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Characterization of planets via average density

If we know the mass Mp and radius Rp of a planet, we can calculate the 

average density ρ by dividing the planet mass by the volume Vp :
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A hollow Moon?

Starting with the science fiction novel by H. G. Wells on „The First Men in 

the Moon“, speculations have appeared and re-appeared about the Moon 

being too low-dense and therefore hollow/an alien spacecraft invention

https://en.wikipedia.org/wiki/Hollow_Moon
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Interior structure model

All materials 

are 

compressible!

Wagner et al., 2011
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Interior structure model

An interior structure model is used to

• assess the radius of a planet or moon for given mass and composition

• to determine the depth-dependent pressure, density and other 

thermodynamic properties for a specific temperature profile

1st assumption: Hydrostatic equilibrium, which means that the material is in 

static equilibrium - the weight of each element is entirely supported by the 

pressure difference across the element

2nd assumption: planet is differentiated into Fe core and silicate mantle 

consisting of Mg-Si-O (based on olivine and high-pressure equivalents)
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How to build an interior structure model

1) Split the planet in several thin shells

2) Each shell has a local density (same for all thermodynamic parameters)

3) Add up the mass of each shell until reaching Mp

4) Update pressure, temperature etc.

5) Iterate until planet radius converges

𝑚 = 0; 𝑔 = 0

𝑚 = 𝑀𝑝; 𝑃 = 𝑃𝑎𝑡𝑚
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Mass conservation

The mass 𝑚(𝑟) below a sphere of radius 𝑟 increases with increasing radial 

coordinate, it is zero in the center of the planet and it is the planet's mass 𝑀
at the surface:

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌

If we assume a constant density within a sphere of radius 𝑅𝑝, we obtain:

𝑚 𝑅𝑝 = න
0

𝑅𝑝

4𝜋𝑟2𝜌 𝑑𝑟

= 4𝜋𝜌න
0

𝑅𝑝

𝑟2 𝑑𝑟

=
4

3
𝜋𝜌𝑅𝑝

3

= 𝜌𝑉(𝑅𝑝)
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Hydrostatic pressure equation

Hydrostatic equilibrium equation for pressure 𝑃:

𝑑𝑃

𝑑𝑟
= −𝑔𝜌

The pressure 𝑃 is zero (or the atmospheric pressure) at the surface of the 

planet.

Assuming that in the lithosphere density and gravity are constant, then with 

using zero surface pressure boundary condition

𝑃 𝑟 = −න𝑔𝜌 𝑑𝑟 = −𝑔𝜌𝑟 + 𝑐

0 =:𝑃 𝑅𝑝 = −𝑔𝜌𝑅𝑝 + 𝑐

↔ 𝑃 𝑟 = 𝑔𝜌(𝑅𝑝−𝑟)

Atmospheric pressure negligible since 𝑃0 = 105𝑃𝑎 and at depth of 3.3𝑚 in 

crust: pressure is 𝑃 3.3𝑚 = 105𝑃𝑎 for 𝑔 = 10𝑚/𝑠2 and 𝜌 = 3000𝑘𝑔/𝑚3.
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Poisson equation

In the hydrostatic pressure equation the depth-dependent gravity is

𝑔 𝑟 =
𝐺𝑚

𝑟2

Instead of solving an additional equation for 𝑚, the radial mass dependence 

is included in the gravity term using gravitational constant 𝐺:

𝑑𝑔

𝑑𝑟
=

𝑑

𝑑𝑟
𝐺𝑚 𝑟 𝑟−2

=
𝐺

𝑟2
𝑑𝑚(𝑟)

𝑑𝑟
+ 𝐺𝑚 𝑟

𝑑(𝑟−2)

𝑑𝑟

=
𝐺

𝑟2
4𝜋𝑟2𝜌 −

2𝐺𝑚(𝑟)

𝑟3

= 4𝜋𝐺𝜌 −
2𝑔

𝑟
𝑔(𝑟) is zero in the center of the planet.
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How to build an interior structure model

Mass conservation:

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌

Hydrostatic equilibrium equation:

𝑑𝑃

𝑑𝑟
= −𝑔𝜌

Poisson equation:

𝑑𝑔

𝑑𝑟
= 4𝜋𝐺𝜌 −

2𝑔

𝑟
Equation of state:

𝜌 𝑃, 𝑇 ; 𝛼 𝑇, 𝑃 ; 𝑐𝑃(𝑇, 𝑃)

𝑚 = 𝑀𝑝; 𝑃 = 𝑃𝑎𝑡𝑚

𝑚 = 0; 𝑔 = 0
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Mantle minerals

Figure: Phase stability diagram. From Stixrude and Lithgow-Bertelloni, 2011
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Mantle minerals - density

• stability of the different 

minerals depends on 

temperature and pressure

• phase transitions in the 

mantle lead to different 

mineral crystals

Figure: Density field for different 

mineral phases for an Earth-like 

mantle. 

From Stixrude and Lithgow-

Bertelloni, 2011
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Exercise 1

Here, we provide three python 

files (EOS.py, 

InteriorIterativeModel.py and 

InteriorStructure.py)

In InteriorIterativeModel we obtain 

properties per shell from an EOS:

[density,alpha,cp] = 

EOS_all(P[GPa],T[K],mat)

where mat is the material number 

of the layer (1-crust, 2-upper 

mantle, 3-lower mantle, 4-high 

pressure mantle, 5-iron core)

1) Can you reproduce these profiles?

2) What changes when using a different 

planet mass (M), iron content (x_Fe) or 

upper mantle temperature (Tm)?
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Interior temperature profile

𝑟𝑖 = {𝑟0, 𝑟2, … , 𝑟𝑛}
𝜕𝑇

𝜕𝑟
= −

𝛼 𝑇,𝑃 𝑔(𝑃)

𝑐𝑃(𝑇,𝑃)
𝑇

where the first 𝑛𝑐 shells are set within the core, and 𝑛𝑚 shells within the 

mantle (hence shell thickness 𝑑𝑟 = 𝑟𝑖+1 − 𝑟𝑖 varies between core and mantle)

Crust
𝑇𝑚

𝑇𝑠𝑢𝑟𝑓
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Exercise 2

So far temperature increases adiabatically from

mantle to core

More realistic: core cools slower than mantle

(as seen in Earth)

→ Exercise: add temperature jump at CMB → 

first temperature point in core shall be set to 𝑇𝑐.

Attention: equation only valid from ~0.5 Earth 

mass on, need to set condition that Tc cannot

be lower than last mantle value

Crust
𝑇𝑚

𝑇𝑠𝑢𝑟𝑓

𝑇𝑐

𝑇𝑐 = 4370 𝐾
𝑃 𝐺𝑃𝑎

140

0.48
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Exercise 3

Mass and radius of several planets and moons of the solar system and 

beyond:
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Exercise 3

Mass and radius of several planets and moons of the solar system and 

beyond:

→ Exercise: Determine iron content that yields observed radius

Body Mass [MEarth] Radius [REarth] xFe

Mercury 0.0553 0.383 60, 63

Earth 1 1 35

Moon 0.0123 0.273 5,7.5,10

Mars 0.1075 0.532 25,30

Callisto 0.018 0.377 2+40 / 9+45 / 20+50 

CoRoT-7b 7.42 1.58 55,56,59,60

Kepler-10b 4.56 1.416 54,55,56
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Exercise 4

Mass-radius / density-radius relationship

From Wagner et al. (2011)→ Exercise: Can you generate a similar plot?
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