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Outline
● What is a planet?
● Force, torque, and power
● Lindblad and co-rotation torques
● Gap opening 
● Planetary migration
● Put your knowledge in practice using FARGO3D
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What is a planet?
Our migration-wise definition:
A planet (in a disc)
● is a solid object (not a gas parcel)
● orbits around one (more) star(s)
● is moving mostly due to the gravitational forces
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What is a planet?
Our migration-wise definition:
A planet (in a disc)
● is a solid object (not a gas parcel)
● orbits around one (more) star(s)
● is moving mostly due to the gravitational forces

d v
dt

=a

=astar+agas drag+adisc gravityfor a solid in a disc →

agas drag≪adisc gravity

agas drag≫adisc gravity

if
Planet

Dust particle
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What is a planet?
Our migration-wise definition:
A planet (in a disc)
● is a solid object (not a gas parcel)
● orbits around one (more) star(s)
● is moving mostly due to the gravitational forces
Numerically:
● is a gravitational point source
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Force, torque, and power

r
δf

Torque: δΓ=r×δ f=δ
d Lp
dt

Power: δ P=v⋅δ f=δ
dE p
dt

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a
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Force, torque, and power

r
δf

Torque: δΓ=r×δ f=δ
d Lp
dt

Power: δ P=v⋅δ f=δ
dE p
dt

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

δΓ|z=r×δ f <0⇒δ
d L p
dt

|z<0 planet loses angular momentum

δΓ|z=r×δ f >0⇒δ
d Lp
dt

|z>0 planet gains angular momentum

δf
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Force, torque, and power

r
δf

Torque: δΓ=r×δ f=δ
d Lp
dt

Power: δ P=v⋅δ f=δ
dE p
dt

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

δf

δP=v⋅δ f <0⇒δ
d E p
dt

<0 planet loses energy

δ P=v⋅δ f >0⇒δ
d E p
dt

>0 planet gains energy

v
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Force, torque, and power

r
δf

Torque: δΓ=r×δ f=δ
d Lp
dt

Power: δ P=v⋅δ f=δ
dE p
dt

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

Torque: Γ=∫disc
r×δ f=

d Lp
dt

Power: P=∫disc
v⋅δ f=

dE p
dt
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Force, torque, and power

r
δf

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

Torque: Γ=∫disc
r×δ f=

d Lp
dt

Power: P=∫disc
v⋅δ f=

dE p
dt

For a circular planet (e = 0):

Γ z=
d Lp
dt

=mp
√GM∗

2√a
ȧ=
Lp
2
ȧ
a

P=
dE p
dt

=mp

GM∗

2a2 =−E p
ȧ
a

τa=
a
ȧ
=
Lp
2Γ

=
|E p|

P
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Force, torque, and power

r

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

Torque: Γ=∫disc
r×δ f=

d Lp
dt

Power: P=∫disc
v⋅δ f=

dE p
dt

For a circular planet (e = 0):

Green part wins → Torque and power on a  planet are  
negative → The planet’s semi-major axis decreases

r
δf

δf
v

τa=
a
ȧ
=
Lp
2Γ

=
|E p|

P



05/07/2022 Hands-on Numerical Astrophysics School for Exoplanetary Sciences 12

Force, torque, and power

r
δf

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

Torque: Γ=∫disc
r×δ f=

d Lp
dt

Power: P=∫disc
v⋅δ f=

dE p
dt

Surface density perturbation → exerts torque/power on 
the planet  → changes the planet’s angular momentum/
energy → changes the planet’s semi-major axis

↓

Migration
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Force, torque, and power

r
δf

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

Torque: Γ=∫disc
r×δ f=

d Lp
dt

Power: P=∫disc
v⋅δ f=

dE p
dt

For an eccentric planet ( 0 < e < 1):

Γ z=
d Lp
dt

=Lp(
ȧ

2a
−
ė
e
e2

1−e2 )

P=
dE p
dt

=mp

GM∗

2a2
=−E p

ȧ
a

τa=
a
ȧ
=
|E p|

P

τe=
e
ė
=

e2

1−e2 (
P
E p

− Γ
Lp

)
−1
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Force, torque, and power

r
δf

L p=mp√GM∗a√1−e2 k

E p=−
GmpM∗

2a

Torque: Γ=∫disc
r×δ f=

d Lp
dt

Power: P=∫disc
v⋅δ f=

dE p
dt

For an eccentric planet ( 0 < e < 1):

If a planet is eccentric, 
torque does NOT give the 
direction of migration.

τa=
a
ȧ
=
|E p|

P

τe=
e
ė
=

e2

1−e2 (
P
E p

− Γ
Lp

)
−1
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Lindblad and co-rotation torques
A planet divides the disc in two regions:

● far from its orbit (circulating)
● around its orbit (horseshoe)
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Lindblad and co-rotation torques
A planet divides the disc in two regions:

● far from its orbit (circulating)
● around its orbit (horseshoe)

Two main sources of surface 
density perturbation:

● Wakes resulting from the 
Lindblad resonances

● Horseshoe motion of gas in 
the co-orbital region
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Lindblad and co-rotation torques
Goldreich &  Tremaine 1979
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Lindblad and co-rotation torques
Goldreich &  Tremaine 1979
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Lindblad and co-rotation torques

Singularities: 
1) D = 0            Lindblad resonance
2) mΩ – ω = 0  Co-rotation resonance

Goldreich &  Tremaine 1979
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Lindblad and co-rotation torques

Lindblad resonances m(Ω(r)−Ωp)=±κ√(1+m2h2
)

m : an integer
Ω(r ): gas angular velocity
Ωp : planet angular velocity
κ : epicyclic frequency
h : disc aspect ratio
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Lindblad and co-rotation torques

m : an integer
Ω(r ): gas angular velocity
Ωp : planet angular velocity
κ : epicyclic frequency
h : disc aspect ratio

Sound waves launched at LRs 
+

Differential rotation of the disc
↓

Spirals

Lindblad resonances m(Ω(r )−Ωp)=±κ√(1+m2h2
)



05/07/2022 Hands-on Numerical Astrophysics School for Exoplanetary Sciences 22

Lindblad and co-rotation torques

Torque from the outer wake < 0

Torque from the inner wake > 0

→ Net torque determines the migration 
of the planet

Differential Lindblad Torque

Lindblad resonances m(Ω(r )−Ωp)=±κ√(1+m2h2
)
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Lindblad and co-rotation torques

Ω(r ) depends on the disc pressure gradient

The location of Lindblad resonances 
depends on pressure profile:

Density and Temperature gradient can 
change the Lindblad torque.

Lindblad resonances m(Ω(r )−Ωp)=±κ√(1+m2h2
)
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Lindblad and co-rotation torques

There is a pile-up of resonance location 
about H → the main contribution 
should come from this distance

Lindblad resonances m(Ω(r )−Ωp)=±κ√(1+m2h2
)

Armitage 2017
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Lindblad and co-rotation torques
Co-rotation resonance Ω(r )=Ωp
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Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

Co-rotation resonance Ω(r )=Ωp

∇ P>0 ∇ P=0 ∇ P<0



05/07/2022 Hands-on Numerical Astrophysics School for Exoplanetary Sciences 27

Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small

Co-rotation resonance Ω(r )=Ωp
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Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small
● Horseshoe drag is non-linear

(Paardekooper & Papaloizou 2009)

Co-rotation resonance Ω(r )=Ωp
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Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small
● Horseshoe drag is non-linear
● Time matter

Co-rotation resonance Ω(r )=Ωp

Kley & Nelson 2012

τU-turn∼
H
x s

τdyn τ lib∼
8π a

3Ωp x s

τ lib

τU-turn
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Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small
● Horseshoe drag is non-linear
● Time matter

Co-rotation resonance Ω(r )=Ωp

Masset 2011

τU-turn∼
H
x s

τdyn τ lib∼
8π a

3Ωp x s
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Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small
● Horseshoe drag is non-linear
● Time and diffusion matter

Co-rotation resonance Ω(r )=Ωp

τvisc∼
x s

2

ν p
, or in general τdiff

τU-turn∼
H
x s

τdyn τ lib∼
8π a

3Ωp x s
Kley & Nelson 2012

τ lib

τU-turn
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Lindblad and co-rotation torques

Baruteau & Masset 2013



05/07/2022 Hands-on Numerical Astrophysics School for Exoplanetary Sciences 33

Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small
● Horseshoe drag is non-linear
● Time and diffusion matter
● Vortensity and entropy gradients 

govern the horseshoe drag

Co-rotation resonance Ω(r )=Ωp

δ Σ
Σ

=δΣ
Σ

(
δ l
l
,
δ s
s
)

l : vortensity , s : entropy

Baruteau & Masset 2013
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Lindblad and co-rotation torques

● r
co  

is not necessarily r
p

● Linear co-rotation torque is small
● Horseshoe drag is non-linear
● Time and diffusion matter
● Vortensity and entropy gradients 

govern the horseshoe drag

Co-rotation resonance Ω(r )=Ωp

Baruteau & Masset 2013

For a detailed lecture check out:
http://clement.baruteau.free.fr/Bern2017/Baruteau_Bern2017.pdf
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Lindblad and co-rotation torques

Cresswell+2007

● 20 M
E
 

● e= 0.1
● non-migrating
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Gap opening
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Gap opening
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Planetary migration

Low-mass planet:  type I migration

High-mass planet:  type II migration

Medium-mass planet:  (maybe) type III migration
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Planetary migration

McNally+2019
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Put your knowledge in practice using FARGO3D
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Put your knowledge in practice using FARGO3D

FARGO: Fast Advection in Rotating Gaseous Objects (Masset 2000)
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Put your knowledge in practice using FARGO3D

FARGO: Fast Advection in Rotating Gaseous Objects (Masset 2000)

FARGO3D:  the 3D successor of FARGO (Benítez- Llambay 2016)
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Put your knowledge in practice using FARGO3D

FARGO: Fast Advection in Rotating Gaseous Objects (Masset 2000)

FARGO3D:  the 3D successor of FARGO (Benítez- Llambay 2016)
● Finite difference explicit Eulerian fixed grid code
● Cartesian, cylindrical or spherical geometry
● Multifluid capability (gas and different dust sizes)
● HD and MHD
● 5th order Runge-Kutta N-body solver
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Put your knowledge in practice using FARGO3D

We assume you have already read document and
● installed FARGO3D with the mentioned correction
● have fargo3dplot and managed to import it
● had a look at the structure of the code
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Put your knowledge in practice using FARGO3D

We assume you have already read document and
● installed FARGO3D with the mentioned correction
● have fargo3dplot and managed to import it
● had a look at the structure of the code
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Put your knowledge in practice using FARGO3D

We assume you have already read document and
● installed FARGO3D with the mentioned correction
● have fargo3dplot and managed to import it
● had a look at the structure of the code

Our problem → Setup files → Parallel or Serial → Make and Run → Read 
the outputs → Analyse 
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Put your knowledge in practice using FARGO3D

Our problem → Setup files → Parallel or Serial → Make and Run → Read 
the outputs → Analyse 

Units: 
● MKS: all quantities must be given in MKS
● CGS: all quantities must be given in CGS
● Scale-free (default): G=1, M

*
=1, R

0
=1 ⇒ T= 2π
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Put your knowledge in practice using FARGO3D

Our problem → Setup files → Parallel or Serial → Make and Run → Read 
the outputs → Analyse 

There are four main setup files: 
● setups/<setup_name>/<setup_name>.opt
● setups/<setup_name>/<setup_name>.par
● planets/<planet_name>.cfg
● setups/<setup_name>/<setup_name>.bound
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Put your knowledge in practice using FARGO3D
<setup_name>.opt

de Val-Borro+2006
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Put your knowledge in practice using FARGO3D

h=AspectRatio (
r

R0=1
)

FlaringIndex

<setup_name>.par
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Put your knowledge in practice using FARGO3D

Σ=Sigma0 (
r

R0=1
)
−SigmaSlope

<setup_name>.par
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Put your knowledge in practice using FARGO3D
<setup_name>.par

ν=αc sH
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Put your knowledge in practice using FARGO3D
<setup_name>.par

y inf=Ymin DampingZone2/3

y sup=Ymax DampingZone−2/ 3

T damp in/out=TauDamp T in/out
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Put your knowledge in practice using FARGO3D
<setup_name>.par

ϕ p=
−GM∗

√r2
+ϵ

2
, ϵ=ThicknessSmoothing H

Müller1+2012
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Put your knowledge in practice using FARGO3D
<setup_name>.par

x  is ϕ
y  is r

 log only in r
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Put your knowledge in practice using FARGO3D
<setup_name>.par

dt: time-step
DT: between two dots
Ninterm×DT: one output
Ntot/Ninterm: final output
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Put your knowledge in practice using FARGO3D
<planet_name>.cfg
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Put your knowledge in practice using FARGO3D
<setup_name>.bound
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Put your knowledge in practice using FARGO3D

Our problem → Setup files → Parallel or Serial → Make and Run → Read 
the outputs → Analyse 

The outputs contains several types: 
● Field files: binary, gas<field_name>%n.dat
● Planet files: ASCII

➢ planet%n.dat (every field output)
➢ bigplanet%n.dat, orbit%n.dat, tqwk%n.dat (every DT)

● Grid files: ASCII, domain_x.dat, domain_y.dat, domain_z.dat
● Monitoring files: ASCII and binary 
● more...
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Put your knowledge in practice using FARGO3D

What is the plan?
● Make a setup
● Lindblad torque for a static planet
● Migration of a low-mass planet
● Check out the torque on an eccentric planet
● Surface density perturbation by a massive planet
● See the saturation of the co-rotation torque

Note1: If your computer is not fast enough, you can download the results 
from the given link in the exercise sheet.

Note 2: Discuss the questions in each section with people around you!
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Have fun!

Good reviews for further reading: 
Kley & Nelson 2012            
Baruteau & Masset 2013     
Baruteau+2014                    
Baruteau+2016
Paardekooper+2022
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