Planet formation modeling

Bertram Bitsch

Planetary birthplaces

(ALMA Partnership et al. 2015)

 \Rightarrow Protoplanetary discs: consist of gas and dust ($\sim 1\%)$

Exoplanet detections: main methods

- Radial velocity (RV) method determines planetary mass
- First exoplanet detected around main sequence star with RV (Mayor & Queloz 1995)

Exoplanet detections: main methods

- Radial velocity (RV) method determines planetary mass
- First exoplanet detected around main sequence star with RV (Mayor & Queloz 1995)
- Transit determines planetary radius (e.g. Kepler, TESS)

Exoplanet detections: main methods

- Radial velocity (RV) method determines planetary mass
- First exoplanet detected around main sequence star with RV (Mayor & Queloz 1995)
- Transit determines planetary radius (e.g. Kepler, TESS)
- \Rightarrow Both together can constrain the planetary density and composition!

(Buchhave et al. 2014)

 Larger (more massive) planets occur around more metal rich stars (e.g. Santos et al. 2004, Fischer & Valentin 2005, Buchhave et al. 2014, Narang et al. 2018, Petigura et al. 2018)

(Buchhave et al. 2014)

(Weiss et al. 2018)

- Larger (more massive) planets occur around more metal rich stars (e.g. Santos et al. 2004, Fischer & Valentin 2005, Buchhave et al. 2014, Narang et al. 2018, Petigura et al. 2018)
- Super-Earth systems are often compact multi-planet systems (e.g. Lissauer et al. 2011a)
- Planets in super-Earth systems have similar sizes and masses (e.g. Millholland et al. 2017, Weiss et al. 2018, Millholland & Winn 2021)

(Buchhave et al. 2014)

(Weiss et al. 2018)

- Larger (more massive) planets occur around more metal rich stars (e.g. Santos et al. 2004, Fischer & Valentin 2005, Buchhave et al. 2014, Narang et al. 2018, Petigura et al. 2018)
- Super-Earth systems are often compact multi-planet systems (e.g. Lissauer et al. 2011a)
- Planets in super-Earth systems have similar sizes and masses (e.g. Millholland et al. 2017, Weiss et al. 2018, Millholland & Winn 2021)
- Cold Jupiters are mostly accompanied by inner super-Earths (e.g. Zhu & Wu 2018, Bryan et al. 2019)

(Buchhave et al. 2014)

(Weiss et al. 2018)

- Larger (more massive) planets occur around more metal rich stars (e.g. Santos et al. 2004, Fischer & Valentin 2005, Buchhave et al. 2014, Narang et al. 2018, Petigura et al. 2018)
- Super-Earth systems are often compact multi-planet systems (e.g. Lissauer et al. 2011a)
- Planets in super-Earth systems have similar sizes and masses (e.g. Millholland et al. 2017, Weiss et al. 2018, Millholland & Winn 2021)
- Cold Jupiters are mostly accompanied by inner super-Earths (e.g. Zhu & Wu 2018, Bryan et al. 2019)
- ⇒ How can we explain the diversity of planets and planetary systems?

Rocky vs. Waterworld

(Jin & Mordasini, 2018; see also Owen & Wu, 2013, 2017, Lopez & Fortney, 2014; Observations: Fulton et al. 2017)

- Small planets loose their atmosphere and are bare cores
- Valley consistent with mostly rocky composition
- \Rightarrow Statistical result for planets with period less than 100 days (0.3 AU)

Rocky vs. Waterworld

(Jin & Mordasini, 2018; see also Owen & Wu, 2013, 2017, Lopez & Fortney, 2014; Observations: Fulton et al. 2017)

- Small planets loose their atmosphere and are bare cores
- Valley consistent with mostly rocky composition
- \Rightarrow Statistical result for planets with period less than 100 days (0.3 AU)
- ⇒ Fulton & Petigura (2018) find that valley is partially filled
- $\Rightarrow\,$ Van Eylen et al. (2018) find valley at 2.0 $R_{\rm Earth}$
- ⇒ Radius valley caused by planet's own cooling and super-Earths have up to 20% water ice (Gupta & Schlichting, 2018)

Rocky vs. Waterworld

(Jin & Mordasini, 2018; see also Owen & Wu, 2013, 2017, Lopez & Fortney, 2014; Observations: Fulton et al. 2017)

- Small planets loose their atmosphere and are bare cores
- Valley consistent with mostly rocky composition
- \Rightarrow Statistical result for planets with period less than 100 days (0.3 AU)
- ⇒ Fulton & Petigura (2018) find that valley is partially filled
- $\Rightarrow\,$ Van Eylen et al. (2018) find valley at 2.0 $R_{\rm Earth}$
- ⇒ Radius valley caused by planet's own cooling and super-Earths have up to 20% water ice (Gupta & Schlichting, 2018)

 \Rightarrow Assuming all super-Earths are rocky or all super-Earths are icy: naive!

Exoplanet observations

(Zeng et al. 2019)

Water content of giant planets

Low atmospheric water content of giant planets observed

Water content of giant planets

Low atmospheric water content of giant planets observed
How can we explain this diversity in atmospheric compositions?

Heavy element content of giant planets

⁽Thorngren et al. 2016)

• Heavy element content of giants increases with planetary mass

Heavy element content of giant planets

⁽Thorngren et al. 2016)

Heavy element content of giants increases with planetary mass
⇒ How can we explain these large heavy element contents?

10⁻⁶ m

10⁷m

\Rightarrow This growth has to happen during the few Myrs of disc lifetime!

- How to model planet formation?
- How do drifting and evaporating pebbles influence planets?
- What does the star tell about the planet?

How to model planet formation?

Planet formation: Core accretion

Planet formation: Core accretion

Grain growth

(Güttler et al. 2010)

Grain growth

⁽Güttler et al. 2010)

 $\begin{array}{l} \Rightarrow \mbox{ Speed between the particles determines collisional outcomes!} \\ \Rightarrow \mbox{ Large particles have larger speeds, preventing growth above cm-dm!} \end{array}$

Bertram Bitsch (MPIA)

Constraining planet formatio

Radial drift of small pebbles

↓↓↓ ←── ●

- Disc is hotter and denser close to the star: radial pressure gradient
- Radial pressure gradient force mimics decreased gravity
 ⇒ gas orbits slower than Keplerian:

$$v_{
m gas} = v_{
m Kep} - \Delta v = v_{
m Kep} - \eta v_{
m Kep}, \quad \eta = -rac{1}{2} \left(rac{H}{r}
ight)^2 rac{\partial \ln(P)}{\partial \ln(r)}$$

Radial drift of small pebbles

v v v ←── ●

- Disc is hotter and denser close to the star: radial pressure gradient
- Radial pressure gradient force mimics decreased gravity
 ⇒ gas orbits slower than Keplerian:

$$v_{\rm gas} = v_{\rm Kep} - \Delta v = v_{\rm Kep} - \eta v_{\rm Kep}, \quad \eta = -\frac{1}{2} \left(\frac{H}{r}\right)^2 \frac{\partial \ln(P)}{\partial \ln(r)}$$

- Particles do not feel the pressure gradient force and want to orbit Keplerian
- Headwind from sub-Keplerian gas drains angular momentum from particles, so they spiral in through the disc faster than the gas!

Bertram Bitsch (MPIA)

Constraining planet formation

Dust evolution

Dust evolution

⇒ Smooth discs loose their material too fast compared to observed disc lifetimes!

Motion of particles

Trapping particles

(Whipple 1972)

Trapping particles

(Whipple 1972)

• Sources to generate pressure bumps:

Planets, zonal flows, ice lines, ...

Particle concentrations

Eddies

Pressure bumps / vortices

 $l \sim 1 - 10 H$, St $\sim 0.1 - 10$

Streaming instabilities

 $l \sim 0.1 H$, St ~ 0.01–1

Three ways to concentrate particles: (Johansen et al., 2014, arXiv:1402.1344)

- Between small-scale low-pressure eddies (Squires & Eaton, 1991; Fessler et al., 1994; Cuzzi et al., 2001, 2008; Pan et al., 2011)
- In pressure bumps and vortices (Whipple, 1972; Barge & Sommeria, 1995; Klahr & Bodenheimer, 2003; Johansen et al., 2009a)
- By streaming instabilities (Youdin & Goodman, 2005; Johansen & Youdin, 2007; Johansen et al., 2009b; Bai & Stone, 2010a,b,c)
- \Rightarrow Characteristic size of planetesimals: ~100km (Morbidelli et al. 2005, Schreiber & Klahr, 2018)

Bertram Bitsch (MPIA)

Constraining planet formatio

Planetesimal formation recipes

- Different recipes for planetsimal formation
- \Rightarrow Wide variety of distributions!

(Drążkowska, Bitsch, et al. 2022)

Planetesimal formation recipes

- Different recipes for planetsimal formation
- \Rightarrow Wide variety of distributions!
 - MMSN distribution is not recovered from simulations studying planetesimal formation!
- ⇒ Too many planetesimals in the inner disc to make the terrestrial planets, but okay for super-Earths...

(Drążkowska, Bitsch, et al. 2022)

Planetesimal formation recipes

- Different recipes for planetsimal formation
- \Rightarrow Wide variety of distributions!
 - MMSN distribution is not recovered from simulations studying planetesimal formation!
- ⇒ Too many planetesimals in the inner disc to make the terrestrial planets, but okay for super-Earths...
- ⇒ It is thus key to know where and when planetesimals and planetary embryos form! (Völkel et al. 2021, 2022)

(Drążkowska, Bitsch, et al. 2022)

Constraints from the Solar Sytem and protoplanetary discs

- 1) Terrestrial planet formation, the asteroid belt, the scattered disc and the Oort cloud are consistent with a primordial planetesimal population in the Solar System of $\approx 2-3$ Earth masses per astronomical unit (Raymond et al. 2009; Brasser 2008; Raymond & Leidoro 2017)
- 2) The characteristic planetesimal size in the Solar System was \approx 100 km $_{(Morbidelli \ et \ al. \ 2009; \ Johansen \ et \ al. \ 2015; \ Singer \ et \ al. \ 2019)}$
- Protoplanetary discs are weakly turbulent; this turbulence stirs up the planetesimal inclinations (Ida et al. 2008; Pinte et al. 2016; Nelson et al. 2013;)

Constraints from the Solar Sytem and protoplanetary discs

- 1) Terrestrial planet formation, the asteroid belt, the scattered disc and the Oort cloud are consistent with a primordial planetesimal population in the Solar System of $\approx 2-3$ Earth masses per astronomical unit (Raymond et al. 2009; Brasser 2008; Raymond & Izidoro 2017)
- 2) The characteristic planetesimal size in the Solar System was \approx 100 km $_{(Morbidelli \ et \ al. \ 2009; \ Johansen \ et \ al. \ 2015; \ Singer \ et \ al. \ 2019)}$
- 3) Protoplanetary discs are weakly turbulent; this turbulence stirs up the planetesimal inclinations (Ida et al. 2008; Pinte et al. 2016, Nelson et al. 2013;)

- We integrate growth and migration of single protoplanets accreting planetesimals and gas
- Planetesimal accretion rate based on *Tanaka & Ida* (1999)
 - Models satisfying all three above constraints yield maximum planet mass of 0.1 Earth masses

Bertram Bitsch (MPIA)

Constraining planet formation

Violating the constraints of the solar system

⁽Johansen & Bitsch, 2019)

- Even a population of 1000 Earth masses of planetesimals does not reproduce the solar system
- Smaller planetesimals do not help!
- Reducing the migration does not help!
- ⇒ Must reduce the turbulent stirring and the planetesimal size as well to form the giants, violating all three constraints!!!

Planet growth: Pebble accretion

(e.g Johansen & Lambrechts 2017)

- ⇒ Planetesimal accretion inefficient, especially in the outer disc (e.g. Johansen & Bitsch 2019)
- Pebbles spiral in to the planet due to gas friction
- ⇒ Pebbles are accreted efficiently
- Accretion rate $\dot{M}_{\rm c}$ by pebble accretion:

$$\dot{M}_{\rm c} = 2 \left(\frac{\tau_{\rm f}}{0.1}\right)^{2/3} r_{\rm H}^2 \Omega_{\rm K} \Sigma_{\rm Peb}$$

Planet growth: Pebble accretion

⁽e.g Johansen & Lambrechts 2017)

⇒ Planetesimal accretion inefficient, especially in the outer disc (e.g. Johansen & Bitsch 2019)

- Pebbles spiral in to the planet due to gas friction
- \Rightarrow Pebbles are accreted efficiently
 - Accretion rate $\dot{M}_{\rm c}$ by pebble accretion:

$$\dot{M}_{\mathrm{c}} = 2 \left(rac{ au_{\mathrm{f}}}{0.1}
ight)^{2/3} r_{\mathrm{H}}^2 \Omega_{\mathrm{K}} \Sigma_{\mathrm{Peb}}$$

⇒ Pebble accretion becomes efficient once the embryo is \approx 0.01 M_E ⇒ Initial collisions needed, before pebble accretion finishes the job!

Gaps in discs: Pebble isolation mass

⇒ Pebble accretion self-terminates: no accretion of solids any more! (Lambrechts et al., 2014; Bitsch et al., 2018a, Ataiee et al. 2018)

Gaps in discs: Pebble isolation mass

⇒ Pebble accretion self-terminates: no accretion of solids any more! (Lambrechts et al., 2014; Bitsch et al., 2018a, Ataiee et al. 2018)

 \Rightarrow The pebble isolation mass depends strongly on the disc properties (e.g. $H/r, \, \nu)$ and the particle size!

Gaps in discs: Pebble isolation mass

⇒ Pebble accretion self-terminates: no accretion of solids any more! (Lambrechts et al., 2014; Bitsch et al., 2018a, Ataiee et al. 2018)

- ⇒ The pebble isolation mass depends strongly on the disc properties (e.g. H/r, ν) and the particle size!
- \Rightarrow Knowing the disc is knowing the planet!

- After the core is formed, envelope contraction can start
- Contraction depends on core mass and opacity (Ikoma et al. 2000; Piso & Youdin, 2014; Lambrechts & Lega, 2017; Cimerman et al. 2017, Bitsch & Savvidou 2021)

Interior structure during planet formation

Interior structure during planet formation

 \Rightarrow The classical two layer model (core + envelope) should be expanded, as also supported by the results of JUNO!

Formation of different planetary types

 \Rightarrow Formation of different planetary types possible!

Formation of different planetary types

- \Rightarrow Formation of different planetary types possible!
- ⇒ But N-body interactions needed to explain the formation of full systems! (Bitsch et al. 2019b; 2020, Lambrechts et al. 2019, Izidoro et al. 2021, Matsumuara et al. 2021)

Formation of different planetary types

- ⇒ Formation of different planetary types possible!
- ⇒ But N-body interactions needed to explain the formation of full systems! (Bitsch et al. 2019b; 2020, Lambrechts et al. 2019, Izidoro et al. 2021, Matsumuara et al. 2021)
- \Rightarrow We will investigate the different parameters relevant for planet formation in the hands-on session!

How do drifting and evaporating pebbles influence planets?

Pebble evaporation

Pebble evaporation

Pebble evaporation

(Schneider & Bitsch, 2021a)

Model: chemcomp

- Viscous disc evolution
- Pebble growth and drift (Birnstiel et al. 2012)
- Pebble evaporation and recondensation at ice lines
- Pebble accretion (Johansen & Lambrechts 2017)
- Gas accretion, limited by $M_{
 m disc}$ (Ndugu et al. 2021)
- Type-I migration (Paardekooper et al. 2011)
- Type-II migration (Ndugu et al. 2021)

(Schneider & Bitsch, 2021a)
Initial disc model

- Solar composition of the different species (Asplund et al. 2019)
- Chemical intial conditions with step functions (Öberg et al. 2011)
- No chemical evolution included! (Booth & Ilee 2019)
- $M_{
 m disc}=0.128~M_{\odot}$, R=137~
 m AU

Disc evolution

Bertram Bitsch (MPIA)

Constraining planet formatior

(Schneider & Bitsch, 2021a)

• Water vapor enriches the inner disc

(Schneider & Bitsch, 2021a)

- Water vapor enriches the inner disc
- Lower/higher viscosity allows larger/smaller particle sizes
- Lower/higher viscosity leads to slower/faster water vapor motion

(Schneider & Bitsch, 2021a)

- Water vapor enriches the inner disc
- Lower/higher viscosity allows larger/smaller particle sizes
- Lower/higher viscosity leads to slower/faster water vapor motion
- \Rightarrow Lower/higher viscosity leads to larger/lower water enrichment

⇒ Planet interior/exterior (top/bottom) to the water ice line is inefficient/efficient in blocking water to the inner system (Bitsch et al. 2021)

Bertram Bitsch (MPIA)

Constraining planet formation

 \Rightarrow Giant planet formation time and position relative to the ice line is key!

 $\Rightarrow\,$ Giant planet formation time and position relative to the ice line is key!

 \Rightarrow Water content of sub-Neptune can help to constrain Jupiter's formation time!

- \Rightarrow Giant planet formation time and position relative to the ice line is key!
- \Rightarrow Water content of sub-Neptune can help to constrain Jupiter's formation time!
- \Rightarrow Hat-P-11b's sub-solar water content implies an early formation of its outer Jovian mass companion!

Heavy element content of giant planets

⁽Schneider & Bitsch, 2021a)

- \Rightarrow Pebble evaporation increases the heavy element content of giants
- ⇒ Closer-in planets have a larger heavy element content, because the inner disc is more enriched with vapor, especially water!

Heavy element content of giant planets

Bertram Bitsch (MPIA)

Constraining planet formation

(Bitsch et al., submitted)

Bertram Bitsch (MPIA)

• No super-solar C/H and O/H possible!

- No super-solar C/H and O/H possible!
- No infuence of viscosity!

- No super-solar C/H and O/H possible!
- No infuence of viscosity!
- WASP77-A b's composition could be matched...

(Bitsch et al., submitted)

No super-solar C/H and O/H possible!

WASP77-A b's composition could be

• tau Boötis b's composition can only be

matched if additional solids are accreted!

No infuence of viscosity!

matched...

- No super-solar C/H and O/H possible!
- No infuence of viscosity!
- WASP77-A b's composition could be matched...
- tau Boötis b's composition can only be matched if additional solids are accreted!
- ⇒ But why only sometimes planetesimal accretion???

(Bitsch et al., submitted)

Bertram Bitsch (MPIA)

$\bullet\,$ Pebble evaporation allows super-solar C/H and O/H

- $\bullet\,$ Pebble evaporation allows super-solar C/H and O/H
- $\bullet\,$ Planets in the outer disc have sub-solar C/H and O/H

- $\bullet\,$ Pebble evaporation allows super-solar C/H and O/H
- $\bullet\,$ Planets in the outer disc have sub-solar C/H and O/H
- The viscosity plays a key role!

- \bullet Pebble evaporation allows super-solar C/H and O/H
- $\bullet\,$ Planets in the outer disc have sub-solar C/H and O/H
- The viscosity plays a key role!
- WASP-77A b formed beyond the CO₂ evaporation front
- τ Boötis b formed beyond the H₂O evaporation front

- $\bullet\,$ Pebble evaporation allows super-solar C/H and O/H
- $\bullet\,$ Planets in the outer disc have sub-solar C/H and O/H
- The viscosity plays a key role!
- WASP-77A b formed beyond the CO₂ evaporation front
- τ Boötis b formed beyond the H₂O evaporation front
- \Rightarrow No additional accretion of solids needed!

Importance of viscosity

(Bitsch et al., submitted)

• Viscosity sets the pebble sizes and diffusion timescale

Importance of viscosity

- Viscosity sets the pebble sizes and diffusion timescale
- Larger viscosity results in smaller pebbles and faster diffusion, leading to less extreme C/H, O/H and C/O ratios

What does the star tell about the planet?

The chemical link between stars and their rocky planets

⁽Adibekyan et al. 2021)

Compositional link between rocky exoplanets and host stars

The chemical link between stars and their rocky planets

- Compositional link between rocky exoplanets and host stars
- Estimates of the planetary iron mass fractions correlate with stellar [Fe/H]
- Super-Mercuries appear to be distinct, implying a different formation channel

Stellar abundances

- Different elements scale differently with [Fe/H] due to galactic chemical evolution (Burbidge et al. 1957)
- C/O ratio in different stars varies a lot

Stellar abundances

- Different elements scale differently with [Fe/H] due to galactic chemical evolution (Burbidge et al. 1957)
- C/O ratio in different stars varies a lot
- \Rightarrow What does this mean for the chemical composition in discs?

Influence on planet formation

- \bullet Significant reduction in H_2O content with increasing [Fe/H]
- \Rightarrow Reduction in H_2O mainly caused by increase in C/O, because C binds O in CO and CO_2!

Influence on planet formation

- \bullet Significant reduction in H_2O content with increasing [Fe/H]
- \Rightarrow Reduction in H_2O mainly caused by increase in C/O, because C binds O in CO and CO_2!
 - [Fe/H] changes planetary growth and composition!

Influence on planet formation

- \bullet Significant reduction in H_2O content with increasing [Fe/H]
- \Rightarrow Reduction in H_2O mainly caused by increase in C/O, because C binds O in CO and CO_2!
 - [Fe/H] changes planetary growth and composition!
- ⇒ Clear indication to go beyond [Fe/H] for planet formation simulations, planet compositions and planetary occurrence rates!
Influence on planet formation

- Significant reduction in H_2O content with increasing [Fe/H]
- \Rightarrow Reduction in H_2O mainly caused by increase in C/O, because C binds O in CO and CO_2!
 - [Fe/H] changes planetary growth and composition!
- \Rightarrow Clear indication to go beyond [Fe/H] for planet formation simulations, planet compositions and planetary occurrence rates!
- ⇒ Super important when determining if planetary atmosperes have super/sub solar water!

Summary

• Pebbles grow and drift through the disc, but can be trapped at pressure maxima

(e.g. Whipple 1972, Brauer et al. 2008, Birnstiel et al. 2012, Drążkowska et al. 2022)

- Planetesimal accretion is inefficient in the outer regions, while pebble accretion can explain the formation of wide orbit giants (e.g. Lambrechts & Johansen 2012, Bitsch et al. 2015b, Johansen & Bitsch 2019)
- Pebble drift and evaporation is a crucial ingredient for planet formation and can explain the heavy element content of giant planets! (e.g. Booth et al. 2017, Schneider & Bitsch 2021a,b)
- Planetary atmospheres could help to constrain planet formation, but more work to relate atmospheric to bulk compositions is needed! (Schneider & Bitsch 2021b, Bitsch et al. submitted, Helled et al. 2021, Guillot et al. 2022)
- Each star is individual and the different elemental abundances may be key to understand planet formation!

(Bitsch & Battistini 2020, Adibekyan et al. 2021)

Bertram Bitsch (MPIA)

Constraining planet formation