Hydrodynamic modelling of planet-disk interaction and planet migration

> Hands-on Numerical Astrophysics School for Exoplanetary Sciences July 4-8, 2022 Hanau-Steinheim

5 July 2022, Sareh Ataiee

dowsi University of Mashhad

Outline

- What is a planet?
- Force, torque, and power
- Lindblad and co-rotation torques
- Gap opening
- Planetary migration
- Put your knowledge in practice using FARGO3D

What is a planet?

Our migration-wise definition:

- A planet (in a disc)
 - is a solid object (not a gas parcel)
 - orbits around one (more) star(s)
 - is moving mostly due to the gravitational forces

What is a planet?

Our migration-wise definition:

- A planet (in a disc)
 - is a solid object (not a gas parcel)
 - orbits around one (more) star(s)
 - is moving mostly due to the gravitational forces

$$\frac{d \mathbf{v}}{dt} = \mathbf{a}$$

For a solid in a disc $\rightarrow = \mathbf{a}_{\text{star}} + \mathbf{a}_{\text{gas drag}} + \mathbf{a}_{\text{disc gravity}}$
if $\begin{cases} \mathbf{a}_{\text{gas drag}} \ll \mathbf{a}_{\text{disc gravity}} & \text{Planet} \\ \mathbf{a}_{\text{gas drag}} \gg \mathbf{a}_{\text{disc gravity}} & \text{Dust particle} \end{cases}$

What is a planet?

Our migration-wise definition:

- A planet (in a disc)
 - is a solid object (not a gas parcel)
 - orbits around one (more) star(s)
 - is moving mostly due to the gravitational forces **Numerically**:
 - is a gravitational point source

Torque:
$$\delta \mathbf{\Gamma} = \mathbf{r} \times \delta \mathbf{f} = \delta \frac{d \mathbf{L}_p}{dt}$$
 $\mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$
Power: $\delta P = \mathbf{v} \cdot \delta \mathbf{f} = \delta \frac{dE_p}{dt}$ $E_p = -\frac{G m_p M_*}{2a}$

 δf

Torque: $\delta \mathbf{\Gamma} = \mathbf{r} \times \delta \mathbf{f} = \delta \frac{d \mathbf{L}_p}{dt}$ $\mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$ Power: $\delta P = \mathbf{v} \cdot \delta \mathbf{f} = \delta \frac{d E_p}{dt}$ $E_p = -\frac{G m_p M_*}{2 a}$

 $\delta \mathbf{\Gamma}|_{z} = \mathbf{r} \times \delta \mathbf{f} < 0 \Rightarrow \delta \frac{d \mathbf{L}_{p}}{dt}|_{z} < 0 \quad \text{planet loses angular momentum}$ $\delta \mathbf{\Gamma}|_{z} = \mathbf{r} \times \delta \mathbf{f} > 0 \Rightarrow \delta \frac{d \mathbf{L}_{p}}{dt}|_{z} > 0 \quad \text{planet gains angular momentum}$

05/07/2022

Torque: $\delta \mathbf{\Gamma} = \mathbf{r} \times \delta \mathbf{f} = \delta \frac{d \mathbf{L}_p}{dt}$ $\mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$ Power: $\delta P = \mathbf{v} \cdot \delta \mathbf{f} = \delta \frac{dE_p}{dt}$ $E_p = -\frac{G m_p M_*}{2 a}$

 $\delta P = \mathbf{v} \cdot \delta \mathbf{f} < 0 \Rightarrow \delta \frac{d E_p}{dt} < 0 \quad \text{planet loses energy}$ $\delta P = \mathbf{v} \cdot \delta \mathbf{f} > 0 \Rightarrow \delta \frac{d E_p}{dt} > 0 \quad \text{planet gains energy}$

Torque:
$$\delta \mathbf{\Gamma} = \mathbf{r} \times \delta \mathbf{f} = \delta \frac{d \mathbf{L}_p}{dt}$$
 $\mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$
Power: $\delta P = \mathbf{v} \cdot \delta \mathbf{f} = \delta \frac{d E_p}{dt}$ $E_p = -\frac{G m_p M_*}{2 a}$
Torque: $\mathbf{\Gamma} = \int_{\text{disc}} \mathbf{r} \times \delta \mathbf{f} = \frac{d \mathbf{L}_p}{dt}$
Power: $P = \int_{\text{disc}} \mathbf{v} \cdot \delta \mathbf{f} = \frac{d E_p}{dt}$

05/07/2022

 δf

Torque:
$$\Gamma = \int_{\text{disc}} \mathbf{r} \times \delta \mathbf{f} = \frac{d \mathbf{L}_p}{dt} \quad \mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$$

Power: $P = \int_{\text{disc}} \mathbf{v} \cdot \delta \mathbf{f} = \frac{dE_p}{dt} \quad E_p = -\frac{G m_p M_*}{2 a}$

For a circular planet (e = 0):

 $\Gamma_{z} = \frac{dL_{p}}{dt} = m_{p} \frac{\sqrt{GM_{*}}}{2\sqrt{a}} \dot{a} = \frac{L_{p}}{2} \frac{\dot{a}}{a}$ $P = \frac{dE_{p}}{dt} = m_{p} \frac{GM_{*}}{2a^{2}} = -E_{p} \frac{\dot{a}}{a}$ $\Gamma_{a} = \frac{dE_{p}}{a} = \frac{L_{p}}{2\Gamma} = \frac{|E_{p}|}{P}$

05/07/2022

Torque:
$$\Gamma = \int_{\text{disc}} \mathbf{r} \times \delta \mathbf{f} = \frac{d \mathbf{L}_p}{dt} \quad \mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$$

Power: $P = \int_{\text{disc}} \mathbf{v} \cdot \delta \mathbf{f} = \frac{dE_p}{dt} \quad E_p = -\frac{G m_p M_*}{2 a}$

For a circular planet (e = 0):

$$\tau_{\rm a} = \frac{a}{\dot{a}} = \frac{L_p}{2\Gamma} = \frac{|E_p|}{P}$$

Green part wins \rightarrow Torque and power on a planet are negative \rightarrow The planet's semi-major axis decreases

Torque:
$$\Gamma = \int_{\text{disc}} \mathbf{r} \times \delta \mathbf{f} = \frac{d \mathbf{L}_p}{dt} \quad \mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$$

Power: $P = \int_{\text{disc}} \mathbf{v} \cdot \delta \mathbf{f} = \frac{dE_p}{dt} \quad E_p = -\frac{G m_p M_*}{2a}$

Surface density perturbation \rightarrow exerts torque/power on the planet \rightarrow changes the planet's angular momentum/ energy \rightarrow changes the planet's semi-major axis

Migration

Torque:
$$\Gamma = \int_{\text{disc}} \mathbf{r} \times \delta \mathbf{f} = \frac{d \mathbf{L}_p}{dt} \quad \mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$$

Power: $P = \int_{\text{disc}} \mathbf{v} \cdot \delta \mathbf{f} = \frac{dE_p}{dt} \quad E_p = -\frac{G m_p M_*}{2 a}$

For an eccentric planet (0 < e < 1):

Torque:
$$\Gamma = \int_{\text{disc}} \mathbf{r} \times \delta \mathbf{f} = \frac{d \mathbf{L}_p}{dt} \quad \mathbf{L}_p = m_p \sqrt{G M_* a} \sqrt{1 - e^2} \mathbf{k}$$

Power: $P = \int_{\text{disc}} \mathbf{v} \cdot \delta \mathbf{f} = \frac{dE_p}{dt} \quad E_p = -\frac{G m_p M_*}{2 a}$

For an eccentric planet (0 < e < 1):

If a planet is eccentric, torque does **NOT** give the direction of migration.

05/07/2022

A planet divides the disc in two regions:

- far from its orbit (circulating)
- around its orbit (horseshoe)

A planet divides the disc in two regions:

- far from its orbit (circulating)
- around its orbit (horseshoe)
 Two main sources of surface density perturbation:
 - Wakes resulting from the Lindblad resonances
 - Horseshoe motion of gas in the co-orbital region

$$\begin{aligned} & \textbf{Lindblad and co-rotation torques} \\ & \textbf{Goldreich & Tremaine 1979} \\ & \frac{\partial \boldsymbol{v}_1}{\partial t} + (\boldsymbol{v}_0 \cdot \nabla) \boldsymbol{v}_1 + (\boldsymbol{v}_1 \cdot \nabla) \boldsymbol{v}_0 = -\nabla(\varphi_1 + \varphi_1^D + \eta_1), \\ & \frac{\partial \sigma_1}{\partial t} + \nabla \cdot (\sigma_0 \boldsymbol{v}_1) + \nabla \cdot (\sigma_1 \boldsymbol{v}_0) = 0, \\ & \eta_1 = c_0^{2}(\sigma_1/\sigma_0), \\ & \nabla^2 \varphi_1^D = 4\pi G \sigma_1 \delta(z), \end{aligned}$$

$$\begin{aligned} \frac{\partial \mathbf{v}_{1}}{\partial t} & \leftarrow \mathbf{U}_{1} \\ \frac{\partial \mathbf{v}_{1}}{\partial t} + (\mathbf{v}_{0} \cdot \nabla) \mathbf{v}_{1} + (\mathbf{v}_{1} \cdot \nabla) \mathbf{v}_{0} = -\nabla(\varphi_{1} + \varphi_{1}{}^{D} + \eta_{1}), \\ \frac{\partial \sigma_{1}}{\partial t} + \nabla \cdot (\sigma_{0} \mathbf{v}_{1}) + \nabla \cdot (\sigma_{1} \mathbf{v}_{0}) = 0, \\ \eta_{1} &= c_{0}^{2}(\sigma_{1}/\sigma_{0}), \\ \nabla^{2} \varphi_{1}{}^{D} &= 4\pi G \sigma_{1} \delta(z), \\ \frac{X = X(r) \exp i(m\theta - \omega t)}{r} & u_{1} &= -\frac{i}{D} \left[(m\Omega - \omega) \frac{d}{dr} + \frac{2m\Omega}{r} \right] (\varphi_{1} + \varphi_{1}{}^{D} + \eta_{1}), \\ v_{1} &= \frac{1}{D} \left[2B \frac{d}{dr} + \frac{m}{r} (m\Omega - \omega) \right] (\varphi_{1} + \varphi_{1}{}^{D} + \eta_{1}), \end{aligned}$$

05/07/2022

Goldreich & Tremaine 1979

$$\left\{\frac{d^2}{dr^2} + \left[\frac{d}{dr}\ln\left(\frac{\sigma r}{D}\right)\right]\frac{d}{dr} + \frac{2m\Omega}{r(m\Omega - \omega)}\left[\frac{d}{dr}\ln\left(\frac{\sigma\Omega}{D}\right)\right] - \frac{m^2}{r^2}\right\}(\varphi_1 + \varphi_1^D + \eta_1) = \frac{D\eta_1}{c^2}$$
$$D = \kappa^2 - (m\Omega - \omega)^2$$

Singularities:
1)
$$D = 0$$
 Lindblad resonance
2) $m\Omega - \omega = 0$ Co-rotation resonance

Lindblad resonances $m(\Omega(r) - \Omega_p) = \pm \kappa \sqrt{(1 + m^2 h^2)}$

- *m*: an integer
- $\Omega(r)$: gas angular velocity
- Ω_p : planet angular velocity
- κ : epicyclic frequency
- *h*: disc aspect ratio

Lindblad resonances $m(\Omega(r) - \Omega_p) = \pm \kappa \sqrt{(1 + m^2 h^2)}$

- *m*: an integer
- $\Omega(r)$: gas angular velocity
- Ω_p : planet angular velocity
- κ : epicyclic frequency
- *h*: disc aspect ratio

Lindblad resonances $m(\Omega(r) - \Omega_p) = \pm \kappa \sqrt{(1 + m^2 h^2)}$

Torque from the outer wake < 0 Torque from the inner wake > 0

 \rightarrow Net torque determines the migration of the planet

Differential Lindblad Torque

Lindblad resonances $m(\Omega(r) - \Omega_p) = \pm \kappa \sqrt{(1 + m^2 h^2)}$

 $\Omega(r)$ depends on the disc pressure gradient

The **location** of Lindblad resonances depends on **pressure profile**:

Density and Temperature gradient can change the Lindblad torque.

Lindblad resonances $m(\Omega(r) - \Omega_p) = \pm \kappa \sqrt{(1 + m^2 h^2)}$

There is a **pile-up** of resonance location about $H \rightarrow$ the main contribution should come from this distance

Co-rotation resonance $\Omega(r) = \Omega_p$

Co-rotation resonance $\Omega(r) = \Omega_p$

• r_{co} is not necessarily r_{p}

Co-rotation resonance $\Omega(r) = \Omega_p$

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small
- Horseshoe drag is non-linear (Paardekooper & Papaloizou 2009)

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small
- Horseshoe drag is non-linear
- Time matter

$$au_{\text{U-turn}} \sim \frac{H}{x_s} \tau_{\text{dyn}} \qquad au_{\text{lib}} \sim \frac{8 \pi a}{3 \Omega_p x_s}$$

Kley & Nelson 2012

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small
- Horseshoe drag is non-linear
- Time matter

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small
- Horseshoe drag is non-linear
- Time and diffusion matter

Kley & Nelson 2012

Baruteau & Masset 2013

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small
- Horseshoe drag is non-linear
- Time and diffusion matter
- Vortensity and entropy gradients govern the horseshoe drag

Baruteau & Masset 2013

$$\frac{\delta \Sigma}{\Sigma} = \frac{\delta \Sigma}{\Sigma} \left(\frac{\delta l}{l}, \frac{\delta s}{s}\right)$$

: vortensity, *s*: entropy

Co-rotation resonance $\Omega(r) = \Omega_p$

- r_{co} is not necessarily r_{p}
- Linear co-rotation torque is small
- Horseshoe drag is non-linear
- Time and diffusion matter
- Vortensity and entropy gradients govern the horseshoe drag

Baruteau & Masset 2013

For a detailed lecture check out: http://clement.baruteau.free.fr/Bern2017/Baruteau_Bern2017.pdf

Gap opening

Gap opening

Planetary migration

Low-mass planet: type I migration High-mass planet: type II migration Medium-mass planet: (maybe) type III migration

Planetary migration

A versatile multifluid HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks.

05/07/2022

FARGO: Fast Advection in Rotating Gaseous Objects (Masset 2000)

FARGO: Fast Advection in Rotating Gaseous Objects (Masset 2000)FARGO3D: the 3D successor of FARGO (Benítez- Llambay 2016)

FARGO: Fast Advection in Rotating Gaseous Objects (Masset 2000) FARGO3D: the 3D successor of FARGO (Benítez- Llambay 2016)

- Finite difference explicit Eulerian fixed grid code
- Cartesian, cylindrical or spherical geometry
- Multifluid capability (gas and different dust sizes)
- HD and MHD
- 5th order Runge-Kutta N-body solver

We assume you have already read document and

- installed FARGO3D with the mentioned correction
- have fargo3dplot and managed to import it
- had a look at the structure of the code

We assume you have already read document and

- installed FARGO3D with the mentioned correction
- have fargo3dplot and managed to import it
- had a look at the structure of the code

arch	fargo3d	license.txt	outputs	README.md	setups	std	utils
bin	in	Makefile	planets	scripts	src	test_suite	

We assume you have already read document and

- installed FARGO3D with the mentioned correction
- have fargo3dplot and managed to import it
- had a look at the structure of the code

arch	fargo3d	license.txt	outputs	README.md	setups	std	utils
bin	in	Makefile	planets	scripts	src	test_suite	

Our problem \rightarrow Setup files \rightarrow Parallel or Serial \rightarrow Make and Run \rightarrow Read the outputs \rightarrow Analyse

Our problem \rightarrow Setup files \rightarrow Parallel or Serial \rightarrow Make and Run \rightarrow Read the outputs \rightarrow Analyse

Units:

- MKS: all quantities must be given in MKS
- CGS: all quantities must be given in CGS
- Scale-free (default): $G=1, M_*=1, R_0=1 \Rightarrow T=2\pi$

Our problem \rightarrow Setup files \rightarrow Parallel or Serial \rightarrow Make and Run \rightarrow Read the outputs \rightarrow Analyse

There are four main setup files:				
 setups/<setup_name>.opt</setup_name> 				
 setups/<setup_name>.par</setup_name> 				
 planets/<planet_name>.cfg</planet_name> 				
 setups/<setup_name>.bound</setup_name> 				

<setup_name>.opt

11	FLUIDS := 0	
12	NFLUIDS = 1	
13	FARG0_OPT += -DNFLUIDS=\${NFLUIDS}	
14		
15	#Monitoring options	
16	MONITOR_SCALAR = MASS MOM_X TORC)
17	MONITOR_Y_RAW = TORQ	
18		
19	#Damping zones in the active mesh	
20	and a second sec	
21	FARG0_OPT += -DSTOCKHOLM	de Val-Borro+2006
22		
23	FARG0_OPT += -DX	
24	FARG0_OPT += -DY	
25		
26	#Equation of State	
27	FARG0_OPT += -DISOTHERMAL	
28		
29	#Coordinate System.	
30	FARG0_OPT += -DCYLINDRICAL	
31		
32	#Legacy files for outputs	
33	FARG0_OPT += -DLEGACY	
34		
35	FARGO_OPT += -DPOTENTIAL	
36		
37	FARG0_0PT += -DALPHAVISCOSITY	

05/07/2022

<setup_name>.par

05/07/2022

<setup_name>.par

05/07/2022

<setup_name>.par

Setup test1 ### Disk parameters AspectRatio 0.05 Thickness over Radius in the disc Sigma0 6.3661977237e-4 Surface Density at r=1 Alpha 1.0e-4 $v = \alpha c_{e} H$ sity SigmaSlope 1.5 Slope for the surface density FlaringIndex 0.5 Slope for the aspect-ratio # Radial range for damping (in period-ratios). Values smaller than one 11 12 # prevent damping. DampingZone 1.15 # Characteristic time for damping, in units of the inverse local # orbital frequency. Higher values means lower damping TauDamp 0.3 ### Planet parameters PlanetConfig planets/jupiter.cfg ThicknessSmoothing 0.6 Eccentricitv 0.0 ExcludeHill no IndirectTerm Yes

05/07/2022

<setup_name>.par

05/07/2022

<setup_name>.par

Müller1+2012

05/07/2022

N

<setup_name>.par

29 30	### Mesh pa	rameters			
31 32 33	Nx Ny Xmin	256 128 -3.14159	Azimuth Radial 92653589	al number of zones number of zones 79323844	x is φ y is r
34 35 36 37 38	xmax Ymin Ymax OmegaFrame Frame	3.14159. 0.4 2.5 1.0005 C	26535897 Inner b Outer b Angular Method	9323844 oundary radius oundary radius velocity for the frame of reference (I [.] for moving the frame of reference	f Frame is F)
39 40 41	### Output	control	paramete	rs	
42 43 44 45	DT Ninterm Ntot	0.314159 20 1000	9265359	Physical time between fine-grain outpu ⁻ Number of DTs between scalar fields ou ⁻ Total number of DTs	ts tputs
46 47	OutputDir	@output	s/test1		
48 49	### Plottin	g parame [.]	ters		
50 51 52	PlotLog Spacing	yes Log			log only in a

Mesh parameters

29

<setup_name>.par

30					
31	N×	256	Azimuth	al number of zones	
32	Ny	128	Radial	number of zones	
33	Xmin	-3.1415	92653589	79323844	
34	Xmax	3.14159	26535897	9323844	
35	Ymin	0.4	Inner b	oundary radius	
36	Ymax	2.5	Outer b	oundary radius	
37	OmegaFrame	1.0005	Angular	velocity for the frame	of reference (If Frame is F
38	Frame	С	Method	for moving the frame of	reference
39					
40	### Output	control	paramete	rs	
41					dt: time-step
42	DT	0.31415	9265359	Physical time between	DT between two dots
43	Ninterm	20		Number of DTs between	Ninterm \times DT: one output
44	Ntot	1000		Total number of DTs	
45					Ntot/Ninterm: final output
46	OutputDir	@output	s/testl		
4/			.		
48	### PLOTTIN	g parame	ters		
49	D1 - +1				
50	PlotLog	yes			
51	Spacing	Log			
52					

<planet_name>.cfg

	##################	############	##########	+++++++++++++++++++++++++++++++++++++++	#######################################	
2	<pre># Planetary sy</pre>	ystem initia	l configu	ration		
3	#######################################	- ###############	#########	+###########	#######################################	
4						
5	<pre># Planet Name</pre>	Distance	Mass	Accretion	Feels Disk	Feels Others
6	Jupiter	1.0	0.001	0.0	NO	NO
7	·					

<setup_name>.bound

1	#Boundaries configuration file for fargo.bound
2	#
3	
4	Density:
5	Ymin: KEPLERIAN2DDENS
6	Ymax: KEPLERIAN2DDENS
7	
8	Vx:
9	Ymin: KEPLERIAN2DVAZIM
10	Ymax: KEPLERIAN2DVAZIM
11	
12	Vy:
13	Ymin: ANTISYMMETRIC
14	Ymax: ANTISYMMETRIC
15	

Our problem \rightarrow Setup files \rightarrow Parallel or Serial \rightarrow Make and Run \rightarrow **Read the outputs** \rightarrow Analyse

The outputs contains several types:

- Field files: binary, gas<field_name>%n.dat
- Planet files: ASCII
 - > planet%n.dat (every field output)
 - bigplanet%n.dat, orbit%n.dat, tqwk%n.dat (every DT)
- Grid files: ASCII, domain_x.dat, domain_y.dat, domain_z.dat
- Monitoring files: ASCII and binary
- more...

What is the plan?

- Make a setup
- Lindblad torque for a static planet
- Migration of a low-mass planet
- Check out the torque on an eccentric planet
- Surface density perturbation by a massive planet
- See the saturation of the co-rotation torque

Note1: If your computer is not fast enough, you can download the results from the given link in the exercise sheet.

Note 2: Discuss the questions in each section with people around you!

Have fun!

Good reviews for further reading: Kley & Nelson 2012 Baruteau & Masset 2013 Baruteau+2014 Baruteau+2016 Paardekooper+2022

05/07/2022