images and spectra] For the case when the camera is at infinity (i.e. at a large distance so
that no local perspective has to be taken into account) this inclination specifies the direction
toward which the camera for images and spectra is positioned. Incl = 0 means toward the
positivez-axis (in cartesian space), incl=90 means toward a positionin the x-y-plane and
incl=180 means toward the negativez-axis. The angle is given in degrees.

phi: [for images and spectra] Likeincl , but now the remaining angle, also given in degrees.
Examples: incl =90 andphi =0 means that the observer is located at infinity toward the
negativey axis; incl =90 andphi =90 means that the observer is located at infinity toward
the negativex axis; incl =90 andphi =180 means that the observer is located at infinity
toward the positivey axis (looking back in negativey direction). Rotation of the observer
around the object around thez-axis goes in clockwise direction. The starting point of this
rotation is such that forincl =0 andphi=0 the (x, y) in the image plane correspond to the
(x, y) in the 3-D space, withx pointing toward the right andy pointing upward. Examples: ]
if we fix the position of the observer at for instanceincl =0 (i.e. we look at the object from
the top from the positivez-axis at infinity downward), then increasingphi means rotating
the object counter-clockwise in the image plane.
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posang: [for images] This rotates the camera itself around the(0, 0) point in the image plane.

imageunform: Write out images in unformatted form

imageformatted: Write out images in text form (default)

circ: When spectra or SEDs are made, and when spherical coordinates are used, then this option
will make RADMC-3D use a circular arrangement of pixels. This is an emulation of RADMC
(the predecessor code), and has some advantages in terms of speed over RADMC-3D sub-
pixeling method. See Section9.9.

tracetau: [for images] If this option is set, then instead of ray-tracing a true image, the camera will
compute the optical depth at the wavelength given by e.g.inu and puts this into an image
output as if it were a true image. Can be useful for analysis ofmodels.

tracecolumn: [for images] Like tracetau but instead of the optical depth the simple column depth is
computed in g/cm2. NOTE: for now only the column depth of the dust.

tracenormal: [for images: Default] Only if you specifiedtracetau or tracecolumn before, and you are
in child mode, you may sometimes want to reset to normal imaging mode.

apert or useapert: [for images/spectra] Use the image-plane aperture information from the fileaperture info.inp .

noapert: [for images/spectra] Donotuse an image-plane aperture.

nphot therm: [for MC] The nr of photons for the thermal Monte Carlo simulation. But it is better to use
theradmc3d.inp for this (see SectionA.1), because then you can see afterward with which
photon statistics the run was done.

nphot scat: [for MC] The nr of photons for the scattering Monte Carlo simulation done before each image
(and thus also in the spectrum). But it is better to use theradmc3d.inp for this (see Section
A.1), because then you can see afterward with which photon statistics the run was done.

nphot mcmono: [for MC] The nr of photons for the monochromatic Monte Carlosimulation. But it is better
to use theradmc3d.inp for this (see SectionA.1), because then you can see afterward with
which photon statistics the run was done.

C.3 Switching on/off of radiation processes

You can switch certain radiative processes on or off with thefollowing commands (though often theradmc3d.inp

file also allows this):

inclstar: [for images and spectra] Include stars in spectrum or images.

nostar: [for images and spectra] Donot include stars in spectrum or images. Only the circumstellar/
interstellar material is imaged as if a perfect coronographis used.

inclline: Include line emission and extinction in the ray tracing (for images and spectra).

noline: Do not include line emission and extinction in the ray tracing (for images and spectra).

incldust: Include dust emission, extinction and (unless it is switched off) dust scattering in ray tracing
(for images and spectra).

nodust: Do not include dust emission, extinction and scattering inray tracing (for images and spectra).

inclfreefree: Include the gas continuum free-free emission (Bremsstrahlung). See chapter8.
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nofreefree: Do not include the gas continuum free-free emission.

inclgascont: Include all gas continuum processes known by RADMC-3D (right now this is only free-free,
as of 04.07.2010, but this could become more in later versions).

nogascont: Do not include the gas continuum.

C.4 Commands for child mode

Here is a list of options that are only useful for when you use RADMC-3D in child mode (Chapter12):

child: This prevents RADMC-3D from exiting after each main command is done. Instead, RADMC-
3D will wait for further commands being given on the RADMC-3Dinternal command line.
This can be useful if multiple actions are to be taken, and theuser does not want to wait for
long file input reading. It is in fact used by theviewimage.pro GUI (see chapter14) for
making images. Note that with RADMC-3D command line each command has to be on a
separate line (i.e. ending with a return).

exit or quit : In child mode you can finish the command-line mode by entering exit or quit.

enter: In child mode enter says RADMC-3D that it can start executing the lastset of commands.
After it is done a new set of commands (each on a new line) can begiven, again ending with
the word enter (on a separate line).

writeimage: In child mode an image can be written to the standard output (in ascii form) with this
command.

writespec: In child mode a spectrum can be written to the standard output (in ascii form) with this
command.
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Appendix D

Which options are mutually incompatible?

For algorithmic reasons not all options / coordinate systems and all grids are compatible with each other. Here is an
overview of which options/methods work when. Note that onlyoptions/methods for which this is a possible issue
are listed.

D.1 Coordinate systems

Some coordinate systems exclude certain possibilities. Here is a list.

Option/Method: Cart 3D
Second order ray-tracing (Sec.9.8) yes
Isotropic scattering yes
An-isotropic scattering for thermal Monte Carlo yes
An-isotropic scattering for monochromatic Monte Carlo yes
An-isotropic scattering for images and spectra yes
Gas lines yes
Gas lines and Doppler-shift line catching yes
Circular images (backward compatibility with RADMC) no

D.2 Scattering off dust grains

The inclusion of the effect of scattering off dust grains in images and spectra typically requires a separate Monte
Carlo computation for each image. This is done automatically by RADMC-3D. But it means that there are some
technical limitations.

Option/Method: No scattering Isotropic approximation Full anisotropic scattering
Fast multi-frequency ray tracing for spectra (auto) yes no no
Multiple images at different vantage point at once (Sec.9.11) yes yes yes
Local observer (Sec.9.10) yes yes no

Whereever there is “(auto)” this means that the user does notneed to set/choose anything: RADMC-3D will auto-
matically make the choice correctly. It is listed here just to make clear to the user why things may work differently
under different circumstances.

D.3 Local observer mode

The local observer mode (Sect.9.10) is a special mode for putting the observer in the near-field of the object, or
even right in the middle of the object. It is not meant to be really for science use (though it can be used for it, to a
certain extent), but instead for public outreach stuff. However, it is kept relatively basic, because to make this mode
compatible with all the functions of RADMC-3D would requiremuch more development and that is not worth it at
the moment. So here are the restrictions:

131



Option/Method: Local observer mode
Dust isotropic scattering yes
Dust an-isotropic scattering no
Multiple images at different vantage point at once (Sec.9.11) yes
Second-order ray-tracing (Sec.9.8) yes
Doppler-catching of lines (Sec.7.6) no
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