radmc3dPy v0.25

Attila Juhasz

radmc3dPy consists of three parts: 1) few core modules (analyze, image, natconst, setup) for
creating input files and post-processing the output of RADMC-3D, 2) an ensemble of models to
provide description for the physical variables in the model space and 3) an input parameter file.

1 Core modules

1.1 module: setup

This module is responsible for model setup (those who are familiar with the IDL package of the
predecessor code radmc this module is similar to 'problem_setup.pro’). The setup module contains
two separate functions to set up a dust and a gas model possibly independently from each other
problemSetupDust() and problemSetupGas(). It depends on the actual model whether or not they
are completely independent from each other. These functions have one mandatory argument, the
name of the model. Any additional keyword argument can be used to change/override the model
parameters (as set in the input parameter file). The basic steps of a model setup are the following: 1)
Read the input parameter file. 2) Check if any of the parameters were given as keyword argument for
the setup function and if so set its value to the one given in the keyword argument. If such parameter
override happens re-write the input parameter file with the actual parameter setup. 3) Create all the
necessary input files. The setup module has also two convenience function to query the current set
of available models and get a one line description of that. The most important functions in the setup
module are the following:

getModelDesc() - Returns the brief description of the model
getModelNames() - Returns the list of available models
problemSetupDust() - Creats a dust continuum model setup

problemSetupGas() - Creates a gas model setup

1.2 module: analyze

This module is responsible for I/O and some basic analytical functionality. It contains five classes
(radmc3dData, radmc3dDustOpac, radmc3dGrid, radmc3dPar, radmc3dStars) and several func-
tions. The radmc3dData class is responsible for the reading and writing of the variables (density,
temperature, etc.), whatever radmc3dData can read it can also write it both in formatted ASCII or
in C-style binary format. It also contains functions to calculate continuum optical depths and sur-
face density. The radmc3dDustopac class contains methods to read/write the master opacity file
(dustopac.inp), read dust opacities and also to calculate them. For the dust opacity calculation
it uses the code 'makedust’ distributed with RADMC-3D (opac/dust_continuum/jena). The code in
opac/dust_continuum/jena should be compiled and the directory should be added to the PATH en-
vironment variable such that it can be called/executed without the absolute path. The radmc3dGrid
class has methods to create, read and write spatial and wavelength grid and to calculate the grid cell
volumes. The radmc3dPar is the model parameter class. It can read and write the model parameter
file (problem_params.inp). It has dictionaries to store the variables with the variable names as keys.

1

Important functions in the analyse module:
readData() - Reads variables (e.g. dust density, gas velocity, etc)
readGrid() - Reads the spatial and frequency grid
readOpac() - Reads the dust opacities
readParams() - Reads the parameter file (problem_params.inp)
writeDefaultParfile() - Writes the default parameters for a model
radmc3dData.getSigmadust() - Calculates the dust surface density in g/cm?
radmc3dData.getSigmagas() - Calculates the gas surface density in molecule/cm?
radmc3dData.getTau() - Calculates the continuum optical depth

radmc3dData.writeVTK() - Writes variables to a VTK format for visualisation with e.g. Paraview

1.3 module: image

The image module provides functionality to read/write images and do some simple manipulation of
them. The base class is the radmc3dimage class. It can read images both in formatted ASCII and
in C-style binary format and write images in FITS format. For the latter it uses the fits module of
the astropy package, formerly known as PyFits (radmc3dPy can use any of them). Images can be
convolved with an arbitrary 2D Gaussian beam using the imConv method of the radmc3dimage class.
The images can be displayed with the plotimage() function, that uses matplotlib to display the image.
A coronographic mask can also be simulated with the cmask() function, i.e. within a certain radius
around the image center the pixel values will be set to zero. Some convenience/interface functions
are also present (e.g. plotimage(), makelmage(), readlmage(), etc.).

makelmage() - Calculates an image with RADMC-3D (both dust continuum and channel maps)
plotimage() - Plot the image / channel map

readlmage() - Reads the image

radmc3dimage.imConv() - Convolve the image with a Gaussian beam
radmc3dimage.plotMomentmap() - Plots moment map for a 3d image cube

radmc3dimage.writeFits() - Writes the image to a FITS file with CASA compatible header

2 Models

While the core modules contain functionality how to read and write the input files the model modules
should contain the rules what the physical structure of the model is, i.e. the distribution of density,
velocity, turbulent velocity, etc. as a function of the spatial coordinates. Each model module must be
named as ‘'model NAME.py’ where NAME stands for the name of the model (e.g. model_ppdisk.py).
The files themselves must be located either in the current working directory or in the radmc3dPy
directory wherever it is installed. Models are always tried to be imported from the current working
directory first. Each model module can contain the following functions:

2

getModelDesc() - contains a one sentence description of the model

getDefaultParams() - contains the default parameters for this model

getDustDensity() - calculates the dust density, and returns as a numpy array
getDustTemperature() - if present it should return the dust temperature as a bumpy array
getGasAbundance() - returns the gas abundance

getGasDensity() - returns the gas density

getGasTemperature() - returns the gas temperature

getVelocity() - returns the velocity

getVTurb() - returns the microturbulent velocity

Each function that should return a variable gets the spatial grid and all model parameters as input
arguments and they should return numpy arrays containing the variable.

3 Parameter file

The parameter file (problem_params.inp’) contains all input parameters for the model in an plain text
format. Its structure resembles very closely the input parameter file of the predecessor code, radmc.
Variables are grouped into blocks according to their meaning, e.g. radiation source parameters, grid
parameters, dust opacity, etc. Each parameter in the file is given in the following format:

variableName = variableValue # Comment

The reader method of the radmc3dPar class will try to interpret each line according to this general
recipe. However, there is some freedom in this formalism. The variable value can be any expression,
also broken into multiple lines. The value expression of a variable can also include another variable
defined anywhere above that line.

Dust continuum model setup

Spatial & Frequency grid
amr_grid.inp,
wavelength_micron.inp

Radiation source(s)
stars.inp

Raytracing
SED
spectrum.out

Themal Monte-
Carlo (— Taust)
dust_temperature.dat

Dust opacity
dustkappa_xxx.inp, —|
dustopac.inp

Raytracing
Image
image.out

Dust density
dust_density.inp

Code parameters
radmc3d.inp

Figure 1: Structure of a dust continuum model. Inputs are marked with blue, intermediate calculation,
data products are in red while green marks the output of the simulation.

radmc3dPy commands
First let us create a directory for our model. Then go to this directory and start python.

1 Import radmc3dPy .

>>> import radmc3dPy

2 Check which models are available:

>>> radmc3dPy.setup.getModelNames ()
[’lines nlte lvg 1d_1’, ’ppdisk’, ’simple_1’, ’spherld_1’, ’spher2d.1’,
’test_scattering 1°]

3 Create a parameter file with the default values
>>> radmc3dPy.analyze.writeDefaultParfile(’ppdisk’)

To change the parameters of the model the two most straightforward possibilities are the fol-
lowing:

a) Open the created ’problem_params.inp’ file with a text editor and change the parameters if
needed.

b) When in Step 4. the ‘problemSetupDust()’ method is called one can add keyword arguments
with the parameter names, e.g.:

>>>radmc3dPy.setup.problemSetupDust (’ppdisk’, mdisk=’0.01*ms])

The ’problemSetupDust()’ method does the following in this case: Reads the problem_params.inp
file. Then overwrites the value of the mdisk parameter and uses that the new value afterwards.
It also re-writes the problem _params.inp file with the new values.

NOTE: If the value of the keyword argument is given as a string it will be written as a string un-
changed to the ’problem_params.inp’ file but will be interpreted and converted to double/float/int
within the setup script. l.e. if mdisk="0.01*ms’ is given as a keyword argument in the call
of problemSetupDust() then in the problem_params.inp file it will appear in the exact same
way: mdisk="0.01*ms’. However, if the keyword argument is given as mdisk=0.01*ms the prob-
lem_params.inp will contain mdisk = 1.9900000e+31.

Set up the model and create all necessary input files.
>>>radmc3dPy . setup.problemSetupDust (’ppdisk’)

Then we need to copy the dust opacity file called ‘dustkappa_silicate.inp’ from the python_examples/data
directory within the distribution root directory to the current model directory.

Then run RADMC-3D from the shell with the Monte-Carlo simulation to calculate the dust tem-
perature.

$>radmc3d mctherm

Alternatively we can also make a system call from within Python, e.g.:

>>>import os

>>>0s.system(’radmc3d mctherm’)

After the thermal Monte-Carlo run has finished we can make an image from within pyton.
$>radmc3dPy. image .makeImage (npix=400, sizeau=200, wav=880., incl=45, posang=43.)

After RADMC-3D finished we can read the image and plot it.

>>>imag=radmc3dPy.image.readImage ()

>>>radmc3dPy. image.plotImage (imag, arcsec=True, dpc=140., log=True, maxlog=5)
Here ’'arcsec=True’ sets the image axes to arc second that also requires the knowledge of the
distance, which is set in parsec by the 'dpc=140." keyword. The ’log=True’, sets logarithmic
stretch of the image. The 'maxlog=5’ sets a clip of the displayed image by 10~° below its maxi-
mum value, i.e. the displayed image values will be between max(image) and max(image)*10-°.

We can also convolve the image with an arbitrary elliptical gaussian Gaussian beam
>>>conv_imag = imag.imConv(fwhm=[0.05, 0.1], pa=40., dpc=140.)

The fwhm of the Gaussian beam should be in arcsec, the positing angle of the major axis of the
beam ellipse should be in degrees, and the distance to the source in pc (dpc keyword) should
be given.

9 We can also write the image into a fits file:
>>>imag.writeFits(fname=’image.fits’, dpc=140., coord=’03hOmOs -29d0mOs’)

Gas model setup

radmc3dPy commands
1 Follow the instructions for the dust models from Step 1. to 5.

6 Create the necessary input files for the gas simulations:
>>>radmc3dPy . setup.problemSetupGas (’ppdisk’)

7 Calculate a channel map at a single frequency/wavelength
$>radmc3d image npix 400 sizeau 200 incl 45. phi 0. posang 43. iline 3 vkms 1.0

6 This command calculates a single channel map at

>>>imag=radmc3dPy.image.readImage ()
>>>radmc3dPy. image.plotImage ()

Spatial & Frequency grid

amr_grid.inp,
wavelength_micron.inp

Radiation source(s)
stars.inp

Raytracing

Dust opacity
dustkappa_xxx.inp,
dustopac.inp

Dust density
dust_density.inp

SED
spectrum.out

Themal Monte-
Carlo (— Tgust)
dust_temperature.dat

Raytracing
Image

Code parameters
radmc3d.inp

image.out

Gas temperature
gas_temperature.dat

Velocity
gas_velocity.inp

Raytracing
Spectrum
spectrum.out

Gas density
numberdens_xxx.inp

Excitation
(— Level pop.)

Molecular data
molecule_xxx.inp

Raytracing
Channel map
image.out

Line RT setup
lines.inp

Figure 2: Structure of a dust + gas model. Dust inputs are marked with blue, gas inputs are marked
with yellow, intermediate calculation, data products are in red while green marks the output of the
simulation.

