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Characterization of planets via average density Freie Universitéit (f{ L}

If we know the mass M, and radius R, of a planet, we can calculate the
average density p by dividing the planet mass by the volume V,, :
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A hollow Moon? Freie Universitat \”
In
the Moon®, speculations have appeared and re-appeared about the Moon
being too low-dense and therefore hollow/an alien spacecraft invention

https://en.wikipedia.org/wiki/Hollow_Moon
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Interior structure model

All materials
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Interior structure model Freie Universitat "‘1‘ Berlin

An interior structure model is used to
« assess the radius of a planet or moon for given mass and composition

« to determine the depth-dependent pressure, density and other
thermodynamic properties for a specific temperature profile

1st assumption: Hydrostatic equilibrium, which means that the material is in
static equilibrium - the weight of each element is entirely supported by the
pressure difference across the element

2nd assumption: planet is differentiated into Fe core and silicate mantle
consisting of Mg-Si-O (based on olivine and high-pressure equivalents)




How to build an interior structure model Freie Universitit (] Berlin

1) Split the planet in several thin shells

2) Each shell has a local density (same for all thermodynamic parameters)
3) Add up the mass of each shell until reaching M, m = Mpy; P = Py
4) Update pressure, temperature etc.

5) Iterate until planet radius converges



Freie Universitat (1.8

Mass conservation

The mass m(r) below a sphere of radius r increases with increasing radial
coordinate, it is zero in the center of the planet and it is the planet's mass M

at the surface:
am . 2
— = dntr<p

If we assume a constant density within a sphere of radius R,,, we obtain:



Hydrostatic pressure equation Freie Universitat (/{8 7

Hydrostatic equilibrium equation for pressure P:

a _ _

The pressure P is zero (or the atmospheric pressure) at the surface of the
planet.

Assuming that in the lithosphere density and gravity are constant, then with
using zero surface pressure boundary condition

S
e

P(r)=—jgpdr=—gpr+c

0 =:P(Rp) = —gpR, + ¢
© P(r) = gp(R,—T)
Atmospheric pressure negligible since P, = 10°Pa and at depth of 3.3m in
crust: pressure is P(3.3m) = 10°Pa for g = 10m/s? and p = 3000kg/m3.
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Poisson equation Freie Universitit

In the hydrostatic pressure equation the depth-dependent gravity is

G
g(r) ==
Instead of solving an additional equation for m, the radial mass dependence
IS included in the gravity term using gravitational constant G:

dg d _
E = E (GTI’L(T‘)T‘ )
G dm(r) mr )d(r‘z)
i TGZ ar 2G6m(r)
m(r
=it =5
29
= 4-7'[Gp — T

g(r) Is zero in the center of the planet.



How to build an interior structure model

Mass conservation:
dm

— = Amtr?p
Hydrostatic equilibrium equation:
aP
dT - gp
Poisson equation:
dg 29
— = 4uGp — —
dr P r

Equation of state:

p(P,T); a(T,P); cp(T, P)

Freie Universitat Ll = )
2\ )s

m = M,; P = Py,
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Mantle minerals Freie Universitat £l (¢
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Figure: Phase stability diagram. From Stixrude and Lithgow-Bertelloni, 2011
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Mantle minerals - density

 stability of the different
minerals depends on
temperature and pressure

* phase transitions in the

mantle lead to different %
mineral crystals =
Figure: Density field for different <

mineral phases for an Earth-like
mantle.

From Stixrude and Lithgow-
Bertelloni, 2011
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Exercise 1
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1) Can you reproduce these profiles?

2) What changes when using a different
planet mass (M), iron content (x Fe) or
upper mantle temperature (Tm)?

>
& o .

Freie Universitit ,m ) Berlin
@ >

Here, we provide three python
files (EOS.py,
InteriorlterativeModel.py and
InteriorStructure.py)

In InteriorlterativeModel we obtain
properties per shell from an EOS:

[density,alpha,cp] =
EOS all(P[GPa],T[K],mat)

where mat is the material number
of the layer (1-crust, 2-upper
mantle, 3-lower mantle, 4-high
pressure mantle, 5-iron core)
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Interior temperature profile Berlin
AN /TN
Tsurf
R — i E— Crust
\m
: \
* Convecting mantle \\
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\ R \ \
/ ) /
Temperature
aT a(T,P)g(P)
;i =110, 1>, ..., 15 -_— = —
l { 0,12, ) Tl} a,r CP(T,P)

where the first n, shells are set within the core, and n,,, shells within the
mantle (hence shell thickness dr = r;,; — r; varies between core and mantle)

14



Exercise 2 Freie Universitat .H,. Berlin

So far temperature increases adiabatically from

N7
surf mantle to core
R ~ Crust
Q\Q\’Tm
\ More realistic: core cools slower than mantle
\\ (as seen in Earth)
\\
N — EXxercise: add temperature jump at CMB —
R ~ . > first temperature point in core shall be set to T.
T,
PlcPa\"*®  Attention: equation only valid from ~0.5 Earth
Tc=4370K 140 mass on, need to set condition that Tc cannot

be lower than last mantle value
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EXG rCise 3 Freie Universitat

Mass and radius of several planets and moons of the solar system and

beyond:

Corot-7b Kepler 10b
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Exercise 3

Mass and radius of several planets and moons of the solar system and

beyond:
Body Mass [Mg,«n] Radius [Reginl
Mercury 0.0553 0.383
Earth 1 1
Moon 0.0123 0.273
Mars 0.1075 0.532
Callisto 0.018 0.377
CoRoT-7b 7.42 1.58
Kepler-10b 4.56 1.416

>
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Freie Universitit a,iw ;)4 Berlin
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— EXxercise: Determine iron content that yields observed radius
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Exercise 4

Freie Universitat (5= /):

Mass-radius / density-radius relationship
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— EXxercise: Can you generate a similar plot?
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