Prof. Lena Noack Institute of Geological Sciences

(Rocky) planet interior structure modeling Crust Mantle Core 06.07.2022 Lena Noack Freie Universität Berlin Density 16000 2.5 14000 Kepler-1 Radius, R/R $_\oplus$ 12000 Density in kg/k³ SPP1992 astrophysical summer school - July 4 to 8, 2022 6000 4000 ocean plane - Earth-like plane 2000 Mercurv–like plane 0.5 2000 4000 6000 8000 0

Radius in km

7.5 Mass, M/M

10

12.5

5.0

2.5

Freie Universität

Berlin

Characterization of planets via average density

If we know the mass M_p and radius R_p of a planet, we can calculate the average density ρ by dividing the planet mass by the volume V_p :

Freie Universität

Berlin

A hollow Moon?

Starting with the science fiction novel by H. G. Wells on "The First Men in the Moon", speculations have appeared and re-appeared about the Moon being too low-dense and therefore hollow/an alien spacecraft invention

Freie Universität

https://en.wikipedia.org/wiki/Hollow_Moon

Wagner et al., 2011

Interior structure model

All materials are compressible!

Interior structure model

Freie Universität

An interior structure model is used to

- assess the radius of a planet or moon for given mass and composition
- to determine the depth-dependent pressure, density and other thermodynamic properties for a specific temperature profile

<u>1st assumption</u>: Hydrostatic equilibrium, which means that the material is in static equilibrium - the weight of each element is entirely supported by the pressure difference across the element

<u>2nd assumption</u>: planet is differentiated into Fe core and silicate mantle consisting of Mg-Si-O (based on olivine and high-pressure equivalents)

How to build an interior structure model

Freie Universität

1) Split the planet in several thin shells

2) Each shell has a local density (same for all thermodynamic parameters)

3) Add up the mass of each shell until reaching M_{p}

4) Update pressure, temperature etc.

5) Iterate until planet radius converges

$$m = M_p; P = P_{atm}$$

$$m = 0; g = 0$$

Mass conservation

The mass m(r) below a sphere of radius r increases with increasing radial coordinate, it is zero in the center of the planet and it is the planet's mass M at the surface:

$$\frac{dm}{dr} = 4\pi r^2 \rho$$

If we assume a constant density within a sphere of radius R_p , we obtain:

$$m(R_p) = \int_0^{R_p} 4\pi r^2 \rho \, dr$$
$$= 4\pi \rho \int_0^{R_p} r^2 \, dr$$
$$= \frac{4}{3}\pi \rho R_p^3$$
$$= \rho V(R_p)$$

Hydrostatic pressure equation

Hydrostatic equilibrium equation for pressure *P*:

$$\frac{dP}{dr} = -g\rho$$

The pressure *P* is zero (or the atmospheric pressure) at the surface of the planet.

Assuming that in the lithosphere density and gravity are constant, then with using zero surface pressure boundary condition

$$P(r) = -\int g\rho \, dr = -g\rho r + c$$

$$0 =: P(R_p) = -g\rho R_p + c$$

$$\leftrightarrow P(r) = g\rho(R_p - r)$$

Atmospheric pressure negligible since $P_0 = 10^5 Pa$ and at depth of 3.3*m* in crust: pressure is $P(3.3m) = 10^5 Pa$ for $g = 10m/s^2$ and $\rho = 3000kg/m^3$.

Poisson equation

In the hydrostatic pressure equation the depth-dependent gravity is

$$g(r) = \frac{Gm}{r^2}$$

Instead of solving an additional equation for m, the radial mass dependence is included in the gravity term using gravitational constant G:

$$\begin{aligned} \frac{dg}{dr} &= \frac{d}{dr} \left(Gm(r)r^{-2} \right) \\ &= \frac{G}{r^2} \frac{dm(r)}{dr} + Gm(r) \frac{d(r^{-2})}{dr} \\ &= \frac{G}{r^2} 4\pi r^2 \rho - \frac{2Gm(r)}{r^3} \\ &= 4\pi G\rho - \frac{2g}{r} \end{aligned}$$

g(r) is zero in the center of the planet.

How to build an interior structure model

Mass conservation:

 $\frac{dm}{dr} = 4\pi r^2 \rho$

חו

Hydrostatic equilibrium equation:

Poisson equation:

Equation of state:

$$\frac{dP}{dr} = -g\rho$$

$$\frac{dg}{dr} = 4\pi G\rho - \frac{2g}{r}$$

 $\rho(P,T); \alpha(T,P); c_P(T,P)$

Mantle minerals

Freie Universität

Figure: Phase stability diagram. From Stixrude and Lithgow-Bertelloni, 2011

Mantle minerals - density

- stability of the different minerals depends on temperature and pressure
- phase transitions in the mantle lead to different mineral crystals
- Figure: Density field for different mineral phases for an Earth-like mantle.
- From Stixrude and Lithgow-Bertelloni, 2011

 Can you reproduce these profiles?
 What changes when using a different planet mass (M), iron content (x_Fe) or upper mantle temperature (Tm)? Here, we provide three python files (EOS.py, InteriorIterativeModel.py and InteriorStructure.py)

In InteriorIterativeModel we obtain properties per shell from an EOS:

[density,alpha,cp] = EOS_all(P[GPa],T[K],mat)

where mat is the material number of the layer (1-crust, 2-upper mantle, 3-lower mantle, 4-high pressure mantle, 5-iron core)

Interior temperature profile

Freie Universität

where the first n_c shells are set within the core, and n_m shells within the mantle (hence shell thickness $dr = r_{i+1} - r_i$ varies between core and mantle)

So far temperature increases adiabatically from mantle to core

More realistic: core cools slower than mantle (as seen in Earth)

→ <u>Exercise</u>: add temperature jump at CMB → first temperature point in core shall be set to T_c .

$$T_c = 4370 \ K \left(\frac{P[GPa]}{140}\right)^{0.48}$$

Attention: equation only valid from ~0.5 Earth mass on, need to set condition that Tc cannot be lower than last mantle value

Mass and radius of several planets and moons of the solar system and beyond: Corot-7b Kepler 10b

Mass and radius of several planets and moons of the solar system and beyond:

Body	Mass [<i>M_{Earth}</i>]	Radius [R _{Earth}]	x _{Fe}
Mercury	0.0553	0.383	60, 63
Earth	1	1	35
Moon	0.0123	0.273	5,7.5,10
Mars	0.1075	0.532	25,30
Callisto	0.018	0.377	2+40 / 9+45 / 20+50
CoRoT-7b	7.42	1.58	55,56,59,60
Kepler-10b	4.56	1.416	54,55,56

 \rightarrow <u>Exercise</u>: Determine iron content that yields observed radius

Mass-radius / density-radius relationship

Prof. Lena Noack Institute of Geological Sciences

Mass, M/M

Freie Universität

Berlin