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Abstract

We review theory and applications of weak gravitational lensing. After summarising Friedmann}Lemam( tre
cosmological models, we present the formalism of gravitational lensing and light propagation in arbitrary
space}times. We discuss how weak-lensing e!ects can be measured. The formalism is then applied to
reconstructions of galaxy-cluster mass distributions, gravitational lensing by large-scale matter distributions,
QSO}galaxy correlations induced by weak lensing, lensing of galaxies by galaxies, and weak lensing of the
cosmic microwave background. ( 2001 Elsevier Science B.V. All rights reserved.
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Fig. 1. The gravitational lens system 2237#0305 consists of a nearby spiral galaxy at redshift z
$
"0.039 and four

images of a background quasar with redshift z
4
"1.69. It was discovered by Huchra et al. (1985). The image was taken by

the Hubble Space Telescope and shows only the innermost region of the lensing galaxy. The central compact source is the
bright galaxy core, the other four compact sources are the quasar images. They di!er in brightness because they are
magni"ed by di!erent amounts. The four images roughly fall on a circle concentric with the core of the lensing galaxy.
The mass inside this circle can be determined with very high accuracy (Rix et al., 1992). The largest separation between
the images is 1.8A.

Fig. 2. The radio source MG 1131#0456 was discovered by Hewitt et al. (1988) as the "rst example of a so-called
Einstein ring. If a source and an axially symmetric lens are co-aligned with the observer, the symmetry of the system
permits the formation of a ring-like image of the source centred on the lens. If the symmetry is broken (as expected for all
realistic lensing matter distributions), the ring is deformed or broken up, typically into four images (see Fig. 1). However,
if the source is su$ciently extended, ring-like images can be formed even if the symmetry is imperfect. The 6 cm radio map
of MG 1131#0456 shows a closed ring, while the ring breaks up at higher frequencies where the source is smaller. The
ring diameter is 2.1A.

1. Introduction

1.1. Gravitational light deyection

Light rays are de#ected when they propagate through an inhomogeneous gravitational "eld.
Although several researchers had speculated about such an e!ect well before the advent of General
Relativity (see Schneider et al., 1992 for a historical account), it was Einstein's theory which
elevated the de#ection of light by masses from a hypothesis to a "rm prediction. Assuming light
behaves like a stream of particles, its de#ection can be calculated within Newton's theory of
gravitation, but General Relativity predicts that the e!ect is twice as large. A light ray grazing the
surface of the Sun is de#ected by 1.75 arcsec compared to the 0.87 arcsec predicted by Newton's
theory. The con"rmation of the larger value in 1919 was perhaps the most important step towards
accepting General Relativity as the correct theory of gravity (Eddington, 1920).

Cosmic bodies more distant, more massive, or more compact than the Sun can bend light rays
from a single source su$ciently strongly so that multiple light rays can reach the observer. The
observer sees an image in the direction of each ray arriving at their position, so that the source
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Fig. 3. The cluster Abell 2218 hosts one of the most impressive collections of arcs. This HST image of the cluster's central
region shows a pattern of strongly distorted galaxy images tangentially aligned with respect to the cluster centre, which
lies close to the bright galaxy in the upper part of this image. The frame measures about 80A]160A (courtesy of
J.-P. Kneib).

appears multiply imaged. In the language of General Relativity, there may exist more than one null
geodesic connecting the world-line of a source with the observation event. Although predicted long
before, the "rst multiple-image system was discovered only in 1979 (Walsh et al., 1979). From then
on, the "eld of gravitational lensing developed into one of the most active subjects of astrophysical
research. Several dozens of multiply imaged sources have since been found. Their quantitative
analysis provides accurate masses of, and in some cases detailed information on, the de#ectors. An
example is shown in Fig. 1.

Tidal gravitational "elds lead to di!erential de#ection of light bundles. The size and shape of
their cross sections are therefore changed. Since photons are neither emitted nor absorbed in the
process of gravitational light de#ection, the surface brightness of lensed sources remains un-
changed. Changing the size of the cross section of a light bundle therefore changes the #ux observed
from a source. The di!erent images in multiple-image systems generally have di!erent #uxes. The
images of extended sources, i.e. sources which can observationally be resolved, are deformed by the
gravitational tidal "eld. Since astronomical sources like galaxies are not intrinsically circular, this
deformation is generally very di$cult to identify in individual images. In some cases, however, the
distortion is strong enough to be readily recognised, most noticeably in the case of Einstein rings
(see Fig. 2) and arcs in galaxy clusters (Fig. 3).

If the light bundles from some sources are distorted so strongly that their images appear as giant
luminous arcs, one may expect many more sources behind a cluster whose images are only weakly
distorted. Although weak distortions in individual images can hardly be recognised, the net dis-
tortion averaged over an ensemble of images can still be detected. As we shall describe in Section 2.3,
deep optical exposures reveal a dense population of faint galaxies on the sky. Most of these galaxies
are at high redshift, thus distant, and their image shapes can be utilised to probe the tidal
gravitational "eld of intervening mass concentrations. Indeed, the tidal gravitational "eld can be
reconstructed from the coherent distortion apparent in images of the faint galaxy population, and
from that the density pro"le of intervening clusters of galaxies can be inferred (see Section 4).
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1The term standard candle is used for any class of astronomical objects whose intrinsic luminosity can be inferred
independently of the observed #ux. In the simplest case, all members of the class have the same luminosity. More
typically, the luminosity depends on some other known and observable parameters, such that the luminosity can be
inferred from them. The luminosity distance to any standard candle can directly be inferred from the square root of
the ratio of source luminosity and observed #ux. Since the luminosity distance depends on cosmological parameters, the
geometry of the Universe can then directly be investigated. Probably, the best current candidates for standard candles are
supernovae of Type Ia. They can be observed to quite high redshifts, and thus be utilised to estimate cosmological
parameters (e.g. Riess et al., 1998).

1.2. Weak gravitational lensing

This review deals with weak gravitational lensing. There is no generally applicable de"nition of
weak lensing despite the fact that it constitutes a #ourishing area of research. The common aspect
of all studies of weak gravitational lensing is that measurements of its e!ects are statistical in
nature. While a single multiply imaged source provides information on the mass distribution of the
de#ector, weak lensing e!ects show up only across ensembles of sources. One example was given
above: The shape distribution of an ensemble of galaxy images is changed close to a massive galaxy
cluster in the foreground, because the cluster's tidal "eld polarises the images. We shall see later
that the size distribution of the background galaxy population is also locally changed in the
neighbourhood of a massive intervening mass concentration.

Magni"cation and distortion e!ects due to weak lensing can be used to probe the statistical
properties of the matter distribution between us and an ensemble of distant sources, provided some
assumptions on the source properties can be made. For example, if a standard candle1 at high
redshift is identi"ed, its #ux can be used to estimate the magni"cation along its line-of-sight. It can
be assumed that the orientation of faint distant galaxies is random. Then, any coherent alignment
of images signals the presence of an intervening tidal gravitational "eld. As a third example, the
positions on the sky of cosmic objects at vastly di!erent distances from us should be mutually
independent. A statistical association of foreground objects with background sources can therefore
indicate the magni"cation caused by the foreground objects on the background sources.

All these e!ects are quite subtle, or weak, and many of the current challenges in the "eld are
observational in nature. A coherent alignment of images of distant galaxies can be due to an
intervening tidal gravitational "eld, but could also be due to propagation e!ects in the Earth's
atmosphere or in the telescope. A variation in the number density of background sources around
a foreground object can be due to a magni"cation e!ect, but could also be due to non-uniform
photometry or obscuration e!ects. These potential systematic e!ects have to be controlled at
a level well below the expected weak-lensing e!ects. We shall return to this essential point at
various places in this review.

1.3. Applications of gravitational lensing

Gravitational lensing has developed into a versatile tool for observational cosmology. There are
two main reasons:
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(1) The de#ection angle of a light ray is determined by the gravitational "eld of the matter
distribution along its path. According to Einstein's theory of General Relativity, the gravi-
tational "eld is in turn determined by the stress-energy tensor of the matter distribution. For the
astrophysically most relevant case of non-relativistic matter, the latter is characterised by the
density distribution alone. Hence, the gravitational "eld, and thus the de#ection angle, depend
neither on the nature of the matter nor on its physical state. Light de#ection probes the total
matter density, without distinguishing between ordinary (baryonic) matter or dark matter. In
contrast to other dynamical methods for probing gravitational "elds, no assumption needs to
be made on the dynamical state of the matter. For example, the interpretation of radial velocity
measurements in terms of the gravitating mass requires the applicability of the virial theorem
(i.e., the physical system is assumed to be in virial equilibrium), or knowledge of the orbits (such
as the circular orbits in disk galaxies). However, as will be discussed in Section 3, lensing
measures only the mass distribution projected along the line-of-sight, and is therefore insensi-
tive to the extent of the mass distribution along the light rays, as long as this extent is small
compared to the distances from the observer and the source to the de#ecting mass. Keeping this
in mind, mass determinations by lensing do not depend on any symmetry assumptions.

(2) Once the de#ection angle as a function of impact parameter is given, gravitational lensing
reduces to simple geometry. Since most lens systems involve sources (and lenses) at moderate or
high redshift, lensing can probe the geometry of the Universe. This was noted by Refsdal (1964),
who pointed out that lensing can be used to determine the Hubble constant and the cosmic
density parameter. Although this turned out later to be more di$cult than anticipated at the
time, "rst measurements of the Hubble constant through lensing have been obtained with
detailed models of the matter distribution in multiple-image lens systems and the di!erence in
light-travel time along the di!erent light paths corresponding to di!erent images of the source
(e.g. KundicH et al., 1997; Schechter et al., 1997; Biggs et al., 1999). Since the volume element per
unit redshift interval and unit solid angle also depends on the geometry of space-time, so does
the number of lenses therein. Hence, the lensing probability for distant sources depends on the
cosmological parameters (e.g. Press and Gunn, 1973). Unfortunately, in order to derive
constraints on the cosmological model with this method, one needs to know the evolution of
the lens population with redshift. Nevertheless, in some cases, signi"cant constraints on the
cosmological parameters (Kochanek, 1993; 1996; Maoz and Rix, 1993; Bartelmann et al., 1998;
Falco et al., 1998), and on the evolution of the lens population (Mao and Kochanek, 1994)
have been derived from multiple-image and arc statistics (see also the review by Chiba and
Futamase, 1999).

The possibility to directly investigate the dark-matter distribution led to substantial results over
recent years. Constraints on the size of the dark-matter halos of spiral galaxies were derived
(e.g. Brainerd et al., 1996), the presence of dark-matter halos in elliptical galaxies was demonstrated
(e.g. Maoz and Rix, 1993; Gri$ths et al., 1996), and the projected total mass distribution in many
cluster of galaxies was mapped (e.g. Kneib et al., 1996; Hoekstra et al., 1998; Kaiser et al., 1998).
These results directly impact on our understanding of structure formation, supporting hierarchical
structure formation in cold dark-matter (CDM) models. Constraints on the nature of dark matter
were also obtained. Compact dark-matter objects, such as black holes or brown dwarfs, cannot be
very abundant in the Universe, because otherwise they would lead to observable lensing e!ects
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(e.g. Schneider, 1993; Dalcanton et al., 1994). Galactic microlensing experiments constrained the
density and typical mass scale of massive compact halo objects in our Galaxy (see PaczynH ski, 1996;
Roulet and Mollerach, 1997; Mao, 2000 for reviews). We refer the reader to the reviews by
Blandford and Narayan (1992), Schneider (1996a) and Narayan and Bartelmann (1991) for
a detailed account of the cosmological applications of gravitational lensing.

We shall concentrate almost entirely on weak gravitational lensing here. Hence, the #ourishing
"elds of multiple-image systems and their interpretation, Galactic microlensing and its conse-
quences for understanding the nature of dark matter in the halo of our galaxy, and the detailed
investigations of the mass distribution in the inner parts of galaxy clusters through arcs, arclets, and
multiply imaged background galaxies, will not be covered in this review. In addition to the
references given above, we would like to point the reader to Refsdal and Surdej (1994), Fort and
Mellier (1994), Wu (1996), and Hattori et al. (1999) for more recent reviews on various aspects of
gravitational lensing, to Mellier (1999) for a very recent review on weak lensing, and to the
monograph (Schneider et al., 1992) for a detailed account of the theory and applications of
gravitational lensing.

1.4. Structure of this review

Many aspects of weak gravitational lensing are intimately related to the cosmological model and
to the theory of structure formation in the Universe. We therefore start the review by giving some
cosmological background in Section 2. After summarising Friedmann}Lemam( tre}Robertson}
Walker models, we sketch the theory of structure formation, introduce astrophysical objects like
QSOs, galaxies, and galaxy clusters, and "nish the section with a general discussion of correlation
functions, power spectra, and their projections. Gravitational light de#ection in general is the
subject of Section 3, and the specialisation to weak lensing is described in Section 4. One of the
main aspects there is how weak lensing e!ects can be quanti"ed and measured. The following two
sections describe the theory of weak lensing by galaxy clusters (Section 5) and cosmological mass
distributions (Section 6). Apparent correlations between background QSOs and foreground
galaxies due to the magni"cation bias caused by large-scale matter distributions are the subject of
Section 7. Weak lensing e!ects of foreground galaxies on background galaxies are reviewed in
Section 8, and Section 9 "nally deals with weak lensing of the most distant and most extended
source possible, i.e. the Cosmic microwave Background. We present a brief summary and an
outlook in Section 10.

We use standard astronomical units throughout: 1M
_
"1 solar mass"2]1033g;

1Mpc"1megaparsec"3.1]1024 cm.

2. Cosmological background

We review in this section those aspects of the standard cosmological model which are relevant
for our further discussion of weak gravitational lensing. This standard model consists of a descrip-
tion for the cosmological background which is a homogeneous and isotropic solution of the "eld
equations of General Relativity, and a theory for the formation of structure.
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The background model is described by the Robertson}Walker metric (Robertson, 1935; Walker,
1935), in which hypersurfaces of constant time are homogeneous and isotropic three spaces, either
#at or curved, and change with time according to a scale factor which depends on time only. The
dynamics of the scale factor is determined by two equations which follow from Einstein's "eld
equations given the highly symmetric form of the metric.

Current theories of structure formation assume that structure grows via gravitational instability
from initial seed perturbations whose origin is yet unclear. Most common hypotheses lead to the
prediction that the statistics of the seed #uctuations is Gaussian. Their amplitude is low for most of
their evolution so that linear perturbation theory is su$cient to describe their growth until late
stages. For general references on the cosmological model and on the theory of structure formation,
cf. Weinberg (1972), Misner et al. (1973), Peebles (1980), BoK rner (1988), Padmanabhan (1993),
Peebles (1993), and Peacock (1999).

2.1. Friedmann}Lemaı(tre cosmological models

2.1.1. Metric
Two postulates are fundamental to the standard cosmological model, which are:

(1) When averaged over suzciently large scales, there exists a mean motion of radiation and matter in
the Universe with respect to which all averaged observable properties are isotropic.

(2) All fundamental observers, i.e. imagined observers which follow this mean motion, experience the
same history of the Universe, i.e. the same averaged observable properties, provided they set their
clocks suitably. Such a Universe is called observer-homogeneous.

General Relativity describes space}time as a four-dimensional manifold whose metric tensor
gab is considered as a dynamical "eld. The dynamics of the metric is governed by Einstein's "eld
equations, which relate the Einstein tensor to the stress-energy tensor of the matter contained in
space}time. Two events in space}time with coordinates di!ering by dxa are separated by ds, with
ds2"gab dxadxb. The eigentime (proper time) of an observer who travels by ds changes by c~1ds.
Greek indices run over 0,2, 3 and Latin indices run over the spatial indices 1,2, 3 only.

The two postulates stated above considerably constrain the admissible form of the metric tensor.
Spatial coordinates which are constant for fundamental observers are called comoving coordi-
nates. In these coordinates, the mean motion is described by dxi"0, and hence ds2"g

00
dt2. If we

require that the eigentime of fundamental observers equal the cosmic time, this implies g
00

"c2.
Isotropy requires that clocks can be synchronised such that the space}time components of the

metric tensor vanish, g
0i
"0. If this was impossible, the components of g

0i
identi"ed one particular

direction in space}time, violating isotropy. The metric can therefore be written as

ds2"c2dt2#g
ij

dxidxj , (2.1)

where g
ij

is the metric of spatial hypersurfaces. In order not to violate isotropy, the spatial metric
can only isotropically contract or expand with a scale function a(t) which must be a function of time
only, because otherwise the expansion would be di!erent at di!erent places, violating homogeneity.
Hence, the metric further simpli"es to

ds2"c2dt2!a2(t) dl2 , (2.2)
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where dl is the line element of the homogeneous and isotropic three space. A special case of metric
(2.2) is the Minkowski metric, for which dl is the Euclidean line element and a(t) is a constant.
Homogeneity also implies that all quantities describing the matter content of the Universe, e.g.
density and pressure, can be functions of time only.

The spatial hypersurfaces whose geometry is described by dl2 can either be #at or curved.
Isotropy only requires them to be spherically symmetric, i.e. spatial surfaces of constant distance
from an arbitrary point need to be two spheres. Homogeneity permits us to choose an arbitrary
point as coordinate origin. We can then introduce two angles h,/ which uniquely identify positions
on the unit sphere around the origin, and a radial coordinate w. The most general admissible form
for the spatial line element is then

dl2"dw2#f 2
K
(w)(d/2#sin2hdh2),dw2#f 2

K
(w) du2 . (2.3)

Homogeneity requires that the radial function f
K
(w) is either a trigonometric, linear, or hyperbolic

function of w, depending on whether the curvature K is positive, zero, or negative. Speci"cally,

f
K
(w)"G

K~1@2 sin(K1@2w) (K'0) ,

w (K"0) ,

(!K)~1@2 sinh[(!K)1@2w] (K(0) .

(2.4)

Note that f
K
(w) and thus DKD~1@2 have the dimension of a length. If we de"ne the radius r of the two

spheres by f
K
(w),r, the metric dl2 takes the alternative form

dl2"
dr2

1!Kr2
#r2du2 . (2.5)

2.1.2. Redshift
Due to the expansion of space, photons are redshifted while they propagate from the source to

the observer. Consider a comoving source emitting a light signal at t
%

which reaches a comoving
observer at the coordinate origin w"0 at time t

0
. Since ds"0 for light, a backward-directed

radial light ray propagates according to Dc dtD"a dw, from the metric. The (comoving) coordinate
distance between source and observer is constant by de"nition,

w
%0
"P

%

0

dw"P
t0 (t% )

t%

cdt
a

"constant (2.6)

and thus, in particular, the derivative of w
%0

with respect to t
%

is zero. It then follows from
Eq. (2.6)

dt
0

dt
%

"

a(t
0
)

a(t
%
)

. (2.7)

Identifying the inverse time intervals (dt
%,0

)~1 with the emitted and observed light frequencies l
%,0

,
we can write

dt
0

dt
%

"

l
%

l
0

"

j
0

j
%

. (2.8)
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Since the redshift z is de"ned as the relative change in wavelength, or 1#z"j
0
j~1
%

, we "nd

1#z"
a(t

0
)

a(t
%
)

. (2.9)

This shows that light is redshifted by the amount by which the Universe has expanded between
emission and observation.

2.1.3. Expansion
To complete the description of space}time, we need to know how the scale function a(t) depends

on time, and how the curvature K depends on the matter which "lls space}time. That is, we ask for
the dynamics of the space}time. Einstein's "eld equations relate the Einstein tensor Gab to the
stress-energy tensor ¹ab of the matter

Gab"
8pG
c2

¹ab#Kgab . (2.10)

The second term proportional to the metric tensor gab is a generalisation introduced by Einstein to
allow static cosmological solutions of the "eld equations. K is called the cosmological constant. For
the highly symmetric form of the metric given by (2.2) and (2.3), Einstein's equations imply that
¹ab has to have the form of the stress-energy tensor of a homogeneous perfect #uid, which is
characterised by its density o(t) and its pressure p(t). Matter density and pressure can only depend
on time because of homogeneity. The "eld equations then simplify to the two independent
equations:

A
a5
aB

2
"

8pG
3

o!
Kc2
a2

#

K
3

(2.11)

and

aK
a
"!

4
3
pGAo#

3p
c2B#

K
3

. (2.12)

The scale factor a(t) is determined once its value at one instant of time is "xed. We choose a"1 at
the present epoch t

0
. Eq. (2.11) is called Friedmann's equation (Friedmann, 1922, 1924). The two

Eqs. (2.11) and (2.12) can be combined to yield the adiabatic equation

d
dt

[a3(t)o(t)c2]#p(t)
da3(t)

dt
"0 , (2.13)

which has an intuitive interpretation. The "rst term a3o is proportional to the energy contained in
a "xed comoving volume, and hence the equation states that the change in &internal' energy equals
the pressure times the change in proper volume. Hence, Eq. (2.13) is the "rst law of thermodynamics
in the cosmological context.

A metric of the form given by Eqs. (2.2)}(2.4) is called the Robertson}Walker metric. If its scale
factor a(t) obeys Friedmann's equation (2.11) and the adiabatic equation (2.13), it is called the
Friedmann}Lemam( tre}Robertson}Walker metric, or the Friedmann}Lemam( tre metric for short.
Note that Eq. (2.12) can also be derived from Newtonian gravity except for the pressure term in
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(2.12) and the cosmological constant. Unlike in Newtonian theory, pressure acts as a source of
gravity in General Relativity.

2.1.4. Parameters
The relative expansion rate a5 a~1,H is called the Hubble parameter, and its value at the

present epoch t"t
0

is the Hubble constant, H(t
0
),H

0
. It has the dimension of an inverse time.

The value of H
0

is still uncertain. Current measurements roughly fall into the range
H

0
"(50}80) kms~1Mpc~1 (see Freedman, 1996 for a review), and the uncertainty in H

0
is

commonly expressed as H
0
"100hkm s~1Mpc~1, with h"(0.5}0.8). Hence,

H
0
+3.2]10~18h s~1+1.0]10~10hyr~1 . (2.14)

The time scale for the expansion of the Universe is the inverse Hubble constant, or
H~1

0
+1010h~1yr.

The combination

3H2
0

8pG
,o

#3
+1.9]10~29h2g cm~3 (2.15)

is the critical density of the Universe, and the density o
0

in units of o
#3

is the density parameter X
0
,

X
0
"

o
0

o
#3

. (2.16)

If the matter density in the Universe is critical, o
0
"o

#3
or X

0
"1, and if the cosmological constant

vanishes, K"0, spatial hypersurfaces are #at, K"0, which follows from (2.11) and will become
explicit in Eq. (2.30) below. We further de"ne

XK,
K

3H2
0

. (2.17)

The deceleration parameter q
0

is de"ned by

q
0
"!

aK a
a5 2

(2.18)

at t"t
0
.

2.1.5. Matter models
For a complete description of the expansion of the Universe, we need an equation of state

p"p(o), relating the pressure to the energy density of the matter. Ordinary matter, which is
frequently called dust in this context, has p;oc2, while p"oc2/3 for radiation or other forms of
relativistic matter. Inserting these expressions into Eq. (2.13), we "nd

o(t)"a~n(t)o
0

(2.19)

with

n"G
3 for dust, p"0 ,

4 for relativistic matter, p"oc2/3 .
(2.20)
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The energy density of relativistic matter therefore drops more rapidly with time than that of
ordinary matter.

2.1.6. Relativistic matter components
There are two obvious candidates for relativistic matter today, photons and neutrinos. The

energy density contained in photons today is determined by the temperature of the cosmic
microwave background (CMB), ¹

CMB
"2.73K (Fixsen et al., 1996). Since the CMB has an

excellent black-body spectrum, its energy density is given by the Stefan}Boltzmann law

o
CMB

"

1
c2

p2

15
(k¹

CMB
)4

(+c)3
+4.5]10~34 g cm~3 . (2.21)

In terms of the cosmic density parameter X
0

[Eq. (2.16)], the cosmic density contributed by the
photon background is

X
CMB,0

"2.4]10~5h~2 . (2.22)

Like photons, neutrinos were produced in thermal equilibrium in the hot early phase of the
Universe. Interacting weakly, they decoupled from the cosmic plasma when the temperature of the
Universe was k¹+1 MeV because later the time scale of their leptonic interactions became larger
than the expansion time scale of the Universe, so that equilibrium could no longer be maintained.
When the temperature of the Universe dropped to k¹+0.5MeV, electron}positron pairs annihi-
lated to produce c-rays. The annihilation heated up the photons but not the neutrinos which had
decoupled earlier. Hence, the neutrino temperature is lower than the photon temperature by an
amount determined by entropy conservation. The entropy S

%
of the electron}positron pairs was

dumped completely into the entropy of the photon background Sc . Hence,

(S
%
#Sc)"%&03%"(Sc )!&5%3 , (2.23)

where `beforea and `aftera refer to the annihilation time. Ignoring constant factors, the entropy per
particle species is SJg¹3, where g is the statistical weight of the species. For bosons g"1, and for
fermions g"7

8
per spin state. Before annihilation, we thus have g

"%&03%
"4 ) 7

8
#2"11

2
, while after

the annihilation g"2 because only photons remain. From Eq. (2.23),

A
¹

!&5%3
¹

"%&03%
B

3
"

11
4

. (2.24)

After the annihilation, the neutrino temperature is therefore lower than the photon temperature by
the factor (11

4
)1@3. In particular, the neutrino temperature today is

¹l,0"A
4
11B

1@3
¹

CMB
"1.95K . (2.25)

Although neutrinos have long been out of thermal equilibrium, their distribution function re-
mained unchanged since they decoupled, except that their temperature gradually dropped in the
course of cosmic expansion. Their energy density can thus be computed from a Fermi}Dirac
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distribution with temperature ¹l , and be converted to the equivalent cosmic density parameter as
for the photons. The result is

Xl,0"2.8]10~6h~2 (2.26)

per neutrino species.
Assuming three relativistic neutrino species, the total density parameter in relativistic matter

today is

X
R,0

"X
CMB,0

#3]Xl,0"3.2]10~5h~2 . (2.27)

Since the energy density in relativistic matter is almost "ve orders of magnitude less than the energy
density of ordinary matter today if X

0
is of order unity, the expansion of the Universe today is

matter-dominated, or o"a~3(t)o
0
. The energy densities of ordinary and relativistic matter were

equal when the scale factor a(t) was

a
%2
"

X
R,0

X
0

"3.2]10~5X~1
0

h~2 (2.28)

and the expansion was radiation-dominated at yet earlier times, o"a~4o
0
. The epoch of equality

of matter and radiation density will turn out to be important for the evolution of structure in the
Universe discussed below.

2.1.7. Spatial curvature and expansion
With the parameters de"ned previously, Friedmann's equation (2.11) can be written as

H2(t)"H2
0Ca~4(t)X

R,0
#a~3(t)X

0
!a~2(t)

Kc2
H2

0

#XKD . (2.29)

Since H(t
0
),H

0
, and X

R,0
;X

0
, Eq. (2.29) implies

K"A
H

0
c B

2
(X

0
#XK!1) (2.30)

and Eq. (2.29) becomes

H2(t)"H2
0
[a~4(t)X

R,0
#a~3(t)X

0
#a~2(t)(1!X

0
!XK )#XK] . (2.31)

The curvature of spatial hypersurfaces is therefore determined by the sum of the density contribu-
tions from matter, X

0
, and from the cosmological constant, XK . If X

0
#XK"1, space is #at, and

it is closed or hyperbolic if X
0
#XK is larger or smaller than unity, respectively. The spatial

hypersurfaces of a low-density Universe are therefore hyperbolic, while those of a high-density
Universe are closed [cf. Eq. (2.4)]. A Friedmann}Lemam( tre model universe is thus characterised by
four parameters: the expansion rate at present (or Hubble constant) H

0
, and the density parameters

in matter, radiation, and the cosmological constant.
Dividing Eq. (2.12) by Eq. (2.11), using Eq. (2.30), and setting p"0, we obtain for the deceler-

ation parameter q
0

q
0
"

X
0

2
!XK . (2.32)
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Fig. 4. Cosmic age t
0

in units of H~1
0

as a function of X
0
, for XK"0 (solid curve) and XK"1!X

0
(dashed curve).

The age of the Universe can be determined from Eq. (2.31). Since dt"da a5 ~1"da(aH)~1, we have,
ignoring X

R,0
,

t
0
"

1
H

0
P

1

0

da [a~1X
0
#(1!X

0
!XK )#a2XK]~1@2 . (2.33)

It was assumed in this equation that p"0 holds for all times t, while pressure is not negligible at
early times. The corresponding error, however, is very small because the universe spends only
a very short time in the radiation-dominated phase where p'0.

Fig. 4 shows t
0

in units of H~1
0

as a function of X
0
, for XK"0 (solid curve) and XK"1!X

0
(dashed curve). The model universe is older for lower X

0
and higher XK because the deceleration

decreases with decreasing X
0

and the acceleration increases with increasing XK .
In principle, XK can have either sign. We have restricted ourselves in Fig. 4 to non-negative

XK because the cosmological constant is usually interpreted as the energy density of the vacuum,
which is positive semi-de"nite.

The time evolution (2.31) of the Hubble function H(t) allows one to determine the dependence of
X and XK on the scale function a. For a matter-dominated Universe, we "nd

X(a)"
8pG

3H2(a)
o
0
a~3"

X
0

a#X
0
(1!a)#XK (a3!a)

,

XK (a)"
K

3H2(a)
"

XKa3

a#X
0
(1!a)#XK (a3!a)

. (2.34)

These equations show that, whatever the values of X
0

and XK are at the present epoch, X(a)P1
and XKP0 for aP0. This implies that for su$ciently early times, all matter-dominated Fried-
mann}Lemam( tre model universes can be described by Einstein}de Sitter models, for which K"0
and XK"0. For a;1, the right-hand side of the Friedmann equation (2.31) is therefore dominated
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by the matter and radiation terms because they contain the strongest dependences on a~1. The
Hubble function H(t) can then be approximated by

H(t)"H
0
[X

R,0
a~4(t)#X

0
a~3(t)]1@2 . (2.35)

Using the de"nition of a
%2

, a~4
%2

X
R,0

"a~3
%2

X
0

[cf. Eq. (2.28)], Eq. (2.35) can be written as

H(t)"H
0
X1@2

0
a~3@2A1#

a
%2
a B

1@2
. (2.36)

Hence,

H(t)"H
0
X1@2

0 G
a1@2
%2

a~2 (a;a
%2

) ,

a~3@2 (a
%2
;a;1) .

(2.37)

Likewise, the expression for the cosmic time reduces to

t(a)"
2

3H
0

X~1@2
0 Ca3@2A1!2

a
%2
a BA1#

a
%2
a B

1@2
#2a3@2

%2 D (2.38)

or

t(a)"
1

H
0

X~1@2
0 G

1
2
a~1@2
%2

a2 (a;a
%2

) ,

2
3
a3@2 (a

%2
;a;1) .

(2.39)

Eq. (2.36) is called the Einstein}de Sitter limit of Friedmann's equation. Where not mentioned
otherwise, we consider in the following only cosmic epochs at times much later than t

%2
, i.e.,

when a<a
%2

, where the Universe is dominated by dust, so that the pressure can be neglected,
p"0.

2.1.8. Necessity of a Big Bang
Starting from a"1 at the present epoch and integrating Friedmann's equation (2.11) back in

time shows that there are combinations of the cosmic parameters such that a'0 at all times. Such
models would have no Big Bang. The necessity of a Big Bang is usually inferred from the existence
of the cosmic microwave background, which is most naturally explained by an early, hot phase of
the Universe. BoK rner and Ehlers (1988) showed that two simple observational facts su$ce to show
that the Universe must have gone through a Big Bang, if it is properly described by the class of
Friedmann}Lemam( tre models. Indeed, the facts that there are cosmological objects at redshifts
z'4, and that the cosmic density parameter of non-relativistic matter, as inferred from observed
galaxies and clusters of galaxies is X

0
'0.02, exclude models which have a(t)'0 at all times.

Therefore, if we describe the Universe at large by Friedmann}Lemam( tre models, we must assume
a Big Bang, or a"0 at some time in the past.

2.1.9. Distances
The meaning of `distancea is no longer unique in a curved space}time. In contrast to the

situation in Euclidean space, distance de"nitions in terms of di!erent measurement prescriptions
lead to di!erent distances. Distance measures are therefore de"ned in analogy to relations between
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measurable quantities in Euclidean space. We de"ne here four di!erent distance scales, the proper
distance, the comoving distance, the angular-diameter distance, and the luminosity distance.

Distance measures relate an emission event and an observation event on two separate
geodesic lines which fall on a common light cone, either the forward light cone of the source or
the backward light cone of the observer. They are therefore characterised by the times t

2
and t

1
of emission and observation, respectively, and by the structure of the light cone. These times
can uniquely be expressed by the values a

2
"a(t

2
) and a

1
"a(t

1
) of the scale factor, or by the

redshifts z
2

and z
1

corresponding to a
2

and a
1
. We choose the latter parameterisation because

redshifts are directly observable. We also assume that the observer is at the origin of the
coordinate system.

The proper distance D
1301

(z
1
, z

2
) is the distance measured by the travel time of a light ray which

propagates from a source at z
2

to an observer at z
1
(z

2
. It is de"ned by dD

1301
"!cdt, hence

dD
1301

"!cdaa5 ~1"!cda(aH)~1. The minus sign arises because, due to the choice of coordi-
nates centred on the observer, distances increase away from the observer, while the time t and the
scale factor a increase towards the observer. We get

D
1301

(z
1
, z

2
)"

c
H

0
P

a(z1 )

a(z2 )

[a~1X
0
#(1!X

0
!XK)#a2XK]~1@2 da . (2.40)

The comoving distance D
#0.

(z
1
, z

2
) is the distance on the spatial hyper-surface t"t

0
between the

world-lines of a source and an observer comoving with the cosmic #ow. Due to the choice of
coordinates, it is the coordinate distance between a source at z

2
and an observer at z

1
, dD

#0.
"dw.

Since light rays propagate with ds"0, we have cdt"!a dw from the metric, and therefore
dD

#0.
"!a~1cdt"!cda(aa5 )~1"!cda(a2H)~1. Thus,

D
#0.

(z
1
, z

2
)"

c
H

0
P

a(z1 )

a(z2)

[aX
0
#a2(1!X

0
!XK )#a4XK]~1@2da

"w(z
1
, z

2
) . (2.41)

The angular-diameter distance D
!/'

(z
1
, z

2
) is de"ned in analogy to the relation in Euclidean space

between the physical cross section dA of an object at z
2

and the solid angle du that it subtends for
an observer at z

1
, duD2

!/'
"dA. Hence,

dA
4pa2(z

2
) f 2

K
[w(z

1
, z

2
)]
"

du
4p

, (2.42)

where a(z
2
) is the scale factor at emission time and f

K
[w(z

1
, z

2
)] is the radial coordinate distance

between the observer and the source. It follows that

D
!/'

(z
1
, z

2
)"A

dA
duB

1@2
"a(z

2
) f

K
[w(z

1
, z

2
)] . (2.43)

According to the de"nition of the comoving distance, the angular-diameter distance therefore is

D
!/'

(z
1
, z

2
)"a(z

2
) f

K
[D

#0.
(z

1
, z

2
)] . (2.44)
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Fig. 5. Four distance measures are plotted as a function of source redshift for two cosmological models and an
observer at redshift zero. These are the proper distance D

1301
(1, solid line), the comoving distance D

#0.
(2, dotted line),

the angular-diameter distance D
!/'

(3, short-dashed line), and the luminosity distance D
-6.

(4, long-dashed
line).

The luminosity distance D
-6.

(a
1
, a

2
) is de"ned by the relation in Euclidean space between the

luminosity ¸ of an object at z
2

and the #ux S received by an observer at z
1
. It is related to the

angular-diameter distance through

D
-6.

(z
1
, z

2
)"C

a(z
1
)

a(z
2
)D

2
D

!/'
(z

1
, z

2
)"

a(z
1
)2

a(z
2
)
f
K
[D

#0.
(z

1
, z

2
)] . (2.45)

The "rst equality in (2.45), which is due to Etherington (1933), is valid in arbitrary space}times. It is
physically intuitive because photons are redshifted by a(z

1
)a(z

2
)~1, their arrival times are delayed

by another factor a(z
1
)a(z

2
)~1, and the area of the observer's sphere on which the photons are

distributed grows between emission and absorption in proportion to [a(z
1
)a(z

2
)~1]2. This ac-

counts for a total factor of [a(z
1
)a(z

2
)~1]4 in the #ux, and hence for a factor of [a(z

1
)a(z

2
)~1]2 in

the distance relative to the angular-diameter distance.
We plot the four distances D

1301
, D

#0.
, D

!/'
, and D

-6.
for z

1
"0 as a function of z in

Fig. 5.
The distances are larger for lower cosmic density and higher cosmological constant. Evidently,

they di!er by a large amount at high redshift. For small redshifts, z;1, they all follow the Hubble
law,

distance"
cz
H

0

#O(z2) . (2.46)

2.1.10. The Einstein}de Sitter model
In order to illustrate some of the results obtained above, let us now specialise to a model universe

with a critical density of dust, X
0
"1 and p"0, and with zero cosmological constant, XK"0.
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2 In this context, the size of the horizon is the distance ct by which light can travel in the time t since the Big Bang.

Friedmann's equation then reduces to H(t)"H
0
a~3@2, and the age of the Universe becomes

t
0
"2(3H

0
)~1. The distance measures are

D
1301

(z
1
, z

2
)"

2c
3H

0

[(1#z
1
)~3@2!(1#z

2
)~3@2] ,

D
#0.

(z
1
, z

2
)"

2c
H

0

[(1#z
1
)~1@2!(1#z

2
)~1@2] ,

D
!/'

(z
1
, z

2
)"

2c
H

0

1
1#z

2

[(1#z
1
)~1@2!(1#z

2
)~1@2] ,

D
-6.

(z
1
, z

2
)"

2c
H

0

1#z
2

(1#z
1
)2

[(1#z
1
)~1@2!(1#z

2
)~1@2] . (2.47)

2.2. Density perturbations

The standard model for the formation of structure in the Universe assumes that there were small
#uctuations at some very early initial time, which grew by gravitational instability. Although the
origin of the seed #uctuations is yet unclear, they possibly originated from quantum #uctuations in
the very early Universe, which were blown up during a later in#ationary phase. The #uctuations in
this case are uncorrelated and the distribution of their amplitudes is Gaussian. Gravitational
instability leads to a growth of the amplitudes of the relative density #uctuations. As long as the
relative density contrast of the matter #uctuations is much smaller than unity, they can be
considered as small perturbations of the otherwise homogeneous and isotropic background
density, and linear perturbation theory su$ces for their description.

The linear theory of density perturbations in an expanding universe is generally a complicated
issue because it needs to be relativistic (e.g. Lifshitz, 1946; Bardeen, 1980). The reason is that
perturbations on any length scale are comparable to or larger than the size of the horizon2 at
su$ciently early times, and then Newtonian theory ceases to be applicable. In other words,
since the horizon scale is comparable to the curvature radius of space}time, Newtonian theory
fails for larger-scale perturbations due to non-zero space}time curvature. The main features can,
nevertheless, be understood by fairly simple reasoning. We shall not present a rigorous mathemat-
ical treatment here, but only quote the results which are relevant for our later purposes.
For a detailed qualitative and quantitative discussion, we refer the reader to the excellent
discussion in Chapter 4 of the book by Padmanabhan (1993).

2.2.1. Horizon size
The size of causally connected regions in the Universe is called the horizon size. It is given by the

distance by which a photon can travel in the time t since the Big Bang. Since the appropriate time

309M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



scale is provided by the inverse Hubble parameter H~1(a), the horizon size is d@
H
"cH~1(a), and

the comoving horizon size is

d
H
"

c
aH(a)

"

c
H

0

X~1@2
0

a1@2A1#
a
%2
a B

~1@2
, (2.48)

where we have inserted the Einstein}de Sitter limit (2.36) of Friedmann's equation. The length
cH~1

0
"3h~1Gpc is called the Hubble radius. We shall see later that the horizon size at a

%2
plays

a very important ro( le for structure formation. Inserting a"a
%2

into Eq. (2.48), yields

d
H
(a

%2
)"

c

J2H
0

X~1@2
0

a1@2
%2

+12(X
0
h2)~1Mpc , (2.49)

where a
%2

from Eq. (2.28) has been inserted.

2.2.2. Linear growth of density perturbations
We adopt the commonly held view that the density of the Universe is dominated by weakly

interacting dark matter at the relatively late times which are relevant for weak gravitational
lensing, a<a

%2
. Dark-matter perturbations are characterised by the density contrast

d(x, a)"
o(x, a)!o6 (a)

o6 (a)
, (2.50)

where o6 "o
0
a~3 is the average cosmic density. Relativistic and non-relativistic perturbation

theory shows that linear density #uctuations, i.e. perturbations with d;1, grow like

d(a)Jan~2"G
a2 before a

%2
,

a after a
%2

(2.51)

as long as the Einstein}de Sitter limit holds. For later times, a<a
%2

, when the Einstein}de Sitter
limit no longer applies if X

0
O1 or XKO0, the linear growth of density perturbations is changed

according to

d(a)"d
0
a
g@(a)
g@(1)

,d
0
ag(a) , (2.52)

where d
0

is the density contrast linearly extrapolated to the present epoch, and the density-
dependent growth function g@(a) is accurately "t by (Carroll et al., 1992)

g@(a;X
0
, XK)"

5
2
X(a)CX4@7(a)!XK(a)#A1#

X(a)
2 BA1#

XK (a)
70 BD

~1
. (2.53)

The dependence of X and XK on the scale factor a is given in Eqs. (2.34). The growth function
ag(a;X

0
, XK) is shown in Fig. 6 for a variety of parameters X

0
and XK .

The cosmic microwave background reveals relative temperature #uctuations of order 10~5 on
large scales. By the Sachs}Wolfe e!ect (Sachs and Wolfe, 1967), these temperature #uctuations
re#ect density #uctuations of the same order of magnitude. The cosmic microwave background
originated at a+10~3<a

%2
, well after the Universe became matter-dominated. Eq. (2.51) then
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Fig. 6. The growth function ag(a),ag@(a)/g@(1) given in Eqs. (2.52) and (2.53) for X
0

between 0.2 and 1.0 in steps of 0.2.
Top panel: XK"0; bottom panel: XK"1!X

0
. The growth rate is constant for the Einstein}de Sitter model (X

0
"1,

XK"0), while it is higher for a;1 and lower for a+1 for low-X
0

models. Consequently, structure forms earlier in low-
than in high-X

0
models.

implies that the density #uctuations today, expected from the temperature #uctuations at
a+10~3, should only reach a level of 10~2. Instead, structures (e.g. galaxies) with d<1 are
observed. How can this discrepancy be resolved? The cosmic microwave background displays
#uctuations in the baryonic matter component only. If there is an additional matter component
that only couples through weak interactions, #uctuations in that component could grow as soon as
it decoupled from the cosmic plasma, well before photons decoupled from baryons to set the
cosmic microwave background free. Such #uctuations could therefore easily reach the amplitudes
observed today, and thereby resolve the apparent mismatch between the amplitudes of the
temperature #uctuations in the cosmic microwave background and the present cosmic structures.
This is one of the strongest arguments for the existence of a dark-matter component in the
Universe.

2.2.3. Suppression of growth
It is convenient to decompose the density contrast d into Fourier modes. In linear perturbation

theory, individual Fourier components evolve independently. A perturbation of (comoving)
wavelength j is said to `enter the horizona when j"d

H
(a). If j(d

H
(a

%2
), the perturbation enters

the horizon while radiation is still dominating the expansion. Until a
%2

, the expansion time scale,
t
%91

"H~1, is determined by the radiation density o
R
, which is shorter than the collapse time scale

of the dark matter, t
DM

:

t
%91

&(Go
R
)~1@2((Go

DM
)~1@2&t

DM
. (2.54)
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Fig. 7. Sketch illustrating the suppression of structure growth during the radiation-dominated phase. The perturbation
grows Ja2 before a

%2
, and Ja thereafter. If the perturbation is smaller than the horizon at a

%2
, it enters the horizon at

a
%/5%3

(a
%2

while radiation is still dominating. The rapid radiation-driven expansion prevents the perturbation from
growing further. Hence, it stalls until a

%2
. By then, its amplitude is smaller by f

461
"(a

%/5%3
/a

%2
)2 than it would be without

suppression.

In other words, the fast radiation-driven expansion prevents dark-matter perturbations from
collapsing. Light can only cross regions that are smaller than the horizon size. The suppression of
growth due to radiation is therefore restricted to scales smaller than the horizon, and larger-scale
perturbations remain una!ected. This explains why the horizon size at a

%2
, d

H
(a

%2
), sets an

important scale for structure growth.
Fig. 7 illustrates the growth of a perturbation with j(d

H
(a

%2
), that is small enough to enter the

horizon at a
%/5%3

(a
%2

. It can be read o! from the "gure that such perturbations are suppressed by
the factor

f
461

"A
a
%/5%3
a
%2
B

2
. (2.55)

It remains to be evaluated at what time a
%/5%3

a density perturbation with comoving wavelength
j enters the horizon. The condition is

j"d
H
(a

%/5%3
)"

c
a
%/5%3

H(a
%/5%3

)
. (2.56)

Well in the Einstein}de Sitter regime, the Hubble parameter is given by Eq. (2.37). Inserting that
expression into (2.56) yields

jJG
a
%/5%3

(a
%/5%3

;a
%2

) ,

a1@2
%/5%3

(a
%2
;a

%/5%3
;1) .

(2.57)
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Let now k"j~1 be the wave number of the perturbation, and k
0
"d~1

H
(a

%2
) the wave number

corresponding to the horizon size at a
%2

. The suppression factor (2.55) can then be written as

f
461

"A
k
0
k B

2
. (2.58)

From Eq. (2.49),

k
0
+0.083(X

0
h2) Mpc~1+250(X

0
h)(Hubble radii)~1 . (2.59)

2.2.4. Density power spectrum
The assumed Gaussian density #uctuations d(x) at the comoving position x can completely be

characterised by their power spectrum Pd (k), which can be de"ned by (see Section 2.4)

SdK (k)dK H(k@)T"(2p)3d
D
(k!k@)Pd(k) , (2.60)

where dK (k) is the Fourier transform of d, and the asterisk denotes complex conjugation. Strictly
speaking, the Fourier decomposition is valid only in #at space. However, at early times space is #at
in any cosmological model, and at late times the interesting scales k~1 of the density perturbations
are much smaller than the curvature radius of the Universe. Hence, we can apply Fourier
decomposition here.

Consider now the primordial perturbation spectrum at some very early time, P
*
(k)"DdK 2

*
(k)D.

Since the density contrast grows as dJan~2 [Eq. (2.51)], the spectrum grows as Pd (k)Ja2(n~2). At
a
%/5%3

, the spectrum has therefore changed to

P
%/5%3

(k)Ja2(n~2)
%/5%3

P
*
(k)Jk~4P

*
(k) , (2.61)

where Eq. (2.57) was used for k<k
0
.

It is commonly assumed that the total power of the density #uctuations at a
%/5%3

should be
scale-invariant. This implies k3P

%/5%3
(k)"constant, or P

%/5%3
(k)Jk~3. Accordingly, the primordial

spectrum has to scale with k as P
*
(k)Jk. This scale-invariant spectrum is called the Harrison}

Zel'dovich spectrum (Harrison, 1970; Peebles and Yu, 1970; Zel'dovich, 1972). Combining that with
the suppression of small-scale modes (2.58), we arrive at

Pd (k)JG
k for k;k

0
,

k~3 for k<k
0

.
(2.62)

An additional complication arises when the dark matter consists of particles moving with a velocity
comparable to the speed of light. In order to keep them gravitationally bound, density perturba-
tions then have to have a certain minimum mass, or equivalently a certain minimum size. All
perturbations smaller than that size are damped away by free streaming of particles. Consequently,
the density perturbation spectrum of such particles has an exponential cut-o! at large k. This
clari"es the distinction between hot and cold dark matter: Hot dark matter (HDM) consists of fast
particles that damp away small-scale perturbations, while cold dark-matter (CDM) particles are
slow enough to cause no signi"cant damping.
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2.2.5. Normalisation of the power spectrum
Apart from the shape of the power spectrum, its normalisation has to be "xed. Several methods

are available which usually yield di!erent answers:

(1) Normalisation by microwave-background anisotropies: The COBE satellite has measured
#uctuations in the temperature of the microwave sky at the rms level of *¹/¹&1.3]10~5 at
an angular scale of &73 (Banday et al., 1997). Adopting a shape for the power spectrum, these
#uctuations can be translated into an amplitude for Pd (k). Due to the large angular scale of the
measurement, this kind of amplitude determination speci"es the amplitude on large physical
scales (small k) only. In addition, microwave-background #uctuations measure the amplitude of
scalar and tensor perturbation modes, while the growth of density #uctuations is determined by
the #uctuation amplitude of scalar modes only.

(2) Normalisation by the local variance of galaxy counts, pioneered by Davis and Peebles (1983):
Galaxies are supposed to be biased tracers of underlying dark-matter #uctuations (Kaiser, 1984;
Bardeen et al., 1986; White et al., 1987). By measuring the local variance of galaxy counts within
certain volumes, and assuming an expression for the bias, the amplitude of dark-matter
#uctuations can be inferred. Conventionally, the variance of galaxy counts p

8,'!-!9*%4
is measured

within spheres of radius 8h~1Mpc, and the result is p
8,'!-!9*%4

+1. The problem of "nding the
corresponding variance p

8
of matter-density #uctuations is that the exact bias mechanism of

galaxy formation is still under debate (e.g. Kau!mann et al., 1997).
(3) Normalisation by the local abundance of galaxy clusters (White et al., 1993; Eke et al., 1996;

Viana and Liddle, 1996): Galaxy clusters form by gravitational instability from dark-matter-
density perturbations. Their spatial number density re#ects the amplitude of appropriate
dark-matter #uctuations in a very sensitive manner. It is therefore possible to determine the
amplitude of the power spectrum by demanding that the local spatial number density of galaxy
clusters be reproduced. Typical scales for dark-matter #uctuations collapsing to galaxy clusters
are of order 10h~1Mpc, hence cluster normalisation determines the amplitude of the power
spectrum on just that scale.

Since gravitational lensing by large-scale structures is generally sensitive to scales comparable to
k~1
0

&12(X
0
h2)Mpc, cluster normalisation appears to be the most appropriate normalisation

method for the present purposes. The solid curve in Fig. 8 shows the CDM power spectrum,
linearly and non-linearly evolved to z"0 (or a"1) in an Einstein}de Sitter universe with h"0.5,
normalised to the local cluster abundance.

2.2.6. Non-linear evolution
At late stages of the evolution and on small scales, the growth of density #uctuations begins to

depart from the linear behaviour of Eq. (2.52). Density #uctuations grow non-linearly, and
#uctuations of di!erent size interact. Generally, the evolution of P(k) then becomes complicated
and needs to be evaluated numerically. However, starting from the bold ansatz that the two-point
correlation functions in the linear and non-linear regimes are related by a general scaling relation
(Hamilton et al., 1991), which turns out to hold remarkably well, analytic formulae describing the
non-linear behaviour of P(k) have been derived (Jain et al., 1995; Peacock and Dodds, 1996). It will
turn out in subsequent chapters that the non-linear evolution of the density #uctuations is crucial
for accurately calculating weak-lensing e!ects by large-scale structures. As an example, we show as
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Fig. 8. CDM power spectrum, normalised to the local abundance of galaxy clusters, for an Einstein-de Sitter universe
with h"0.5. Two curves are displayed. The solid curve shows the linear, the dashed curve the non-linear power
spectrum. While the linear power spectrum asymptotically falls o!Jk~3, the non-linear power spectrum, according to
Peacock and Dodds (1996), illustrates the increased power on small scales due to non-linear e!ects, at the expense of
larger-scale structures.

the dashed curve in Fig. 8 the CDM power spectrum in an Einstein}de Sitter universe with h"0.5,
normalised to the local cluster abundance, non-linearly evolved to z"0. The non-linear
e!ects are immediately apparent: While the spectrum remains unchanged for large scales (k;k

0
),

the amplitude on small scales (k<k
0
) is substantially increased at the expense of scales just

above the peak. It should be noted that non-linearly evolved density #uctuations are no longer
fully characterised by the power spectrum only, because then non-Gaussian features
develop.

2.2.7. Poisson's equation
Localised density perturbations which are much smaller than the horizon and whose

peculiar velocities relative to the mean motion in the Universe are much smaller than the speed of
light, can be described by Newtonian gravity. Their gravitational potential obeys Poisson's
equation

+2
r
U@"4pGo , (2.63)

where o"(1#d)o6 is the total matter density, and U@ is the sum of the potentials of the smooth
background UM and the potential of the perturbation U. The gradient +

r
operates with respect to the

physical, or proper, coordinates. Since Poisson's equation is linear, we can subtract the background
contribution +2

r
UM "4pGo6 . Introducing the gradient with respect to comoving coordinates

+
x
"a+

r
, we can write Eq. (2.63) in the form

+2
x
U"4pGa2o6 d . (2.64)
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In the matter-dominated epoch, o6 "a~3o6
0
. With the critical density (2.15), Poisson's equation can

be re-written as

+2
x
U"

3H2
0

2a
X

0
d . (2.65)

2.3. Relevant properties of lenses and sources

Individual reviews have been written on galaxies (e.g. Faber and Gallagher, 1979; Binggeli
et al., 1988; Giovanelli and Haynes, 1991; Koo and Kron, 1992; Ellis, 1997), clusters of galaxies
(e.g. Bahcall, 1977; Rood, 1981; Forman and Jones, 1982; Bahcall, 1988; Sarazin, 1986), and
active galactic nuclei (e.g. Rees, 1984; Weedman, 1986; Blandford et al., 1990; Hartwick and
Schade, 1990; Warren and Hewett, 1990; Antonucci, 1993; Peterson, 1997). A detailed presentation
of these objects is not the purpose of this review. It su$ces here to summarise those properties
of these objects that are relevant for understanding the following discussion. Properties and
peculiarities of individual objects are not necessary to know; rather, we need to specify the
objects statistically. This section will therefore focus on a statistical description, leaving subtleties
aside.

2.3.1. Galaxies
For the purposes of this review, we need to characterise the statistical properties of galaxies as

a class. Galaxies can broadly be grouped into two populations, dubbed early- and late-type
galaxies, or ellipticals and spirals, respectively. While spiral galaxies include disks structured by
more or less pronounced spiral arms, and approximately spherical bulges centred on the disk
centre, elliptical galaxies exhibit amorphous projected light distributions with roughly elliptical
isophotes. There are, of course, more elaborate morphological classi"cation schemes (e.g. de
Vaucouleurs et al., 1991; Buta et al., 1994; Naim et al., 1995a, 1995b), but the broad distinction
between ellipticals and spirals su$ces for this review.

Outside galaxy clusters, the galaxy population consists of about 3
4

spiral galaxies and 1
4

elliptical
galaxies, while the fraction of ellipticals increases towards cluster centres. Elliptical galaxies are
typically more massive than spirals. They contain little gas, and their stellar population is older,
and thus &redder', than in spiral galaxies. In spirals, there is a substantial amount of gas in the disk,
providing the material for ongoing formation of new stars. Likewise, there is little dust in ellipticals,
but possibly large amounts of dust are associated with the gas in spirals.

Massive galaxies have of order 1011 solar masses, or 2]1044 g within their visible radius. Such
galaxies have luminosities of order 1010 times the solar luminosity. The kinematics of the stars, gas
and molecular clouds in galaxies, as revealed by spectroscopy, indicate that there is a relation
between the characteristic velocities inside galaxies and their luminosity (Faber and Jackson, 1976;
Tully and Fisher, 1977); brighter galaxies tend to have larger masses.

The di!erential luminosity distribution of galaxies can very well be described by the functional
form

U(¸)
d¸
¸H

"U
0A

¸

¸H B
~l

expA!
¸

¸H B
d¸
¸H

, (2.66)
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3The circular velocity of stars and gas in spiral galaxies turns out to be fairly independent of radius, except close to
their centre. These #at rotations curves cannot be caused by the observable matter in these galaxies, but provide strong
evidence for the presence of a dark halo, with density pro"le oJr~2 at large radii.

proposed by Schechter (1976). The parameters have been measured to be

l+1.1, ¸H+1.1]1010¸
_

, UH+1.5]10~2h3Mpc~3 (2.67)

(e.g. Efstathiou et al., 1988; Marzke et al., 1994a,b). This distribution means that there is essentially
a sharp cut-o! in the galaxy population above luminosities of &¸H , and the mean separation
between ¸H-galaxies is of order &U~1@3H +4h~1Mpc.

The stars in elliptical galaxies have randomly oriented orbits, while by far the most stars in
spirals have orbits roughly coplanar with the galactic disks. Stellar velocities are therefore
characterised by a velocity dispersion p

v
in ellipticals, and by an asymptotic circular velocity v

#
in

spirals.3 These characteristic velocities are related to galaxy luminosities by laws of the form

p
v

p
v,H

"A
¸

¸H B
1@a

"

v
#

v
#,H

, (2.68)

where a ranges around 3}4. For spirals, Eq. (2.68) is called Tully}Fisher (1977) relation, for
ellipticals Faber}Jackson (1976) relation. Both velocity scales p

v,H and v
#,H are of order 220 kms~1.

Since v
#
"J2p

v
, ellipticals with the same luminosity are more massive than spirals.

Most relevant for weak gravitational lensing is a population of faint galaxies emitting bluer light
than local galaxies, the so-called faint blue galaxies (Tyson, 1988; see Ellis, 1997 for a review). There
are of order 30}50 such galaxies per square arcminute on the sky which can be mapped with
current ground-based optical telescopes, i.e. there are +20,000}40,000 such galaxies on the area of
the full moon. The picture that the sky is covered with a &wall paper' of those faint and presumably
distant blue galaxies is therefore justi"ed. It is this "ne-grained pattern on the sky that makes many
weak-lensing studies possible in the "rst place, because it allows the detection of the coherent
distortions imprinted by gravitational lensing on the images of the faint blue galaxy population.

Due to their faintness, redshifts of the faint blue galaxies are hard to measure spectroscopically.
The following picture, however, seems to be reasonably secure. It has emerged from increasingly
deep and detailed observations (see e.g. Broadhurst et al., 1988; Colless et al., 1991, 1993; Lilly et al.,
1991; Lilly, 1993; Crampton et al., 1995; and also the reviews by Koo and Kron, 1992; Ellis, 1997).
The redshift distribution of faint galaxies has been found to agree fairly well with that expected for
a non-evolving comoving number density. While the galaxy number counts in blue light are
substantially above an extrapolation of the local counts down to increasingly faint magnitudes,
those in the red spectral bands agree fairly well with extrapolations from local number densities.
Further, while there is signi"cant evolution of the luminosity function in the blue, in that the
luminosity scale ¸H of a Schechter-type "t increases with redshift, the luminosity function of the
galaxies in the red shows little sign of evolution. Highly resolved images of faint blue galaxies
obtained with the Hubble Space Telescope are now becoming available. In red light, they reveal
mostly ordinary spiral galaxies, while their substantial emission in blue light is more concentrated
to either spiral arms or bulges. Spectra exhibit emission lines characteristic of star formation.
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These "ndings support the view that the galaxy evolution towards higher redshifts apparent in
blue light results from enhanced star-formation activity taking place in a population of galaxies
which, apart from that, may remain unchanged even out to redshifts of zZ1. The redshift
distribution of the faint blue galaxies is then su$ciently well described by

p(z) dz"
b

z3
0
C(3/b)

z2 expC!A
z
z
0
B

b
D dz . (2.69)

This expression is normalised to 04z(R and provides a good "t to the observed redshift
distribution (e.g. Smail et al., 1995b). The mean redshift SzT is proportional to z

0
, and the

parameter b describes how steeply the distribution falls o! beyond z
0
. For b"1.5, SzT+1.5z

0
.

The parameter z
0

depends on the magnitude cuto! and the colour selection of the galaxy sample.
Background galaxies would be ideal tracers of distortions caused by gravitational lensing if they

were intrinsically circular. Then, any measured ellipticity would directly re#ect the action of the
gravitational tidal "eld of the lenses. Unfortunately, this is not the case. To "rst approximation,
galaxies have intrinsically elliptical shapes, but the ellipses are randomly oriented. The intrinsic
ellipticities introduce noise into the inference of the tidal "eld from observed ellipticities, and it is
important for the quanti"cation of the noise to know the intrinsic ellipticity distribution. Let DeD be
the ellipticity of a galaxy image, de"ned such that for an ellipse with axes a and b(a,

DeD,
a!b
a#b

. (2.70)

Ellipses have an orientation, hence the ellipticity has two components e
1,2

, with DeD"(e2
1
#e2

2
)1@2. It

turns out empirically that a Gaussian is a good description for the ellipticity distribution,

pe(e1 , e
2
) de

1
de

2
"

exp(!DeD2/p2e )
pp2e [1!exp(!1/p2e )]

de
1

de
2

(2.71)

with a characteristic width of pe+0.2 (e.g. Miralda-Escude, 1991; Tyson and Seitzer, 1988;
Brainerd et al., 1996). We will later (Section 4.2) de"ne galaxy ellipticities for the general situ-
ation where the isophotes are not ellipses. This completes our summary of galaxy properties as
required here.

2.3.2. Groups and clusters of galaxies
Galaxies are not randomly distributed in the sky. Their positions are correlated, and there are

areas in the sky where the galaxy density is noticeably higher or lower than average (cf. the galaxy
count map in Fig. 9). There are groups consisting of a few galaxies, and there are clusters of galaxies
in which some hundred up to a 1000 galaxies appear very close together.

The most prominent galaxy cluster in the sky covers a huge area centred on the Virgo
constellation. Its central region has a diameter of about 73, and its main body extends over roughly
153]403. It was already noted by Sir William Herschel in the 18th century that the entire Virgo
cluster covers about 1

8
th of the sky, while containing about 1

3
rd of the galaxies observable at

that time.
Zwicky (1933) noted that the galaxies in the Coma cluster and other rich clusters move so fast

that the clusters required about ten to 100 times more mass to keep the galaxies bound than could
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Fig. 9. The Lick galaxy counts within 503 radius around the North Galactic pole (Seldner et al., 1977). The galaxy
number density is highest at the black and lowest at the white regions on the map. The picture illustrates structure in the
distribution of fairly nearby galaxies, viz., under-dense regions, long extended "laments, and clusters of galaxies.

be accounted for by the luminous galaxies themselves. This was the earliest indication that there is
invisible mass, or dark matter, in at least some objects in the Universe.

Several thousands of galaxy clusters are known today. The Abell (1958) cluster catalog lists 2712
clusters north of !203 declination and away from the Galactic plane. Employing a less restrictive
de"nition of galaxy clusters, the catalog by Zwicky et al. (1968) identi"es 9134 clusters north of
!33 declination. Cluster masses can exceed 1048 g or 5]1014M

_
, and they have typical radii of

+5]1024 cm or +1.5Mpc.
When X-ray telescopes became available after 1966, it was discovered that clusters are powerful

X-ray emitters. Their X-ray luminosities fall within (1043}1045) erg s~1, rendering galaxy clusters
the most luminous X-ray sources in the sky. Improved X-ray telescopes revealed that the source of
X-ray emission in clusters is extended rather than point-like, and that the X-ray spectra are best
explained by thermal bremsstrahlung (free}free radiation) from a hot, dilute plasma with temper-
atures in the range (107}108) K and densities of &10~3 particles per cm3. Based on the assumption
that this intra-cluster gas is in hydrostatic equilibrium with a spherically symmetric gravitational
potential of the total cluster matter, the X-ray temperature and #ux can be used to estimate the
cluster mass. Typical results approximately (i.e. up to a factor of &2) agree with the mass estimates
from the kinematics of cluster galaxies employing the virial theorem. The mass of the intra-cluster
gas amounts to about 10% of the total cluster mass. The X-ray emission thus independently
con"rms the existence of dark matter in galaxy clusters. Sarazin (1986) reviews clusters of galaxies
focusing on their X-ray emission.

Later, luminous arc-like features were discovered in two galaxy clusters (Lynds and Petrosian,
1986; Soucail et al., 1987a,b; see Fig. 10). Their light is typically bluer than that from the cluster
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Fig. 10. The galaxy cluster Abell 370, in which the "rst gravitationally lensed arc was detected (Lynds and Petrosian,
1986; Soucail et al., 1987a,b). Most of the bright galaxies seen are cluster members at z"0.37, whereas the arc, i.e.
the highly elongated feature, is the image of a galaxy at redshift z"0.724 (Soucail et al., 1988) (courtesy of J.-P.
Kneib).

galaxies, and their length is comparable to the size of the central cluster region. PaczynH ski (1987)
suggested that these arcs are images of galaxies in the background of the clusters which are strongly
distorted by the gravitational tidal "eld close to the cluster centres. This explanation was generally
accepted when spectroscopy revealed that the sources of the arcs are much more distant than the
clusters in which they appear (Soucail et al., 1988).

Large arcs require special alignment of the arc source with the lensing cluster. At larger distance
from the cluster centre, images of background galaxies are only weakly deformed, and they are
referred to as arclets (Fort et al., 1988; Tyson et al., 1990). The high number density of faint arclets
allows one to measure the coherent distortion caused by the tidal gravitational "eld of the cluster
out to fairly large radii. One of the main applications of weak gravitational lensing is to reconstruct
the (projected) mass distribution of galaxy clusters from their measurable tidal "elds. Conse-
quently, the corresponding theory constitutes one of the largest sections of this review.

Such strong and weak gravitational lens e!ects o!er the possibility to detect and measure
the entire cluster mass, dark and luminous, without referring to any equilibrium or symmetry
assumptions like those required for the mass estimates from galactic kinematics or X-ray emission.
For a review on arcs and arclets in galaxy clusters see Ford and Mellier (1994).
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Apart from being spectacular objects in their own right, clusters are also of particular interest for
cosmology. Being the largest gravitationally bound entities in the cosmos, they represent the
high-mass end of collapsed structures. Their number density, their individual properties, and their
spatial distribution constrain the power spectrum of the density #uctuations from which the
structure in the universe is believed to have originated (e.g. Viana and Liddle, 1996; Eke et al.,
1996). Their formation history is sensitive to the parameters that determine the geometry of the
universe as a whole. If the matter density in the universe is high, clusters tend to form later in
cosmic history than if the matter density is low ("rst noted by Richstone et al., 1992). This is due to
the behaviour of the growth factor shown in Fig. 6, combined with the Gaussian nature of the
initial density #uctuations. Consequently, the compactness and the morphology of clusters re#ect
the cosmic matter density, and this has various observable implications. One method to normalise
the density-perturbation power spectrum "xes its overall amplitude such that the local spatial
number density of galaxy clusters is reproduced. This method, called cluster normalisation and
pioneered by White et al. (1993), will frequently be used in this review.

In summary, clusters are not only regions of higher galaxy number density in the sky, but they
are gravitationally bound bodies whose member galaxies contribute only a small fraction of their
mass. About 80% of their mass is dark, and roughly 10% is in the form of the di!use, X-ray
emitting gas spread throughout the cluster. Mass estimates inferred from galaxy kinematics,
X-ray emission, and gravitational-lensing e!ects generally agree to within about a factor of two,
typically arriving at masses of order 5]1014 solar masses, or 1048 g. Typical sizes of galaxy clusters
are of order several megaparsecs, or 5]1024 cm. In addition, there are smaller objects, called galaxy
groups, which contain fewer galaxies and have typical masses of order 1013 solar masses.

2.3.3. Active galactic nuclei
The term &active galactic nuclei' (AGNs) is applied to galaxies which show signs of non-stellar

radiation in their centres. Whereas the emission from &normal' galaxies like our own is completely
dominated by radiation from stars and their remnants, the emission from AGNs is a combination
of stellar light and non-thermal emission from their nuclei. In fact, the most prominent class of
AGNs, the quasi-stellar radio sources, or quasars, have their names derived from the fact that their
optical appearance is point-like. The nuclear emission almost completely outshines the extended
stellar light of its host galaxy.

AGNs do not form a homogeneous class of objects. Instead, they are grouped into several types.
The main classes are: quasars, quasi-stellar objects (QSOs), Seyfert galaxies, BL Lacertae objects
(BL Lacs), and radio galaxies. What uni"es them is the non-thermal emission from their nucleus,
which manifests itself in various ways: (1) radio emission which, owing to its spectrum and
polarisation, is interpreted as synchrotron radiation from a power-law distribution of relativistic
electrons; (2) strong ultraviolet and optical emission lines from highly ionised species, which in
some cases can be extremely broad, corresponding to Doppler velocities up to &20,000kms~1,
thus indicating the presence of semi-relativistic velocities in the emission region; (3) a #at ultra-
violet-to-optical continuum spectrum, often accompanied by polarisation of the optical light,
which cannot naturally be explained by a superposition of stellar (Planck) spectra; (4) strong X-ray
emission with a hard power-law spectrum, which can be interpreted as inverse Compton radiation
by a population of relativistic electrons with a power-law energy distribution; (5) strong c-ray
emission; (6) variability at all wavelengths, from the radio to the c-ray regime. Not all these
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phenomena occur at the same level in all the classes of AGNs. QSOs, for example, can
roughly be grouped into radio-quiet QSOs and quasars, the latter emitting strongly at radio
wavelengths.

Since substantial variability cannot occur on time scales shorter than the light-travel time across
the emitting region, the variability provides a rigorous constraint on the compactness of the region
emitting the bulk of the nuclear radiation. In fact, this causality argument based on light-travel
time can mildly be violated if relativistic velocities are present in the emitting region. Direct
evidence for this comes from the observation of the so-called superluminal motion, where radio-
source components exhibit apparent velocities in excess of c (e.g. Zensus and Pearson, 1987). This
can be understood as a projection e!ect, combining velocities close to (but of course smaller than)
the velocity of light with a velocity direction close to the line-of-sight to the observer. Observations
of superluminal motion indicate that bulk velocities of the radio-emitting plasma components can
have Lorentz factors of order 10, i.e., they move at &0.99c.

The standard picture for the origin of this nuclear activity is that a supermassive black hole (or
order 108M

_
), situated in the centre of the host galaxy, accretes gas from the host. In this process,

gravitational binding energy is released, part of which can be transformed into radiation. The
appearance of an AGN then depends on the black-hole mass and angular momentum, the
accretion rate, the e$ciency of the transformation of binding energy into radiation, and on
the orientation relative to the line-of-sight. The understanding of the physical mechanisms in
AGNs, and how they are related to their phenomenology, is still rather incomplete. We refer the
reader to the books and articles by Begelman et al. (1984), Weedman (1986), Blandford et al. (1990),
Peterson (1997), and Krolik (1999), and references therein, for an overview of the phenomena in
AGNs, and of our current ideas on their interpretation. For the current review, we only make
use of one particular property of AGNs:

QSOs can be extremely luminous. Their optical luminosity can reach a factor of thousand
or more times the luminosity of normal galaxies. Therefore, their nuclear activity completely
outshines that of the host galaxy, and the nuclear sources appear point-like on optical
images. Furthermore, the high luminosity implies that QSOs can be seen to very large distances,
and in fact, until a few years ago QSOs held the redshift record. In addition, the comoving number
density of QSOs evolves rapidly with redshift. It was larger than today by a factor of &100
at redshifts between 2 and 3. Taken together, these two facts imply that a #ux-limited sample of
QSOs has a very broad redshift distribution, in particular, very distant objects are abundant
in such a sample.

However, it is quite di$cult to obtain a &complete' #ux-limited sample of QSOs. Of all point-like
objects at optical wavelengths, QSOs constitute only a tiny fraction, most being stars. Hence,
morphology alone does not su$ce to obtain a candidate QSO sample which can be veri"ed
spectroscopically. However, QSOs are found to have very blue optical colours, by which they can
e$ciently be selected. Colour selection typically yields equal numbers of white dwarfs and QSOs
with redshifts below &2.3. For higher-redshift QSOs, the strong Lya emission line moves from the
U-band "lter into the B-band, yielding redder U}B colours. For these higher-redshift QSOs,
multi-colour or emission-line selection criteria must be used (cf. Fan et al., 1999). In contrast to
optical selection, AGNs are quite e$ciently selected in radio surveys. The majority of sources
selected at centimeter wavelengths are AGNs. A #ux-limited sample of radio-selected AGNs also
has a very broad redshift distribution. The large fraction of distant objects in these samples make
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AGNs particularly promising sources for the gravitational lensing e!ect, as the probability of
"nding an intervening mass concentration close to the line-of-sight increases with the source
distance. In fact, most of the known multiple-image gravitational lens systems have AGN
sources.

In addition to their high redshifts, the number counts of AGNs are important for lensing. For
bright QSOs with apparent B-band magnitudes B[19, the di!erential source counts can be
approximated by a power law, n(S)JS~(a`1), where n(S) dS is the number density of QSOs per unit
solid angle with #ux within dS of S, and a+2.6. At fainter magnitudes, the di!erential source
counts can also be approximated by a power law in #ux, but with a much #atter index of a&0.5.
The source counts at radio wavelengths are also quite steep for the highest #uxes, and #atten as the
#ux decreases. The steepness of the source counts will be the decisive property of AGNs for the
magni"cation bias, which will be discussed in Section 6.

2.4. Correlation functions, power spectra, and their projections

2.4.1. Dexnitions; homogeneous and isotropic random xelds
In this subsection, we de"ne the correlation function and the power spectrum of a random "eld,

which will be used extensively in later sections. One example already occurred above, namely the
power spectrum Pd of the density #uctuation "eld d.

Consider a random "eld g(x) whose expectation value is zero everywhere. This means that an
average over many realisations of the random "eld should vanish, Sg(x)T"0, for all x. This is not
an important restriction, for if that was not the case, we could consider the "eld g(x)!Sg(x)T
instead, which would have the desired property. Spatial positions x have n dimensions, and the "eld
can be either real or complex.

A random "eld g(x) is called homogeneous if it cannot statistically be distinguished from the "eld
g(x#y), where y is an arbitrary translation vector. Similarly, a random "eld g(x) is called isotropic if
it has the same statistical properties as the random "eld g(Rx), where R is an arbitrary rotation
matrix in n dimensions. Restricting our attention to homogeneous and isotropic random "elds, we
note that the two-point correlation function

Sg(x)gH(y)T"C
gg

(Dx!yD) (2.72)

can only depend on the absolute value of the di!erence vector between the two points x and
y. Note that C

gg
is real, even if g is complex. This can be seen by taking the complex con-

jugate of (2.72), which is equivalent to interchanging x and y, leaving the right-hand side un-
a!ected.

We de"ne the Fourier-transform pair of g as

g( (k)"PRn

dnxg(x)e*x >k; g(x)"PRn

dnk
(2p)n

g( (k)e~*x >k . (2.73)

We now calculate the correlation function in Fourier space

Sg( (k)g( H(k@)T"PRn

dnx e*x >kPRn

dnx@ e~*x{ >k{Sg(x)gH(x@)T . (2.74)
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Using (2.72) and substituting x@"x#y, this becomes

Sg( (k)g( H(k@)T"PRn

dnx e*x >kPRn

dny e~*(x`y) >k{C
gg

(DyD)

"(2p)nd
D
(k!k@)PRn

dny e~*y >kC
gg

(DyD)

,(2p)nd
D
(k!k@)P

g
(DkD) . (2.75)

In the "nal step, we de"ned the power spectrum of the homogeneous and isotropic random "eld g,

P
g
(DkD)"PRn

dny e~*y >kC
gg

(DyD) , (2.76)

which is the Fourier transform of the two-point correlation function. Isotropy of the random "eld
implies that P

g
can only depend on the modulus of k.

Gaussian random xelds are characterised by the property that the probability distribution of any
linear combination of the random "eld g(x) is Gaussian. More generally, the joint probability
distribution of a number M of linear combinations of the random variable g(x

i
) is a multivariate

Gaussian. This is equivalent to requiring that the Fourier components g( (k) are mutually statist-
ically independent, and that the probability densities for the g( (k) are Gaussian with dispersion
P
g
(DkD). Thus, a Gaussian random "eld is fully characterised by its power spectrum.

2.4.2. Projections; Limber's equation
We now derive a relation between the power spectrum (or the correlation function) of a homo-

geneous isotropic random "eld in three dimensions, and its projection onto two dimensions.
Speci"cally, for the three-dimensional "eld, we consider the density contrast d[f

K
(w)h,w], where h is

a two-dimensional vector, which could be an angular position on the sky. Hence, f
K
(w)h and w form

a local comoving isotropic Cartesian coordinate system. We de"ne two di!erent projections of
d along the backward-directed light cone of the observer at w"0, t"t

0
,

g
i
(h)"Pdwq

i
(w)d[f

K
(w)h,w] (2.77)

for i"1, 2. The q
i
(w) are weight functions, and the integral extends from w"0 to the horizon

w"w
H
. Since d is a homogeneous and isotropic random "eld, so is its projection. Consider now

the correlation function

C
12

"Sg
1
(h)g

2
(h@)T

"Pdwq
1
(w)Pdw@q

2
(w@)Sd[ f

K
(w)h, w]d[f

K
(w@)h@,w@]T . (2.78)

We assume that there is no power in the density #uctuations on scales larger than a coherence scale
¸
#0)

. This is justi"ed because the power spectrum Pd declines Jk as kP0; see (2.62). This implies
that the correlation function on the right-hand side of Eq. (2.78) vanishes for w

H
<Dw!w@DZ¸

#0)
.

Although d evolves cosmologically, it can be considered constant over a time scale on which light
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travels across a comoving distance ¸
#0)

. We note that the second argument of d simultaneously
denotes the third local spatial dimension and the cosmological epoch, related through the
light-cone condition Dc dtD"a dw. Furthermore, we assume that the weight functions q

i
(w) do not

vary appreciably over a scale *w4¸
#0)

. Consequently, Dw!w@D[¸
#0)

over the scale where Cdd is
non-zero, and we can set f

K
(w@)+f

K
(w) and q

2
(w@)"q

2
(w) to obtain

C
12

(h)"Pdwq
1
(w)q

2
(w)Pd(*w)Cdd(Jf 2

K
(w)h2#(*w)2, w) . (2.79)

The second argument of Cdd now denotes the dependence of the correlation function on cosmic
epoch. Eq. (2.79) is one form of the Limber (1953) equation, which relates the two-point correlation
of the projected "eld to that of the three-dimensional "eld.

Another very useful form of this equation relates the projected two-point correlation function to
the power spectrum of the three-dimensional "eld. The easiest way to derive this relation is by
replacing the d's in (2.78) by their Fourier transforms, where upon

C
12

"Pdwq
1
(w)Pdw@q

2
(w@)P

d3k
(2p)3P

d3k@
(2p)3

]SdK (k, w)dK H(k@,w@)Te~*fK (w)kM >he*fK (w{)k@
M >h{e~*k3we*k@3w{ . (2.80)

k
M

is the two-dimensional wave vector perpendicular to the line-of-sight. The correlator can be
replaced by the power spectrum Pd using (2.75). This introduces a Dirac delta function d

D
(k!k@),

which allows us to carry out the k@-integration. Under the same assumptions on the spatial
variation of q

i
(w) and f

K
(w) as before, we "nd

C
12

"Pdwq
1
(w)q

2
(w)P

d3k
(2p)3

Pd(DkD,w) e~*fK (w)kM > (h~h{) e~*k3wPdw@ e*k3w{ . (2.81)

The "nal integral yields 2pd
D
(k

3
), indicating that only such modes contribute to the projected

correlation function whose wave vectors lie in the plane of the sky (Blandford et al., 1991). Finally,
carrying out the trivial k

3
-integration yields

C
12

(h)"Pdwq
1
(w)q

2
(w)P

d2k
M

(2p)2
Pd(DkM

D,w) e~*fK (w)kM >h (2.82)

"Pdwq
1
(w)q

2
(w)P

kdk
2p

P(k,w)J
0
[f

K
(w)hk] . (2.83)

De"nition (2.73) of the Fourier transform, and relation (2.76) between power spectrum and
correlation function allow us to write the (cross) power spectrum P

12
(l) as

P
12

(l)"Pd2hC
12

(h)e*l >h

"Pdwq
1
(w)q

2
(w)P

d2k
M

(2p)2
Pd (DkM

D,w)(2p)2d
D
[l!f

k
(w)k

M
]

"Pdw
q
1
(w)q

2
(w)

f 2
K
(w)

PdA
l

f
K
(w)

, wB , (2.84)
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4This condition is very well satis"ed in most astrophysical situations. A cluster of galaxies, for instance, has a typical
size of a few Mpc, whereas the distances D

$
, D

4
and D

$4
are fair fractions of the Hubble length cH~1

0
"3 h~1]103Mpc.

which is Limber's equation in Fourier space (Kaiser, 1992,1998). We shall make extensive use of
these relations in later sections.

3. Gravitational light de6ection

In this section, we summarise the theoretical basis for the description of light de#ection by
gravitational "elds. Granted the validity of Einstein's Theory of General Relativity, light propa-
gates on the null geodesics of the space}time metric. However, most astrophysically relevant
situations permit a much simpler approximate description of light rays, which is called gravi-
tational lens theory; we "rst describe this theory in Section 3.1. It is su$cient for the treatment of
lensing by galaxy clusters in Section 5, where the de#ecting mass is localised in a region small
compared to the distance between source and de#ector, and between de#ector and observer. In
contrast, mass distributions on a cosmic scale cause small light de#ections all along the path from
the source to the observer. The magni"cation and shear e!ects resulting therefrom require a more
general description, which we shall develop in Section 3.2. In particular, we outline how the
gravitational lens approximation derives from this more general description.

3.1. Gravitational lens theory

A typical situation considered in gravitational lensing is sketched in Fig. 11, where a mass
concentration at redshift z

$
(or angular diameter distance D

$
) de#ects the light rays from a source

at redshift z
4

(or angular diameter distance D
4
). If there are no other de#ectors close to the

line-of-sight, and if the extent of the de#ecting mass along the line-of-sight is very much smaller
than both D

$
and the angular diameter distance D

$4
from the de#ector to the source,4 the actual

light rays which are smoothly curved in the neighbourhood of the de#ector can be replaced by two
straight rays with a kink near the de#ector. The magnitude and direction of this kink is described
by the deyection angle a( , which depends on the mass distribution of the de#ector and the impact
vector of the light ray.

3.1.1. The deyection angle
Consider "rst the de#ection by a point mass M. If the light ray does not propagate through the

strong gravitational "eld close to the horizon, that is, if its impact parameter m is much larger than
the Schwarzschild radius of the lens, m<R

S
,2GMc~2, then General Relativity predicts that the

de#ection angle a( is

a("
4GM
c2m

. (3.1)

This is just twice the value obtained in Newtonian gravity (see the historical remarks in Schneider
et al., 1992). According to the condition m<R

S
, the de#ection angle is small, a(;1.
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Fig. 11. Sketch of a typical gravitational lens system.

The "eld equations of General Relativity can be linearised if the gravitational "eld is weak. The
de#ection angle of an ensemble of point masses is then the (vectorial) sum of the de#ections due to
individual lenses. Consider now a three-dimensional mass distribution with volume density o(r).
We can divide it into cells of size d< and mass dm"o(r) d<. Let a light ray pass this mass
distribution, and describe its spatial trajectory by (m

1
(j), m

2
(j), r

3
(j)), where the coordinates are

chosen such that the incoming light ray (i.e. far from the de#ecting mass distribution) propagates
along r

3
. The actual light ray is de#ected, but if the de#ection angle is small, it can be approximated

as a straight line in the neighbourhood of the de#ecting mass. This corresponds to the Born
approximation in atomic and nuclear physics. Then, n(j),n, independent of the a$ne parameter j.
Note that n"(m

1
, m

2
) is a two-dimensional vector. The impact vector of the light ray relative to the

mass element dm at r"(m@
1
, m@

2
, r@

3
) is then n!n@, independent of r@

3
, and the total de#ection angle is

a( (n)"
4G
c2

+dm(m@
1
, m@

2
, r@

3
)

n!n@
Dn!n@D2

"

4G
c2 Pd2m@Pdr@

3
o(m@

1
, m@

2
, r@

3
)

n!n@
Dn!n@D2

, (3.2)
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which is also a two-dimensional vector. Since the last factor in Eq. (3.2) is independent of r@
3
, the

r@
3
-integration can be carried out by de"ning the surface mass density

R(n),Pdr
3

o(m
1
, m

2
, r

3
) , (3.3)

which is the mass density projected onto a plane perpendicular to the incoming light ray. Then, the
de#ection angle "nally becomes

a( (n)"
4G
c2 Pd2m@R(n@)

n!n@
Dn!n@D2

. (3.4)

This expression is valid as long as the deviation of the actual light ray from a straight (unde#ected)
line within the mass distribution is small compared to the scale on which the mass distribution
changes signi"cantly. This condition is satis"ed in virtually all astrophysically relevant situations
(i.e. lensing by galaxies and clusters of galaxies), unless the de#ecting mass extends all the way from
the source to the observer (a case which will be dealt with in Section 6). It should also be noted that
in a lensing situation such as displayed in Fig. 11, the incoming light rays are not mutually parallel,
but fall within a beam with opening angle approximately equal to the angle which the mass
distribution subtends on the sky. This angle, however, is typically very small (in the case of cluster
lensing, the relevant angular scales are of order 1 arcmin+2.9]10~4).

3.1.2. The lens equation
We now require an equation which relates the true position of the source to its observed position

on the sky. As sketched in Fig. 11, the source and lens planes are de"ned as planes perpendicular to
a straight line (the optical axis) from the observer to the lens at the distance of the source and of the
lens, respectively. The exact de"nition of the optical axis does not matter because of the smallness
of angles involved in a typical lens situation, and the distance to the lens is well de"ned for
a geometrically thin matter distribution. Let g denote the two-dimensional position of the source
on the source plane. Recalling the de"nition of the angular-diameter distance, we can read o!
Fig. 11

g"
D

4
D

$

n!D
$4

a( (n) . (3.5)

Introducing angular coordinates by g"D
4
b and n"D

$
h, we can transform Eq. (3.5) to

b"h!
D

$4
D

4

a( (D
$
h),h!a(h) , (3.6)

where we de"ned the scaled de#ection angle a(h) in the last step. The interpretation of the lens
equation (3.6) is that a source with true position b can be seen by an observer at angular positions
h satisfying (3.6). If (3.6) has more than one solution for "xed b, a source at b has images at several
positions on the sky, i.e. the lens produces multiple images. For this to happen, the lens must be
&strong'. This can be quanti"ed by the dimensionless surface mass density

i(h)"
R(D

$
h)

R
#3

with R
#3
"

c2
4pG

D
4

D
$
D

$4

, (3.7)
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where R
#3

is called the critical surface mass density (which depends on the redshifts of source and
lens). A mass distribution which has i51 somewhere, i.e. R5R

#3
, produces multiple images for

some source positions b (see Schneider et al., 1992, Section 5.4.3). Hence, R
#3

is a characteristic
value for the surface mass density which distinguishes between &weak' and &strong' lenses. Note that
i51 is su$cient but not necessary for producing multiple images. In terms of i, the scaled
de#ection angle reads

a(h)"
1
p PR2

d2h@ i(h@)
h!h@

Dh!h@D2
. (3.8)

Eq. (3.8) implies that the de#ection angle can be written as the gradient of the deyection
potential

t(h)"
1
pPR2

d2h@ i(h@) lnDh!h@D (3.9)

as a"+t. The potential t(h) is the two-dimensional analogue of the Newtonian gravitational
potential and satis"es the Poisson equation +2t(h)"2i(h).

3.1.3. Magnixcation and distortion
The solutions h of the lens equation yield the angular positions of the images of a source at b. The

shapes of the images will di!er from the shape of the source because light bundles are de#ected
di!erentially. The most visible consequence of this distortion is the occurrence of giant luminous
arcs in galaxy clusters. In general, the shape of the images must be determined by solving the lens
equation for all points within an extended source. Liouville's theorem and the absence of emission
and absorption of photons in gravitational light de#ection imply that lensing conserves surface
brightness (or speci"c intensity). Hence, if I(s)(b) is the surface-brightness distribution in the source
plane, the observed surface-brightness distribution in the lens plane is

I(h)"I(s)[b(h)] . (3.10)

If a source is much smaller than the angular scale on which the lens properties change, the lens
mapping can locally be linearised. The distortion of images is then described by the Jacobian
matrix

A(h)"
Rb
Rh"Adij

!

R2t(h)
Rh

i
Rh

j
B"A

1!i!c
1

!c
2

!c
2

1!i#c
1
B , (3.11)

where we have introduced the components of the shear c,c
1
#ic

2
"DcDe2*r,

c
1
"1

2
(t

,11
!t

,22
), c

2
"t

,12
(3.12)

and i is related to t through Poisson's equation. Hence, if h
0

is a point within an image,
corresponding to the point b

0
"b(h

0
) within the source, we "nd from (3.10) using the locally

linearised lens equation

I(h)"I(s)[b
0
#A(h

0
) ) (h!h

0
)] . (3.13)
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According to this equation, the images of a circular source are ellipses. The ratios of the semi-axes
of such an ellipse to the radius of the source are given by the inverse of the eigenvalues of A(h

0
),

which are 1!i$DcD, and the ratio of the solid angles subtended by an image and the unlensed
source is the inverse of the determinant of A. The #uxes observed from the image and from the
unlensed source are given as integrals over the brightness distributions I(h) and I(s)(b), respectively,
and their ratio is the magnixcation k(h

0
). From (3.13), we "nd

k"
1

detA
"

1
(1!i)2!DcD2

. (3.14)

The images are thus distorted in shape and size. The shape distortion is due to the tidal
gravitational "eld, described by the shear c, whereas the magni"cation is caused by both isotropic
focusing caused by the local matter density i and anisotropic focusing caused by shear.

Since the shear is de"ned by the trace-free part of the symmetric Jacobian matrix A, it has two
independent components. There exists a one-to-one mapping from symmetric, trace-free 2]2
matrices onto complex numbers, and we shall extensively use complex notation. Note that the
shear transforms as e2*r under rotations of the coordinate frame, and is therefore not a vector.
Eqs. (3.9) and (3.12) imply that the complex shear can be written as

c(h)"
1
pPR2

d2h@D(h!h@) i(h@) ,

with

D(h),
h2
2
!h2

1
!2ih

1
h
2

DhD4
"

!1
(h

1
!ih

2
)2

. (3.15)

3.1.4. Critical curves and caustics
Points in the lens plane where the Jacobian A is singular, i.e. where detA"0, form closed

curves, the critical curves. Their image curves in the source plane are called caustics. Eq. (3.14)
predicts that sources on caustics are in"nitely magni"ed; however, in"nite magni"cation does not
occur in reality, for two reasons. First, each astrophysical source is extended, and its magni"cation
(given by the surface brightness-weighted point-source magni"cation across its solid angle) remains
"nite. Second, even point sources would be magni"ed by a "nite value since for them, the
geometrical-optics approximation fails near critical curves, and a wave-optics description leads to
a "nite magni"cation (e.g. Ohanian, 1983; Schneider et al., 1992, Chapter 7). For the purposes of
this review, the "rst e!ect always dominates. Nevertheless, images near critical curves can be
magni"ed and distorted substantially, as is demonstrated by the giant luminous arcs which are
formed from source galaxies close to caustics. (Point) sources which move across a caustic have
their number of images changed by $2, and the two additional images appear or disappear at the
corresponding critical curve in the lens plane. Hence, only sources inside a caustic are multiply
imaged.

3.1.5. An illustrative example: isothermal spheres
The rotation curves of spiral galaxies are observed to be approximately #at out to the largest

radii where they can be measured. If the mass distribution in a spiral galaxy followed the light
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5For axially symmetric projected mass pro"les, the magnitude of the shear can be calculated from DcD(h)"i6 (h)!i(h),
where i6 (h) is the mean surface mass density inside a circle of radius h from the lens centre. Accordingly, the magnitude of
the de#ection angle is DaD"hi6 (h).

distribution, the rotation curves would have to decrease at large radii in roughly Keplerian fashion.
Flat rotation curves thus provide the clearest evidence for dark matter on galactic scales. They can
be understood if galactic disks are embedded in a dark halo with density pro"le oJr~2 for large r.
The projected mass density then behaves like h~1. Such density pro"les are obtained by assuming
that the velocity dispersion of the dark-matter particles is spatially constant. They are therefore
also called isothermal pro"les. We shall describe some simple properties of a gravitational lens with
an isothermal mass pro"le, which shall later serve as a reference.

The projected surface mass density of a singular isothermal sphere is

R(m)"
p2
v

2Gm
, (3.16)

where p
v
is the line-of-sight velocity dispersion of the &particles' (e.g. stars in galaxies, or galaxies in

clusters of galaxies) in the gravitational potential of the mass distribution, assuming that they are in
virial equilibrium. The corresponding dimensionless surface mass density is

i(h)"
h
E

2h
, where h

E
"4pA

p
v
c B

2D
$4

D
4

(3.17)

is called the Einstein deyection angle. As can easily be veri"ed from (3.8), the magnitude of the scaled
de#ection angle is constant for this mass pro"le, DaD"h

E
, and the de#ection potential is t"h

E
DhD.

From that, the shear is obtained using (3.12)5

c(h)"!

h
E

2DhD
e2*r (3.18)

and the magni"cation is

k(h)"
DhD

DhD!h
E

. (3.19)

This shows that DhD"h
E

de"nes a critical curve, which is called the Einstein circle. The correspond-
ing caustic, obtained by mapping the Einstein circle back into the source plane under the lens
equation, degenerates to a single point at b"0. Such degenerate caustics require highly symmetric
lenses. Any perturbation of the mass distribution breaks the degeneracy and expands the singular
caustic point into a caustic curve (see Chapter 6 in Schneider et al. (1992) for a detailed treatment of
critical curves and caustics). Lens (3.17) produces two images with angular separation 2h

E
for

a source with DbD(1, and one image otherwise.
Mass distribution (3.17) has two unsatisfactory properties. The surface mass density diverges for

DhDP0, and the total mass of the lens is in"nite. Clearly, both of these properties will not match real
mass distributions. Despite this fact, the singular isothermal sphere "ts many of the observed lens
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systems fairly well. In order to construct a somewhat more realistic lens model, one can cut o! the
distribution at small and large distances, e.g. by

i(h)"
h
E

2JDhD2#h2
#

!

h
E

2JDhD2#h2
5

, (3.20)

which has a core radius h
#
, and a truncation radius h

5
. For h

#
;DhD;h

5
, this mass distribution

behaves like h~1. This lens can produce three images, but only if h
#
h
5
(h

#
#h

5
)~1(h

E
/2. One of the

three images occurs near the centre of the lens and is strongly de-magni"ed if h
#
;h

E
. In most of

the multiple-image QSO lens systems, there is no indication for a third central image, imposing
strict upper bounds on h

#
, whereas for some arc systems in clusters, a "nite core size is required

when a lens model like (3.20) is assumed.

3.2. Light propagation in arbitrary spacetimes

We now turn to a more rigorous description of the propagation of light rays, based on the theory
of geometrical optics in General Relativity. We then specialise the resulting propagation equations
to the case of weak gravitational "elds and metric perturbations to the background of an
expanding universe. These equations contain the gravitational lens equation discussed previously
as a special case. We shall keep the discussion brief and follow closely the work of Schneider et al.
(1992, Chapters 3 and 4), and Seitz et al. (1994), where further references can be found.

3.2.1. Propagation of light bundles
In Section 3.1.2, we have derived the lens equation (3.5) in a heuristic way. A rigorous derivation

in an arbitrary space}time must account for the fact that distance vectors between null geodesics
are four vectors. Nevertheless, by choosing an appropriate coordinate system, the separation
transverse to the line-of-sight between two neighbouring light rays can e!ectively be described by
a two-dimensional vector n. We outline this operation in the following two paragraphs.

We "rst consider the propagation of in"nitesimally thin light beams in an arbitrary space}time,
characterised by the metric tensor gkl . The propagation of a "ducial ray c

0
of the bundle is

determined by the geodesic equation (e.g. Misner et al., 1973; Weinberg, 1972). We are interested
here in the evolution of the shape of the bundle as a function of the a$ne parameter along the
"ducial ray. Consider an observer O with four-velocity ;k

0
, satisfying ;k

0
;

0k"1. The physical
wave vector kk of a photon depends on the light frequency. We de"ne kI k,!c~1u

0
kk as

a past-directed dimensionless wave vector which is independent of the frequency u
0

measured by
the observer. We choose an a$ne parameter j of the rays passing through O such that (1) j"0 at
the observer, (2) j increases along the backward light cone of O, and (3) ;k

0
kI k"!1 at O. Then,

with the de"nition of kI k, it follows that kI k"dxk/dj, and that j measures the proper distance along
light rays for events close to O.

Let ck(h, j) characterise the rays of a light beam with vertex at O, such that h is the angle between
a ray and the "ducial ray with ck

0
(j),ck(0, j). Further, let >k(h, j)"ck(h, j)!ck(0, j)"

[Rck(h,j)/Rh
k
]h

k
denote the vector connecting the ray characterised by h with the "ducial ray at the

same a$ne parameter j, where we assumed su$ciently small DhD so that >k can be linearised in h.
We can then decompose>k as follows. At O, the vectors;k

0
and kI k de"ne a two-dimensional plane
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perpendicular to both ;k
0

and kI k. This plane is tangent to the sphere of directions seen by the
observer. Now choose orthonormal unit vectors E

1
and E

2
to span that plane. Hence, Ek

1
E
2k"0,

Ek
k
E

kk"!1, Ek
k
kI k"Ek

k
;

0k"0, for k"1, 2. Transporting the four vectors kI k, ;k
0
, Ek

1
, and

Ek
2

parallel along the "ducial ray de"nes a vierbein at each event along the "ducial ray. The
deviation vector can then be decomposed into

>k(h, j)"!m
1
(h, j)Ek

1
!m

2
(h, j)Ek

2
!m

0
(h, j) kI k . (3.21)

Thus, the two-dimensional vector n(h, j) with components m
1,2

(h,j) describes the transverse
separation of two light rays at a$ne parameter j, whereas m

0
allows for a deviation component

along the beam direction. Due to the linearisation introduced above, n depends linearly on h, and
the choice of j assures that dn/dj(j"0)"h. Hence, we can write the linear propagation equation

n(j)"D(j) h . (3.22)

The 2]2 matrix D satis"es the Jacobi di!erential equation

d2D(j)
dj2

"T(j)D(j) (3.23)

with initial conditions

D(0)"O and
dD
dj

(0)"I . (3.24)

The optical tidal matrix T(j) is symmetric,

T(j)"A
R(j)#R[F(j)] I[F(j)]

I[F(j)] R(j)!R[F(j)]B (3.25)

and its components depend on the curvature of the metric. R(z) and I(z) denote the real and
imaginary parts of the complex number z. Speci"cally,

R(j)"!1
2
Rkl(j)kI k(j)kI l(j) , (3.26)

where Rkl(j) is the Ricci tensor at ck
0
(j). The complex quantity F(j) is more complicated

and depends on the Weyl curvature tensor at ck
0
(j). The source of convergence R(j) leads to an

isotropic focusing of light bundles, in that a circular light beam continues to have a circular cross
section. In contrast, a non-zero source of shear F(j) causes an anisotropic focusing, changing the
shape of the light bundle. For a similar set of equations, see, e.g. Blandford et al. (1991) and
Peebles (1993).

To summarise this subsection, the transverse separation vector n of two in"nitesimally close light
rays, enclosing an angle h at the observer, depends linearly on h. The matrix which describes this
linear mapping is obtained from the Jacobi di!erential equation (3.23). The optical tidal matrix
T can be calculated from the metric. This exact result from General Relativity is of course
not easily applied to practical calculations in general space}times, as one "rst has to calculate
the null geodesic ck

0
(j), and from that the components of the tidal matrix have to be determined.

However, as we shall show next, the equations attain rather simple forms in the case of weak
gravitational "elds.
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3.2.2. Specialisation to weak gravitational xelds
We shall now specialise the transport equation (3.23) to the situation of a homogeneous and

isotropic universe, and to weak gravitational "elds. In a metric of the Robertson}Walker type (2.2),
the source of shear F must vanish identically because of isotropy; otherwise preferred directions
would exist. Initially circular light bundles therefore remain circular. Hence, the optical tidal matrix
T is proportional to the unit matrix, T(j)"R(j)I, and the solution of (3.23) must be of the form
D(j)"D(j) I. According to (3.22), the function D(j) is the angular-diameter distance as a function
of the a$ne parameter. As we shall demonstrate next, this function indeed agrees with the angular
diameter distance as de"ned in (2.43).

To do so, we "rst have to "nd R(j). The Ricci tensor deviates from the Einstein tensor by
two terms proportional to the metric tensor gkl , one involving the Ricci scalar, the other con-
taining the cosmological constant. These two terms do not contribute to (3.26), since kI k is a null
vector. We can thus replace the Ricci tensor in (3.26) by the energy}momentum tensor according
to Einstein's "eld equation. Since k0"c~1u"(1#z)c~1u

0
, we have kI 0"!(1#z), and the

spatial components of kI k are described by a direction and the constraint that kI k is a null vector.
Then, using the energy-momentum tensor of a perfect #uid with density o and pressure p, (3.26)
becomes

R(j)"!

4nG
c2 Ao#

p
c2B(1#z)2 . (3.27)

Specialising to a universe "lled with dust, i.e. p"0, we "nd from (2.16) and (2.19)

R(j)"!

3
2 A

H
0

c B
2
X

0
(1#z)5 . (3.28)

The transport equation (3.23) then transforms to

d2D
dj2

"!

3
2 A

H
0

c B
2
X

0
(1#z)5D . (3.29)

In order to show that the solution of (3.29) with initial conditions D"0 and dD"dj at j"0 is
equivalent to (2.43), we proceed as follows. First, we note that (2.43) for z

1
"0 can be written as an

initial-value problem

d2

dw2A
D

!/'
a B"!KA

D
!/'
a B (3.30)

with D
!/'

(0)"0 and dD
!/'

"dw at w"0, because of the properties of the function f
K
; cf.

(2.4). Next, we need a relation between j and w. The null component of the photon geodesic
is x0"c(t

0
!t). Then, from dxk"kI kdj, we obtain dj"!acdt. Using dt"a5 ~1da, we

"nd

da"!

a5
ca

dj or dz"
a5

ca3
dj . (3.31)
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Since cdt"!a dw for null rays, we have a5 ~1da"dt"!ac~1dw, which can be combined with
(3.31) to yield

dj"a2dw . (3.32)

We can now calculate the analogous expression of (3.30) for D,

d2

dw2A
D
a B"a2

d
djCa2

d
djA

D
a BD"a3DA!a2 aA D , (3.33)

where a prime denotes di!erentiation with respect to j. From (3.31), a@"!(ac)~1a5 , and

aA"
1
2

d(a@)2
da

"

1
2c2

d
daA

a5 2
a2B"

1
2c2

dH2

da
(3.34)

with H given in (2.31). Substituting (3.29) into the "rst term on the right-hand side of (3.33), and
(3.34) into the second term, we immediately see that D satis"es the di!erential equation (3.30). Since
D has the same initial conditions as D

!/'
, they indeed agree.

For computational convenience, we can also transform (3.29) into a di!erential equation for D(z).
Using (3.31) and (2.31), one "nds

(1#z)C(1#X
0
z)!XKA1!

1
(1#z)2BD

d2D
dz2

#C
7
2
X

0
z#

X
0

2
#3!XKA3!

2
(1#z)2BD

dD
dz

#

3
2
X

0
D"0 . (3.35)

We next turn to the case of a weak isolated mass inhomogeneity with a spatial extent small
compared to the Hubble distance cH~1

0
, like galaxies or clusters of galaxies. In that case, the metric

can locally be approximated by the post-Minkowskian line element

ds2"A1#
2U
c2 Bc2dt2!A1!

2U
c2 Bdx2 , (3.36)

where dx2 is the line element of Euclidean three space, and U is the Newtonian gravitational
potential which is assumed to be weak, U;c2. Calculating the curvature tensor of metric (3.36),
and using Poisson's equation for U, we "nd that for a light ray which propagates into the three
direction, the sources of convergence and shear are

R"!

4nG
c2

o and F"!

1
c2

(U
,11

!U
,22

#2iU
,12

) . (3.37)

Now, the question is raised as to how an isolated inhomogeneity can be combined with the
background model of an expanding universe. There is no exact solution of Einstein's "eld
equations which describes a universe with density #uctuations, with the exception of a few very
special cases such as the Swiss}Cheese model (Einstein and Strauss, 1945). We therefore have to
resort to approximation methods which start from identifying &small' parameters of the problem,
and expanding the relevant quantities into a Taylor series in these parameters. If the length scales
of density inhomogeneities are much smaller than the Hubble length cH~1

0
, the associated
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Newtonian gravitational potential U;c2 (note that this does not imply that the relative density
#uctuations are small!), and the peculiar velocities v;c, then an approximate metric is

ds2"a2(q)CA1#
2U
c2 Bc2dq2!A1!

2U
c2 B(dw2#f 2

K
(w) du2)D , (3.38)

where dq"a~1dt is the conformal time element, and U satis"es Poisson's equation with source
*o, the density enhancement or reduction relative to the mean cosmic density (Futamase, 1989;
Futamase and Sasaki, 1989; Jacobs et al., 1993).

In the case of weak metric perturbations, the sources of convergence and shear of the back-
ground metric and the perturbations can be added. Recalling that both R and F are quadratic
in kI kJ(1#z), so that the expressions in (3.37) have to be multiplied by (1#z)2, we "nd for the
optical tidal matrix

T
ij
(j)"!

3
2A

H
0

c B
2
X

0
(1#z)5 d

ij
!

(1#z)2
c2

(2U
,ij
#d

ij
U

,33
) , (3.39)

where we have assumed that the local Cartesian coordinates are chosen such that the light ray
propagates in the x

3
-direction. The same result is obtained from metric (3.38).

The lens equation as discussed in Section 3.1 can now be derived from the previous relations. To
do so, one has to assume a geometrically thin matter distribution, i.e. one approximates the density
perturbation *o by a distribution which is in"nitely thin in the direction of photon propagation. It
is then characterised by its surface mass density R(n). The corresponding Newtonian potential
U can then be inserted into (3.39). The integration over U

,33
along the light ray vanishes, and (3.23)

can be employed to calculate the change of dD/dj across the thin matter sheet (the lens plane),
whereas the components of D far from the lens plane are given by a linear combination of solutions
of the transport equation (3.29). Continuity and the change of derivative at j

$
, corresponding to the

lens redshift z
$
, then uniquely "x the solution. If D(h, j

4
) denotes the solution at redshift z

4
, then

D(h, j
4
)"Rg/Rh in the notation of Section 3.1. Line integration of this relation then leads to the lens

equation (3.2). See Seitz et al. (1994) for details, and Pyne and Birkinshaw (1996) for an alternative
derivation.

4. Principles of weak gravitational lensing

4.1. Introduction

If the faint, and presumably distant, galaxy population is observed through the gravitational
"eld of a de#ector, the appearance of the galaxies is changed. The tidal component of the
gravitational "eld distorts the shapes of galaxy images, and the magni"cation associated with
gravitational light de#ection changes their apparent brightness. If all galaxies were intrinsically
circular, any galaxy image would immediately provide information on the local tidal gravitational
"eld. With galaxies being intrinsically elliptical, the extraction of signi"cant information from
individual images is impossible, except for giant luminous arcs (see Fig. 10, for an example) whose
distortion is so extreme that it can easily be determined.
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6This assumption is not seriously challenged. Whereas galaxies in a cluster may have non-random orientations
relative to the cluster centre, or pairs of galaxies may be aligned due to mutual tidal interaction, the faint galaxies used for
lensing studies are distributed over a large volume enclosed by a narrow cone with opening angle selected by the angular
resolution of the mass reconstruction (see below) and length comparable to the Hubble radius, since the redshift
distribution of faint galaxies is fairly broad. Thus, the faint galaxies typically have large spatial separations, which is also
re#ected by their weak two-point angular auto-correlation (Brainerd et al., 1995; Villumsen et al., 1997).

However, assuming that the galaxies are intrinsically randomly oriented,6 the strength of the
tidal gravitational "eld can be inferred from a sample of galaxy images, provided its net ellipticity
surmounts the Poisson noise caused by the "nite number of galaxy images in the sample and by the
intrinsic ellipticity distribution.

Since lensing conserves surface brightness, magni"cation increases the size of galaxy images at
a "xed surface-brightness level. The resulting #ux enhancement enables galaxies to be seen down to
fainter intrinsic magnitudes, and consequently the local number density of galaxy images above
a certain #ux threshold can be altered by lensing.

In this section, we introduce the principles of weak gravitational lensing. In Section 4.2, we
present the laws of the transformation between source and image ellipticities and sizes, and in
particular we introduce a convenient de"nition of the ellipticity of irregularly shaped objects.
Section 4.3 focuses on the determination of the local tidal gravitational "eld from an ensemble of
galaxy images. We derive practical estimators for the shear and compare their relative merits. The
e!ects of magni"cation on the observed galaxy images are discussed in Section 4.4. We derive an
estimate for the detectability of a de#ector from its weak-lensing imprint on galaxy-image
ellipticities in Section 4.5, and the "nal Section 4.6 is concerned with practical aspects of the
measurement of galaxy ellipticities.

4.2. Galaxy shapes and sizes, and their transformation

If a galaxy had elliptical isophotes, its shape and size could simply be de"ned in terms of
axis ratio and area enclosed by a boundary isophote. However, the shapes of faint galaxies can
be quite irregular and not well approximated by ellipses. In addition, observed galaxy images
are given in terms of pixel brightness on CCDs. We therefore require a de"nition of size and
shape which accounts for the irregularity of images, and which is well adapted to observational
data.

Let I(h) be the surface brightness of a galaxy image at angular position h. We "rst assume that the
galaxy image is isolated, so that I can be measured to large angular separations from the centre hM of
the image

hM ,
:d2h q

I
[I(h)] h

:d2h q
I
[I(h)]

, (4.1)

where q
I
(I) is a suitably chosen weight function. For instance, if q

I
(I)"H(I!I

5)
) is the Heaviside

step function, hM is the centre of the area enclosed by a limiting isophote I"I
5)

. Alternatively, if
q
I
(I)"I, hM is the centre of light. As a third example, if q

I
(I)"I H(I!I

5)
), hM is the centre of light
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within the limiting isophote I"I
5)

. Having chosen q
I
(I), we de"ne the tensor of second brightness

moments

Q
ij
"

:d2h q
I
[I(h)](h

i
!hM

i
) (h

j
!hM

j
)

:d2h q
I
[I(h)]

, i, j3M1, 2N (4.2)

(e.g. Blandford et al., 1991). In writing (4.1) and (4.2), we implicitly assumed that q
I
(I) is chosen such

that the integrals converge. We can now de"ne the size of an image in terms of the two invariants of
the symmetric tensor Q. For example, we can de"ne the size by

u"(Q
11

Q
22

!Q2
12

)1@2 , (4.3)

so that it is proportional to the solid angle enclosed by the limiting isophote if q(I) is a step function.
We quantify the shape of the image by the complex ellipticity

s,
Q

11
!Q

22
#2iQ

12
Q

11
#Q

22

. (4.4)

If the image has elliptical isophotes with axis ratio r41, then s"(1!r2)(1#r2)~1 exp(2i0),
where the phase of s is twice the position angle 0 of the major axis. This de"nition assures that the
complex ellipticity is unchanged if the galaxy image is rotated by p, for this rotation leaves an
ellipse unchanged.

If we de"ne the centre of the source bM and the tensor of second brightness moments Q(s)
ij

of the
source in complete analogy to that of the image, i.e. with I(h) replaced by I(s)(b) in Eqs. (4.1) and
(4.2), and employ the conservation of surface brightness (3.10) and the linearised lens equation
(3.13), we "nd that the tensors of second brightness moments of source and image are related
through

Q(s)"AQAT"AQA , (4.5)

where A,A(hM ) is the Jacobian matrix of the lens equation at position hM . De"ning further the
complex ellipticity of the source s(s) in analogy to (4.4) in terms of Q(s), ellipticities transform
according to

s(s)"
s!2g#g2sH

1#DgD2!2R(gsH)
(4.6)

(Schneider and Seitz, 1995; similar transformation formulae were previously derived by Kochanek,
1990; Miralda-Escude, 1991), where the asterisk denotes complex conjugation, and g is the reduced
shear

g(h),
c(h)

1!i(h)
. (4.7)

The inverse transformation is obtained by interchanging s and s(s) and replacing g by !g in (4.6).
Eq. (4.6) shows that the transformation of image ellipticities depends only on the reduced shear,
and not on the shear and the surface mass density individually. Hence, the reduced shear or
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functions thereof are the only quantities accessible through measurements of image ellipticities.
This can also immediately be seen by writing A as

A"(1!i)A
1!g

1
!g

2
!g

2
1#g

1
B . (4.8)

The pre-factor (1!i) only a!ects the size, but not the shape of the images. From (4.5) and (4.3), we
immediately see that the sizes of source and image are related through

u"k(h)u(s) . (4.9)

We point out that the dimensionless surface mass density i, and therefore also the shear c, depend
not only on the redshift of the lens, but also on the redshift of the sources, because the critical
surface mass density (3.7) involves the source redshift. More precisely, for "xed lens redshift z

$
, the

lens strength is proportional to the distance ratio D
$4

/D
4
. This implies that transformation (4.6)

generally also depends on source redshift. We shall return to these redshift e!ects in Section 4.3,
and assume for now that the lens redshift z

$
is su$ciently small so that the ratio D

$4
/D

4
is

approximately the same for all faint galaxy images.
Instead of s, we can de"ne di!erent ellipticity parameters (see Bonnet and Mellier, 1995). One of

these de"nitions turns out to be quite useful, namely

e,
Q

11
!Q

22
#2iQ

12
Q

11
#Q

22
#2(Q

11
Q

22
!Q2

12
)1@2

, (4.10)

which we shall also call complex ellipticity. (Since we shall use the notation s and e consistently
throughout this article, there should be no confusion from using the same name for two di!erent
quantities.) e has the same phase as s, and for elliptical isophotes with axis ratio r41,
DeD"(1!r)(1#r)~1. e and s are related through

e"
s

1#(1!DsD2)1@2
, s"

2e
1#DeD2

. (4.11)

The transformation between source and image ellipticity in terms of e is given by

e(s)"G
e!g

1!gHe
for DgD41 ,

1!geH
eH!gH

for DgD'1

(4.12)

(Seitz and Schneider, 1997), and the inverse transformation is obtained by interchanging e and
e(s) and replacing g by !g in (4.12). Although the transformation of e appears more complicated
because of the case distinction, we shall see in the next subsection that it is often useful to work in
terms of e rather than s; cf. Eq. (4.17) below.

We note in passing that the possible polarisation of light of faint galaxies (Audit and Simmons,
1999) or faint radio sources (Surpi and Harari, 1999) may o!er a di!erent channel to detect shear.
The orientation of the polarisation is unchanged in weak-"eld light de#ection (e.g., Schneider et al.,
1992; Faraoni, 1993). Gravitational shear will turn the geometrical image, but not the polarisation
of a galaxy. If the orientation of a galaxy is intrinsically strongly correlated with the direction of the
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polarisation of its light, then a mismatch of the observed directions provides information on the
lensing distortion. However, the polarisation properties of faint galaxies are mostly unknown, and
it is unclear whether such an intrinsic polarisation-orientation correlation exists.

For the case of weak lensing, which we de"ne for the purpose of this section by i;1, DcD;1, and
thus DgD;1, (4.12) becomes e+e(s)#g, provided DeD+De(s)D[1/2. Likewise, Eq. (4.6) simpli"es to
s+s(s)#2g in this case.

4.3. Local determination of the distortion

As mentioned earlier, the observed ellipticity of a single galaxy image provides only
little information about the local tidal gravitational "eld of the de#ector, for the intrinsic
ellipticity of the source is unknown. However, based on the assumption that the sources are
randomly oriented, information on the local tidal "eld can be inferred from a local ensemble
of images. Consider for example galaxy images at positions h

i
close enough to a "ducial point

h so that the local lens properties i and c do not change appreciably over the region encompassing
these galaxies. The expectation value of their corresponding source ellipticities is assumed to
vanish,

E(s(s))"0"E(e(s)) . (4.13)

4.3.1. All sources at the same redshift
We "rst consider the case that all sources are at the same redshift. Then, as mentioned following

Eq. (3.13), the ellipticity of a circular source determines the ratio of the local eigenvalues of the
Jacobian matrix A. This also holds for the net image ellipticity of an ensemble of sources with
vanishing net ellipticity. From (3.11), we "nd for the ratio of the eigenvalues of A in terms of the
reduced shear g

r"
1GDgD
1$DgD

. (4.14)

Interestingly, if we replace g by 1/gH, r switches sign, but DrD and the phase of e remain unchanged.
The sign of r cannot be determined observationally, and hence measurements cannot distinguish
between g and 1/gH. This is called local degeneracy. Writing detA"(1!i)2(1!DgD2), we see that
the degeneracy between g and 1/gH means that we cannot distinguish between observed images
inside a critical curve (so that detA(0 and DgD'1) or outside. Therefore, only functions of
g which are invariant under gP1/gH are accessible to (local) measurements, as for instance the
complex distortion

d,
2g

1#DgD2
. (4.15)

Replacing the expectation value in (4.13) by the average over a local ensemble of image ellipticities,
Ss(s)T+E(s(s))"0, Schneider and Seitz (1995) showed that Ss(s)T"0 is equivalent to

+
i

u
i

s
i
!d

1!R(dsH
i
)
"0 , (4.16)
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where the u
i
are weight factors depending on Dh

i
!hD which can give larger weight to galaxies closer

to the "ducial point. Additionally, the u
i

can be chosen such as to account for measurement
uncertainties in the image ellipticities by giving less weight to images with larger measurement
error. Eq. (4.16) has a unique solution d, so that the distortion can locally be determined. It is
readily solved by a quickly converging iteration starting from d"SsT.

The d obtained from (4.16) is an unbiased estimate of the distortion. Its dispersion about the true
value depends on the dispersion ps of the intrinsic ellipticity distribution, and on the number of
galaxy images. A fairly accurate estimate of the rms error of d is pd+ps N~1@2, where N is the
e!ective number of galaxies used for the local average, N"(+u

i
)2(+u2

i
)~1. This overestimates the

error for large values of DdD (Schneider and Seitz, 1995). It is important to note that the expectation
value of s is not d, but di!ers from it by a factor which depends both on DdD and the intrinsic ellipticity
distribution of the sources. In contrast to that, it follows from (4.13) and (4.12) that the expectation
value of the complex ellipticity e of the images is the reduced shear or its inverse, E(e)"g if DgD(1
and E(e)"1/gH if DgD'1 (Schramm and Kayser, 1995; Seitz and Schneider, 1997). Hence,

SeT"
+

i
u
i
e
i

+
i
u
i

(4.17)

is an unbiased local estimate for g or 1/gH. The ellipticity parameter e is useful exactly because of this
property. If one deals with sub-critical lenses (i.e. lenses which are not dense enough to have critical
curves, so that detA(h)'0 everywhere), or with the region outside the critical curves in critical lenses,
the degeneracy between g and 1/gH does not occur, and SeT is a convenient estimate for the local
reduced shear. The rms error of this estimate is approximately p

g
+pe (1!DgD2)N~1@2 (Schneider

et al., 2000), where pe is the dispersion of the intrinsic source ellipticity e(s). As we shall see in
a moment, e is the more convenient ellipticity parameter when the sources are distributed in redshift.

The estimates for d and g discussed above can be derived without knowing the intrinsic ellipticity
distribution. If, however, the intrinsic ellipticity distribution is known (e.g. from deep Hubble Space
Telescope images), we can exploit this additional information and determine d (or g) through
a maximum-likelihood method (Gould, 1995; Lombardi and Bertin, 1998a). Depending on the
shape of the intrinsic ellipticity distribution, this approach can yield estimates of the distortion
which have a smaller rms error than the estimates discussed above. However, if the intrinsic
ellipticity distribution is approximately Gaussian, the rms errors of both methods are identical. It
should be noted that the intrinsic ellipticity distribution is likely to depend on the apparent
magnitude of the galaxies, possibly on their redshifts, and on the wavelength at which they are
observed, so that this distribution is not easily determined observationally. Knowledge of the
intrinsic ellipticity distribution can also be used to determine d from the orientation of the images
(that is, the phase of s) only (Kochanek, 1990; Schneider and Seitz, 1995; Deiser, 1995, unpub-
lished). This may provide a useful alternative to the method above since the orientation of images is
much less a!ected by seeing than the modulus of s. We return to the practical estimate of the image
ellipticities and the corresponding distortion in Section 4.5.

In the case of weak lensing, de"ned by i;1 and DcD;1, implying DgD;1, we "nd from (4.11) to
(4.16) that

c+g+
d
2
+SeT+

SsT
2

. (4.18)
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Fig. 12. The function Z(z) de"ned in eq. (4.19) describes the relative lens strength as a function of source redshift z. We
show Z(z) for three cosmological models as indicated in the "gure, and for three values for the lens redshift,
z
$
"0.2, 0.5, 0.8. By de"nition, Z(z)P0 as zPz

$
, and Z(z)P1 as zPR. For sources close to the de#ector, Z(z) varies

strongly in a way depending relatively weakly on cosmology.

4.3.2. Sources distributed in redshift
So far, we assumed that all source galaxies are at the same redshift, or more precisely, that

the ratio D
$4

/D
4

between the lens- and observer-source distances is the same for all sources.
This ratio enters into scaling (3.7) of the physical surface mass density R to the dimension-less
convergence i. The de#ection angle, the de#ection potential, and the shear are all linear in i,
so that the distance ratio D

$4
/D

4
is su$cient to specify the lens strength as a function of source

redshift. Provided z
$
[0.2, this ratio is fairly constant for sources with redshift z

4
Z0.8, so

that the approximation used so far applies to relatively low-redshift de#ectors. However, for
higher-redshift lenses, the redshift distribution of the sources must explicitly be taken into
account.

For a "xed lens redshift z
$
, the dimensionless surface mass density and the shear depend on the

source redshift. We de"ne

Z(z),
lim

z?=
R

#3
(z

$
, z)

R
#3

(z
$
, z)

H(z!z
$
)

"

f
K
[w(z

$
, z)]

f
K
[w(0, z)]

f
K
[w(0,R)]

f
K
[w(z

$
,R)]

H(z!z
$
) , (4.19)

using the notation of Section 2.1. The Heaviside step function accounts for the fact that sources
closer than the de#ector are not lensed. Then, i(h, z)"Z(z)i(h), and c(h, z)"Z(z)c(h) for a source at
z, and i and c refer to a "ctitious source at redshift in"nity. The function Z(z) is readily evaluated
for any cosmological model using (2.41) and (2.4). We plot Z(z) for various cosmologies and lens
redshifts in Fig. 12.
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The expectation value for the ellipticity of images with redshift z now becomes

E[e(z)]"g(z)"G
Z(z) c

1!Z(z)i
for k(z)50 ,

1!Z(z)i
Z(z) cH

for k(z)(0 ,
(4.20)

where k(z) is the magni"cation as a function of source redshift,

k(z)"M[1!Z(z)i]2!Z2(z)DcD2N~1 . (4.21)

We refer to sub-critical lensing if k(z)'0 for all redshifts, which is equivalent to 1!i!DcD'0.
Without redshift information, only the mean ellipticity averaged over all redshifts can be

observed. We "rst consider this case, for which the source redshift distribution is assumed to be
known. We de"ne the probability p

z
(z) dz that a galaxy image (in the selected magnitude range) has

a redshift within dz of z. The image redshift distribution will, in general, be di!erent from the source
redshift distribution since magni"ed sources can be seen to higher redshifts than unlensed ones.
Therefore, the redshift distribution will depend on the local lens parameters i and c through
magni"cation (4.21). If, however, the magni"cation is small, or if the redshift distribution depends
only weakly on the #ux, the simpli"cation of identifying the two redshift distributions is justi"ed.
We shall drop it later. Given p

z
(z), the expectation value of the image ellipticity becomes the

weighted average

E(e)"Pdz p
z
(z) E[e(z)]"c[X(i, c)#DcD~2>(i, c)] (4.22)

with

X(i, c)"Pk(z)z0

dz p
z
(z)

Z(z)
1!Z(z)i

,

>(i, c)"Pk(z):0

dz p
z
(z)

1!Z(z)i
Z(z)

(4.23)

and the integration boundaries depend on the values of i and DcD through the magni"cation.
If the lens is sub-critical, k(z)'0 for all z. Then >"0, and only the "rst term in (4.22) remains.

Also, X no longer depends on c in this case, and E(e)"cX(i). An accurate approximation for X(i),
valid for i[0.6, has been derived in Seitz and Schneider (1997),

c"
E(e)
SZTA1!

SZ2T
SZT

iB , (4.24)

where SZnT,:dz p
z
(z)Zn.

Specialising further to the weak-lensing regime, the expectation value of the image ellipticity is
simply

E(e)+SZTc . (4.25)
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Thus, in the weak-lensing case, a source redshift distribution can be collapsed on a single redshift
z
4

satisfying Z(z
4
)"SZT.

We now drop the simpli"cation introduced above and de"ne n
0
(S, z)dS dz as the number of

galaxy images per unit solid angle with #ux within dS of S and redshift within dz of z in the absence
of lensing. At a point h with surface mass density i and shear c, the number density can be changed
by magni"cation. Images of a "xed set of sources are distributed over a larger solid angle, reducing
the number density by a factor k~1(z). On the other hand, the magni"cation allows the observation
of fainter sources. In total, the expected number density becomes

n(S, z)"
1

k2(z)
n
0A

S
k(z)

, zB (4.26)

with k(z) given in (4.21). This yields the redshift distribution

p(z;S,i, c)"
n
0
[k~1(z)S, z]

k2(z):dz@k~2(z@)n
0
[k~1(z)S, z@]

, (4.27)

which depends on the #ux S and the local lens parameters i and c through the magni"cation. This
function can now be substituted for p

z
(z) in Eq. (4.22).

4.3.3. Practical estimates of the shear
We saw before that SeT"+

i
u
i
e
i
/+

i
u
i
is an unbiased estimate of the local reduced shear g if all

sources are at the same redshift. We now generalise this result for sources distributed in redshift.
Then, the expectation value of e is no longer a simple function of i and c, and therefore estimates of
c for an assumed value for i will be derived.

We "rst assume that redshifts for individual galaxies are unavailable, but that only the nor-
malised redshift distribution p

z
(z) is known, or the distribution in Eq. (4.27). Replacing the

expectation value of the image ellipticity by the mean, Eq. (4.22) implies that the solution c(1) of

c"[X(i, c)#DcD~2>(i, c)]~1SeT (4.28)

provides an unbiased estimator for the shear c. This is not a particularly explicit expression for the
shear estimate, but it is still extremely useful, as we shall see in the next section. The shear estimate
considerably simpli"es if we assume a sub-critical lens. Then,

c(1,4#)"SeTX~1(i)+
SeT
SZTA1!

SZ2T
SZT

iB , (4.29)

where we used Eq. (4.24) in the second step. Specialising further to weak lensing, the shear estimate
simpli"es to

c(1,8-)"SeTSZT~1 . (4.30)

Next, we assume that the redshifts of all galaxy images are known. At "rst sight, this appears
entirely unrealistic, because the galaxy images are so faint that a complete spectroscopic survey at
the interesting magnitude limits seems to be out of reach. However, it has become clear in recent
years that accurate redshift estimates, the so-called photometric redshifts, can be obtained from
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multi-colour photometry alone (see, e.g., Connolly et al., 1995). The accuracy of photometric
redshifts depends on the number of wave bands for which photometry is available, the photometric
accuracy, and the galaxy type; typical errors are *z&0.1 for faint, high-redshift galaxies. This
uncertainty is small compared to the range over which the function Z(z) varies appreciably, so that
photometric redshifts are (almost) as good as precise spectroscopic redshifts for our purposes.

If the redshifts z
i

of the galaxies are known, more precise shear estimates than before can be
derived. Consider the weighted sum F,+

i
u
i
De
i
!E(e

i
)D2, where the expectation value is given by

Eq. (4.20), and Z"Z
i
,Z(z

i
). For an assumed value of i, an unbiased estimate of c is given by the

c(2) minimising F. Due to the case distinction in Eq. (4.20), this estimator is complicated to write
down analytically, but can easily be calculated numerically.

This case distinction is no longer necessary in the sub-critical case, for which the resulting
estimator reads

c(2,4#)"
+

i
u
i
Z

i
e
i
(1!Z

i
i)~1

+
i
u
i
Z2

i
(1!Z

i
i)~2

. (4.31)

In the case of weak lensing, this becomes

c(2,8-)"
+

i
u
i
Z

i
e
i

+
i
u
i
Z2

i

. (4.32)

We now compare the accuracy of the shear estimates with and without redshift information of the
individual galaxies. For simplicity, we assume sub-critical lensing and set all weight factors to
unity, u

i
"1. The dispersion of the estimate c(1,4#)"(NX)~1+

i
e
i
for N galaxy images is

p2(c(1,4#))"E(Dc(1,4#)D2)!DcD2"[NX(i)]~2EA+
ij

e
i
eH
j B!DcD2 . (4.33)

The expectation value in the "nal expression can be estimated noting that the image ellipticity is to
"rst order given by e

i
"e(s)

i
#c, and that the intrinsic ellipticities are uncorrelated. If we further

assume that the redshifts of any two galaxies are uncorrelated, we "nd

E(e
i
eH
j
)+T

Z
i
Z

j
(1!Z

i
i)(1!Z

j
i)UDcD2#d

ij
p2e

"X2(i)DcD2#d
ij
(p2

X
DcD2#p2e ) , (4.34)

where we used de"nition (4.23) of X(i), and de"ned p2
X
(i),SZ2(1!Zi)~2T!X2. Angular

brackets denote averages over the redshift distribution p
z
. Inserting (4.34) into (4.33) yields

p2(c(1,4#))"
p2
X
DcD2#p2e
NX2

. (4.35)

Likewise, the dispersion of the estimate c(2,4#) is

p2(c(2,4#))"
+

ij
Z

i
Z

j
(1!Z

i
i)~1(1!Z

j
i)~1E(e

i
eH
j
)

[+
i
Z2

i
(1!Z

i
i)~2]2

!DcD2

"

p2e
+

i
Z2

i
(1!Z

i
i)~2

+

p2e
N[X2(i)#p2

X
(i)]

. (4.36)

345M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



Fig. 13. The fractional accuracy gain in the shear estimate due to the knowledge of the source redshifts is plotted, more
precisely the deviation of the square root of (4.37) from unity in per cent. The four curves shown correspond to two
di!erent values of the mean source redshift, and to the cases without lensing (i"0"c), and with lensing (i"0.3"DcD),
labelled NL and L, respectively. We assumed the redshift distribution (2.69) with b"3/2, and an Einstein}de Sitter
cosmology. As expected, the higher the lens redshift z

$
, the more substantially is the shear estimate improved by redshift

information, since for low values of z
$
, the function Z(z) is nearly constant. Furthermore, the lower the mean redshift of

the source distribution, the more important the knowledge of individual redshifts becomes, for example to distinguish
between foreground and background galaxies. Finally, redshift information is relatively more important for larger lens
strength.

We used Eq. (4.34), but noted that Z is now no longer a statistical variable, so that we can put
p2
X
"0 in (4.34). In the "nal step, we have replaced the denominator by its expectation value under

ensemble averaging. We then "nd the ratio of the dispersions

p2(c(1,4#))
p2(c(2,4#))

"A1#DcD2
p2
X

p2e BA1#
p2
X

X2B . (4.37)

We thus see that the relative accuracy of these two estimates depends on the fractional width of
the distribution of Z/(1!Zi), and on the ratio between the dispersion of this quantity and the
ellipticity dispersion. Through its explicit dependence on DcD2, and through the dependence of
p
X

and X on i, the relative accuracy also depends on the lens parameters. Quantitative estimates of
(4.37) are given in Fig. 13.

The "gure shows that the accuracy of the shear estimate is noticeably improved, in particular
once the lens redshift becomes a fair fraction of the mean source redshift. The dependence of the
lens strength on the de#ector redshift implies that the lens signal will become smaller for increasing
de#ector redshift, so that the accuracy gained by redshift information becomes signi"cant. In
addition, the assumptions used to derive (4.35) were quite optimistic, since we have assumed in
(4.34) that the sample of galaxies over which the average is taken is a fair representation of the
galaxy redshift distribution p

z
(z). Given that these galaxies come from a small area (small enough to

assume that i and c are constant across this area), and that the redshift distribution of observed
galaxies in pencil beams shows strong correlations (see, e.g., Broadhurst et al., 1990; Steidel et al.,
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7Bright QSOs have a very steep number-count function, and so the #ux enhancement of the sources outweighs the
number reduction due to the stretching of the sky by a large margin. Whereas the lensing probability even for
a high-redshift QSO is probably too small to a!ect the overall sources counts signi"cantly, the fraction of multiply
imaged QSOs in #ux-limited samples is increased through the magni"cation bias by a substantial factor over the
probability that any individual QSO is multiply imaged (see, e.g. Turner et al., 1984; Narayan and Wallington, 1993 and
references therein).

1998; Cohen et al., 1999), this assumption is not very realistic. Indeed, the strong clustering of
galaxy redshifts means that the e!ective p

X
will be considerably larger than the analytical estimate

used above. The noise in the local determination of the shear due to the correlated galaxy redshifts
does not decrease with the number N of galaxies used, and, therefore, its relative contribution
becomes more important for larger number densities of source galaxies (Schneider and Morales-
Merino, 2000). In any case, redshift information on the source galaxies will substantially improve
the accuracy of weak lensing results.

4.4. Magnixcation ewects

In addition to the distortion of image shapes, by which the (reduced) shear can be measured
locally, gravitational light de#ection also magni"es the images, leaving the surface brightness
invariant. The magni"cation changes the size, and therefore the #ux, of individual galaxy
images. Moreover, for a "xed set of sources, the number density of images decreases by a factor k
as the sky is locally stretched. Combining the latter e!ect with the #ux magni"cation, the lensed
and unlensed source counts are changed according to (4.26). Two strategies to measure the
magni"cation e!ect have been suggested in the literature, namely either through the change in the
local source counts, perhaps combined with the associated change (4.27) in the redshift dis-
tribution (Broadhurst et al., 1995), or through the change of image sizes at "xed surface brightness
(Bartelmann and Narayan, 1995).

4.4.1. Number density ewect
Let n

0
('S, z) dz be the unlensed number density of galaxies with redshift within dz of z and with

#ux larger than S. Then, at an angular position h where the magni"cation is k(h, z), the number
counts are changed according to (4.26),

n('S, z)"
1

k(h, z)
n
0A'

S
k(h, z)

, zB . (4.38)

Accordingly, magni"cation can either increase or decrease the local number counts, depending on
the shape of the unlensed number-count function. This change of number counts is called
magnixcation bias, and is a very important e!ect for gravitational lensing of QSOs (see Schneider
et al., 1992 for references).7

Magni"cation allows the observation of fainter sources. Since the #ux from the sources is
correlated with their redshift, the redshift distribution is changed accordingly,

p(z;'S,i, c)"
n
0
['k~1(z)S, z]

k(z):dz@ k~1(z@)n
0
['k~1(z@)S, z@]

, (4.39)
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in analogy to the redshift distribution (4.27) at "xed #ux S. Since the objects of interest here are very
faint, spectroscopic redshift information is in general di$cult to obtain, and so one can only
observe the redshift-integrated counts

n('S)"Pdz
1

k(z)
n
0
('k~1(z)S, z) . (4.40)

The number counts of faint galaxies are observed to very closely follow a power law over a wide
range of #uxes, and so we write the unlensed counts as

n
0
('S, z)"aS~a p

0
(z;S) , (4.41)

where the exponent a depends on the wave band of the observation (e.g. Smail et al., 1995a), and
p
0
(z; S) is the redshift probability distribution of galaxies with #ux 'S. Whereas this redshift

distribution is fairly well known for brighter galaxies which are accessible to current spectroscopy,
little is known about the faint galaxies of interest here. The ratio of the lensed and unlensed source
counts is then found by inserting (4.41) into (4.40),

n('S)
n
0
('S)

"Pdzka~1(z)p
0
(z; k~1(z)S) . (4.42)

We should note that the lensed counts do not strictly follow a power law in S, for p
0

depends on z.
Since the redshift distribution p

0
(z,S) is currently unknown, the change of the number counts due

to the magni"cation cannot be predicted. For very faint #ux thresholds, however, the redshift
distribution is likely to be dominated by galaxies at relatively high redshift. For lenses at fairly
small redshift (say z

$
[0.3), we can approximate the redshift-dependent magni"cation k(z) by the

magni"cation k of a "ducial source at in"nity, in which case

n('S)
n
0
('S)

"ka~1 . (4.43)

Thus, a local estimate of the magni"cation can be obtained through (4.43) and from a measurement
of the local change of the number density of images. If the slope of the source counts is unity, a"1,
there will be no magni"cation bias, while it will cause a decrease of the local number density for
#atter slopes. Broadhurst et al. (1995) pointed out that one can immediately obtain (for sub-critical
lensing, i.e. detA'0) an estimate for the local surface mass density from a measurement of the
local magni"cation and the local reduced shear g, i"1![k(1!DgD2)]~1@2. In the absence of
shape information, (4.43) can be used in the weak-lensing limit [where i;1, DcD;1, so that
k+(1#2i)] to obtain an estimate of the surface mass density

i+
n('S)!n

0
('S)

n
0
('S)

1
2(a!1)

. (4.44)

4.4.2. Size ewect
Since lensing conserves surface brightness, the magni"cation can be obtained from the change in

galaxy-image sizes at "xed surface brightness. Let I be some convenient measure of the surface
brightness. For example, if u is the solid angle of an image, de"ned by the determinant of the tensor
of second brightness moments as in (4.3), one can set I"S/u.
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Denoting by n(u, I, z) du the number density of images with surface brightness I, redshift z, and
solid angle within du of u, the relation between the lensed and the unlensed number density can be
written as

n(u, I, z)"
1
k2

n
0A

u
k

, I, zB . (4.45)

For simplicity, we only consider the case of a moderately small lens redshift, so that the
magni"cation can be assumed to be locally constant for all images, irrespective of galaxy redshift.
We can then drop the variable z here. The mean image size SuT(I) at "xed surface brightness I is
then related to the mean image size SuT

0
(I) in the absence of lensing through

SuT(I)"kSuT
0
(I) . (4.46)

If the mean image size in the absence of lensing can be measured (e.g. by deep HST exposures of
blank "elds), the local value k of the magni"cation can therefore be determined by comparing the
observed image sizes to those in the blank "elds. This method has been discussed in detail in
Bartelmann and Narayan (1995). For instance, if we assume that the logarithm of the image size is
distributed as a Gaussian with mean SlnuT

0
(I) and dispersion p(I), we obtain an estimate for the

local magni"cation from a set of N galaxy images

lnk"
N
+
i/1

lnu
i
!Sln uT

0
(I

i
)

p2(I
i
) A

N
+
i/1

1
p2(I

i
)B

~1
. (4.47)

A typical value for the dispersion is p(I)+0.5 (Bartelmann and Narayan, 1995).

4.4.3. Relative merits of shear and magnixcation ewect
It is interesting to compare the prospects of measuring shear and magni"cation caused by

a de#ector. We consider a small patch of the sky containing an expected number N of galaxy
images (in the absence of lensing), which is su$ciently small so that the lens parameters i and c can
be assumed to be constant. We also restrict the discussion to weak lensing case.

The dispersion of a shear estimate from averaging over galaxy ellipticities is p2e /N, so that the
signal-to-noise ratio is

A
S
NB

4)%!3

"

DcD
pe

JN . (4.48)

According to (4.44), the expected change in galaxy number counts is D*ND"2iDa!1DN. Assuming
Poissonian noise, the signal-to-noise ratio in this case is

A
S
NB

#06/54

"2iDa!1DJN . (4.49)

Finally, the signal-to-noise ratio for the magni"cation estimate (4.47) is

A
S
NB

4*;%

"

2i
p(I)

JN , (4.50)

assuming all p(I) are equal.
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Comparing the three methods, we "nd

(S/N)
4)%!3

(S/N)
#06/54

"

DcD
i

1
2pe Da!1D

,
(S/N)

#06/54
(S/N)

4*;%

"2p(I)Da!1D . (4.51)

If the lens situation is such that i+DcD as for isothermal spheres, the "rst of Eqs. (4.51) implies that
the signal-to-noise of the shear measurement is considerably larger than that of the magni"cation.
Even for number-count slopes as #at as a&0.5, this ratio is larger than "ve, with pe&0.2. The
second of Eqs. (4.51) shows that the size e!ect yields a somewhat larger signal-to-noise ratio than
the number-density e!ect. We therefore conclude from these considerations that shear measure-
ments should yield more signi"cant results than magni"cation measurements.

This, however, is not the end of the story. Several additional considerations come into play when
these three methods of measuring lensing e!ects are compared. First, the shear measurement is the
only one for which we know precisely what to expect in the absence of lensing, whereas the other
two methods need to compare the measurements with calibration "elds void of lensing. These
comparisons require very accurate photometry. Second, Eq. (4.49) overestimates the signal-to-
noise ratio since we assumed Poissonian errors, while real galaxies are known to cluster even at
very faint magnitudes (e.g., Villumsen et al., 1997), and so the error is substantially underestimated.
A particularly bad example for this e!ect has been found by Athreya et al. 1999 where a cluster at
z&0.9 seems to be behind the cluster (at z"0.3) they investigated with weak-lensing techniques,
as identi"ed with photometric redshifts. Third, as we shall discuss in Section 4.6, observational
e!ects such as atmospheric seeing a!ect the observable ellipticities and sizes of galaxy images,
whereas the observed #ux of galaxies is much less a!ected. Hence, the shear and size measurements
require better seeing conditions than the number-count method. Both the number counts and the
size measurements (at "xed surface brightness) require accurate photometry, which is not very
important for the shear measurements. As we shall see in the course of this article, most
weak-lensing measurements have indeed been obtained from galaxy ellipticities.

A more detailed study on the relative merits of shear and magni"cation methods has been
performed by Schneider et al. (2000). Both methods were used to determine the parameters of mass
pro"les of spherically symmetric clusters. The results of this study can be summarised as follows:
The magni"cation in many cases yields tighter constraints on the slope of the mass pro"les,
whereas the shear provides a more accurate determination of its amplitude (or lens strength).
However, for the magni"cation methods to yield accurate results, the value of the unlensed number
density n

0
needs to be known fairly accurately. In particular, for measurements out to large

distances from the cluster centre (e.g., more than &10 Einstein radii), even an error of a few per
cent on n

0
destroys its relative advantage in the estimate of the shape relative to that of the shear.

But, as we shall see in the next section, the magni"cation e!ect is very important for breaking an
invariance transformation in the lens reconstruction that is permitted by shear measurements
alone.

4.5. Minimum lens strength for its weak lensing detection

After our detailed discussion of shear estimates and signal-to-noise ratios for local lensing
measurements, it is interesting to ask how strong a de#ecting mass distribution needs to be for
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a weak-lensing measurement to recognise it. Our simpli"ed consideration here su$ces to gain
insight into the dependence on the lens mass of the signal-to-noise ratio for a lens detection, and on
the redshifts of lens and sources.

We model the de#ector as a singular isothermal sphere (see Section 3.1.5). Let there be N galaxy
images with ellipticities e

i
in an annulus centred on the lens and bounded by angular radii

h
*/
4h

i
4h

065
. For simplicity, we restrict ourselves to weak lensing, so that E(e)+c. For an axially

symmetric mass distribution, the shear is always tangentially oriented relative to the direction
towards the mass centre, which is expressed by Eq. (3.18). We therefore consider the ellipticity
component projected onto the tangential direction. It is formally de"ned by e

5
,!R(e e~2*r),

where u is the polar angle of the galaxy position relative to the lens centre [see (3.18)]. We now
de"ne an estimator for the lens strength by

X,

N
+
i/1

a
i
e
5i

. (4.52)

The factors a
i
"a(h

i
) are arbitrary at this point, and will be chosen later such as to maximise the

signal-to-noise ratio of estimator (4.52). Note that the expectation value of X is zero in the absence
of lensing, so that a signi"cant non-zero value of X signi"es the presence of a lens. The expectation
value for an isothermal sphere is E(X)"h

E
+

i
a
i
/(2h

i
), where we used (3.18), and

E(X2)"
N
+

i,j/1

a
i
a
j
E(e

5i
e
5j
)"[E(X)]2#

p2e
2

N
+
i/1

a2
i

. (4.53)

We employed E(e
5i
e
5j
)"c

5
(h

i
)c

5
(h

j
)#d

ij
p2e /2 here, and the factor two is due to the fact that the

ellipticity dispersion only refers to one component of the ellipticity, while pe is de"ned as the
dispersion of the two-component ellipticity. Therefore, the signal-to-noise ratio for a detection of
the lens is

S
N

"

h
E

J2pe

+
i
a
i
h~1
i

J+
i
a2
i

. (4.54)

Di!erentiating (S/N) with respect to a
j
, we "nd that (S/N) is maximised if the a

i
are chosen Jh~1

i
.

Inserting this choice into (4.54) yields S/N"2~1@2h
E
p~1e (+

i
h~2
i

)1@2. We now replace the sum by
its ensemble average over the annulus, S+

i
h~2
i

T"NSh~2T"2nn ln(h
065

/h
*/

), where we used
N"nn(h2

065
!h2

*/
), with the number density of galaxy images n. Substituting this result into (4.54),

and using the de"nition of the Einstein radius (3.17), the signal-to-noise ratio becomes

S
N

"

h
E

pe
JpnJln(h

065
/h

*/
)

"12.7A
n

30 arcmin~2B
1@2

A
pe
0.2B

~1

A
p
v

600km s~1B
2

A
ln(h

065
/h

*/
)

ln 10 B
1@2

T
D

$4
D

4
U . (4.55)

As expected, the signal-to-noise ratio is proportional the square root of the number density of
galaxies and the inverse of the intrinsic ellipticity dispersion. Furthermore, it is proportional to the
square of the velocity dispersion p

v
. Assuming the "ducial values given in Eq. (4.55) and a typical

value of (D
$4

/D
4
)&0.5, lenses with velocity dispersion in excess of &600km s~1 can be detected
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with a signal-to-noise Z6. This shows that galaxy clusters will yield a signi"cant weak lensing
signal, and explains why clusters have been the main target for weak-lensing research up to now.
Individual galaxies with p

v
&200km s~1 cannot be detected with weak-lensing techniques. If one

is interested in the statistical properties of the mass distribution of galaxies, the lensing e!ects of
N

'!-
galaxies need to be statistically superposed, increasing (S/N) by a factor of JN

'!-
. Thus, it is

necessary to superpose several hundred galaxies to obtain a signi"cant galaxy}galaxy lensing
signal. We shall return to this topic in Section 7.

We "nally note that (4.55) also demonstrates that the detection of lenses will become increasingly
di$cult with increasing lens redshift, as the last factor is a sensitive function of z

$
. Therefore, most

lenses so far investigated with weak-lensing techniques have redshifts below 0.5. High-redshift
clusters have only recently become the target of detailed lensing studies.

4.6. Practical consideration for measuring image shapes

4.6.1. General discussion
Real astronomical data used for weak lensing are supplied by CCD images. The steps from

a CCD image to a set of galaxy images with measured ellipticities are highly non-trivial and cannot
be explained in any detail in the frame of this review. Nevertheless, we want to mention some of the
problems together with the solutions which were suggested and applied.

The steps from CCD frames to image ellipticities can broadly be grouped into four categories;
data reduction, image detection, shape determination, and corrections for the point-spread func-
tion. The data-reduction process is more or less standard, involving de-biasing, #at-"elding, and
removal of cosmic rays and bad pixels. For the latter purpose, it is essential to have several frames
of the same "eld, slightly shifted in position. This also allows the #at "eld to be determined from the
images themselves (a nice description of these steps is given in Mould et al., 1994). To account for
telescope and instrumental distortions, the individual frames have to be re-mapped before being
combined into a "nal image. In order to do this, the geometric distortion has to be either known or
stable. In the latter case, it can be determined by measuring the positions and shapes of stellar
images (e.g., from a globular cluster). In Mould et al. (1994), the classical optical aberrations were
determined and found to be in good agreement with the system's speci"cations obtained from
ray-tracing analysis.

With the individual frames stacked together in the combined image, the next step is to detect
galaxies and to measure their shapes. This may appear simple, but is in fact not quite as
straightforward, for several reasons. Galaxy images are not necessarily isolated on the image, but
they can overlap, e.g. with other galaxies. Since weak-lensing observations require a large number
density of galaxy images, such merged images are not rare. The question then arises whether
a detected object is a single galaxy, or a merged pair, and depending on the choice made, the
measured ellipticities will be much di!erent. Second, the image is noisy because of the "nite number
of photons per pixel and the noise intrinsic to the CCD electronics. Thus, a local enhancement of
counts needs to be classi"ed as a statistically signi"cant source detection, and a conservative
signal-to-noise threshold reduces the number of galaxy images. Third, galaxy images have to be
distinguished from stars. This is not a severe problem, in particular if the "eld studied is far from
the Galactic plane where the number density of stars is small.
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Several data-analysis software packages exist, such as FOCAS (Jarvis and Tyson, 1981) and
SExtractor (Bertin and Arnouts, 1996). They provide routines, based on algorithms developed from
experience and simulated data, for objective selection of objects and measuring their centroids,
their multipole moments, their magnitudes, and classify them as stars or extended objects. Kaiser
et al. (1995) developed their own object detection algorithm. It is based on convolving the CCD
image with two-dimensional Mexican hat-shaped "lter functions of variable width h

4
. For each

value of h
4
, the maxima of the smoothed intensity map are localised. Varying h

4
, these maxima form

curves in the three-dimensional space spanned by h and h
4
. Along each such curve, the signi"cance

of a source detection is calculated, and the maximum of the signi"cance is de"ned as the location
h of an object with corresponding size h

4
.

Once an object is found, the quadrupole moments can in principle be obtained from (4.2). In
practice, however, this is not necessarily the most practical de"nition of the moment tensor. The
function q

I
(I) in (4.2) should be chosen such that it vanishes for surface brightnesses close to and

smaller than the sky brightness; otherwise, one would sample too much noise. On the other hand, if
q
I
is cut o! at too bright values of I, the area within which the quadrupole moments are measured

becomes too small, and the e!ects of seeing (see below) become overwhelming. Also, with a too
conservative cut-o!, many galaxy images would be missed. Assume, for instance, that
q
I
(I)"IH(I!I

5)
). One would then choose I

5)
such that it is close to, but a few p

/0*4%
above the sky

background, and the quadrupole moments would then be measured inside the resulting limiting
isophote. Since this isophote is close to the sky background, its shape is a!ected by sky noise. This
implies that the measured quadrupole moments will depend highly non-linearly on the brightness
on the CCD; in particular, the e!ect of noise will enter the measured ellipticities in a non-linear
fashion. A more robust measurement of the quadrupole moments is obtained by replacing the
weight function q

I
[I(h)] in (4.2) by I=(h), where=(h) explicitly depends on h. Kaiser et al. (1995)

use a Gaussian of size h
4
as their weight function=, i.e., the size of their= is the scale on which the

object was detected at highest signi"cance. It should be noted that the quadrupole moments
obtained with a weight function=(h) do not obey the transformation law (4.5), and therefore, the
expectation value of the ellipticity, E(e), will be di!erent from the reduced shear g. We return to this
issue further below.

Another severe di$culty for the determination of the local shear is atmospheric seeing. Due to
atmospheric turbulence, a point-like source will be seen from the ground as an extended image; the
source is smeared-out. Mathematically, this can be described as a convolution. If I(h) is the surface
brightness before passing the Earth's atmosphere, the observed brightness distribution I(0"4)(h) is

I(0"4)(h)"Pd20 I(0)P(h!0) , (4.56)

where P(h) is the point-spread function (PSF) which describes the brightness distribution of a point
source on the CCD. P(h) is normalised to unity and centred on 0. The characteristic width of the
PSF is called the size of the seeing disc. The smaller it is, the less smeared the images are. A seeing
well below 1 arcsec is required for weak-lensing observations, and there are only a handful of
telescope sites where such seeing conditions are regularly met. The reason for this strong require-
ment on the data quality lies in the fact that weak-lensing studies require a high number density of
galaxy images, i.e., the observations have to be extended to faint magnitudes. But the characteristic
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angular size of faint galaxies is below 1arcsec. If the seeing is larger than that, the shape
information is diluted or erased.

The PSF includes not only the e!ects of the Earth's atmosphere, but also pointing errors of the
telescope (e.g., caused by wind shake). Therefore, the PSF will, in general, be slightly anisotropic.
Thus, seeing has two important e!ects on the observed image ellipticities: Small elliptical images
become rounder, and the anisotropy of the PSF introduces a systematic, spurious image ellipticity.
The PSF can be determined directly from the CCD once a number of isolated stellar images are
identi"ed. The shape of the stars (which serve as point sources) re#ects the PSF. Note that the PSF
is not necessarily constant across the CCD. If the number density of stellar images is su$ciently
large, one can empirically describe the PSF variation across the "eld by a low-order polynomial.
An additional potential di$culty is the chromaticity of the PSF, i.e. the dependence of the PSF on
the spectral energy distribution of the radiation. The PSF as measured from stellar images is not
necessarily the same as the PSF which applies to galaxies, due to their di!erent spectra. The
di!erence of the PSFs is larger for broader "lters. However, it is assumed that the PSF measured
from stellar images adequately represents the PSF for galaxies.

In the idealised case, in which the quadrupole moments are de"ned with the weight function
q
I
(I)"I, the e!ect of the PSF on the observed image ellipticities can easily be described. If

P
ij

denotes the quadrupole tensor of the PSF, de"ned in complete analogy to (4.2), then the
observed quadrupole tensor Q(0"4)

ij
is related to the true one by Q(0"4)

ij
"P

ij
#Q

ij
(see Valdes et al.,

1983). The ellipticity s then transforms like

s(0"4)"
s#¹s(PSF)

1#¹

, (4.57)

where

¹"

P
11

#P
22

Q
11

#Q
22

, s(PSF)"
P
11

!P
22

#2iP
12

P
11

#P
22

. (4.58)

Thus, ¹ expresses the ratio of the PSF size to the image size before convolution, and s(PSF) is the
PSF ellipticity. It is evident from (4.57) that the smaller ¹, the less s(0"4) deviates from s. In the limit
of very large ¹, s(0"4) approaches s(PSF). In principle, relation (4.57) could be inverted to obtain
s from s(0"4). However, this inversion is unstable unless ¹ is su$ciently small, in the sense that noise
a!ecting the measurement of s(0"4) is ampli"ed by the inversion process. Unfortunately, these simple
transformation laws only apply for the speci"c choice of the weight function. For weighting
schemes that can be applied to real data, the resulting transformation becomes much more
complicated.

If a galaxy image features a bright compact core which emits a signi"cant fraction of the galaxy's
light, this core will be smeared out by the PSF. In that case, s(0"4) may be dominated by the core and
thus contain little information about the galaxy ellipticity. This fact motivated Bonnet and Mellier
(1995) to de"ne the quadrupole moments with a weight function=(h) which not only cuts o! at large
angular separations, but which is also small near h"0. Hence, their weight function q is signi"c-
antly non-zero in an annulus with radius and width both being of the order of the size of the PSF.

The di$culties mentioned above prohibit the determination of the local reduced shear by
straight averaging over the directly measured image ellipticities. This average is a!ected by the use
of an angle-dependent weight function= in the practical de"nition of the quadrupole moments, by
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the "nite size of the PSF and its anisotropy, and by noise. Bonnet and Mellier (1995) have
performed detailed simulations of CCD frames which resemble real observations as close as
possible, including an anisotropic PSF. With these simulations, the e$ciency of object detection,
the accuracy of their centre positions, and the relation between true and measured image
ellipticities can be investigated in detail, and so the relation between mean ellipticity and (reduced)
shear can approximately be calibrated. Wilson et al. (1996) followed a very similar approach, except
that the analysis of their simulated CCD frames was performed with FOCAS. Assuming an
isotropic PSF, the mean image ellipticity is proportional to the reduced shear, g+fSeT, with
a correction factor f depending on the limiting galaxy magnitude, the photometric depth of the
image, and the size of the seeing disk. For a seeing of 0.8A, Bonnet and Mellier obtained a correction
factor f&6, whereas the correction factor in Wilson et al. for the same seeing is f&1.5. This large
di!erence is not a discrepancy, but due to the di!erent de"nitions of the quadrupole tensor.
Although the correction factor is much larger for the Bonnet and Mellier method, they show that
their measured (and calibrated) shear estimate is more accurate than that obtained with FOCAS.
Kaiser et al. (1995) used CCD frames taken with WFPC2 on board HST which are una!ected by
atmospheric seeing, sheared them, and degraded the resulting images by a PSF typical for
ground-based images and by adding noise. In this way, they calibrated their shear measurement
and tested their removal of an anisotropic contribution of the PSF.

However, calibrations relying on simulated images are not fully satisfactory since the results will
depend on the assumptions underlying the simulations. Kaiser et al. (1995) and Luppino and
Kaiser (1997) presented a perturbative approach for correcting the observed image ellipticities for
PSF e!ects, with additional modi"cations made by Hoekstra et al. (1998) and Hudson et al. (1998).
Since the measurement of ellipticities lies at the heart of weak-lensing studies, we shall present this
approach in the next subsection, despite its being highly technical.

4.6.2. The KSB method
Closely following the work by Kaiser et al. (1995), this subsection provides a relation between

the observed image ellipticity and a source ellipticity known to be isotropically distributed. The
relation corrects for PSF smearing and its anisotropy, and it also takes into account that
transformation (4.5) no longer applies if the weight factor explicitly depends on h.

We consider the quadrupole tensor

Q
ij
"Pd2h(h

i
!hM

i
)(h

j
!hM

j
)I(h)=(Dh!hM D2/p2) , (4.59)

where= contains a typical scale p, and hM is de"ned as in (4.1), but with the new weight function.
Note that, in contrast to de"nition (4.2), this tensor is no longer normalised by the #ux, but this
does not a!ect de"nition (4.4) of the complex ellipticity.

The relation between the observed surface brightness I0"4(h) and the true surface brightness I is
given by (4.56). We assume in the following that P is nearly isotropic, so that the anisotropic part of
P is small. Then, we de"ne the isotropic part P*40 of P as the azimuthal average over P, and
decompose P into an isotropic and an anisotropic part as

P(0)"P d2uq(u)P*40(0!u) , (4.60)
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which de"nes q uniquely. In general, q(u) will be an almost singular function, but we shall show
later that it has well-behaved moments. Both P*40 and q are normalised to unity and have vanishing
"rst moments. With P*40, we de"ne the brightness pro"les

I*40(h)"Pd2u I(u)P*40(h!u) ,

I0(h)"Pd2u I4(u)P*40(h!u) . (4.61)

The "rst of these would be observed if the true image was smeared only with an isotropic PSF, and
the second is the unlensed source smeared with P*40. Both of these brightness pro"les are
unobservable, but convenient for the following discussion. For each of them, we can de"ne
a quadrupole tensor as in (4.59). From each quadrupole tensor, we de"ne the complex ellipticity
s"s

1
#is

2
, in analogy to (4.4).

If we de"ne the centres of images including a spatial weight function, the property that the centre
of the image is mapped onto the centre of the source through the lens equation is no longer strictly
true. However, the deviations are expected to be very small, in general, and will be neglected in the
following. Hence, we choose coordinates such that hM "0, and approximate the other centres to be
at the origin as well.

According to our fundamental assumption that the intrinsic ellipticities are randomly oriented, this
property is shared by the ellipticities s0 de"ned in terms of I0 [see (4.61)], because it is una!ected by
an isotropic PSF. Therefore, we can replace (4.13) by E(s0)"0 in the determination of g. The task is
then to relate the observed image ellipticity s0"4 to s0. We break it into several steps.

From s*40 to s0"4: We "rst look into the e!ect of an anisotropic PSF on the observed ellipticity.
According to (4.60) and (4.61),

I0"4(h)"P d2u q(h!u)I*40(u) . (4.62)

Let f (h) be an arbitrary function, and consider

Pd2h f (h)I0"4(h)"Pd2u I*40(u)Pd20 f (u#0)q(0)

"Pd2u I*40(u)f (u)#
1
2
q
klPd2u I*40(u)

R2f
Ru

k
Ru

l

#O(q2) . (4.63)

We used the fact that q is normalised and has zero mean, and de"ned

q
ij
"Pd2u q(u)u

i
u

j
, q

1
,q

11
!q

22
, q

2
,2q

12
. (4.64)

The tensor q
ij

is traceless, q
11

"!q
22

, following from (4.60). We consider in the following only
terms up to linear order in q. To that order, we can replace I*40 by I0"4 in the "nal term in (4.63),
since the di!erence would yield a term JO(q2). Hence,

Pd2u I*40(u) f (u)+Pd2h f (h)I0"4(h)!
1
2
q
klP d2u I0"4(u)

R2f
Ru

k
Ru

l

. (4.65)
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8We use Greek instead of Latin indices a,b"1, 2 to denote that they are not tensor indices. In particular, the
components of s do not transform like a vector, but like the traceless part of a symmetric tensor.

Setting p
*40

"p
0"4

,p in the de"nition of the quadrupole tensors Q*40 and Q0"4, and choosing
f (h)"h

i
h
j
=(DhD2/p2), yields

Q*40
ij
"Q0"4

ij
!1

2
Z

ijkl
q
kl

, (4.66)

where the Einstein summation convention was adopted, and where

Z
ijkl

"P d2u I0"4(u)
R2

Ru
k
Ru

l
Cui

u
j
=A

DuD2
p2
*40
BD . (4.67)

This then yields

tr(Q*40)"tr(Q0"4)!xaqa ,

(Q*40
11

!Q*40
22

)"(Q0"4
11

!Q0"4
22

)!X
1aqa

and

2Q*40
12

"2Q0"4
12

!X
2aqa , (4.68)

where the sums run over a"1, 2.8 Up to linear order in qa ,

s*40a "s0"4a !P4.ab qb (4.69)

with the de"nitions

P4.ab"
1

trQ0"4
(Xab!s0"4a xb) ,

Xab"P d2u I0"4(u)CA=#2DuD2
=@
p2
*40
Bdab#ga (u)gb(u)

=A
p4
*40
D ,

xa"P d2u I0"4(u)ga (u)A
2=@
p2
*40

#DuD2
=A
p4
*40
B , (4.70)

where dab is the Kronecker symbol, and

g
1
(h)"h2

1
!h2

2
, g

2
(h)"2h

1
h
2

. (4.71)

P4.ab was dubbed smear polarisability in Kaiser et al. (1995). It describes the (linear) response of the
ellipticity to a PSF anisotropy. Note that P4.ab depends on the observed brightness pro"le. In
particular, its size decreases for larger images, as expected: The ellipticities of larger images are less
a!ected by a PSF anisotropy than those of smaller images.

The determination of qa : Eq. (4.69) provides a relation between the ellipticities of an observed
image and a hypothetical image smeared by an isotropic PSF. In order to apply this relation,
the anisotropy term qa needs to be known. It can be determined from the shape of stellar
images.
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Since stars are point-like and una!ected by lensing, their isotropically smeared images have zero
ellipticity, sH,*40"0. Hence, from (4.69),

qa"(PH,4.)~1ab sH,0"4b . (4.72)

In general, the PSF varies with the position of an image. If this variation is su$ciently smooth,
q can be measured for a set of stars, and approximated by a low-order polynomial across the data
"eld. As pointed out by Hoekstra et al. (1998), the scale size p in the measurement of q is best chosen
to be the same as that of the galaxy image under consideration. Hence, for each value of p, such
a polynomial "t is constructed. This approach works well and provides an estimate of q at the
position of all galaxies, which can then be used in transformation (4.69).

From s0 to s*40: We now relate s*40 to the ellipticity s0 of a hypothetical image obtained from
isotropic smearing of the source. To do so, we use (4.61) and (3.10) in the form I(h)"Is(Ah), and
consider

I*40(h)"Pd2u I4(Au)P*40(h!u)

"

1
detAPd2f I4(f)P*40(h!A~1f),IK (Ah) . (4.73)

The second step is merely a transformation of the integration variable, and in the "nal step we
de"ned the brightness moment

IK (h)"Pd2u I4(u)PK (h!u) with PK (h),
1

detA
P*40(A~1h) . (4.74)

The function PK is normalised and has zero mean. It can be interpreted as a PSF relating IK to I4. The
presence of shear renders PK anisotropic.

We next seek to "nd a relation between the ellipticities of I*40 and IK :

QK
ij
"Pd2b b

i
b
j
IK (b)=A

DbD2
p( 2 B

"detAA
ik
A

jlP d2h h
k
h
l
I*40(h)=A

DhD2!da ga(h)
p2 B . (4.75)

The relation between the two "lter scales is given by p( 2"(1!i)2(1#DgD2)p2, and d is distortion
(4.15). For small d, we can employ a "rst-order Taylor expansion of the weight function= in the
previous equation. This results in the following relation between s( and s*40:

s*40a !s( a"Cabgb , (4.76)

where

Cab"2dab!2s*40a s*40b #

2
tr (Q*40)

s*40a ¸b!
2

tr (Q*40)
Bab ,

Bab"!Pd2h I*40(h)=@A
DhD2
p2 B

1
p2

ga (h)gb (h)
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¸a"!Pd2h DhD2I*40(h)=@A
DhD2
p2 B

1
p2

ga(h) . (4.77)

C is the shear polarisability of Kaiser et al. (1995). Whereas C is de"ned in terms of I*40, owing to the
assumed smallness of q, the di!erence of C calculated with I*40 and I0"4 would cause a second-order
change in (4.76) and is neglected, so that we can calculate C directly from the observed brightness
pro"le.

In analogy to (4.60), we can decompose PK into an isotropic and an anisotropic part, the latter one
being small due to the assumed smallness of the shear,

PK (h)"P d2uPK *40(u)q( (h!u) . (4.78)

De"ning the brightness pro"le which would be obtained from smearing the source with the
isotropic PSF PK *40, IK 0(h)": d2u Is(u)PK *40(h!u), one "nds

IK (h)"Pd2u IK 0(u)q( (h!u) . (4.79)

Thus, the relation between IK and IK 0 is the same as that between I0"4 and I*40, and we can write

s( 0a"s( a!P4.abq( b . (4.80)

Note that P4. should in principle be calculated by using IK instead of I0"4 in (4.69). However, due
to the assumed smallness of g and q, the di!erences between I0"4, I*40, and IK are small, namely
of "rst order in g and q. Since q( is of order g [as is obvious from its de"nition, and will be shown
explicitly in (4.82)], this di!erence in the calculation of P4. would be of second order in (4.80) and is
neglected here.

Eliminating s( from (4.76) and (4.80), we obtain

s*40a "s( 0a#Cabgb#P4.abq( b . (4.81)

Now, for stellar objects, both s( 0 and s*40 vanish, which implies a relation between q( and g,

q( a"!(P4.H)~1ab CH
bcgc , (4.82)

where the asterisk indicates that P4. and C are to be calculated from stellar images. Whereas the
result should, in principle, not depend on the choice of the scale length in the weight function, it
does so in practice. As argued in Hoekstra et al. (1998), one should use the same scale length in
P4.H and CH as for the galaxy object for which the ellipticities are measured. De"ning now

Pgab"Cab!P4.ac (P4.H)~1cd CH
db (4.83)

and combining (4.69) and (4.81), we "nally obtain

s( 0"s0"4!P4.abqb!Pgabgb . (4.84)

This equation relates the observed ellipticity to that of the source smeared by an isotropic PSF,
using the PSF anisotropy and the reduced shear g. Since the expectation value of s( 0 is zero, (4.84)
yields an estimate of g. The two tensors P4. and Pg can be calculated from the brightness pro"le of
the images. Whereas the treatment has been con"ned to "rst order in the PSF anisotropy and the
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shear, the simulations in Kaiser et al. (1995) and Hoekstra et al. (1998) show that the resulting
equations can be applied even for moderately large shear. A numerical implementation of these
relations, the imcat software, is provided by N. Kaiser (see http://www.ifa.hawaii.edu/&
kaiser). We also note that modi"cations of this scheme were recently suggested (Rhodes et al.,
1999; Kaiser, 1999), as well as a completely di!erent approach to shear measurements (Kuijken,
1999). Kaiser et al. (1999b) provide a detailed description of the image analysis of weak-lensing data
from a large CCD-array camera.

5. Weak lensing by galaxy clusters

5.1. Introduction

So far, weak gravitational lensing has chie#y been applied to determine the mass distribution of
medium-redshift galaxy clusters. The main reason for this can be seen from Eq. (4.55): Clusters are
massive enough to be individually detected by weak lensing. More traditional methods to infer the
matter distribution in clusters are (a) dynamical methods, in which the observed line-of-sight
velocity distribution of cluster galaxies is used in conjunction with the virial theorem, and (b) the
investigation of the di!use X-ray emission from the hot (&107K) intra-cluster gas residing in the
cluster potential well (see, e.g., Sarazin, 1986).

Both of these methods are based on rather strong assumptions. For the dynamical method to
be reliable, the cluster must be in or near virial equilibrium, which is not guaranteed because the
typical dynamical time scale of a cluster is not much shorter than the Hubble time H~1

0
, and the

substructure abundantly observed in clusters indicates that an appreciable fraction of them is still
in the process of formation. Projection e!ects and the anisotropy of galaxy orbits in clusters further
a!ect the mass determination by dynamical methods. On the other hand, X-ray analyses rely on the
assumption that the intra-cluster gas is in hydrostatic equilibrium. Owing to the "nite spatial and
energy resolution of existing X-ray instruments, one often has to conjecture the temperature pro"le
of the gas. Here, too, the in#uence of projection e!ects is di$cult to assess.

Whereas these traditional methods have provided invaluable information on the physics of
galaxy clusters, and will continue to do so, gravitational lensing o!ers a welcome alternative
approach, for it determines the projected mass distribution of a cluster independent of the physical
state and nature of the matter. In particular, it can be used to calibrate the other two methods,
especially for clusters showing evidence of recent merger events, for which the equilibrium
assumptions are likely to fail. Finally, as we shall show below, the determination of cluster mass
pro"les by lensing is theoretically simple, and recent results show that the observational challenges
can also be met with modern telescopes and instruments.

Both shear and magni"cation e!ects have been observed in a number of galaxy clusters. In this
section, we discuss the methods by which the projected mass distribution in clusters can be
determined from the observed lensing e!ects, and show some results of mass reconstructions,
together with a brief discussion of their astrophysical relevance. In principle, voids could also be
measured using the same methods, but as shown in Amendola et al. (1999), their (negative) density
contrast is too small for a detection under realistic assumptions. Section 5.2 presents the principles
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of cluster mass reconstruction from estimates of the (reduced) shear obtained from image elliptici-
ties (also recently reviewed by Umetsu et al., 1999). In contrast to the two-dimensional mass maps
generated by these reconstructions, the aperture mass methods discussed in Section 5.3 determine
a single number to characterise the bulk properties of the cluster mass. Observational results are
presented in Section 5.4. We outline further developments in the "nal section, including the
combined analysis of shear and magni"cation e!ects, maximum-likelihood methods for the mass
reconstruction, and a method for measuring local lens parameters from the extragalactic back-
ground noise.

5.2. Cluster mass reconstruction from image distortions

We discussed in detail in Section 4 how the distortion of image shapes can be used to determine
the local tidal gravitational "eld of a cluster. In this section, we describe how this information can
be used to construct two-dimensional mass maps of clusters.

Shortly after the discovery of giant luminous arcs (Soucail et al., 1987a; Lynds and Petrosian,
1989), Fort et al. (1988) detected a number of distorted galaxy images in the cluster A 370. They also
interpreted these arclets as distorted background galaxy images, but on a weaker level than the
giant luminous arc in the same cluster. The redshift determination of one arclet by Mellier et al.
(1991) provided early support for this interpretation. Tyson et al. (1990) discovered a coherent
distortion of faint galaxy images in the clusters A 1689 and Cl 1409#52, and constrained their
(dark) mass pro"les from the observed &shear'. Kochanek (1990) and Miralda-Escude (1991) studied
in detail how parameterised mass models for clusters can be constrained from such distortion
measurements.

The "eld began to #ourish after Kaiser and Squires (1993) found that the distortions can be
used for parameter-free reconstructions of cluster surface mass densities. Their method, and
several variants of it, will be described in this section. It has so far been applied to about 15
clusters, and this number is currently limited by the number of available dark nights with good
observing conditions at the large telescopes which are required for observations of weak
lensing.

5.2.1. Linear inversion of shear maps
Eq. (3.15) shows that the shear c is a convolution of the surface mass density i with the kernel D.

This relation is easily inverted in Fourier space to return the surface mass density in terms of
a linear functional of the shear. Hence, if the shear can be observed from image distortions, the
surface mass density can directly be obtained. Let the Fourier transform of i(h) be

i( (l)"PR2

d2hi(h) exp(ih ) l) . (5.1)

The Fourier transform of the complex kernel D de"ned in (3.15) is

DK (l)"p
(l2
1
!l2

2
#2il

1
l
2
)

DlD2
. (5.2)
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Using the convolution theorem, Eq. (3.15) can be written c( (l)"p~1DK (l)i( (l) for lO0. Multiplying
both sides of this equation with DI H and using DI DI H"p2 gives

i( (l)"p~1c( (l)DK H(l) for lO0 (5.3)

and the convolution theorem leads to the "nal result

i(h)!i
0
"

1
pPR2

d2h@DH(h!h@) c(h@)

"

1
pPR2

d2h@R[DH(h!h@) c(h@)] (5.4)

(Kaiser and Squires, 1993). The constant i
0

in (5.4) appears because a constant surface mass
density does not cause any shear and is thus unconstrained by c. The two expressions in (5.4) are
equivalent because I(DK H c( ),0, as can be shown from the Fourier transforms of equations (3.12).
In applications, the second form of (5.4) should be used to ensure that i is real. Relation (5.4) can
either be applied to a case where all the sources are at the same redshift, in which case i and c are
de"ned as in Eqs. (3.7) and (3.12), or where the sources are distributed in redshift, because i and
c are interpreted as convergence and shear for a hypothetical source at in"nite redshift, as discussed
in Section 4.3.2.

In the case of a weak lens (i;1, DcD;1), the shear map is directly obtained from observations, cf.
(5.17). When inserted into (5.4), this map provides a parameter-free reconstruction of the surface
mass density, apart from an overall additive constant. The importance of this result is obvious, as it
provides us with a novel and simple method to infer the mass distribution in galaxy clusters.

There are two basic ways to apply (5.4) to observational data. Either, one can derive a shear map
from averaging over galaxy images by calculating the local shear on a grid in h-space, as described
in Section 4.3; or, one can replace the integral in (5.4) by a sum over galaxy images at positions h

i
,

i(h)"
1
np

+
i

R[DH(h!h
i
)e
i
] . (5.5)

Unfortunately, this estimate of i has in"nite noise (Kaiser and Squires, 1993) because of the noisy
sampling of the shear at the discrete background galaxy positions. Smoothing is therefore
necessary to obtain estimators of i with "nite noise. The form of Eq. (5.5) is preserved by
smoothing, but the kernel D is modi"ed to another kernel DI . In particular, Gaussian smoothing
with smoothing length h

4
leads to

DI (h)"C1!A1#
DhD2
h2
4
B expA!

DhD2
h2
4
BDD(h) (5.6)

(Seitz and Schneider, 1995a). The rms error of the resulting i map is of order pe N~1@2, where N is
the number of galaxy images per smoothing window, N&nph2

4
. However, the errors will be

strongly spatially correlated.
van Waerbeke (2000) showed that the covariance of a mass map obtained with the kernel (5.6) is

Cov(i(h)),i(h@)"
p2e

4ph2
4
n

expA!
Dh!h@D2

2h2
4
B . (5.7)
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Thus, the correlation extends to scales of order the smoothing scale h
4

(see also Lombardi and
Bertin, 1998b). Indeed, this result is surprising, as by reducing the smoothing scale, the correlation
length of the noise can accordingly be reduced to small scales } although the surface mass density at
each point depends on the galaxy ellipticities at all distances. It should be noted that the covariance
in (5.7) is derived under the assumption of no lensing, c,0. In the presence of a shear } the
interesting situation of course } an additional e!ect contributes to the noise, namely that the galaxy
images are not uniformly, but randomly distributed. This e!ect contributes shot-noise to the
covariance, quadratically in c (Schneider and Morales-Merino, 2000). Therefore, whereas the
estimate (5.5) with D replaced by DI uses the observational data more directly than by "rst
constructing a smoothed shear map and applying (5.4) to it, it turns out that the latter method
yields a mass map which is less noisy than the estimate obtained from (5.5), because (5.5) contains
the &shot noise' from the random angular position of the galaxy images (Seitz and Schneider,
1995a).

A lower bound to the smoothing length h
4

follows from the spatial number density of back-
ground galaxies, i.e. their mean separation. More realistically, a smoothing window needs
to encompass several galaxies. In regions of strong shear signals, N&10 may su$ce, whereas
mass maps in the outskirts of clusters where the shear is small may be dominated by noise unless
N&100. These remarks illustrate that a single smoothing scale across a whole cluster may
be a poor choice. We shall return to this issue in Section 5.5.1, where improvements will be
discussed.

Before applying the mass reconstruction formula (5.4) to real data, one should be aware of the
following di$culties:

(1) The integral in (5.4) extends over R2, while real data "elds are relatively small (most of the
applications shown in Section 5.4 are based on CCDs with side lengths of about 7 arcmin). Since
there is no information on the shear outside the data "eld, the integration has to be restricted to
the "eld, which is equivalent to setting c"0 outside. This is done explicitly in (5.5). This cut-o!
in the integration leads to boundary artefacts in the mass reconstruction. Depending on the
strength of the lens, its angular size relative to that of the data "eld, and its location within the
data "eld, these boundary artefacts can be more or less severe. They are less important if
the cluster is weak, small compared to the data "eld, and centred on it.

(2) The shear is an approximate observable only in the limit of weak lensing. The surface mass
density obtained by (5.4) is biased low in the central region of the cluster where the weak-lensing
assumption may not hold (and does not hold in those clusters which show giant arcs). Thus, if
the inversion method is to be applied also to the inner parts of a cluster, the relation between
c and the observable d has to be taken into account.

(3) The surface mass density is determined by (5.4) only up to an additive constant. We demon-
strate in the next subsection that there exists a slightly di!erent general invariance transforma-
tion which is present in all mass reconstructions based solely on image shapes. However, this
invariance transformation can be broken by including the magni"cation e!ect.

In the next three subsections, we shall consider points (1) and (2). In particular, we show
that the "rst two problems can easily be cured. The magni"cation e!ects will be treated in
Section 5.4.
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9At points where i"1, 1/gH"0 and E(e)"0, while c remains "nite. During the iteration, there will be points h where
the "eld i is very close to unity, but where SeT is not necessarily small. This leads to large values of c, which render the
iteration unstable. However, this instability can easily be removed if a damping factor like (1#Dc2(h@)D) exp(!Dc2(h@)D) is
included in (5.4). This modi"cation leads to fast convergence and a!ects the result of the iteration only very slightly.

5.2.2. Non-linear generalisation of the inversion, and an invariance transformation
In this section, we generalise the inversion equation (5.4) to also account for strong lensing, i.e. we

shall drop the assumption i;1 and DcD;1. In this case, the shear c is no longer a direct
observable, but at best the reduced shear g, or in general the distortion d. In this case, the relation
between i and the observable becomes non-linear. Furthermore, we shall assume here that all
sources are at the same redshift, so that the reduced shear is well de"ned.

Consider "rst the case that the cluster is sub-critical everywhere, i.e. detA'0 for all h, which
implies Dg(h)D(1. Then, the mean image ellipticity e is an unbiased estimate of the local reduced
shear, so that

c(h)"[1!i(h)]SeT(h) , (5.8)

where the "eld SeT(h) is determined by the local averaging procedure described in Section 4.3.1.
Inserting this into (5.4) leads to an integral equation for i(h),

i(h)!i
0
"

1
p PR2

d2h@ [1!i(h@)]R[DH(h!h@)SeT(h@)] (5.9)

(Seitz and Schneider, 1995a), which is readily solved by iteration. Starting from i,0, a "rst
estimate of i(h) is obtained from (5.9), which after insertion into the right-hand side of (5.8) yields an
update of c(h), etc. This iteration process converges quickly to the unique solution.

The situation becomes only slightly more complicated if critical clusters are included. We only
need to keep track of detA while iterating, because c must be derived from 1/SeTH rather than from
SeT where detA(0. Hence, the local invariance between g and 1/gH is broken due to non-local
e!ects: A local jump from g to 1/gH cannot be generated by any smooth surface mass density.

After a minor modi"cation,9 this iteration process converges quickly. See Seitz and Schneider
(1995a) for more details on this method and for numerical tests done with a cluster mass
distribution produced by a cosmological N-body simulation. It should have become clear that the
non-linear inversion process poses hardly any additional problem to the mass reconstruction
compared to the linear inversion (5.4).

This non-linear inversion still contains the constant i
0
, and so the result will depend on this

unconstrained constant. However, in contrast to the linear (weak lensing) case, this constant does
not correspond to adding a sheet of constant surface mass density. In fact, as can be seen from (5.9),
the transformation

i(h)Pi@(h)"ji(h)#(1!j)

or

[1!i@(h)]"j[1!i(h)] (5.10)
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leads to another solution of the inverse problem for any value of jO0. Another and more general
way to see this is that the transformation iPi@ changes c to c@(h)"jc(h) (cf. (3.15)). Hence, the
reduced shear g"c(1!i)~1 is invariant under transformation (5.10), so that the relation between
intrinsic and observed ellipticity is unchanged under the invariance transformation (5.10). This is the
mass-sheet degeneracy pointed out by Falco et al. (1985) in a di!erent context. We thus conclude
that the degeneracy due to the invariance transformation (5.10) cannot be lifted if only image
shapes are used. However, the magni"cation transforms like

k@(h)"j~2k(h) , (5.11)

so that the degeneracy can be lifted if magni"cation e!ects are taken into account (see Section 4.4).
The invariance transformation leaves the critical curves of the lens mapping invariant. Therefore,

even the location of giant luminous arcs which roughly trace the critical curves does not determine
the scaling constant j. In addition, the curve i"1 is invariant under (5.10). However, there are at
least two ways to constrain j. First, it is reasonable to expect that on the whole the surface mass
density in clusters decreases with increasing separation from the cluster &centre', so that j'0.
Second, since the surface mass density i is non-negative, upper limits on j are obtained by
enforcing this condition.

5.2.3. Finite-xeld inversion techniques
We shall now turn to the problem that inversion (5.4) in principle requires data on the whole sky,

whereas the available data "eld is "nite. A simple solution of this problem has been attempted by
Seitz and Schneider (1995a). They extrapolated the measured shear "eld on the "nite region
U outside the data "eld, using a parameterised form for the radial decrease of the shear. From
a sample of numerically generated cluster mass pro"les, Bartelmann (1995a) showed that this
extrapolation yields fairly accurate mass distributions. However, in these studies the cluster was
always assumed to be isolated and placed close to the centre of the data "eld. If these two
conditions are not met, the extrapolation can produce results which are signi"cantly o!. In order to
remove the boundary artefacts inherent in applying (5.4) to a "nite "eld, one should therefore aim
at constructing an unbiased "nite-"eld inversion method.

The basis of most "nite-"eld inversions is a result "rst derived by Kaiser (1995). Eq. (3.12) shows
that shear and surface mass density are both given as second partial derivatives of the de#ection
potential t. After partially di!erentiating (3.12) and combining suitable terms we "nd

+i"A
c
1,1

#c
2,2

c
2,1

!c
1,2
B,uc(h) . (5.12)

The gradient of the surface mass density can thus be expressed by the "rst derivatives of the shear,
hence i(h) can be determined, up to an additive constant, by integrating (5.12) along appropriately
selected curves. This can be done in the weak-lensing case where the observed smoothed ellipticity
"eld SeT(h) can be identi"ed with c, and uc (h) can be constructed by "nite di!erencing. If we insert
c"(1!i) g into (5.12), we "nd after some manipulations

+K(h)"
!1

1!g2
1
!g2

2
A
1!g

1
!g

2
!g

2
1#g

1
BA

g
1,1

#g
2,2

g
2,1

!g
1,2
B

,u
g
(h) , (5.13)
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where

K(h),ln[1!i(h)] . (5.14)

Hence, using the smoothed ellipticity "eld SeT(h) as an unbiased estimator for g(h), and assuming
a sub-critical cluster, one can obtain the vector "eld u

g
(h) by "nite di!erencing, and thus determine

K(h) up to an additive constant from line integration, or, equivalently, 1!i(h) up to an overall
multiplicative constant. This is again the invariance transformation (5.10).

In principle, it is now straightforward to obtain i(h) from the vector "eld uc (h), or K(h) from
u
g
(h), simply by a line integration of the type

i(h, h
0
)"i(h

0
)#P

h

h
0

dl ) uc (l) , (5.15)

where l is a smooth curve connecting h with h
0
. If uc is a gradient "eld, as it ideally is, the resulting

surface mass density is independent of the choice of the curves l. However, since uc is obtained
from noisy data (at least the noise resulting from the intrinsic ellipticity distribution), it will
in general not be a gradient "eld, so that (5.12) has no solution. Therefore, the various line
integration schemes proposed (Schneider, 1995; Kaiser et al., 1994; Bartelmann, 1995a) yield
di!erent results.

Realising that Eq. (5.12) has no exact solution for an observed "eld uc , we wish to "nd a
mass distribution i(h) which satis"es (5.12) &best'. In general, uc can be split into a gradient
"eld and a curl component, but this decomposition is not unique. However, as pointed out in
Seitz and Schneider (1996), since the curl component is due to noise, its mean over the data "eld is
expected to vanish. Imposing this condition, which determines the decomposition uniquely, they
showed that

i(h)!i6 "PUd2h@ H(h@, h) )uc(h@) , (5.16)

where i6 is the average of i(h) over the data "eld U, and the kernel H is the gradient of a scalar
function which is determined through a von Neumann boundary value problem, with singular
source term. This problem can be solved analytically for circular and rectangular data "elds, as
detailed in the appendix of Seitz and Schneider (1996). If the data "eld has a more complicated
geometry, an analytic solution is no longer possible, and the boundary value problem with
a singular source term cannot be solved numerically.

An alternative method starts with taking the divergence of (5.12) and leads to the new boundary
value problem

+2i"+ )uc with n )+i"n ) uc on RU , (5.17)

where n is the outward-directed normal on the boundary of U. As shown in Seitz and Schneider
(1998), Eqs. (5.16) and (5.17) are equivalent. An alternative and very elegant way to derive (5.17)
has been found by Lombardi and Bertin (1998b). They noticed that the &best' approximation to
a solution of (5.12) minimises the &action'

PUd2h D+i(h)!uc (h)D2 . (5.18)
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Euler's equations of the variational principle immediately reproduce (5.17). This von Neumann
boundary problem is readily solved numerically, using standard numerical techniques (see Section
19.5 of Press et al., 1986). Lombardi and Bertin (1999a) proposed a direct method for solving the
variational principle (5.18) which, for rectangular "elds, is equivalent to Fourier methods for the
solution of the Neumann problem (5.17).

A comparison between these di!erent "nite-"eld inversion equations was performed in Seitz and
Schneider (1996) and in Squires and Kaiser (1996) by numerical simulations. Of all the inversions
tested, inversion (5.17) performs best on all scales (Seitz and Schneider, 1996; Fig. 6 of Squires and
Kaiser, 1996). Indeed, Lombardi and Bertin (1998b) showed analytically that the solution of
Eq. (5.17) provides the best unbiased estimate of the surface mass density. Relations (5.15)}(5.18)
can be generalised to the non-weak case by replacing i with K and uc with u

g
.

5.2.4. Accounting for a redshift distribution of the sources
We now describe how the preceding mass reconstructions must be modi"ed if the sources have

a broad redshift distribution. In fact, only minor modi"cations are needed. The relation SeT"g for
a single source redshift is replaced by Eq. (4.28), which gives an estimate for the shear in terms of the
mean image ellipticities and the surface mass density. This relation can be applied iteratively:

Begin with i(0)"0; then, Eq. (4.28) yields a "rst guess for the shear c(1)(h) by setting c"0 on the
right-hand side. From (5.16), or equivalently by solving (5.17), the corresponding surface mass
density i(1)(h) is obtained. Inserting i(1) and c(1) on the right-hand side of Eq. (4.28), a new estimate
c(2)(h) for the shear is obtained, and so forth.

This iteration process quickly converges. Indeed, the di$culty mentioned in footnote 9 no
longer occurs since the critical curves and the curve(s) i"1 are e!ectively smeared out by the
redshift distribution, and so the iteration converges even faster than in the case of a single-source
redshift.

Since i(n) is determined only up to an additive constant for any c(n), the solution of the iteration
depends on the choice of this constant. Hence, one can obtain a one-parameter family of mass
reconstructions, like in (5.10). However, the resulting mass-sheet degeneracy can no longer be
expressed analytically due to the complex dependence of (4.28) on i and c. In the case of weak
lensing, it corresponds to adding a constant, as before. An approximate invariance transformation
can also be obtained explicitly for mildly non-linear clusters with i[0.7 and detA'0 every-
where. In that case, Eq. (4.29) holds approximately, and can be used to show (Seitz and Schneider,
1997) that the invariance transformation takes the form

i(h)Pi@(h)"j i(h)#
(1!j)SZT

SZ2T
. (5.19)

In case of a single redshift z
4
, such that Z(z

4
)"SZT, this transformation reduces to (5.10) for SZTi.

We point out that the invariance transformation (5.19) in the case of a redshift distribution of
sources is of di!erent nature than that for a single-source redshift. In the latter case, the reduced
shear g(h) is invariant under transformation (5.10). Therefore, the probability distribution of the
observed galaxy ellipticities is invariant, since it involves only the intrinsic ellipticity distribution
and g. For a redshift distribution, the invariance transformation keeps the mean image ellipticities
invariant, but the probability distributions are changed. Several strategies were explored in Seitz
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and Schneider (1997) to utilise this fact for breaking the invariance transformation (see also
Lombardi and Bertin, 1999b; Gautret et al., 2000). While possible, in principle, the corresponding
e!ect on the observed ellipticity distribution is too small for this approach to be feasible with
existing data.

5.2.5. Breaking the mass-sheet degeneracy
Eq. (5.11) shows that the invariance transformation (5.10) a!ects the magni"cation. Hence, the

degeneracy can be lifted with magni"cation information. As discussed in Section 4.4, two methods
to obtain magni"cation information have been proposed. Detections of the number-density e!ect
have so far been reported for two clusters (Cl 0024#16, Fort et al., 1997; Abell, 1689; Taylor et al.,
1998). Whereas the information provided by the number density e!ect is less e$cient than shear
measurements (see Section 4.4.3), these two clusters appear to be massive enough to allow
a signi"cant detection. In fact, Taylor et al. (1998) obtained a two-dimensional mass reconstruction
of the cluster A 1689 from magni"cation data.

In the case of weak lensing, and thus small magni"cations, the magni"cation can locally be
translated into a surface mass density } see (4.44). In general, the relation between k and i is
non-local, since k also depends on the shear. Various attempts to account for this non-locality have
been published (van Kampen, 1998; Dye and Taylor, 1998). However, it must be noted that the
surface mass density cannot be obtained from magni"cation alone since the magni"cation also
depends on the shear caused by matter outside the data "eld. In practice, if the data "eld is
su$ciently large and no mass concentration lies close to but outside the data "eld, the mass
reconstruction obtained from magni"cation can be quite accurate.

In order to break the mass-sheet degeneracy, it su$ces in principle to measure one value of the
magni"cation: Either the magni"cation at one location in the cluster, or the average magni"cation
over a region. We shall see later in Section 5.5.1 how local magni"cation information can be
combined with shear measurements. Doing it the naive way, expressing i in terms of k and c, is
a big waste of information: Since there is only one independent scalar "eld (namely the de#ection
potential t) describing the lens, one can make much better use of the measurements of c and k than
just combining them locally; the relation between them should be used to reduce the error on i.

5.2.6. Accuracy of cluster mass determinations
The mass-sheet degeneracy fundamentally limits the accuracy with which cluster masses can be

determined from shear measurements if no additional assumptions are introduced. Furthermore,
cosmologists are traditionally interested in the masses of clusters inside spherical volumes (e.g.,
inside the virial radius), whereas lensing measures the mass in cylinders, i.e., the projected mass. On
the other hand, cosmological simulations show that cluster mass pro"les are quite similar in shape
(e.g., Navarro et al., 1996b). Assuming such a universal density pro"le, both of these e!ects can
approximately be accounted for.

The relation between projected mass within the virial radius and that inside a sphere with virial
radius has been investigated by Reblinsky and Bartelmann (1999a) and Metzler et al. (1999), using
numerical cluster simulations. The ratio of these two masses is by de"nition 51, but as these
authors show, this ratio can be larger than unity by several tens of a per cent, due to projection of
additional mass in front of or behind the cluster proper. As clusters are preferentially located inside
"laments, the largest deviations occur when the "lament is oriented along the line-of-sight to the
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cluster. The amplitude of this e!ect decreases with higher cluster masses. The projection bias is of
interest only when comparing lensing masses with cosmological predictions of spherical masses.
However, at least when cosmological predictions are derived from numerical simulations, one can
equally well extract the projected masses; the projection bias therefore does not a!ect the use of
cluster mass estimates from lensing for cosmology.

Using cluster mass models obtained from N-body simulations, Brainerd et al. (1999) showed
that, when the observed shear signal is related to the mass using the isothermal relation (cf.
Section 3.1.5) M

3
((r)"4r2c(r)p

#3
for the mass inside spheres of radius r, or M

2
((r)"2pr2c(r)R

#3
for the projected mass inside r"D

$
h, fairly accurate masses of clusters can be derived from weak

lensing. In particular, the virial masses of clusters can be determined with high accuracy, provided
the shear measurements extend to such large distances. Whereas most of the previous weak-lensing
cluster studies, as described in Section 5.4, do not cover such large an area, the upcoming
wide-"eld imaging cameras will allow one to do this in the near future. Nevertheless, the projection
bias needs to be kept in mind when masses of clusters are quoted from weak-lensing analyses using
relatively small angular "elds.

5.3. Aperture mass and multipole measures

Having reconstructed the mass distribution, we can estimate the local dispersion of i (e.g.
Lombardi and Bertin, 1998b; van Waerbeke, 2000); cf. Eq. (5.7). However, the errors at di!erent
points are strongly correlated, and so it makes little sense to attach an error bar to each point of the
mass map. Although mass maps contain valuable information, it is sometimes preferable to reduce
them to a small set of numbers such as the mass-to-light ratio, or the correlation coe$cient between
the mass map and the light distribution. One of the quantities of interest is the total mass inside
a given region. As became clear in the last section, this quantity by itself cannot be determined from
observed image ellipticities due to the invariance transformation. But a quantity related to it,

f(h;0
1
, 0

2
),i6 (h; 0

1
)!i6 (h;0

1
,0

2
) , (5.20)

the di!erence between the mean surface mass densities in a circle of radius 0
1

around h and in an
annulus of inner and outer radii 0

1
and 0

2
, respectively, can be determined in the weak-lensing

case, since then the invariance transformation corresponds to an additive constant in i which
drops out of (5.20). We show in this section that quantities like (5.20) can directly be obtained from
the image ellipticities without the need for a two-dimensional mass map. In Section 5.3.1, we
derive a generalised version of (5.20), whereas we consider the determination of mass multipoles in
Section 5.3.2. The prime advantage of all these aperture measures is that the error analysis is
relatively straightforward.

5.3.1. Aperture mass measures
Generally, aperture mass measures are weighted integrals of the local surface mass density

M
!1

(h
0
)"P d2hi(h);(h!h

0
) (5.21)

with weight function ;(h). Assume now that the weight function is constant on self-similar
concentric curves. For example, the f-statistics (5.20), introduced by Kaiser (1995), is of the form
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10There are of course other ways to derive (5.25), e.g. by inserting (5.4) into (5.21). See Squires and Kaiser (1996) for
a di!erent approach using Gauss's law.

(5.21), with a weight function that is constant on circles, ;(0)"(p02
1
)~1 for 04040

1
,

;(0)"[p(02
2
!02

1
]~1 for 0

1
(040

2
, and zero otherwise.

Let the shape of the aperture be described by a closed curve c(j), j3I, where I is a "nite interval,
such that c]c5 ,c

1
c5
2
!c

2
c5
1
'0 for all j3I. We can then uniquely de"ne a new coordinate

system (b, j) by choosing a centre h
0

and de"ning h"h
0
#bc(j). The weight function should be

constant on the curves c(j) so that it depends only on b. In the new coordinate system, (5.21) reads

M
!1

(h
0
)"P

=

0

db b;(b)Q
I

dj c]c5 i[h
0
#bc(j)] , (5.22)

where the factor b c]c5 is the Jacobian determinant of the coordinate transformation. Eq. (5.22) can
now be transformed in three steps; (1) by a partial integration with respect to b; (2) by replacing
partial derivatives of i with partial derivatives of c using Eq. (5.12); and (3) by removing partial
derivatives of c in another partial integration. In carrying out these steps, we assume that the
weight function is compensated,

Pdb b;(b)"0 . (5.23)

Introducing

Q(b),
2
b2P

b

0

db@ b@;(b@)!;(b) (5.24)

and writing the curve c in complex notation, C(j)"c
1
(j)#i c

2
(j), leads to the "nal result

(Schneider and Bartelmann, 1997)

M
!1

(h
0
)"P d2hQ[b(h)]

I[c(h)CHCQ H]
I[CHCQ ]

, (5.25)

where the argument j of C is to be evaluated at position h"h
0
#bc(j).10 The numerator in the

"nal term of (5.25) projects out a particular component of the shear, whereas the denominator is
part of the Jacobian of the coordinate transformation. Constraint (5.23) assures that an additive
constant in i does not a!ect M

!1
. Expression (5.25) has several nice properties which render it

useful:

(1) If the function ;(b) is chosen such that it vanishes for b'b
2
, then from (5.23) and (5.24),

Q(b)"0 for b'b
2
. Thus, the aperture mass can be derived from the shear in a "nite region.

(2) If;(b)"const for 04b4b
1
, then Q(b)"0 in that interval. This means that the aperture mass

can be determined solely from the shear in an annulus b
1
(b(b

2
. This has two advantages

which are relevant in practice. First, if the aperture is centred on a cluster, the bright central
cluster galaxies may prevent the detection of a large number of faint background galaxies there,
so that the shear in the central part of the cluster may be di$cult to measure. In that case it is
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still possible to determine the total mass inside the cluster core using (5.25) with an appropriate-
ly chosen weight function ;. Second, although in general the shear cannot be determined
directly from the image ellipticities [but only the reduced shear c(1!i)~1], we can choose the
size b

1
of the inner boundary of the annulus su$ciently large that i;1 in the annulus, and

then c+g is an accurate approximation. Hence, in that case the mean image ellipticity directly
yields an estimate of the shear. Then, integral (5.25) can be transformed into a sum over galaxy
images lying in the annulus, yielding M

!1
directly in terms of the observables. This in turn has

the great advantage that an error analysis of M
!1

is fairly simple.

We consider circular apertures as an example, for which (b, j)"(h, u) and C(u)"exp(iu). Then,
I(CHCQ )"1, and

I(cCHCQ H)"c
5
(h; h

0
) :"![c

1
cos(2u)#c

2
sin(2u)]"!R[c(h#h

0
)e~2*r] , (5.26)

where we have de"ned the tangential component c
5
of the shear relative to the point h

0
. Hence, for

circular apertures (5.25) becomes

M
!1

(h
0
)"P d2hQ(DhD) c

5
(h; h

0
) (5.27)

(Kaiser et al., 1994; Schneider, 1996b). The f-statistics (5.20) is obtained from (5.27) by setting
Q(h)"02

2
h~2[p(02

2
!02

1
)]~1 for 0

1
4h40

2
and Q(h)"0 otherwise, so that

f(h
0
; 0

1
,0

2
)"

02
2

[p(02
2
!02

1
)]P d2h

c
5
(h; h

0
)

DhD2
, (5.28)

where the integral is taken over the annulus 0
1
4h40

2
.

For practical purposes, the integral in (5.27) is transformed into a sum over galaxy images.
Recalling that e is an estimator for c in the weak-lensing case, and that the weight function can be
chosen to avoid the strong-lensing regime, we can write

M
!1

(h
0
)"

1
n
+
i

Q(Dh
i
!h

0
D) e

5i
(h

0
) , (5.29)

where we have de"ned, in analogy to c
5
, the tangential component e

5i
of the ellipticity of an image at

h
i
relative to the point h

0
by

e
5i
"!R(e e~2*r) , (5.30)

u is the polar angle of h!h
0
, and n is the number density of galaxy images. The rms dispersion

p(M
!1

) of M
!1

in the case of no lensing is found from the (two dimensional) dispersion pe of the
intrinsic ellipticity of galaxies,

p(M
!1

)"
pe

21@2nC+
i

Q2(Dh
i
!h

0
D)D

1@2
. (5.31)

The rms dispersion in the presence of lensing will deviate only weakly from p(M
!1

) as long as
the assumption of weak lensing in the annulus is satis"ed. Hence, p(M

!1
) can be used as an

error estimate for the aperture mass and as an estimate for the signal-to-noise ratio of a mass
measurement.
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11The method is not restricted to circular apertures, but this case will be most relevant for measuring multipole
moments.

This opens the interesting possibility to search for (dark) mass concentrations using the aperture
mass (Schneider, 1996b). Consider a weight function;with the shape of a Mexican hat, and a data
"eld U on which apertures of angular size h can be placed. For each aperture position, one can
calculate M

!1
and the dispersion. The dispersion can be obtained either from the analytical formula

(5.31), or it can be obtained directly from the data, by randomising the position angles of all galaxy
images within the aperture. The dispersion can be obtained from many realisations of this
randomisation process. Large values of M

!1
will be obtained for mass concentrations whose

characteristic size and shape is close to that of the chosen "lter function;. Thus, by varying the size
h of the "lter, di!erent mass concentrations will preferentially be selected. The aperture mass is
insensitive to mass concentrations of much smaller and much larger angular scales than the "lter
size.

We have considered in Section 4.5 the signal-to-noise ratio for the detection of a singular
isothermal sphere from its weak-lensing e!ect. Estimate (4.54) was obtained by an optimal
weighting scheme for this particular mass distribution. Since real mass concentrations will deviate
from this pro"le, and also from the assumed symmetry, the "lter function ; should have a more
generic shape. In that case, the S/N will have the same functional behaviour as in (4.54), but the
prefactor depends on the exact shape of;. For the "lter function used in Schneider (1996b), S/N is
about 25% smaller than in (4.54). Nevertheless, one expects that the aperture-mass method will be
sensitive to search for intermediate-redshift halos with characteristic velocity dispersions above
&600 kms~1.

This expectation has been veri"ed by numerical simulations, which also contained larger and
smaller-scale mass perturbations. In addition, a detailed strong-lensing investigation of the cluster
MS 1512#62 has shown that its velocity dispersion is very close to &600 kms~1, and it can be
seen from the weak-lensing image distortion alone with very high signi"cance (Seitz et al., 1998b),
supporting the foregoing quantitative prediction. Thus, this method appears to be a very promising
way to obtain a mass-selected sample of halos which would be of great cosmological interest
(cf. Reblinsky and Bartelmann, 1999b). We shall return to this issue in Section 6.7.2.

5.3.2. Aperture multipole moments
Since it is possible to express the weighted mass within an aperture as an integral over the shear,

with the advantage that in the weak-lensing regime this integral can be replaced by a sum over
galaxy ellipticities, it is natural to ask whether a similar result holds for multipole moments of the
mass. As shown in Schneider and Bartelmann (1997), this is indeed possible, and we shall brie#y
outline the method and the result.

Consider a circular aperture11 centred on a point h
0
. Let ;(DhD) be a radial weight function, and

de"ne the nth multipole moment by

Q(n),P
=

0

dh hn`1;(h)P
2p

0

du en*ri(h
0
#h) . (5.32)

372 M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



This can be replaced by an integral over c in two ways: (5.32) can be integrated by parts with respect
to u (for nO0), or with respect to h, again utilising (5.12). The resulting expressions are assumed to
contain no boundary terms, which restricts the choice for the weight function;(h). The remaining
integrals then contain partial derivatives of i with respect to u and h, respectively. Writing (5.12) in
polar coordinates, these partial derivatives can be replaced by partial derivatives of the shear
components with respect to u and h. Integrating those by parts with respect to the appropriate
coordinate, and enforcing vanishing boundary terms, we "nd two di!erent expressions for the Q(n):

Q(n)r,h"Pd2h q(n)r,h(h)c(h
0
#h) . (5.33)

The two expressions for q(n) are formally very di!erent, although it can be shown that the resulting
two expressions for Q(n) are equivalent. The two very di!erent equations for the same result are due
to the fact that the two components of the shear c are not mutually independent, which was not
used in the derivation of (5.33).

We now have substantial freedom to choose the weight function and to select one of the two
expressions for Q(n), or even to take a linear combination of them. We note the following interesting
examples:

(1) The weight function ;(h) can be chosen to vanish outside an annulus, to be piece-wise
di!erentiable, and to be zero on the inner and outer boundary of the annulus. The Q(n) for nO0
can then be expressed as integrals of the shear over the annulus, with no further restrictions on
;. In particular, ;(h) does not need to be a compensated weight function.

(2) ;(h) can be a piece-wise di!erentiable weight function which is constant for h4h
1
, and

decreases smoothly to zero at h"h
2
'h

1
. Again, Q(n) for nO0 can be expressed as an integral

of the shear in the annulus h
1
4h4h

2
. Hence, as for the aperture mass, multipole moments in

the inner circle can be probed with the shear in the surrounding annulus.
(3) One can choose, for n'2, a piece-wise di!erentiable weight function ;(h) which behaves like

h~2n for h'h
2

and decreases to zero at h"h
1
(h

2
. In that case, the multipole moments of the

matter outside an annulus can be probed with data inside the annulus.

For practical applications, the integral in (5.33) is replaced by a sum over galaxy ellipticities. The
dispersion of this sum is easily obtained in the absence of lensing, with an expression analogous to
(5.31). Therefore, the signal-to-noise ratio for the multipole moments is easily de"ned, and thus also
the signi"cance of a multipole-moment detection.

5.4. Application to observed clusters

Soon after the parameter-free two-dimensional mass reconstruction was suggested by Kaiser
and Squires (1993), their method was applied to the cluster MS 1224 (Fahlman et al., 1994). Since
then, several groups have used it to infer the mass pro"les of clusters. In parallel to this, several
methods have been developed to measure the shear from CCD data, accounting for PSF smearing
and anisotropy, image distortion by the telescope, noise, blending etc. } see the discussion in
Section 4.6. We will now summarise and discuss several of these observational results.

Tyson et al. (1990) made the "rst attempt to constrain the mass distribution of a cluster from
a weak-lensing analysis. They discovered a statistically signi"cant tangential alignment of faint
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galaxy images relative to the centre of the clusters A 1689 and Cl 1409#52. Their `lens distortion
mapa obtained from the image ellipticities yields an estimate of the mass distribution in these
clusters. A detailed analysis of their method is given in Kaiser and Squires (1993). From a compari-
son with numerical simulations, Tyson et al. showed that the best isothermal sphere model for the
clusters has a typical velocity dispersion of p

v
&1300$200 km s~1 for both clusters. In particular,

their analysis showed that di!use dark matter in the cluster centres is needed to account for the
observed image distortions.

The inversion method developed by Kaiser and Squires (1993) provided a systematic approach
to reconstruct the mass distribution in clusters. It was "rst applied to the cluster MS 1224#20
(Fahlman et al., 1994) at redshift z

$
"0.33, which had been selected for its high X-ray luminosity.

Their square data "eld with side length &14@ was composed of several exposures, most of them
with excellent seeing. They estimated the shear from image ellipticities, corrected for the PSF
anisotropy, and applied a correction factor f as de"ned in Section 4.6.1. They found f&1.5 in
simulations, in very good agreement with Wilson et al. (1996). The resulting shear pattern, obtained
from 2147 galaxy images, clearly shows a circular pattern around the cluster centre as de"ned by
the centroid of the optical and X-ray light. Using the Kaiser and Squires reconstruction method
(5.8), Fahlman et al. produced maps of the dimensionless surface mass density i(h), both by taking
all galaxy images into account, and after splitting the galaxy sample into a &brighter' and &fainter'
sample of roughly equal size. Although di!ering in detail, the resulting mass show an overall
similarity. In particular, the position of the mass centre is very similar in all maps.

Fahlman et al. applied the aperture mass method to determine the cluster mass } see (5.21) and
(5.29) } in an annulus centred on the cluster centre with inner radius 0

1
"2.76@ and an outer radius

such that the annulus nearly "ts into their data "eld. The lower limit to the mean surface mass
density in the annulus is i6 (2.76@)5f"0.06$0.013. To convert this into an estimate of the
physical surface mass density and the total mass inside the aperture, the mean distance ratio D

$4
/D

4
for the galaxy population has to be estimated, or equivalently the mean value of Z as de"ned
after (5.19).

While the redshift distribution is known statistically for the brighter sub-sample from redshift
surveys, the use of the fainter galaxies requires an extrapolation of the galaxy redshifts. From that,
Fahlman et al. estimated the mass within a cylinder of radius 0

1
"2.76@, corresponding to

0.48h~1Mpc for an Einstein}de Sitter cosmology, to be &3.5]1014h~1M
_

. This corresponds to
a mass-to-light ratio (in solar units) of M/¸&800h. Carlberg et al. (1994) obtained 75 redshifts of
galaxies in the cluster "eld, of which 30 are cluster members. From their line-of-sight velocity
dispersion, the cluster mass can be estimated by a virial analysis. The resulting mass is lower by
a factor &3 than the weak-lensing estimate. The mass-to-light ratio from the virial analysis is
much closer to typical values in lower-redshift clusters like Coma, which has M/¸+270h~1. The
high mass estimate of this cluster was recently con"rmed in a completely independent study by
Fischer (1999).

The origin of this large apparent discrepancy is not well understood yet, and several possibilities
are discussed in Kaiser et al. (1994). It should be pointed out that lensing measures the total mass
inside a cone, weighted by the redshift-dependent factor D

$
D

$4
/D

4
, and hence the lensing mass

estimate possibly includes substantial foreground and background material. While this may cause
an overestimate of the mass, it is quite unlikely to cause an overestimate of the mass-to-light ratio
of the total material inside the cone. Foreground material will contribute much more strongly to
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the light than to the measured mass, and additional matter behind the cluster will not be very
e$cient as a lens. The uncertainty in the redshift distribution of the faint galaxies translates into an
uncertainty in the mass. However, all background galaxies would have to be put at a redshift &4
to explain the mass discrepancy, while redshift surveys show that the brighter sub-sample of
Fahlman et al. has a mean redshift below unity. The mass estimate is only weakly dependent on the
assumed cosmological model. On the other hand, the light distribution of the cluster MS 1224 is
not circular, and it cannot be excluded that this cluster is not in virial equilibrium.

Two images of the cluster Cl 0024#17 were analysed by Bonnet et al. (1994). One was centred
on the cluster itself and yielded the shear in the inner part of the cluster. The second image was
o!-centred by several arcmin and allowed, for the "rst time, a shear measurement out to large
radial distances. They detected a clear shear signal out to distances Z1h~1Mpc. In addition, they
found an apparent distortion of the nearly circular shear pattern from the cluster which is most
directly interpreted as a mass concentration. However, it does not show an obvious concentration
of galaxies. In fact, an X-ray observation of this cluster reveals a weak X-ray source close to the
position where the mass concentration was seen in the shear map (Soucail et al., 2000), although
with marginal signi"cance. This cluster (at z"0.39) hosts a giant arc system and has an Einstein
radius of &30A; together with the redshift of z"1.675 of the arc (Broadhurst et al., 1999), this
indicates that the cluster is indeed very massive. Despite that, the cluster is a comparatively faint
and cool X-ray source, indicating a clear and interesting discrepancy between mass estimates from
the X-rays and both strong and weak lensing.

Squires et al. (1996a) compared the mass pro"les derived from weak lensing data and the X-ray
emission of the cluster A 2218. Under the assumption that the hot X-ray-emitting intra-cluster gas
is in hydrostatic equilibrium between gravity and thermal pressure support, the mass pro"le of
the cluster can be constrained. The reconstructed mass map qualitatively agrees with the optical
and X-ray light distributions. Using the aperture mass estimate, a mass-to-light ratio of
M/¸"(440$80)h in solar units is found. The radial mass pro"le appears to be #atter than
isothermal. Within the error bars, it agrees with the mass pro"le obtained from the X-ray analysis,
with a slight indication that at large radii the lensing mass is larger than the mass inferred from
X-rays.

Abell 2218 also contains a large number of arcs and multiply imaged galaxies which have been
used by Kneib et al. (1996) to construct a detailed mass model of the cluster's central region. In
addition to the main mass concentration, there is a secondary clump of cluster galaxies whose
e!ects on the arcs is clearly visible. The separation of these two mass centres is 67A. Whereas the
resolution of the weak lensing mass map as obtained by Squires et al. is not su$cient to reveal
a distinct secondary peak, the elongation of the central density contours extend towards the
secondary galaxy clump.

General agreement between the reconstructed mass map and the distribution of cluster galaxies
and X-ray emission has also been found for the two clusters Cl 1455#22 (z"0.26) and Cl
0016#16 (z"0.55) by Smail et al. (1995a). Both are highly X-ray luminous clusters in the Einstein
Extended Medium Sensitivity Survey (EMSS; Stocke et al., 1991). The orientation and ellipticity of
the central mass peak is in striking agreement with those of the galaxy distribution and the X-ray
map. However, the authors "nd some indication that the mass is more centrally condensed than the
other two distributions. In addition, given the "nite angular resolution of the mass map, the core
size derived from weak lensing is most likely only an upper bound to the true value, and in both
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Fig. 14. Left panel: WFPC2 image of the cluster Cl0939#4713 (A 851); North is at the bottom, East to the right. The
cluster centre is located at about the upper left corner of the left CCD, a secondary maximum of the bright (cluster)
galaxies is seen close to the interface of the two lower CCDs, and a minimum in the cluster light is at the interface between
the two right CCDs. In the lensing analysis, the data from the small CCD (the Planetary Camera) were not used.
Right panel: The reconstructed mass distribution of A 851, assuming a mean redshift of the N"295 galaxies with
244R425.5 of SzT"1 (from Seitz et al., 1996).

clusters the derived core size is signi"cantly larger than found in clusters with giant luminous arcs
(see, e.g., Fort and Mellier, 1994).

The mass-to-light ratios for the two clusters are &1000h and &740h, respectively. However,
at least for Cl 0016#16, the mass scale is fairly uncertain, owing to the high cluster redshift and the
unknown redshift distribution of the faint galaxies. The mean value of D

$4
/D

4
must be estimated

from an assumed distribution p(z).
The unprecedented imaging quality of the refurbished Hubble Space Telescope (HST) can be used

pro"tably for weak lensing analyses. Images taken with the Wide Field Planetary Camera 2
(WFPC2) have an angular resolution of order 0.1A, limited by the pixel size. Because of this superb
resolution and the lower sky background, the number density of galaxy images for which a shape
can reliably be measured is considerably larger than from the ground, so that higher-resolution
mass maps can be determined. The drawback is the small "eld covered by the WFPC2, which
consists of 3 CCD chips with 80A side-length each. Using the "rst publicly available deep image of
a cluster obtained with the WFPC2, Seitz et al. (1996) have constructed a mass map of the cluster
Cl 0939#47 (z"0.41). Fig. 14 clearly shows a mass peak near the left boundary of the frame
shown. This maximum coincides with the cluster centre as determined from the cluster galaxies
(Dressler and Gunn, 1992). Furthermore, a secondary maximum is clearly visible in the mass map,
as well as a pronounced minimum. When compared to the optical image, a clear correlation with
the bright (cluster) galaxies is obvious. In particular, the secondary maximum and the minimum
correspond to the same features in the bright galaxy distribution. A formal correlation test
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con"rms this similarity. Applying the maximum-likelihood mass reconstruction technique (Seitz
et al., 1998c; see Section 5.4) to the same HST image, Geiger and Schneider (1999) constructed
a higher-resolution map of this cluster. The angular resolution achieved is much higher in the
cluster centre, predicting a region in which strong-lensing e!ects may occur. Indeed, Trager et al.
(1997) reported on a highly elongated arc and a triple image, with both source galaxies having
a redshift z+3.97.

The X-ray map of this cluster (Schindler and Wambsganss, 1997) shows that the two mass peaks
are also close to two X-ray components. The determination of the total mass inside the WFPC2
frame is di$cult, for two reasons: First, the high redshift of the cluster implies that the mean value
of D

$4
/D

4
depends quite sensitively on the assumed redshift distribution of the background

galaxies. Second, the small "eld of the WFPC2 precludes the measurement of the surface mass
density at large distance where i tends to zero, and thus the mass-sheet degeneracy implies
a considerable uncertainty in the mass scale. Attempting to lift the mass sheet degeneracy with the
number-density e!ect } see Section 4.4.1 } a mass-to-light ratio of &250h was derived within
the WFPC2 aperture. This value is also a!ected by the unknown fraction of cluster members in the
catalog of faint galaxies. Seitz et al. (1996) assumed that the spatial distribution of faint cluster
galaxies follows that of brighter cluster galaxies. The striking di!erence between the M/¸ ratios for
this and the other clusters described above may be related to the fact that Cl 0939#47 is the
highest-redshift cluster in the Abell catalog (A 851). Hence, it was selected by its high optical
luminosity, whereas the previously mentioned clusters are all X-ray selected. The X-ray luminosity
of Cl 0939#47 is fairly small for such a rich cluster (Schindler and Wambsganss, 1996). Since
X-ray luminosity and cluster mass are generally well correlated, the small M/¸-ratio found from
the weak lensing analysis is in agreement with the expectations based on the high optical #ux and
the low X-ray #ux. Note that the large spread of mass-to-light ratios as found by the existing cluster
mass reconstructions is unexpected in the frame of hierarchical models of structure formation and
thus poses an interesting astrophysical problem.

Hoekstra et al. (1998) reconstructed the mass distribution in the cluster MS 1358#62 from
a mosaic of HST images, so that their data "eld in substantially larger than for a single HST
pointing (about 8@]8@). This work uses the correction method presented in Section 4.6.2, thus
accounting for the relatively strong PSF anisotropy at the edges of each WFPC2 chip. A weak-
lensing signal out to 1.5Mpc is found. The X-ray mass is found to be slightly lower than the
dynamical mass estimate, but seems to agree well with the lensing mass determination.

Luppino and Kaiser (1997) found a surprisingly strong weak-lensing signal in the "eld of the
high-redshift cluster MS 1054!03 (z"0.83). This implies that the sheared galaxies must have
an appreciably higher redshift than the cluster, thus strongly constraining their redshift dis-
tribution. In fact, unless the characteristic redshift of these faint background galaxies is Z1.5,
this cluster would have an unrealistically large mass. It was also found that the lensing signal
from the bluer galaxies is stronger than from the redder ones, indicating that the characteristic
redshift of the bluer sample is higher. In fact, the mass estimated assuming Sz

4
T"1.5 agrees well

with results from analyses of the X-ray emission (Donahue et al., 1998) and galaxy kinematics
(Tran et al., 1999).

Using an HST mosaic image in two "lters, Hoekstra et al. (2000) also studied MS 1054. They
found a tangential distortion which is smaller than that obtained by Luppino and Kaiser (1997) by
about a factor of 1.5, but fairly well in agreement with that obtained by Clowe et al. (2000) from
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Keck imaging. They estimated the redshift distribution of the background galaxies from the
photometric redshifts obtained in the Hubble Deep Fields, both as a function of magnitude and of
colour. This enabled them to study the relative lensing strength SZT as a function of these two
observables, "nding, as expected, the lensing strength increasing towards fainter magnitudes and,
in agreement with Luppino and Kaiser (1997) and Clowe et al. (2000), with bluer colour. The
estimated mass is in very good agreement with that obtained from the X-ray temperature of this
cluster. The mass map shows three distinct peaks which are in good correspondence with the
observed distribution of cluster galaxies. Clowe et al. (1998) derived weak-lensing maps for two
additional clusters at z&0.8, namely MS 1137#66 at z"0.783 and RXJ 1716#67 at z"0.813.

The large-format CCD cameras allow weak-lensing studies of low-redshift clusters which subtend
a larger solid angle on the sky. As a "rst example, Jo!re et al. (1999) obtained the mass map for the
cluster Abell 3667 (z"0.055). Investigations of low-redshift clusters are particularly useful since
for them more detailed X-ray and optical information is available than for higher-redshift ones.

The mass distribution in the supercluster MS 0302#17 at z"0.42 was reconstructed by Kaiser
et al. (1998) in a wide-"eld image of size &30@. The supercluster consists of three clusters which are
very close together on the sky and in redshift. The image contains about 30,000 galaxies from which
a shear can be measured. This shear was found to correlate strongly with the distribution of the
early-type (foreground) galaxies in the "eld, provided that the overall mass-to-light ratio is about
250h. Each of the three clusters, which are also seen in X-rays, is recovered in the mass map. The
ratios between mass and light or X-ray emission di!er slightly across the three clusters, but the
di!erences are not highly signi"cant.

A magni"cation e!ect was detected from the depletion of the number counts (see Section 4.4.1) in
two clusters. Fort et al. (1997) discovered that the number density of very faint galaxies drops
dramatically near the critical curve of the cluster Cl 0024#16, and remains considerably lower
than the mean number density out to about twice the Einstein radius. This is seen in photometric
data with two "lters. Fort et al. (1997) interpret this broad depletion curve in terms of a broad
redshift distribution of the background galaxies, so that the location of the critical curve of the
cluster varies over a large angular scale. A spatially dependent number depletion was detected in
the cluster A 1689 by Taylor et al. (1998).

These examples should su$ce to illustrate the current status of weak-lensing cluster mass
reconstructions. For additional results, see Squires et al. (1996b), Squires et al. (1997), Fischer et al.
(1997), Fischer and Tyson (1997), and Athreya et al. (1999). Many of the di$culties have been
overcome; e.g., the method presented in Section 4.6.2 appears to provide an accurate correction
method for PSF e!ects. The quantitative results, for example for the M/¸-ratios, are somewhat
uncertain due to the lack of su$cient knowledge on the source redshift distribution, which applies
in particular to the high-redshift clusters.

Further large-format HST mosaic images either are already or will soon become available, e.g.
for the clusters A 2218, A 1689 and MS 1054!03. Their analysis will substantially increase the
accuracy of cluster mass determinations from weak lensing compared to ground-based imaging.

5.5. Outlook

We have seen in the preceding subsection that "rst results on the mass distribution in clusters
were derived with the methods described earlier. Because weak lensing is now widely regarded as
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the most reliable method to determine the mass distribution of clusters, since it does not rely on
assumptions on the physical state and symmetries of the matter distribution, further attempts at
improving the method are in progress, and some of them will brie#y be outlined below.

In particular, we describe a method which simultaneously accounts for shear and magni"cation
information, and which can incorporate constraints from strong-lensing features (such as arcs and
multiple images of background sources). A method for the determination of the local shear is
described next which does not rely on the detection and the quadrupole measurement of individual
galaxies, and instead makes use of the light from very faint galaxies which need not be individually
detected. We will "nally consider the potential of weak lensing for determining the redshift
distribution of galaxies which are too faint to be investigated spectroscopically, and report on "rst
results.

5.5.1. Maximum-likelihood cluster reconstructions
The mass reconstruction method described above is a direct method: the locally averaged

observed image ellipticities SeT are inserted into an inversion equation such as (5.10) to "nd the
mass map i(h). The beauty of this method is its simplicity and computational speed. Mass
reconstructions from the observed image ellipticities are performed in a few CPU seconds.

The drawback of this method is its lack of #exibility. No additional information can be
incorporated into the inversion process. For example, if strong-lensing features like giant arcs or
multiple galaxy images are observed, they should be included in the mass reconstruction. Since
such strong-lensing features typically occur in the innermost parts of the clusters (at [30A from
cluster centres), they strongly constrain the mass distribution in cluster cores which can hardly be
probed by weak lensing alone due to its "nite angular resolution. A further example is the
incorporation of magni"cation information, as described in Section 4.4, which can in principle not
only be used to lift the mass-sheet degeneracy, but also provides local information on the shape of
the mass distribution.

An additional problem of direct inversion techniques is the choice of the smoothing scale which
enters the weight factors u

i
in (5.16). We have not given a guideline on how this scale should be

chosen. Ideally, it should be adapted to the data. In regions of strong shear, the signal-to-noise ratio
of a shear measurement for a "xed number of galaxy images is larger than in regions of weak shear,
and so the smoothing scale can be smaller there.

Recently, these problems have been attacked with inverse methods. Suppose the mass distribu-
tion of a cluster is parameterised by a set of model parameters p

k
. These model parameters could

then be varied until the best-"tting model for the observables is found. Considering for example the
observed image ellipticities e

i
and assuming a non-critical cluster, the expectation value of e

i
is the

reduced shear g at the image position, and the dispersion is determined (mainly) by the intrinsic
dispersion of galaxy ellipticities pe . Hence, one can de"ne a s2-function

s2"
N'

+
i/1

De
i
!g(h

i
)D2

p2e
(5.34)

and minimise it with respect to the p
k
. A satisfactory model is obtained if s2 is of order N

'
at its

minimum, as long as the number of parameters is much smaller than N
'
. If the chosen para-

meterisation does not achieve this minimum value, another one must be tried. However, the
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12 It is important to note that the de#ection potential t rather than the surface mass density i (as in Squires
and Kaiser, 1996) should be parameterised, because shear and surface mass density depend on the local behaviour of
t, while the shear cannot be obtained from the local i, and not even from i on a "nite "eld. In addition, the local
dependence of i and c on t is computationally much more e$cient than calculating c by integrating over i as in Bridle
et al. (1998).

resulting mass model will depend on the parameterisation which is a serious drawback relative to
the parameter-free inversion methods discussed before.

This problem can be avoided with &generic' mass models. For instance, the de#ection potential
t(h) can be composed of a "nite sum of Fourier modes (Squires and Kaiser, 1996), whose
amplitudes are the parameters p

k
.12 The number of Fourier modes can be chosen such that the

resulting s2 per degree of freedom is approximately unity. Additional modes would then start to "t
the noise in the data.

Alternatively, the values of the de#ection potential t on a (regular) grid can be used as the p
k
.

Bartelmann et al. (1996) employed the locally averaged image ellipticities and the size ratios
SuT/SuT

0
} see (4.47) } on a grid. The corresponding expectation values of these quantities, the

reduced shear g and the magni"cation k, were calculated by "nite di!erencing of the discretised
de#ection potential t. Since both c and i, and thus k, are unchanged under the transformation
t(h)Pt(h)#t

0
#a ) h, the de#ection potential has to be kept "xed at three grid points. If no

magni"cation information is used, the mass-sheet degeneracy allows a further transformation of
t which leaves the expected image ellipticities invariant, and the potential has to be kept "xed at
four grid points.

A s2-function was de"ned using the local dispersion of the image ellipticities and image sizes
relative to unlensed sizes of galaxies with the same surface brightness, and it was minimised with
respect to the values of t on the grid points. The grid spacing was chosen such that the resulting
minimum s2 has approximately the correct value. Tests with synthetic data sets, using a numer-
ically generated cluster mass distribution, showed that this method reconstructs very satisfactory
mass maps, and the total mass of the cluster was accurately reproduced.

If a "ner grid is used, the model for the de#ection potential will reproduce noise features in the
data. On the other hand, the choice of a relatively coarse grid which yields a satisfactory s2 implies
that the resolution of the mass map is constant over the data "eld. Given that the signal increases
towards the centre of the cluster, one would like to use a "ner grid there. To avoid over-"tting of
noise, the maximum-likelihood method can be complemented by a regularisation term (see Press
et al., 1986, Chapter 18). As shown by Seitz et al. (1998c), a maximum-entropy regularisation
(Narayan and Nityananda, 1986) is well suited for the problem at hand. As in maximum-entropy
image restoration (e.g., Lucy, 1994), a prior is used in the entropy term which is a smoothed version
of the current density "eld, and thus is being adapted during the minimisation. The relative weight
of the entropy term is adjusted such that the resulting minimum s2 is of order unity per degree of
freedom.

In this scheme, the expectation values and dispersions of the individual image ellipticities
and sizes are found by bi-linear interpolation of i and c on the grid which themselves are
obtained by "nite di!erencing of the potential. When tested on synthetic data sets, this re"ned
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maximum-likelihood method produces mass maps with considerably higher resolution near the
cluster centre without over-"tting the noise at larger cluster-centric distances. The practical
implementation of this method is somewhat complicated. In particular, if critical clusters are
studied, some modi"cations have to be included to allow the minimisation algorithm to move
critical curves across galaxy images in the lens plane. However, the quality of the reconstruction
justi"es the additional e!ort, especially if high-quality data from HST images are available. A "rst
application of this method is presented by Geiger and Schneider (1999).

Inverse methods such as the ones described here are likely to become the standard tool for
cluster mass pro"le reconstruction, owing to their #exibility. As mentioned before, additional
constraints from strong-lensing signatures such as arcs and multiply imaged sources, can straight-
forwardly be incorporated into these methods. The additional numerical e!ort is negligible
compared to the e!orts needed to gain the observational data. Direct inversion methods will
certainly retain an important role in this "eld, to obtain quick mass maps during the galaxy
image-selection process (e.g., cuts in colour and brightness can be applied). Also, a mass map
obtained by a direct method as a starting model in the inverse methods reduces the computational
e!ort.

5.5.2. The auto-correlation function of the extragalactic background light
So far, we described how shear can be determined from ellipticities of individual galaxy images

on a CCD. In that context, a galaxy image is a statistically signi"cant #ux enhancement on the
CCD covering several contiguous pixels and being more extended than the PSF as determined
from stars. Reducing the threshold for the signal-to-noise per object, the number density of
detected galaxies increases, but so does the fraction of misidenti"cations. Furthermore, the
measured ellipticity of faint galaxies has larger errors than that of brighter and larger images. The
detection threshold therefore is a compromise between high number density of images and
signi"cance per individual object.

Even the faintest galaxy images whose ellipticity cannot be measured reliably still contain
information on the lens distortion. It is therefore plausible to use this information, by &adding up'
the faintest galaxies statistically. For instance, one could co-add their brightness pro"les and
measure the shear of the combined pro"led. This procedure, however, is a!ected by the uncertain-
ties in de"ning the centres of the faint galaxies. Any error in the position of the centre, as de"ned in
(5.1), will a!ect the resulting ellipticity.

To avoid this di$culty, and also the problem of faint object de"nition at all, van Waerbeke et al.
(1997) have suggested considering the auto-correlation function (ACF) of the &background' light.
Most of the sky brightness is due to atmospheric scattering, but this contribution is uniform.
Fluctuations of the brightness on the scale of arcseconds is supposedly mainly due to very faint
galaxies. Therefore, these #uctuations should intrinsically be isotropic. If the light from the faint
galaxies propagates through a tidal gravitational "eld, the isotropy will be perturbed, and this
provides a possibility to measure this tidal "eld.

Speci"cally, if I(h) denotes the brightness distribution as measured on a CCD, and IM is the
brightness averaged over the CCD (or a part of it, see below), the auto-correlation function m(h) of
the brightness is de"ned as

m(h)"S(I(0)!IM )(I(0#h)!IM )T0 , (5.35)
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where the average is performed over all pairs of pixels with separation h. From the invariance of
surface brightness (3.10) and the locally linearised lens mapping, I(h)"I(4)(Ah), one "nds that the
observed ACF is related to the intrinsic ACF m(4), de"ned in complete analogy to (5.35), by

m(h)"m(4)(Ah) . (5.36)

Thus, the transformation from intrinsic to observed ACF has the same functional form as the
transformation of surface brightness. In analogy to the de"nition of the quadrupole tensor Q for
galaxy images } see (5.2) } the tensor of second moments of the ACF is de"ned as

M
ij
"

:d2h m(h)h
i
h
j

:d2h m(h)
. (5.37)

The transformation between the observed quadrupole tensor M and the intrinsic one, M(4), is the
same as for the moment tensor of image ellipticities, (5.5), M(4)"AMA. As shown by van
Waerbeke et al. (1997), the tensor M directly determines the distortion d,

d"
M

11
!M

22
#2iM

12
M

11
#M

22

. (5.38)

Hence, d is related to M in the same way as the complex ellipticity s is related to Q. In some sense,
the ACF plays the role of a single &equivalent' image from which the distortion can be determined,
instead of an ensemble average over individual galaxy ellipticities.

Working with the ACF has several advantages. First, centres of galaxy images do not need to be
determined, which avoids a potential source of error. Second, the ACF can be used with substantial
#exibility. For instance, one can use all galaxy images which are detected with high signi"cance,
determine their ellipticity, and obtain an estimate of d from them. Su$ciently large circles
containing these galaxies can be cut out of the data frame, so that the remaining frame is
reminiscent of a Swiss cheese. The ACF on this frame provides another estimate of d, which is
independent information and can statistically be combined with the estimate from galaxy elliptici-
ties. Or one can use the ACF only on galaxy images detected within a certain magnitude range, still
avoiding the need to determine centres.

Third, on su$ciently deep images with the brighter objects cut out as just described, one might
assume that the intrinsic ACF is due to a very large number of faint galaxies, so that the intrinsic
ACF becomes a universal function. This function can in principle be determined from deep HST
images. In that case, one also knows the width of the intrinsic ACF, as measured by the trace or
determinant of M, and can determine the magni"cation from the width of the observed ACF, very
similar to the method discussed in Section 4.4.2, but with the advantage of dealing with a single
&universal source'.

If this universal intrinsic ACF does exist, corrections of the measured M for a PSF considerably
simplify compared to the case of individual image ellipticities, as shown by van Waerbeke et al.
(1997). They performed several tests on synthetic data to demonstrate the potential of the ACF
method for the recovery of the shear applied to the simulated images. van Waerbeke et al.
determined shear "elds of two clusters, with several magnitude thresholds for the images which
were punched out. A comparison of these shear "elds with those obtained from the standard
method using galaxy ellipticities clearly shows that the ACF method is at least competitive, but
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since it provides additional information from those parts of the CCD which are unused by the
standard method, it should in be employed any case. The optimal combination of standard method
and ACF still needs to be investigated, but detailed numerical experiments indicate that the ACF
may be the best method for measuring very weak shear amplitudes (L. van Waerbeke, Y. Mellier,
private communication).

5.5.3. The redshift distribution of very faint galaxies
Galaxy redshifts are usually determined spectroscopically. A successful redshift measurement

depends on the magnitude of the galaxy, the exposure time, and the spectral type of the galaxy. If it
shows strong emission or absorption lines, as star-forming galaxies do, a redshift can much easier
be determined than in absence of strong spectral features. The recently completed Canadian}
French Redshift Survey (CFRS) selected 730 galaxies in the magnitude interval 17.54I422.5
(see Lilly et al., 1995 and references therein). For 591 of them (81%), redshifts were secured with
multi-slit spectroscopy on a 3.6 m telescope (CFHT) with a typical exposure time of &8 h.
Whereas the upcoming 10 m-class telescopes will be able to perform redshift surveys to somewhat
fainter magnitude limits, it will be di$cult to secure fairly complete redshift information of
a #ux-limited galaxy sample fainter than I&24. In addition, it can be expected that many galaxies
in a #ux-limited sample with fainter threshold will have redshifts between &1.2 and &2.2, where
the cleanest spectral features, the OII emission line at j"372.7 nm and 400 nm break are shifted
beyond the region where spectroscopy can easily be done from the ground.

As we have seen, the calibration of cluster mass distributions depends on the assumed redshift
distribution of the background galaxies. Most of the galaxies used for the reconstruction are
considerably fainter than those magnitude limits for which complete redshift samples are available,
so that this mass calibration requires an extrapolation of the redshift distribution from brighter
galaxy samples. The fact that lensing is sensitive to the redshift distribution is not only a source of
uncertainty, but also o!ers the opportunity to investigate the redshift distribution of galaxies too
faint to be investigated spectroscopically. Several approaches towards a redshift estimate of faint
galaxies by lensing have been suggested, and some of them have already shown spectacular success,
as will be discussed next.

First of all, a strongly lensed galaxy (e.g. a giant luminous arc) is highly magni"ed, and so the
gravitational lens e!ect allows to obtain spectra of objects which would be too faint for a spectro-
scopic investigation without lensing. It was possible in this way to measure the redshifts of several
arcs, e.g., the giant arc in A 370 at z"0.724 (Soucail et al., 1988), the arclet A 5 in A 370 at z"1.305
(Mellier et al., 1991), the giant arc in Cl 2244!02 at z"2.237 (Mellier et al., 1991), and the
&straight arc' in A 2390 at z"0.913 (Pello et al., 1991). For a more complete list of arc redshifts, see
Fort and Mellier (1994). A fair fraction of galaxies with redshift zZ4 have been found behind
clusters, for example two arclet sources at z+4.05 behind A 2390 (Frye and Broadhurst, 1998;
PelloH et al., 1999b), two sources at z+3.97 behind Cl 0939#4713 (Trager et al., 1997), and
two sources behind MS 1358#62, which for a few months held the redshift record of z"4.92
(Franx et al., 1997).

If the cluster contains several strong-lensing features, the mass model can be su$ciently well
constrained to determine the arc magni"cations (if they are resolved in width, which has become
possible only from imaging with the refurbished HST), and thus to determine the unlensed
magnitude of the source galaxies, some of which are fainter that B&25.

383M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



13This simpli"ed treatment neglects the magni"cation bias, i.e. the fact that at locations of high magni"cation the
redshift probability distribution is changed } see Section 4.3.2.

Some clusters, such as A 370 and A 2218, were observed in great detail both from the ground and
with HST, and show a large number of strongly lensed images. They can be used to construct very
detailed mass models of the cluster centre (e.g., Kneib et al., 1993, 1996). An example is A 2218, in
which at least "ve multiply imaged systems were detected (Kneib et al., 1996), and several giant arcs
were clearly seen. Re"ning the mass model for A 2218 constructed from ground-based data (Kneib
et al., 1995) with the newly discovered or con"rmed strong-lensing features on the WFPC2 image,
a strongly constrained mass model for the cluster can be computed and calibrated by two arc
redshifts (a "ve-image system at z"0.702 and 1.034).

Up to now, the deepest HST image taken in the direction of a cluster was on A 1689, perhaps the
strongest lensing cluster yet detected (HST proposal number 6004, PI J. A. Tyson). This impressive
image provides a wealth of strong-lensing features which should allow the construction of a very
detailed mass model for its central region. In addition, a large-scale, though fairly shallow, image
mosaic has been obtained with HST (HST proposal number 5993, PI N. Kaiser). These two data
sets will yield the most detailed mass pro"le currently obtainable.

Visual inspection of the WFPC2 image immediately shows a large number of arclets in A 2218,
which surround the cluster centre in a nearly perfect circular pattern. These arclets have very small
axis ratios, and most of them are therefore highly distorted. The strength of the distortion depends
on the redshift of the corresponding galaxy. Assuming that the sources have a considerably smaller
ellipticity than the observed images, one can then estimate a redshift range of the galaxy.

To be more speci"c, let p(4)(e(4)) be the probability density of the intrinsic source ellipticity,
assumed for simplicity to be independent of redshift. The corresponding probability distribution
for the image ellipticity is then

p(e)"p(4)(e(4)(e)) detA
Re(4)
Re B , (5.39)

where the transformation e(4)(e) is given by Eq. (4.12), and the "nal term is the Jacobian of this
transformation. For each arclet near the cluster centre where the mass pro"le is well constrained,
the value of the reduced shear g is determined up to the unknown redshift of the source } see
Eq. (4.20).

One can now try to maximise p(e) with respect to the source redshift, and in that way "nd the
most likely redshift for the arc.13 Depending on the ellipticity of the arclet and the local values of
shear and surface mass density, three cases have to be distinguished: (1) the arclet has the &wrong'
orientation relative to the local shear, i.e., if the source lies behind the cluster, it must be even more
elliptical than the observed arclet. For the arclets in A 2218, this case is very rare. (2) The most
probable redshift is &at in"nity', i.e., even if the source is placed at very high redshift, the maximum
of p(e) is not reached. (3) p(e) attains a maximum at a "nite redshift. This is by far the most common
case in A 2218.

This method, "rst applied to A 370 (Kneib et al., 1994), was used to estimate the redshifts of &80
arclets in A 2218 brighter than R&25. Their typical redshifts are estimated to be of order unity,
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with the fainter sub-sample 244R425 extending to somewhat higher redshifts. For one of them,
a redshift range 2.6[z[3.3 was estimated, and a spectroscopic redshift of z"2.515 was later
measured (Ebbels et al., 1996), providing spectacular support for this method. Additional spectro-
scopic observations of arclets in A 2218 were conducted and further con"rmed the reliability of the
method for the redshift estimates of individual arclets (Ebbels et al., 1998).

Another success of this arclet redshift estimate was recently achieved in the cluster A 2390, which
can also be modelled in great detail from HST data. There, two arclets with very strong elongation
did not "t into the cluster mass model unless they are at very high redshift. Spectroscopic
redshifts of z&4.05 were recently measured for these two arclets (Frye and Broadhurst, 1998;
PelloH et al., 1999a).

However, several issues should be kept in mind. First, the arclets for which a reliable estimate of
the redshift can be obtained are clearly magni"ed, and thus the sample is magni"cation biased.
Since it is well known that the galaxy number counts are considerable steeper in the blue than
in the red (see, e.g., Smail et al., 1995a), blue galaxies are preferentially selected as arclets } see
Eq. (4.42). This might also provide the explanation why most of the giant arcs are blue. Therefore,
the arclets represent probably a biased sample of faint galaxies. Second, the redshift dependence of
p(e) enters through the ratio D

$4
/D

4
. For a cluster at relatively low redshift, such as A 2218

(z
$
"0.175), this ratio does not vary strongly with redshift once the source redshift is larger than

&1. Hence, to gain more accurate redshift estimates for high-redshift galaxies, a moderately
high-redshift cluster should be used.

The method just described is not a real &weak lensing' application, but lies on the borderline
between strong and weak lensing. With weak lensing, the redshifts of individual galaxy images
cannot be determined, but some statistical redshift estimates can be obtained. Suppose the
mass pro"le of a cluster has been reconstructed using the methods described in Section 5.2 or
Section 5.5.1, for which galaxy images in a certain magnitude range were used. If the cluster
contains strong-lensing features with spectroscopic information (such as a giant luminous arc with
measured redshift), then the overall mass calibration can be determined, i.e., the factor SZT } see
Section 4.3.2 } can be estimated, which provides a "rst integral constraint on the redshift
distribution.

Repeating this analysis with several such clusters at di!erent redshifts, further estimates of SZT
with di!erent D

$
are obtained, and thus additional constraints on the redshift distribution. In

addition, one can group the faint galaxy images into sub-samples, e.g., according to their apparent
magnitude. Ignoring for simplicity the magni"cation bias (which can safely be done in the outer
parts of clusters), one can determine SZT for each magnitude bin. Restricting our treatment to the
regions of weak lensing only, such that DcD;1, i;1, the expectation value of the ellipticity e

i
of

a galaxy at position h
i

is SZTc(h
i
), and so an estimate of SZT for the galaxy sub-sample under

consideration is

SZT"
+R(c(h

i
)eH
i
)

+Dc(h
i
)D2

. (5.40)

In complete analogy, Bartelmann and Narayan (1995) suggested the &lens parallax method', an
algorithm for determining mean redshifts for galaxy sub-samples at "xed surface brightness, using
the magni"cation e!ect as described in Section 4.4.2. Since the surface brightness I is most likely
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much more strongly correlated with galaxy redshift than the apparent magnitude (due to the
(1#z)~4 decrease of bolometric surface brightness with redshift), a narrow bin in I will probably
correspond to a fairly narrow distribution in redshift, allowing to relate SZT of a surface brightness
bin fairly directly to a mean redshift in that bin, while SZT in magnitude bins can only be translated
into redshift information with a parameterised model of the redshift distribution. On the other
hand, apparent magnitudes are easier to measure than surface brightness and are much less a!ected
by seeing.

Even if a cluster without strong lensing features is considered, the two methods just described
can be applied. The mass reconstruction then gives the mass distribution up to an overall
multiplicative constant. We assume here that the mass-sheet degeneracy can be lifted, either using
the magni"cation e!ect as described in Section 5.4, or by extending the observations so su$ciently
large distances so that i+0 near the boundary of the data "eld. The mass scale can then be "xed
by considering the brightest sub-sample of galaxy images for which a shear signal is detected if they
are su$ciently bright for their redshift probability distribution to be known from spectroscopic
redshift surveys (Bartelmann and Narayan, 1995).

Whereas these methods have not yet rigorously been applied, there is one observational result
which indicates that the faint galaxy population has a relatively high median redshift. In a sequence
of clusters with increasing redshift, more and more of the faint galaxies will lie in the foreground or
very close behind the cluster and therefore be unlensed. The dependence of the observed lensing
strength of clusters on their redshift can thus be used as a rough indication of the median redshift of
the faint galaxies. This idea was put forward by Smail et al. (1994), who observed three clusters with
redshifts z"0.26, 0.55 and 0.89. In the two lower-redshift clusters, a signi"cant weak lensing signal
was detected, but no signi"cant signal in the high-redshift cluster. From the detection, models for
the redshift distribution of faint I425 can be ruled out which predict a large fraction to be dwarf
galaxies at low redshift. The non-detection in the high-redshift cluster cannot easily be interpreted
since little information (e.g., from X-ray maps) is available for this cluster, and thus the absence of
a lensing signal may be due to the cluster being not massive enough.

However, the detection of a strong shear signal in the cluster MS 1054!03 at z"0.83 (Luppino
and Kaiser, 1997) implies that a large fraction of galaxies with I425.5 must lie at redshifts larger
than z&1.5. They split their galaxy sample into red and blue sub-samples, as well as into brighter
and fainter sub-samples, and found that the shear signal is mainly due to the fainter and the blue
galaxies. If all the faint blue galaxies have a redshift z

4
"1.5, the mass-to-light ratio of this cluster is

estimated to be M/¸&580h, and if they all lie at redshift z
4
"1, M/¸ exceeds &1000h. This

observational result, which is complemented by several additional shear detections in high-redshift
clusters, one of them at z"0.82 (G. Luppino, private communication), provides the strongest
evidence for the high-redshift population of faint galaxies. In addition, it strongly constrains
cosmological models; an X

0
"1 cosmological model predicts the formation of massive clusters

only at relatively low redshifts (e.g., Richstone et al., 1992; Bartelmann et al., 1993) and has
di$culties to explain the presence of strong lensing clusters at redshift z&0.8.

Recently, Lombardi and Bertin (1999c) and Gautret et al. (2000) suggested that weak lensing by
galaxy clusters can be used to constrain the cosmological parameters X

0
and XK . Both of these two

di!erent methods assume that the redshift of background galaxies can be estimated, e.g. with
su$ciently precise photometric-redshift techniques. Owing to the dependence of the lensing
strength on the angular-diameter distance ratio D

$4
/D

4
, su$ciently detailed knowledge of the mass
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Table 1
Cosmological models and their parameters used for numerical examples

Model X
0

XK h Normalisation p
8

SCDM 1.0 0.0 0.5 Cluster 0.5
pCDM 1.0 0.0 0.5 p

8
1.0

OCDM 0.3 0.0 0.7 Cluster 0.85
KCDM 0.3 0.7 0.7 Cluster 0.9

distribution in the lens and of the source redshifts can be employed to constrain these cosmological
parameters. Such a determination through purely geometrical methods would be very valuable,
although the observational requirements for applying these methods appear fairly demanding
at present.

6. Weak cosmological lensing

In this section, we review how weak density perturbations in otherwise homogeneous and
isotropic Friedmann}Lemam( tre model universes a!ect the propagation of light. We "rst describe
how light propagates in the homogeneous and isotropic background models, and then discuss how
local density inhomogeneities can be taken into account. The result is a propagation equation for
the transverse separation between the light rays of a thin light bundle.

The solution of this equation leads to the de#ection angle a of weakly de#ected light rays. In
close analogy to the thin-lens situation, half the divergence of the de#ection angle can be identi"ed
with an e!ective surface-mass density i

%&&
. The power spectrum of i

%&&
is closely related to the

power spectrum of the matter #uctuations, and it forms the central physical object of the further
discussion. Any two-point statistics of cosmic magni"cation and cosmic shear can then be
expressed in a fairly simple manner in terms of the e!ective-convergence power spectrum.

We discuss several applications, among which are the uncertainty in brightness determinations
of cosmologically distant objects due to cosmic magni"cation, and several measures for cosmic
shear, one of which is particularly suited for determining the e!ective-convergence power spectrum.
At the end of this chapter, we turn to higher-order statistical measures of cosmic lensing e!ects,
which re#ect the non-Gaussian nature of the non-linearly evolved density perturbations.

When we give numerical examples, we generally employ four di!erent model universes. All have
the CDM power spectrum for density #uctuations, but di!erent values for the cosmological
parameters. They are summarised in Table 1. We choose two Einstein}de Sitter models, SCDM
and pCDM, normalised either to the local abundance of rich clusters or to p

8
"1, respectively, and

two low-density models, OCDM and KCDM, which are cluster normalised and either open or
spatially #at, respectively.

Light propagation in inhomogeneous model universes has been the subject of numerous studies.
Among them are Zel'dovich (1964), Dashevskii and Zel'dovich (1965), Kristian and Sachs (1966),
Gunn (1967), Jaroszynski et al. (1990), Babul and Lee (1991), Bartelmann and Schneider (1991),
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Blandford et al. (1991), Miralda-EscudeH (1991), and Kaiser (1992). Non-linear e!ects were included
analytically by Jain and Seljak (1997), who also considered statistical e!ects of higher than second
order, as did Bernardeau et al. (1997). A particularly suitable measure for cosmic shear was
introduced by Schneider et al. (1998a).

6.1. Light propagation; choice of coordinates

As outlined in Section 3.2.1, the governing equation for the propagation of thin light bundles
through arbitrary space times is the equation of geodesic deviation (e.g. Misner et al., 1973,
Section 11; Schneider et al., 1992, Section 3.5), or Jacobi equation (3.23). This equation implies that
the transverse physical separation n between neighbouring rays in a thin light bundle is described
by the second-order di!erential equation

d2n

dj2
"Tn , (6.1)

where T is the optical tidal matrix (3.25) which describes the in#uence of space}time curvature on
the propagation of light. The a$ne parameter j has to be chosen such that it locally reproduces the
proper distance and increases with decreasing time, hence dj"!cadt. The elements of the
matrix T then have the dimension [length]~2.

We already discussed in Section 3.2.1 that the optical tidal matrix is proportional to the unit
matrix in a Friedmann}Lemam( tre universe,

T"RI , (6.2)

where the factor R is determined by the Ricci tensor as in Eq. (3.26). For a model universe "lled
with a perfect pressure-less #uid, R can be written in the form (3.28).

It will prove convenient for the following discussion to replace the a$ne parameter j in Eq. (6.1)
by the comoving distance w, which was de"ned in Eq. (2.3) before. This can be achieved using
Eqs. (3.31) and (3.32) together with the de"nition of Hubble's parameter, H(a)"a5 a~1. Addition-
ally, we introduce the comoving separation vector x"a~1n. These substitutions leave the propaga-
tion equation (6.1) in the exceptionally simple form

d2x
dw2

#K x"0 , (6.3)

where K is the spatial curvature given in Eq. (2.30). Eq. (6.3) has the form of an oscillator equation,
hence its solutions are trigonometric or hyperbolic functions, depending on whether K is positive
or negative. In the special case of spatial #atness, K"0, the comoving separation between light
rays is a linear function of distance.

6.2. Light deyection

We now proceed by introducing density perturbations into the propagation equation (6.3). We
assume throughout that the Newtonian potential U of these inhomogeneities is small, DUD;c2, that
they move with velocities much smaller than the speed of light, and that they are localised, i.e. that
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the typical scales over which U changes appreciably are much smaller than the curvature
scale of the background Friedmann}Lemam( tre model. Then, there exists a local neighbourhood
around each density perturbation which is large enough to contain the perturbation completely
and still small enough to be considered #at. Under these circumstances, the metric is well
approximated by the "rst post-Newtonian order of the Minkowski metric (3.36). It then follows
from Eq. (3.36) that the e!ective local index of refraction in the neighbourhood of the perturb-
ation is

dl
dt

"n"1!
2U
c2

. (6.4)

Fermat's principle (e.g. Blandford and Narayan, 1986; Schneider, 1985) demands that the light
travel time along actual light paths is stationary, hence the variation of :n dl must vanish. This
condition implies that light rays are de#ected locally according to

d2x
dw2

"!

2
c2

+
M
U . (6.5)

In weakly perturbed Minkowski space, this equation describes how an actual light ray is curved
away from a straight line in unperturbed Minkowski space. It is therefore appropriate for
describing light propagation through, e.g. the Solar system and other well-localised mass in-
homogeneities.

This interpretation needs to be generalised for large-scale mass inhomogeneities embedded in an
expanding cosmological background, since the meaning of a `straighta "ducial ray is then no
longer obvious. In general, any physical "ducial ray will also be de#ected by potential gradients
along its way. We can, however, interpret x as the comoving separation vector between an
arbitrarily chosen "ducial light ray and a closely neighbouring light ray. The right-hand side of
Eq. (6.5) must then contain the diwerence *(+

M
U) of the perpendicular potential gradients between

the two rays to account for the relative de#ection of the two rays.
Let us therefore imagine a "ducial ray starting at the observer (w"0) into direction h"0, and

a neighbouring ray starting at the same point but in direction hO0. Let further x(h,w) describe
the comoving separation between these two light rays at comoving distance w. Combining the
cosmological contribution given in Eq. (6.3) with the modi"ed local contribution (6.5) leads to the
propagation equation

d2x
dw2

#K x"!

2
c2

DM+
M
U[x(h,w),w]N . (6.6)

The notation on the right-hand side indicates that the di!erence of the perpendicular potential
gradients has to be evaluated between the two light rays which have comoving separation x(h,w) at
comoving distance w from the observer.

Linearising the right-hand side of Eq. (6.6) in x immediately returns the geodesic deviation
equation (6.1) with the full optical tidal matrix, which combines the homogeneous cosmological
contribution (3.28) with the contributions of local perturbations (3.37).

Strictly speaking, the comoving distance w, or the a$ne parameter j, are changed in the presence
of density perturbations. Here, we assume that the global properties of the weakly perturbed
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Friedmann}Lemam( tre models remain the same as in the homogeneous and isotropic case, and
under this assumption the comoving distance w remains the same as in the unperturbed model.

To solve Eq. (6.6), we "rst construct a Green's function G(w,w@), which has to be a suitable linear
combination of either trigonometric or hyperbolic functions since the homogeneous equation (6.6)
is an oscillator equation. We further have to specify two boundary conditions. According to the
situation we have in mind, these boundary conditions read

x"0,
dx
dw

"h (6.7)

at w"0. The "rst condition states that the two light rays start from the same point, so that their
initial separation is zero, and the second condition indicates that they set out into directions which
di!er by h.

The Green's function is then uniquely determined by

G(w,w@)"G
f
K
(w!w@) for w'w@,

0 otherwise
(6.8)

with f
K
(w) given in Eq. (2.4). As a function of distance w, the comoving separation between the two

light rays is thus

x(h,w)"f
K
(w)h!

2
c2 P

w

0

dw@ f
K
(w!w@)*M+

M
U[x(h,w@),w@]N . (6.9)

The perpendicular gradients of the Newtonian potential are to be evaluated along the true paths of
the two light rays. In its exact form, Eq. (6.9) is therefore quite involved. Assuming that the change
of the comoving separation vector x between the two actual rays due to light de#ection is small
compared to the comoving separation of unperturbed rays,

Dx(h,w@)!f
K
(w@)hD

D f
K
(w@)hD

;1 , (6.10)

we can replace x(h,w@) by f
K
(w@)h in the integrand to arrive at a much simpler expression which

corresponds to the Born approximation of small-angle scattering. The Born approximation allows
us to replace the di!erence of the perpendicular potential gradients with the perpendicular gradient
of the potential di!erence. Taking the potential di!erence then amounts to adding a term to the
potential which depends on the comoving distance w@ from the observer only. For notational
simplicity, we can therefore rename the potential di!erence *U between the two rays to U.

It is an important consequence of the Born approximation that the Jacobian matrix of the lens
mapping (3.11) remains symmetric even in the case of cosmological weak lensing. In a general
multiple lens-plane situation, this is not the case (Schneider et al., 1992, Chapter 9).

If the two light rays propagated through unperturbed space}time, their comoving separation at
distance w would simply be x@(h,w)"f

K
(w)h, which is the "rst term on the right-hand side of

Eq. (6.9). The net de#ection angle at distance w between the two rays is the di!erence between x@
and x, divided by the angular diameter distance to w, hence

a(h,w)"
f
K
(w)h!x(h,w)

f
K
(w)

"

2
c2P

w

0

dw@
f
K
(w!w@)
f
K
(w)

+
M
U[ f

K
(w@)h,w@] . (6.11)
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Again, this is the de#ection angle of a light ray that starts out at the observer into direction
h relative to a nearby "ducial ray. Absolute de#ection angles cannot be measured. All measurable
e!ects of light de#ection therefore only depend on derivatives of the de#ection angle (6.11), so that
the choice of the "ducial ray is irrelevant for practical purposes. For simplicity, we call a(h,w) the
de#ection angle at distance w of a light ray starting into direction h on the observer's sky, bearing in
mind that it is the de#ection angle relative to an arbitrarily chosen "ducial ray, so that a(h,w) is far
from unique.

In an Einstein}de Sitter universe, f
K
(w)"w. De"ning y"w@/w, Eq. (6.11) simpli"es to

a(h,w)"
2w
c2 P

1

0

d(1!y)+
M
U(wyh,wy) . (6.12)

Clearly, the de#ection angle a depends on the direction h on the sky into which the light rays start
to propagate, and on the comoving distance w to the sources.

Recall the various approximations adopted in the derivation of Eq. (6.11): (i) The density
perturbations are well localised in an otherwise homogeneous and isotropic background, i.e. each
perturbation can be surrounded by a spatially #at neighbourhood which can be chosen small
compared to the curvature radius of the background model, and yet large enough to encompass the
entire perturbation. In other words, the largest scale on which the density #uctuation spectrum
Pd (k) has appreciable power must be much smaller than the Hubble radius c/H

0
. (ii) The

Newtonian potential of the perturbations is small, U;c2, and typical velocities are much smaller
than the speed of light. (iii) Relative de#ection angles between neighbouring light rays are small
enough so that the di!erence of the transverse potential gradient can be evaluated at the
unperturbed path separation f

K
(w)h rather than the actual one. Reassuringly, these approxi-

mations are very comfortably satis"ed even under fairly extreme conditions. The curvature radius
of the Universe is of order cH~1

0
"3000h~1Mpc and therefore much larger than perturbations of

even several tens of Mpc's in size. Typical velocities in galaxy clusters are of order 103km s~1, much
smaller than the speed of light, and typical Newtonian potentials are of order U[10~5 c2.

6.3. Ewective convergence

6.3.1. Dexnition and derivation
In the thin-lens approximation, convergence i and de#ection angle a are related by

i(h)"
1
2

+h ) a(h)"
1
2
Ra

i
(h)
Rh

i

, (6.13)

where summation over i is implied. In exact analogy, an e!ective convergence i
%&&

(w) can be de"ned
for cosmological weak lensing,

i
%&&

(h,w)"
1
2

+h ) a(h,w)

"

1
c2 P

w

0

dw@
f
K
(w!w@) f

K
(w@)

f
K
(w)

R2
Rx

i
Rx

i

U[ f
K
(w@)h,w@] . (6.14)
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Had we not replaced x(h,w@) by f
K
(w@)h following Eq. (6.9), Eq. (6.14) would have contained second

and higher-order terms in the potential derivatives. Since Eq. (6.9) is a Volterra integral equation of
the second kind, its solution (and derivatives thereof) can be expanded in a series, of which the
foregoing expression for i

%&&
is the "rst term. Eq. (6.16) below shows that this term is of the order of

the line-of-sight average of the density contrast d. The next higher-order term, explicitly written
down in the appendix of Schneider et al. (1998a), is determined by the product d(w@) d(wA), averaged
along the line-of-sight over w@(wA. Analogous estimates apply to higher-order terms. Whereas the
density contrast may be large for individual density perturbations passed by a light ray, the
average of d is small compared to unity for most rays, hence i

%&&
;1, and higher-order terms

are accordingly negligible.
The e!ective convergence i

%&&
in Eq. (6.14) involves the two-dimensional Laplacian of the

potential. We can augment it by (R2U/Rx2
3
) which involves only derivatives along the light

path, because these average to zero in the limit to which we are working; the validity of this ap-
proximation has been veri"ed with numerical simulations by White and Hu (1999). The three-
dimensional Laplacian of the potential can then be replaced by the density contrast via Poisson's
equation (2.65),

*U"

3H2
0
X

0
2a

d . (6.15)

Hence, we "nd for the e!ective convergence,

i
%&&

(h,w)"
3H2

0
X

0
2c2 P

w

0

dw@
f
K
(w@) f

K
(w!w@)

f
K
(w)

d[ f
K
(w@)h,w@]
a(w@)

. (6.16)

The e!ective convergence along a light ray is therefore an integral over the density contrast along
the (unperturbed) light path, weighted by a combination of comoving angular-diameter distance
factors, and the scale factor a. The amplitude of i

%&&
is proportional to the cosmic density

parameter X
0
.

Expression (6.16) gives the e!ective convergence for a "xed source redshift corresponding to the
comoving source distance w. When the sources are distributed in comoving distance, i

%&&
(h,w)

needs to be averaged over the (normalised) source-distance distribution G(w),

i6
%&&

(h)"P
wH

0

dwG(w)i
%&&

(h,w) , (6.17)

where G(w) dw"p
z
(z) dz. Suitably re-arranging the integration limits, we can then write the

source-distance weighted e!ective convergence as

i6
%&&

(h)"
3H2

0
X

0
2c2 P

wH

0

dw=M (w) f
K
(w)

d[ f
K
(w)h, w]
a(w)

, (6.18)

where the weighting function=M (w) is now

=M (w),P
wH

w

dw@G(w@)
f
K
(w@!w)
f
K
(w@)

. (6.19)

392 M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



The upper integration boundary w
H

is the horizon distance, de"ned as the comoving dis-
tance obtained for in"nite redshift. In fact, it is easily shown that the e!ective convergence can be
written as

i
%&&

"Pdz
4pG
c2

D
$
D

$4
D

4

dD
1301

dz
(o!o6 ) , (6.20)

and the weighting function=M is the distance ratio SD
$4

/D
4
T, averaged over the source distances at

"xed lens distance. Naively generalising the de"nition of the dimensionless surface-mass density
(3.7), to a three-dimensional matter distribution would therefore directly have led to the cosmologi-
cally correct expression for the e!ective convergence.

6.4. Ewective-convergence power spectrum

6.4.1. The power spectrum from Limber's equation
Here, we are interested in the statistical properties of the e!ective convergence i

%&&
, especially its

power spectrum Pi (l). We refer the reader to Section 2.4 for the de"nition of the power spectrum.
We also note that the expression for i6

%&&
(h) is of the form (2.77), and so the power spectrum Pi(l) is

given in terms of Pd (k) by Eq. (2.84), if one sets

q
1
(w)"q

2
(w)"

3
2

H2
0

c2
X

0
=M (w)

f
K
(w)

a(w)
. (6.21)

We therefore obtain

Pi(l)"
9H4

0
X2

0
4c4 P

wH

0

dw
=M 2(w)
a2(w)

PdA
l

f
K
(w)

,wB (6.22)

with the weighting function=M given in Eq. (6.19). This power spectrum is the central quantity for
the discussion in the remainder of this chapter.

Fig. 15 shows Pi(l) for "ve di!erent realisations of the CDM cosmogony. These are the four
models whose parameters are detailed in Table 1, all with non-linearly evolving density power
spectrum Pd , using the prescription of Peacock and Dodds (1996), plus the SCDM model with
linearly evolving Pd . Sources are assumed to be at redshift z

4
"1. Curves 1 and 2 (solid and dotted;

SCDM with linear and non-linear evolution, respectively) illustrate the impact of non-linear
density evolution in an Einstein}de Sitter universe with cluster-normalised density #uctuations.
Non-linear e!ects set in on angular scales below a few times 10@, and increase the amplitude of Pi(l)
by more than an order of magnitude on scales of +1@. Curve 3 (short-dashed; pCDM), obtained
for CDM normalised to p

8
"1 rather than the cluster abundance, demonstrates the potential

in#uence of di!erent choices for the power-spectrum normalisation. Curves 4 and 5 (dashed}dotted
and long-dashed; OCDM and KCDM, respectively) show Pi(l) for cluster-normalised CDM in an
open universe (X

0
"0.3, XK"0) and in a spatially #at, low-density universe (X

0
"0.3, XK"0.7).

It is a consequence of the normalisation to the local cluster abundance that the various Pi(l) are
very similar for the di!erent cosmologies on angular scales of a few arc minutes. For the
low-density universes, the di!erence between the cluster- and the p

8
normalisation is substantially

smaller than for the Einstein}de Sitter model.

393M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



Fig. 15. Five e!ective-convergence power spectra Pi (l) are shown as functions of the angular scale 2pl~1, expressed in arc
minutes. All sources were assumed to lie at z

4
"1. The "ve curves represent the four realisations of the CDM cosmogony

listed in Table 1, all with non-linearly evolving density-perturbation power spectra Pd , plus the SCDM model with
linearly evolving Pd . Solid curve (1) linearly evolving SCDM model; dotted curve, (2) non-linearly evolving SCDM;
short-dashed curve, (3) non-linearly evolving pCDM; dashed}dotted and long-dashed curves (4) and (5) non-linearly
evolving OCDM and KCDM, respectively.

Fig. 16. Di!erent representation of the curves in Fig. 15. We plot here l2Pi (l), representing the total power in the e!ective
convergence per logarithmic l interval. See the caption of Fig. 15 for the meaning of the di!erent line types. The "gure
demonstrates that the total power increases monotonically towards small angular scales when non-linear evolution is
taken into account (i.e. with the exception of the solid curve). On angular scales still smaller than +1@, the curves level o!
nd decrease very slowly. This shows that weak lensing by cosmological mass distributions is mostly sensitive to structures
smaller than +10@.

Fig. 16 gives another representation of the curves in Fig. 15. There, we plot l2Pi(l), i.e. the total
power in the e!ective convergence per logarithmic l interval. This representation demonstrates
that density #uctuations on angular scales smaller than +10@ contribute most strongly to
weak gravitational lensing by large-scale structures. On angular scales smaller than +1@,
the curves level o! and then decrease very gradually. The solid curve in Fig. 16 shows that, when
linear density evolution is assumed, most power is contributed by structures on scales above 10@,
emphasising that it is crucial to take non-linear evolution into account to avoid misleading
conclusions.

6.4.2. Special cases
In the approximation of linear density evolution, applicable on large angular scales Z30@, the

density contrast grows in proportion with ag(a), as described following Eq. (2.52). The power
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spectrum of the density contrast then evolves Ja2 g2(a). Inserting this into Eq. (6.22), the squared
scale factor a2(w) cancels, and we "nd

Pi(l)"
9H4

0
X2

0
4c4 P

wH

0

dwg2[a(w)]=M 2(w)P0dA
l

f
K
(w)B . (6.23)

Here, P0d (k) is the density-contrast power spectrum linearly extrapolated to the present epoch.
In an Einstein}de Sitter universe, the growth function g(a) is unity since Pd grows like the

squared scale factor. In that special case, the expression for the power spectrum of i6
%&&

further
reduces to

Pi(l)"
9H4

0
4c4 P

wH

0

dw=M 2(w)P0dA
l
wB (6.24)

and the weight function=M simpli"es to

=M (w)"P
wH

w

dw@G(w@)A1!
w
w@B . (6.25)

In some situations, the distance distribution of the sources can be approximated by a delta peak at
some distance w

4
, G(w)"d

D
(w!w

4
). A typical example is weak lensing of the Cosmic Microwave

Background, where the source is the surface of last scattering at redshift z
4
+1000. Under such

circumstances,

=M (w)"A1!
w
w

4
BH(w

4
!w) , (6.26)

where the Heaviside step function H(x) expresses the fact that sources at w
4
are only lensed by mass

distributions at smaller distance w. For this speci"c case, the e!ective-convergence power spectrum
reads

Pi(l)"
9H4

0
4c4

w
4 P

1

0

dy (1!y)2P0dA
l

w
4
yB , (6.27)

where y"w/w
4
is the distance ratio between lenses and sources. This equation illustrates that all

density-perturbation modes whose wave numbers are larger than k
.*/

"w~1
4

l contribute to Pi(l),
or whose wavelengths are smaller than j

.!9
"w

4
h. For example, the power spectrum of weak

lensing on angular scales of h+10@ on sources at redshifts z
4
+2 originates from all density

perturbations smaller than +7h~1Mpc. This result immediately illustrates the limitations of the
foregoing approximations. Density perturbations on scales smaller than a few Mpc become
non-linear even at moderate redshifts, and the assumption of linear evolution breaks down.

6.5. Magnixcation and shear

In analogy to the Jacobian matrix A of the conventional lens equation (3.11), we now form the
matrix

A(h,w)"I!
Ra(h,w)
Rh "

1
f
K
(w)
Rx(h,w)
Rh . (6.28)
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The magni"cation is the inverse of the determinant of A (see Eq. (3.14)). To "rst order in the
perturbations, we obtain for the magni"cation of a source at distance w seen in direction h

k(h,w)"
1

detA(h,w)
+1#+h ) a(h,w)"1#2i

%&&
(h,w)

,1#dk(h,w) . (6.29)

In the weak-lensing approximation, the magni"cation #uctuation dk is simply twice the e!ective
convergence i

%&&
, just as in the thin-lens approximation.

We emphasise again that the approximations made imply that the matrix A is symmetric. In
general, when higher-order terms in the Newtonian potential are considered, A attains an
asymmetric contribution. Jain et al. (2000) used ray-tracing simulations through the density
distribution of the Universe computed in very high resolution N-body simulations to show that
the symmetry of A is satis"ed to very high accuracy. Only for those light rays which happen to
propagate close to more than one strong de#ector can the deviation from symmetry be appreciable.
Further estimates of the validity of the various approximations have been carried out analytically
by Bernardeau et al. (1997) and Schneider et al. (1998a).

Therefore, as in the single lens-plane situation, the anisotropic deformation, or shear, of a light
bundle is determined by the trace-free part of the matrix A (cf. Eq. (3.11)). As explained there, the
shear makes elliptical images from circular sources. Let a and b be the major and minor axes of the
image ellipse of a circular source, respectively, then the ellipticity is

DsD"
a2!b2

a2#b2
+2DcD , (6.30)

where the latter approximation is valid for weak lensing, DcD;1; cf. Eq. (4.18). The quantity 2c
was sometimes called polarisation in the literature (Blandford et al., 1991; Miralda-EscudeH , 1991;
Kaiser, 1992).

In the limit of weak lensing which is relevant here, the two-point statistical properties of dk and
of 2c are identical (e.g. Blandford et al., 1991). To see this, we "rst note that the "rst derivatives of
the de#ection angle occurring in Eqs. (6.29) can be written as second derivatives of an e!ective
de#ection potential t which is de"ned in terms of the e!ective surface mass density i

%&&
in the same

way as in the single lens-plane case; see (3.9). We then imagine that dk and c are Fourier
transformed, whereupon the derivatives with respect to h

i
are replaced by multiplications with

components of the wave vector l conjugate to h. In Fourier space, the expressions for the averaged
quantities Sdk2T and 4 SDcD2T di!er only by the combinations of l

1
and l

2
which appear under the

average. We have

(l2
1
#l2

2
)2"DlD4 for Sdk2T ,

(l2
1
!l2

2
)2#4 l2

1
l2
2
"DlD4 for 4 SDcD2T"4 Sc2

1
#c2

2
T

(6.31)

and hence the two-point statistical properties of dk and 2 c agree identically. Therefore, the power
spectra of e!ective convergence and shear agree,

Si(
%&&

(l )i( H
%&&

(l@)T"Sc( (l )c( H(l@)TNPi(l )"Pc(l ) . (6.32)

396 M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



Thus, we can concentrate on the statistics of either the magni"cation #uctuations or the shear only.
Since dk"2i

%&&
, the magni"cation power spectrum Pk is 4Pi , and we can immediately employ the

convergence power spectrum Pi .

6.6. Second-order statistical measures

We aim at the statistical properties of the magni"cation #uctuation and the shear. In particular,
we are interested in the amplitude of these quantities and their angular coherence. Both can be
described by their angular auto-correlation functions, or other second-order statistical measures
that will turn out to be more practical later. As long as the density #uctuation "eld d remains
Gaussian, the probability distributions of dk and c are also Gaussians with mean zero, and
two-point statistical measures are su$cient for their complete statistical description. When non-
linear evolution of the density contrast sets in, non-Gaussianity develops, and higher-order
statistical measures become important.

6.6.1. Angular auto-correlation function
The angular auto-correlation function m

q
(/) of some isotropic quantity q(h) is the Fourier

transform of the power spectrum P
q
(l) of q(h). In particular, the auto-correlation function of the

magni"cation #uctuation, mk(/), is related to the e!ective-convergence power spectrum Pi(l)
through

mk(/)"Sdk(h)dk(h#/)T"4Si
%&&

(h)i
%&&

(h#/)T

"4Sc(h)cH(h#/)T"4P
d2l

(2p)2
Pi (l) exp(!i l )/)"4P

=

0

ldl
2p

Pi(l)J0
(l/) , (6.33)

where / is a vector with norm /. The factor four in front of the integral accounts for the fact that
dk"2i

%&&
in the weak-lensing approximation. For the last equality in (6.33), we integrated over the

angle enclosed by l and /, leading to the zeroth-order Bessel function of the "rst kind, J
0
(x).

Eq. (6.33) shows that the magni"cation (or shear) auto-correlation function is an integral over the
power spectrum of the e!ective convergence i

%&&
, "ltered by the Bessel function J

0
(x). Since the

latter is a broad-band "lter, the magni"cation auto-correlation function is not well suited for
extracting information on Pi . It would be desirable to replace mk(/) by another measurable
quantity which involves a narrow-band "lter.

Nonetheless, inserting Eq. (6.22) into Eq. (6.33), we obtain the expression for the magni"cation
auto-correlation function,

mk(/)"
9H4

0
X2

0
c4 P

wH

0

dw f2
K
(w)=M 2(w,w) a~2(w)]P

=

0

kdk
2p

Pd(k, w)J
0
[ f

K
(w)k/] . (6.34)

The magni"cation autocorrelation function therefore turns out to be an integral over the density-
#uctuation power spectrum weighted by a k-space window function which selects the contributing
density perturbation modes.

The correlation function of the image ellipticity (or the shear) is then SeeHT(/)"mc (/)"mk (/)/4.
Since the ellipticity has two components, one can de"ne and calculate the corresponding correla-
tions functions as well: Any pair of galaxy images de"nes the direction u of their separation vector.
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With respect to this direction, one can de"ne in complete analogy to (5.31) the tangential and
cross-components of the ellipticities, e

5
and e

C
"!I(e exp(!2iu)), respectively. One then "nds

(Kaiser, 1992) that

A
Se

5
e
5
T(/)

Se
C

e
C

T(/)B"
1
2 P

=

0

ldl
2p

Pi(l) A
J
0
(l/)#J

4
(l/)

J
0
(l/)!J

4
(l/)B (6.35)

and Se
5
e
C

T(/)"0. The latter expression can be used to estimate systematic errors on a given data
set from which the correlation functions are calculated.

6.6.2. Special cases and qualitative expectations
In order to gain some insight into the expected behaviour of the magni"cation auto-correlation

function mk(/), we now make a number of simplifying assumptions. Let us "rst specialise to linear
density evolution in an Einstein}de Sitter universe, and assume sources are at a single distance w

4
.

Eq. (6.34) then immediately simpli"es to

mk(/)"
9H4

0
c4

w3
4 P

1

0

dy y2(1!y)2P
=

0

kdk
2p

P0d (k)J
0
(wyk/) (6.36)

with y,w~1
4

w.
We now introduce two model spectra P0d (k), one of which has an exponential cut-o! above some

wave number k
0
, while the other falls o! like k~3 for k'k

0
. For small k, both spectra increase

like k. They approximately describe two extreme cases of popular cosmogonies, the HDM and the
CDM model. We choose the functional forms

P0d,HDM
"Ak expA!

k
k
0
B, P0d,CDM

"Ak
9k4

0
(k2#3k2

0
)2

, (6.37)

where A is the normalising amplitude of the power spectra. The numerical coe$cients in the CDM
model spectrum are chosen such that both spectra peak at the same wave number k"k

0
. Inserting

these model spectra into Eq. (6.36), performing the k integration, and expanding the result in
a power series in /, we obtain (Bartelmann, 1995b)

mk,HDM
(/)"

3A@
10p

(w
4
k
0
)3!

9A@
35p

(w
4
k
0
)5/2#O(/4) ,

mk,CDM
(/)"

9J3A@
80

(w
4
k
0
)3!

27A@
40p

(w
4
k
0
)4/#O(/2) , (6.38)

where A@"(H
0
c~1)4A. We see from Eq. (6.38) that the magni"cation correlation function for the

HDM spectrum is #at to "rst order in /, while it decreases linearly with / for the CDM spectrum.
This demonstrates that the shape of the magni"cation auto-correlation function mk(/) re#ects the
shape of the dark-matter power spectrum. Motivated by the result of a large number of cosmologi-
cal studies showing that HDM models have the severe problem of structure on small scales forming
at times much later than observed (see e.g. Peacock, 1999), we now neglect the HDM model and
focus on the CDM power spectrum only.
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We can then expect mk (/) to increase linearly with / as / goes to zero. Although we assumed
linear evolution of the power spectrum to achieve this result, this qualitative behaviour remains
valid when non-linear evolution is assumed, because for large wave numbers k, the non-linear
CDM power spectra also asymptotically fall o!Jk~3 for large k.

Although the model spectra (6.37) are of limited validity, we can extract some useful information
from the small-angle approximations given in Eq. (6.38). First, the correlation amplitude
mk(0) scales with the comoving distance to the sources w

4
as w3

4
. In the Einstein}de Sitter case,

for which Eq. (6.38) was derived, w
4
"(2c/H

0
) [1!(1#z

4
)~1@2]. For low source redshifts, z

4
;1,

w
4
+(c/H

0
) z

4
, so that mk(0)Jz3

4
. For z

4
<1, w

4
P(2c/H

0
), and mk(0) becomes independent of

source redshift. For intermediate source redshifts, progress can be made by de"ning f
4
,ln(z

4
) and

expanding lnw[exp(f
4
)] in a power series in f

4
. The result is an approximate power-law expression,

w(z
4
)Jze

4
, valid in the vicinity of the zero point of the expansion. The exponent e changes from

+0.6 at z
4
+1 to +0.38 at z

4
+3.

Second, typical source distances are of order 2Gpc. Since k
0

is the wave number corresponding
to the horizon size when relativistic and non-relativistic matter had equal densities,
k~1
0

"d
H
(a

%2
)+12 (X

0
h2)~1Mpc. Therefore, w

4
k
0
+150. Typically, the spectral amplitude A@

ranges between 10~8 and 10~9. A rough estimate for the correlation amplitude mk(0) thus ranges
between 10~2 and 10~3 for &typical' source redshifts z

4
Z1.

Third, an estimate for the angular scale /
0

of the magni"cation correlation is obtained by
determining the angle where mk (/) has dropped to half its maximum. From the small-angle
approximation (6.38), we "nd /

0
"pJ3(12w

4
k
0
)~1. Inserting as before w

4
k
0
+150, we obtain

/
0
+10@, decreasing with increasing source redshift.
Summarising, we expect mk(/) in a CDM Universe to

(1) start at 10~2}10~3 at /"0 for source redshifts z
4
&1;

(2) decrease linearly for small / on an angular scale of /
0
+10@; and

(3) increase with source redshift roughly as Jz0.6
4

around z
4
"1.

6.6.3. Realistic cases
After this digression, we now return to realistic CDM power spectra normalised to "t observa-

tional constraints. Some representative results are shown in Fig. 17 for the model parameter sets
listed in Table 1.

The "gure shows that typical values for m1@2k (/) in cluster-normalised CDM models with
non-linear density evolution are +6% at /+1@, quite independent of the cosmological model.
The e!ects of non-linear evolution are considerable. Non-linear evolution increases the m1@2k by
factors of three to four. The uncertainty in the normalisation is illustrated by the two curves for the
Einstein}de Sitter model, one of which was calculated with the cluster-, the other one with the
p
8
"1 normalisation, which yields about a factor of two larger results for m1@2k . For the other

cosmological models (OCDM and KCDM), the e!ects of di!erent normalisations (cluster vs.
COBE) are substantially smaller.

6.6.4. Application: magnixcation yuctuations
At zero lag, the magni"cation auto-correlation function reads

mk(0)"S[k(h)!1]2T,Sdk2T , (6.39)
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Fig. 17. Four pairs of magni"cation auto-correlation functions are shown for the cosmological model parameter sets
listed in Table 1, and for an assumed source redshift z

4
"1. For each pair, plotted with the same line type, the curve with

lower amplitude at small angular scale was calculated assuming linear, and the other one non-linear density evolution.
Solid curves: SCDM; dotted curves: pCDM; short-dashed curve: OCDM; and long-dashed curve: KCDM. Non-linear
evolution increases the amplitude of m1@2k (/) on small angular scales by factors of three to four. The results for
the cluster-normalised models di!er fairly little. At /+1@, m1@2k (/)+6% for non-linear density evolution. For the
Einstein}de Sitter models, the di!erence between cluster- and p

8
"1 normalisation amounts to about a factor of two in

m1@2k (/).

Fig. 18. The rms magni"cation #uctuation dk
3.4

is shown as a function of source redshift z
4
for non-linearly evolving

density #uctuations in the four di!erent realisations of the CDM cosmogony detailed in Table 1. Solid curve: SCDM;
dotted curve: pCDM; short-dashed curve: OCDM; and long-dashed curve: KCDM. Except for the pCDM model, typical
rms magni"cation #uctuations are of order 20% at z

4
"2, and 25% for z

4
"3.

which is the variance of the magni"cation #uctuation dk. Consequently, the rms magni"cation
#uctuation is

dk
3.4

"Sdk2T1@2"m1@2k (0) . (6.40)

Fig. 18 shows dk
3.4

as a function of source redshift for four di!erent realisations of the CDM
cosmogony. For cluster-normalised CDM models, the rms magni"cation #uctuation is of order
dk

3.4
+20% for sources at z

4
+2, and increases to dk

3.4
+25% for z

4
+3. The strongest e!ect

occurs for open CDM (OCDM) because there non-linear evolution sets in at the highest redshifts.
The results shown in Fig. 18 indicate that for any cosmological source, gravitational lensing

causes a statistical uncertainty of its brightness. In magnitudes, a typical e!ect at z
4
+2 is

dm+2.5]log(1.2)+0.2. This can be important for, e.g. high-redshift supernovae of Type Ia,
which are used as cosmological standard candles. Their intrinsic magnitude scatter is of order
dm+0.1}0.2 magnitudes (e.g. Phillips, 1993; Riess et al., 1995, 1996; Hamuy et al., 1996). Therefore,
the lensing-induced brightness #uctuation is comparable to the intrinsic uncertainty at redshifts
z
4
Z2 (Frieman, 1996; Wambsganss et al., 1997; Holz, 1998; Metcalf and Silk, 1999).
Since the magni"cation probability can be highly skewed, the most probable observed #ux of

a high-redshift supernova can deviate from the mean #ux at given redshift, even if the intrinsic
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luminosity distribution is symmetric. This means that particular care needs to be taken in the
analysis of future large SN surveys. However, if SNe Ia are quasi-standard candles also at
high redshifts, with an intrinsic scatter of *¸"4pD2

-6.
(z)*S(z) around the mean luminosity

¸
0
"4pD2

-6.
(z)S

0
(z), then it is possible to obtain volume-limited samples (in contrast to #ux-limited

samples) of them.
If, for a given redshift, the sensitivity limit is chosen to be S

.*/
[k

.*/
(S

0
!3*S), one can be sure

to "nd all SNe Ia at the redshift considered. Here, k
.*/

is the minimum magni"cation of a source at
the considered redshift. Since no source can be more de-magni"ed than one that is placed behind
a hypothetical empty cone (see Dyer and Roder (1973) the discussion in Section 4.5 of Schneider
et al., 1992), k

.*/
is not much smaller than unity. Flux conservation (e.g. Weinberg, 1976) implies

that the mean magni"cation of all sources at given redshift is unity, Sk(z)T"1, and so the
expectation value of the observed #ux at given redshift is the unlensed #ux, SS(z)T"S

0
(z). It

should be pointed out here that a similar relation for the magnitudes does not hold, since
magnitude is a logarithmic measure of the #ux, and so Sm(z)TOm

0
(z). This led to some confusing

conclusions in the literature claiming that lensing introduces a bias in cosmological parameter
estimates from lensing, but this is not true: One just has to work in terms of #uxes rather than
magnitudes.

However, a broad magni"cation probability distribution increases the con"dence contours for
X

0
and XK (e.g. Holz, 1998). If the probability distribution was known, more sensitive estimators

of the cosmological model than the mean #ux at given redshift could be constructed. Further-
more, if the intrinsic luminosity distribution of the SNe was known, the normalisation of the
power spectrum as a function of X

0
and XK could be inferred from the broadened observed

#ux distribution (Metcalf, 1999). If part of the dark matter is in the form of compact objects
with mass Z10~2M

_
, these objects can individually magnify a SN (Schneider and Wagoner,

1987), additionally broadening the magni"cation probability distribution and thus enabling the
nature of dark matter to be tested through SN observations (Metcalf and Silk, 1999; Seljak and
Holz, 1999).

6.6.5. Shear in apertures
We mentioned below Eq. (6.33) that measures of cosmic magni"cation or shear other than the

angular auto-correlation function which "lter the e!ective-convergence power spectrum Pi with
a function narrower than the Bessel function J

0
(x) would be desirable. In practice, a convenient

measure would be the variance of the e!ective convergence within a circular aperture of radius h.
Within such an aperture, the averaged e!ective convergence and shear are

i
!7

(h)"P
h

0

d2/
ph2

i6
%&&

(/), c
!7

(h)"P
h

0

d2/
ph2

c(/) (6.41)

and their variance is

Si2
!7

T(h)"P
h

0

d2/
ph2P

h

0

d2/@
ph2

Si6
%&&

(/)i6
%&&

(/@)T"SDc
!7

D2T(h) . (6.42)
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Fig. 19. The rms shear c
3.4

(h) in circular apertures of radius h is plotted as a function of h for the four di!erent
realisations of the CDM cosmogony detailed in Table 1, where all sources are assumed to be at redshift z

4
"1. A pair

of curves is plotted for each realisation, where for each pair the curve with lower amplitude at small h is for linearly,
the other one for non-linearly evolving density #uctuations. Solid curves: SCDM; dotted curves: pCDM; short-
dashed curves: OCDM; and long-dashed curves: KCDM. For the cluster-normalised models, typical rms shear values
are +3% for h+1@. Non-linear evolution increases the amplitude by about a factor of two at h+1@ over linear
evolution.

The remaining average is the e!ective-convergence auto-correlation function mi (D/!/@D), which
can be expressed in terms of the power spectrum Pi . The "nal equality follows from mi"mc .
Inserting (6.42) and performing the angular integrals yields

Si2
!7

T(h)"2pP
=

0

l dl Pi(l)C
J
1
(lh)

plh D
2
"Dc

!7
D2(h) , (6.43)

where J
1
(x) is the "rst-order Bessel function of the "rst kind. Results for the rms shear in

apertures of varying size are shown in Fig. 19 (cf. Blandford et al., 1991; Kaiser, 1992; Jain and
Seljak, 1997).

6.6.6. Aperture mass
Another measure for the e!ects of weak lensing, the aperture mass M

!1
(h) (cf. Section 5.3.1), was

introduced for cosmic shear by Schneider et al. (1998a) as

M
!1

(h)"P
h

0

d2/;(/)i6
%&&

(/) , (6.44)

where the weight function ;(/) satis"es the criterion

P
h

0

/ d/;(/)"0 . (6.45)
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In other words, ;(/) is taken to be a compensated radial weight function across the aperture. For
such weight functions, the aperture mass can be expressed in terms of the tangential component of
the observable shear relative to the aperture centre,

M
!1

(h)"P
h

0

d2/Q(/)c
5
(/) , (6.46)

where Q(/) is related to;(/) by (5.24). M
!1

is a scalar quantity directly measurable in terms of the
shear. The variance of M

!1
reads

SM2
!1

T(h)"2p P
=

0

ldl Pi(l) CP
h

0

/d/;(/)J
0
(l/)D

2
. (6.47)

Eqs. (6.43) and (6.47) provide alternative observable quantities which are related to the e!ective-
convergence power spectrum Pi through narrower "lters than the auto-correlation function mi .
The M

!1
statistic in particular permits one to tune the "lter function through di!erent choices of

;(/) within constraint (6.45). It is important that M
!1

can also be expressed in terms of the shear
[see Eq. (5.27)], so that M

!1
can directly be obtained from the observed galaxy ellipticities.

Schneider et al. (1998a) suggested a family of radial "lter functions;(/), the simplest of which is

;(/)"
9

ph2
(1!x2)A

1
3
!x2B, Q(/)"

6
ph2

x2(1!x2) , (6.48)

where xh"/. With this choice, the variance SM2
!1

T(h) becomes

SM2
!1

T(h)"2p P
=

0

ldl Pi(l) J2(lh) (6.49)

with the "lter function

J(g)"
12
pg2

J
4
(g) , (6.50)

where J
4
(g) is the fourth-order Bessel function of the "rst kind. Examples for the rms aperture

mass, M
!1,3.4

(h)"SM2
!1

T1@2(h), are shown in Fig. 20.
The curves look substantially di!erent from those shown in Figs. 17 and 19. Unlike there, the

aperture mass does not increase monotonically as hP0, but reaches a maximum at "nite h and
drops for smaller angles. When non-linear evolution of the density #uctuations is assumed, the
maximum occurs at much smaller h than for linear evolution: Linear evolution predicts the peak at
angles of order 13, non-linear evolution around 1@! The amplitude of M

!1,3.4
(h) reaches +1%

for cluster-normalised models, quite independent of the cosmological parameters. Some insight
into the expected amplitude and shape of SM2

!1
T(h) can be gained by noting that J2(g) is well

approximated by a Gaussian

J2(g)+A expC!
(g!g

0
)2

2p2 D (6.51)

with mean g
0
+4.11, amplitude A+4.52]10~3, and width p+1.24. At aperture radii of h+1@,

the peak g
0
+4.11 corresponds to angular scales of 2pl~1+1.6@, where the total power l2Pi(l) in
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Fig. 20. The rms aperture mass, M
!1,3.4

(h), is shown in dependence of aperture radius h for the four di!erent realisations
of the CDM cosmogony detailed in Table 1 where all sources are assumed to be at redshift z

4
"1. For each realisation,

a pair of curves is plotted; one curve with lower amplitude for linear, and the second curve for non-linear density
evolution. Solid curves: SCDM; dotted curves: pCDM; short-dashed curves: OCDM; and long-dashed curves: KCDM.
Non-linear evolution has a pronounced e!ect: The amplitude is approximately doubled, and the peak shifts from degree-
to arcmin scales.

Fig. 21. The rms aperture mass M
!1,3.4

(h) is shown together with the approximation MI
!1,3.4

(h) of Eq. (6.53). The three
curves correspond to the three cluster-normalised cosmological models (SCDM, OCDM and KCDM) introduced in
Table 1 for non-linearly evolving matter perturbations. All sources were assumed to be at redshift z

4
"1. Clearly, the rms

aperture mass is very accurately approximated by MI
!1,3.4

on angular scales hZ10@, and even for smaller aperture sizes of
order &1@ the deviation between the curves is smaller than +5%. The observable rms aperture mass therefore provides
a very direct measure for the e!ective-convergence power spectrum Pi(l).

the e!ective convergence is close to its broad maximum (cf. Fig. 16). The "lter function J2(g) is
therefore fairly narrow. Its relative width corresponds to an l range of dl/l+p/g

0
&0.3. Thus, the

contributing range of modes l in integral (6.49) is very small. Crudely approximating the Gaussian
by a delta distribution

J2(g)+AJ2ppd
D
(g!g

0
) , (6.52)

we are led to

SM2
!1

T+SMI 2
!1

T,
(2p)3@2Ap

g
0

A
g
0
h B

2
PiA

g
0
h B+2.15]10~2 l2

0
Pi(l0 ) (6.53)

with l
0
,g

0
h~1. Hence, the mean-square aperture mass is expected to directly yield the total

power in the e!ective-convergence power spectrum, scaled down by a factor of +2.15]10~2. We
saw in Fig. 16 that l2Pi(l)+3]10~3 for 2pl~1+1@ in cluster-normalised CDM models, so that

SM2
!1

T1@2+0.8% at h+1@ (6.54)

for sources at redshift unity. We compare M
!1,3.4

(h) and the approximation MI
!1,3.4

(h) in Fig. 21.
Obviously, the approximation is excellent for hZ10@, but even for smaller aperture radii of &1@ the
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Fig. 22. The three "lter functions F(g) de"ned in Eq. (6.56) are shown as functions of g"lh. They occur in the expressions
for the magni"cation auto-correlation function, mk (solid curve), the mean-square shear in apertures, Sc2T (dotted curve),
and the mean-square aperture mass, SM2

!1
T (dashed curve).

relative deviation is less than +5%. At this point, the prime virtue of the narrow "lter function J(g)
shows up most prominently. Up to relatively small errors of a few per cent, the rms aperture mass
very accurately re#ects the e!ective-convergence power spectrum Pi(l). Observations of M

!1,3.4
(h)

are therefore most suitable to obtain information on the matter power spectrum (cf. Bartelmann
and Schneider, 1999).

6.6.7. Power spectrum and xlter functions
The three statistical measures discussed above, the magni"cation (or, equivalently, the shear)

auto-correlation function mk , the mean-square shear in apertures Sc2T, and the mean-square
aperture mass SM2

!1
T, are related to the e!ective-convergence power spectrum Pi in very similar

ways. According to Eqs. (6.33), (6.44) and (6.49), they can all be written in the form

Q(h)"2pP
=

0

l dl Pi(l)F(lh) , (6.55)

where the "lter functions F(g) are given by

F(g)"G
J
0
(g)

p2
for Q"mk ,

C
J
1
(g)

pg D
2

for Q"Sc2
!7

T ,

C
12J

4
(g)

pg2 D
2

for Q"SM2
!1

T .

(6.56)

Fig. 22 shows these three "lter functions as functions of g"lh. Firstly, the curves illustrate that the
amplitude of mk is largest (owing to the factor of four relative to the de"nition of mc ), and that of
SM2

!1
T is smallest because the amplitudes of the "lter functions themselves decrease. Secondly, it
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becomes evident that, for given h, the range of l modes of the e!ective-convergence power spectrum
Pi(l) convolved into the weak-lensing estimator is largest for mk and smallest for SM2

!1
T. Thirdly,

the envelope of the "lter functions for large g decreases most slowly for mk and most rapidly for
SM2

!1
T. Although the aperture mass has the smallest signal amplitude, it is a much better probe for

the e!ective-convergence power spectrum Pi(l) than the other measures because it picks up the
smallest range of l modes and most strongly suppresses the l modes smaller or larger than its peak
location.

We can therefore conclude that, while the strongest weak-lensing signal is picked up by the
magni"cation auto-correlation function mk , the aperture mass is the weak-lensing estimator most
suitable for extracting information on the e!ective-convergence power spectrum.

6.6.8. Signal-to-noise estimate of aperture-mass measurements
The question then arises whether the aperture mass can be measured with su$cient signi"cance

in upcoming wide-"eld imaging surveys. In practice, M
!1

is derived from observations of image
distortions of faint background galaxies, using Eq. (5.27) and replacing the integral by a sum over
galaxy ellipticities. If we consider N

!1
independent apertures with N

i
galaxies in the ith aperture, an

unbiased estimator of SM2
!1

T is

M"

(ph2)2
N

!1

N!1

+
i/1

1
N

i
(N

i
!1)

Ni

+
jEk

Q
ij
Q

ik
e
5,ij

e
5,ik

, (6.57)

where Q
ij

is the value of the weight function at the position of the jth galaxy in the ith aperture, and
e
5,ij

is de"ned accordingly.
The noise properties of this estimator were investigated in Schneider et al. (1998a). One source of

noise comes from the fact that galaxies are not intrinsically circular, but rather have an intrinsic
ellipticity distribution. A second contribution to the noise is due to the random galaxy positions,
and a third one to cosmic (or sampling) variance. Under the assumptions that the number of
galaxies N

i
in the apertures is large, N

i
<1, it turns out that the second of these contributions can

be neglected compared to the other two. For this case, and assuming for simplicity that all N
i
are

equal, N
i
,N, the signal-to-noise of the estimator M becomes

S
N

,

SM2
!1

T
p(M)

"N1@2
!1 Ck4

#AJ2#
6p2e

5J2NSM2
!1

TB
2

D
~1

, (6.58)

where pe+0.2 (e.g. Hudson et al., 1998) is the dispersion of the intrinsic galaxy ellipticities, and
k
4
"SM4

!1
T/SM2

!1
T2!3 is the curtosis of M

!1
, which vanishes for a Gaussian distribution. The

two terms of (6.58) in parentheses represent the noise contributions from Gaussian sampling
variance and the intrinsic ellipticity distribution, respectively, and k

4
accounts for sampling

variance in excess of that for a Gaussian distribution. On angular scales of a few arcmin and
smaller, the intrinsic ellipticities dominate the noise, while the cosmic variance dominates on larger
scales.

Another convenient and useful property of the aperture mass M
!1

follows from its "lter function
being narrow, namely that M

!1
is a well localised measure of cosmic weak lensing. This implies that

M
!1

measurements in neighbouring apertures are almost uncorrelated even if the aperture centres
are very close (Schneider et al., 1998a). It is therefore possible to gain a large number of (almost)
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Fig. 23. The signal-to-noise ratio S/N(h) of measurements of mean-square aperture masses SM2
!1

T is plotted as a function
of aperture radius h for an experimental setup as described in the text. The curtosis was set to zero here. The four curves
are for the four di!erent realisations of the CDM cosmogony listed in Table 1. Solid curve: SCDM; dotted curve: pCDM;
short-dashed curve: OCDM; and long-dashed curve: KCDM. Quite independently of the cosmological parameters, the
signal-to-noise ratio S/N reaches values of '10 on scales of +1@}2@.

independent M
!1

measurements from a single large data "eld by covering the "eld densely with
apertures. This is a signi"cant advantage over the other two measures for weak lensing discussed
above, whose broad "lter functions introduce considerable correlation between neighbouring
measurements, implying that for their measurement imaging data on widely separated "elds are
needed to ensure statistical independence. Therefore, a meaningful strategy to measure cosmic
shear consists in taking a large data "eld, covering it densely with apertures of varying radius h, and
determining SM2

!1
T in them via the ellipticities of galaxy images. Fig. 23 shows an example for the

signal-to-noise ratio of such a measurement that can be expected as a function of aperture radius h.
Computing the curves in Fig. 23, we assumed that a data "eld of size 53]53 is available which is

densely covered by apertures of radius h, hence the number of (almost) independent apertures is
N

!1
"(300@/2h)2. The number density of galaxies was taken as 30 arcmin~2, and the intrinsic

ellipticity dispersion was assumed to be pe"0.2. Evidently, high signal-to-noise ratios of '10 are
reached on angular scales of +1@ in cluster-normalised universes quite independent of the
cosmological parameters. The decline of S/N for large h is due to the decreasing number of
independent apertures on the data "eld, whereas the decline for small h is due to the decrease of the
signal SM2

!1
T, as seen in Fig. 20. We also note that for calculating the curves in Fig. 23, we have put

k
4
"0. This is likely to be an overly optimistic assumption for small angular scales where the

density "eld is highly non-linear. Unfortunately, k
4

cannot easily be estimated analytically. It was
numerically derived from ray-tracing through N-body simulations of large-scale matter dis-
tributions by Reblinsky et al. (1999). The curtosis exceeds unity even on scales as large
as 10@, demonstrating the highly non-Gaussian nature of the non-linearly developed density
perturbations.

Although the aperture mass is a very convenient measure of cosmic shear and provides
a localised estimate of the projected power spectrum Pi(l) [see (6.53)], it is by no means clear that it
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is an optimal measure for the projected power spectrum. Kaiser (1998) considered the case of
a square-shaped data "eld and employed the Fourier-transformed Kaiser and Squires inversion
formula, Eq. (5.3). The Fourier transform of the shear is then replaced by a sum over galaxy
ellipticities e

i
, so that i(

%&&
(l) is expressed directly in terms of the e

i
. The square Di(

%&&
(l)D2 yields an

estimate for the power spectrum which allows a simple determination of the noise coming from the
intrinsic ellipticity distribution. As Kaiser (1998) pointed out that, while this noise is very small for
angular scales much smaller than the size of the data "eld, the sampling variance is much larger, so
that di!erent sampling strategies should be explored. For example, he suggests to use a sparse
sampling strategy. Seljak (1998) developed an estimator for the power spectrum which achieves
minimum variance in the case of a Gaussian "eld. Since the power spectrum Pi(l) deviates
signi"cantly from its linear prediction on angular scales below 13, one expects that the "eld attains
signi"cant non-Gaussian features on smaller angular scales, so that this estimator does no longer
need to have minimum variance.

6.7. Higher-order statistical measures

6.7.1. The skewness
As the density perturbation "eld d grows with time, it develops non-Gaussian features. In

particular, d is bounded by !1 from below and unbounded from above, and therefore the
distribution of d is progressively skewed while evolution proceeds. The same then applies to
quantities like the e!ective convergence i

%&&
derived from d (cf. Jain and Seljak, 1997; Bernardeau

et al., 1997; Schneider et al., 1998a). Skewness of the e!ective convergence can be quanti"ed by
means of the three-point correlator of i

%&&
. In order to compute that, we use expression (6.18),

Fourier transform it, and also express the density contrast d in terms of its Fourier transform.
Additionally, we employ the same approximation used in deriving Limber's equation in Fourier
space, namely that correlations of the density contrast along the line-of-sight are negligibly small.
After carrying out this lengthy but straightforward procedure, the three-point correlator of the
Fourier transform of i

%&&
reads (suppressing the subscript &e! ' for brevity)

Si( (l
1
)i( (l

2
)i( (l

3
)T"

27H6
0
X3

0
8c6 P

wH

0

dw
=M 3(w)

a3(w) f 3
K
(w) P

=

~=

dk
3

2p
exp(ik

3
w)

]TdK A
l
1

f
K
(w)

, k
3BdK A

l
2

f
K
(w)

, 0BdK A
l
3

f
K
(w)

, 0BU . (6.59)

Hats on symbols denote Fourier transforms. Note the fairly close analogy between (6.59) and (6.22):
The three-point correlator of i( is a distance-weighted integral over the three-point correlator of the
Fourier-transformed density contrast dK . The fact that the three-component k

3
of the wave vector

k appears only in the "rst factor dK re#ects the approximation mentioned above, i.e. that correlations
of d along the line-of-sight are negligible.

Suppose now that the density contrast d is expanded in a perturbation series, d"+d(i) such that
d(i)"O([d(1)]i), and truncated after the second order. The three-point correlator of dK (1) vanishes
because d remains Gaussian to "rst perturbation order. The lowest-order, non-vanishing three-
point correlator of d can therefore symbolically be written SdK (1)dK (1)dK (2)T, plus two permutations
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of that expression. The second-order density perturbation is related to the "rst order through
(Fry, 1984; Goro! et al., 1986; Bouchet et al., 1992)

dK (2)(k,w)"D2
`

(w)P
d3k@
(2p)3

dK (1)
0

(k@)dK (1)
0

(k!k@)F(k@, k!k@) , (6.60)

where d(1)
0

is the "rst-order density perturbation linearly extrapolated to the present epoch, and
D

`
(w) is the linear growth factor, D

`
(w)"a(w) g[a(w)] with g(a) de"ned in Eq. (2.52). The function

F(x, y) is given by

F(x, y)"
5
7
#

1
2A

1
DxD2

#

1
DyD2Bx ) y#

2
7

(x ) y)2
DxD2DyD2

. (6.61)

Relation (6.60) implies that the lowest-order three-point correlator SdK (1)dK (1)dK (2)T involves four-point
correlators of dK (1). For Gaussian "elds like d(1), four-point correlators can be decomposed into sums
of products of two-point correlators, which can be expressed in terms of the linearly extrapolated
density power spectrum P(0)d . This leads to

SdK (1)(k
1
)dK (1)(k

2
)dK (2)(k

3
)T"2 (2p)3D4

`
(w)P(0)d (k

1
)P(0)d (k

2
)d

D
(k

1
#k

2
#k

3
)F(k

1
, k

2
) . (6.62)

The complete lowest-order three-point correlator of dK is a sum of three terms, namely the left-hand
side of (6.62) and two permutations thereof. Each permutation yields the same result, so that the
complete correlator is three times the right-hand side of (6.62). We can now work our way back,
inserting the three-point density correlator into Eq. (6.59) and Fourier-transforming the result with
respect to l

1,2,3
. The three-point correlator of the e!ective convergence so obtained can then in

a "nal step be used to compute the third moment of the aperture mass. The result is (Schneider
et al., 1998a)

SM3
!1

(h)T"
81H6

0
X3

0
8pc6 P

wH

0

dw
=M 3(w)D4

`
(w)

a3(w) f
K
(w) Pd2l

1
P(0)d A

l
1

f
K
(w)B J2(l

1
h)

]P d2l
2

P(0)d A
l
2

f
K
(w)BJ2(l

2
h)J2(Dl

1
#l

2
Dh)F(l

1
, l

2
) (6.63)

with the "lter function J(g) de"ned in Eq. (6.49). Commonly, third-order moments are expressed in
terms of the skewness

S(h),
SM3

!1
(h)T

SM2
!1

(h)T2
, (6.64)

where SM2
!1

(h)T is calculated with the linearly evolved power spectrum. As seen earlier in Eq. (6.49),
SM2

!1
T scales with the amplitude of the power spectrum, while SM3

!1
T scales with the square of it. In

this approximation, the skewness S(h) is therefore independent of the normalisation of the power
spectrum, removing that major uncertainty and leaving cosmological parameters as primary
degrees of freedom. For instance, the skewness S(h) is expected to scale approximately with X~1

0
.

Fig. 24 shows three examples.
As expected, lower values of X

0
yield larger skewness, and the skewness is reduced when XK is

increased keeping X
0
"xed. Despite the sensitivity of S(h) to the cosmological parameters, it
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Fig. 24. The skewness S(h) of the aperture mass M
!1

(h) is shown as a function of aperture radius h for three of the
realisations of the cluster-normalised CDM cosmogony listed in Table 1: SCDM (solid curve); OCDM (dotted curve);
and KCDM (dashed curve). The source redshift was assumed to be z

4
"1.

should be noted that the source redshift distribution [entering through=M (w)] needs to be known
su$ciently well before attempts can be made at constraining cosmological parameters through
measurements of the aperture-mass skewness. However, photometric redshift estimates are ex-
pected to produce su$ciently well-constrained redshift distributions in the near future (Connolly et
al., 1995; Gwyn and Hartwick, 1996; Hogg et al., 1998).

We have con"ned the discussion of the skewness to the aperture mass since M
!1

is a scalar
measure of the cosmic shear which can directly be expressed in terms of the observed image
ellipticities. One can, of course, also consider the skewness directly in terms of i, since i can be
obtained from the observed image ellipticities through a mass reconstruction algorithm as de-
scribed in Section 5. Analytical and numerical results for this skewness have been presented in, e.g.,
Bernardeau et al. (1997), van Waerbeke et al. (1999b), Jain et al. (2000) and Reblinsky et al. (1999).
We shall discuss some of their results in Section 6.9.1.

As pointed out by Bernardeau (1998), the fact that the source galaxies are clustered in three-
dimensional space, and therefore also in redshift space, generates an additional contribution to the
skewness. This e!ect is more important than the contributions by the approximations made in the
light propagation equations; in fact, Bernardeau (1998) estimated that the skewness can change by
&25% due to source clustering. Whereas the expectation values of second-order statistics of
cosmic shear is una!ected by this clustering, the dispersion of any estimator increases. Of course, if
the redshifts of the source galaxies are known, these e!ects can be avoided by suitably de"ning
estimators for the quantities under consideration.

In the regime of small angular scales, where the relevant density contrast is highly non-linear,
di!erent approximations apply for calculating higher-order statistical quantities. One of them is
based on the so-called stable-clustering ansatz, which predicts a scaling relation for the n-point
correlation function of the density contrast (Peebles, 1980). Based on this assumption, and variants
thereof, higher-order moments of cosmic-shear measures can be derived (e.g., Hui, 1999a; Munshi
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and Coles, 2000; Munshi and Jain, 1999a), as well as approximations to the probability distribution
for i

%&&
itself and "ltered (smoothed) versions thereof (Valageas, 2000; Munshi and Jain, 1999b;

Valageas, 1999). The resulting expressions, when compared to numerical simulations of light
propagation through large-scale structures, are surprisingly accurate.

6.7.2. Number density of (dark) halos
In Section 5.3.1, we discussed the possibility to detect mass concentrations by their weak lensing

e!ects on background galaxies by means of the aperture mass. The number density of mass
concentrations that can be detected at a given threshold of M

!1
depends on the cosmological

model. Fixing the normalisation of the power spectrum so that the local abundance of massive
clusters is reproduced, the evolution of the density "eld proceeds di!erently in di!erent cosmolo-
gies, and so the abundances will di!er at redshifts z&0.3 where the aperture-mass method is most
sensitive.

The number density of halos above a given threshold of M
!1

(h) can be estimated analytically,
using two ingredients. First, the spatial number density of halos at redshift z with mass M can be
described by the Press}Schechter theory (Press and Schechter, 1974), which numerical simulations
(Lacey and Cole, 1993, 1994); have shown to be a fairly accurate approximation. Second, in a series
of very large N-body simulations, Navarro et al. (1996a, 1997) found that dark matter halos
have a universal density pro"le which can be described by two parameters, the halo mass
and a characteristic scale length, which depends on the cosmological model and the redshift.
Combining these two results from cosmology, Kruse and Schneider (1999b) calculated the
number density of halos exceeding M

!1
. Using the signal-to-noise estimate (6.58), a threshold

value of M
!1

can be directly translated into a signal-to-noise threshold S
#
. For an assumed

number density of n"30 arcmin~2 and an ellipticity dispersion pe"0.2, one "nds S
#
+(h/1 ar-

cmin)(M
!1

(h)/0.016).
For the redshift distribution (2.69) with b"3/2 and z

0
"1, the number density of halos with

S
#
55 exceeds 10 per square degree for cluster-normalised cosmologies, across angular scales

1@[h[10@, and these halos have a broad redshift distribution which peaks at z
$
&0.3. This implies

that a wide-"eld imaging survey should be able to detect a statistically interesting sample of
medium redshift halos, thus allowing the de"nition of a mass-selected sample of halos. Such
a sample will be of utmost interest for cosmology, since the halo abundance is considered to be
one of the most sensitive cosmological probes (e.g., Eke et al., 1996; Bahcall and Fan, 1998).
Current attempts to apply this tool are hampered by the fact that halos are selected either by the
X-ray properties or by their galaxy content. These properties are much more di$cult to predict
than the dark-matter distribution of halos which can directly be determined from cosmological
N-body simulations. Thus, these mass-selected halos will provide a much closer link to
cosmological predictions than currently possible. Kruse and Schneider (1999b) estimated that
an imaging survey of several square degrees will allow one to distinguish between the cosmological
models given in Table 1, owing to the di!erent number density of halos that they predict. Using
the aperture-mass statistics, Erben et al. (2000) recently detected a highly signi"cant matter
concentration on two independent wide-"eld images centred on the galaxy cluster A 1942.
This matter concentration 7@ South of A 1942 is not associated with an overdensity of bright
foreground galaxies, which sets strong lower limits on the mass-to-light ratio of this putative
cluster.
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6.8. Cosmic shear and biasing

Up to now, we have only considered the mass properties of the large-scale structure and tried
to measure them with weak lensing techniques. An interesting question arises when the luminous
constituents of the Universe are taken into account. Most importantly, the galaxies are supposed
to be strongly tied to the distribution of dark matter. In fact, this assumption underlies all
attempts to determine the power spectrum of cosmic density #uctuations from the observed
distribution of galaxies. The relation between the galaxy and dark-matter distributions is
parameterised by the so-called biasing factor b (Kaiser, 1984), which is de"ned such that the
relative #uctuations in the spatial number density of galaxies are b times the relative density
#uctuations d,

n(x)!SnT
SnT

"bd(x) , (6.65)

where SnT denotes the mean spatial number density of galaxies at the given redshift. The bias
factor b is not really a single number, but generally depends on redshift, on the spatial scale,
and on the galaxy type (see, e.g., Efstathiou, 1996; Peacock, 1997; Kau!mann et al., 1997; Coles
et al., 1998). Typical values for the bias factor are assumed to be b&1}2 at the current epoch,
but can increase towards higher redshifts. The clustering properties of UV dropout galaxies
(Steidel et al., 1998) indicate that b can be as large as 5 at redshifts z&3, depending on the
cosmology.

The projected surface mass density i
%&&

(h) should therefore be correlated with the number density
of (foreground) galaxies in that direction. Let G

G
(w) be the distribution function of a suitably

chosen population of galaxies in comoving distance (which can be readily converted to a redshift
probability distribution). Then, assuming that b is independent of scale and redshift, the number
density of the galaxies is

n
G
(h)"Sn

G
TC1#bPdwG

G
(w) d( f

K
(w)h,w)D , (6.66)

where Sn
G
T is the mean number density of the galaxy population. The distribution function G

G
(w)

depends on the selection of galaxies. For example, for a #ux-limited sample it may be of the form
(2.69). Narrower distribution functions can be achieved by selecting galaxies in multi-colour space
using photometric redshift techniques. The correlation function between n

G
(h) and i

%&&
(h) can

directly be obtained from Eq. (2.83) by identifying q
1
(w)"3H2

0
X

0
=M (w)f

K
(w)/[2c2a(w)] [see

Eq. (6.18)], and q
2
(w)"Sn

G
TbG

G
(w). It reads

m
Gi(h),Sn
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%&&
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0
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K
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a(w)
G

G
(w)
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2p

Pd (k,w)J
0
( f

K
(w)hk) . (6.67)

Similar equations were derived by, e.g., Kaiser (1992), Bartelmann (1995b), Dolag and Bartelmann
(1997), Sanz et al. (1997).
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One way to study the correlation between foreground galaxies and the projected density "eld
consists in correlating the aperture mass M

!1
(h) with a similarly "ltered galaxy number density,

de"ned as

N(h)"Pd20;(D0D)n
G
(0) (6.68)

with the same "lter function; as in M
!1

. The correlation between M
!1

(h) and N(h) then becomes

m(h),SM
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(h)N(h)T"Pd20;(D0D)Pd20@;(D0@D)m
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H
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(w)

a(w) f
K
(w) Pdl lPdA

l
f
K
(w)

, wBJ2(lh) , (6.69)

where we used Eq. (2.83) for the correlation function m
Gi in the "nal step. The "lter function J is

de"ned in Eq. (6.50). Note that this correlation function "lters out the power spectrum Pd at
redshifts where the foreground galaxies are situated. Thus, by selecting galaxy populations with
narrow redshift distribution, one can study the cosmological evolution of the power spectrum or,
more accurately, the product of the power spectrum and the bias factor.

The convenient property of this correlation function is that one can de"ne an unbiased estimator
for m in terms of observables. If N

"
galaxies are found in an aperture of radius h at positions 0

i
with

tangential ellipticity e
5i
, and N

&
foreground galaxies at positions u

i
, then

mI (h)"
ph2

N
"

N"

+
i/1

Q(D0
i
D) e

5i

N&

+
k/1

;(Du
k
D) (6.70)

is an unbiased estimator for m(h). Schneider (1998) calculated the noise properties of this estimator,
concentrating on an Einstein}de Sitter model and a linearly evolving power spectrum which can
locally be approximated by a power law in k. A more general and thorough treatment is given in
van Waerbeke (1998), where various cosmological models and the non-linear power spectrum are
considered. van Waerbeke (1998) assumed a broad redshift distribution for the background
galaxies, but a relatively narrow redshift distribution for the foreground galaxies, with dz

$
/z

$
&0.3.

For an open model with X
0
"0.3, m(h) declines much faster with h than for #at models, implying

that open models have relatively more power on small scales at intermediate redshift. This is
a consequence of the behaviour of the growth factor D

`
(w); see Fig. 6. For foreground redshifts

z
$
Z0.2, the signal-to-noise ratio of the estimator (6.70) for a single aperture is roughly constant for

hZ5@, and relatively independent of the exact value of z
$

over a broad redshift interval, with
a characteristic value of &0.4.

van Waerbeke (1998) also considered the ratio

R,

m(h)
SN2(h)T

(6.71)

and found that it is nearly independent of h. This result was shown in Schneider (1998) to hold for
linearly evolving power spectra with power-law shape, but surprisingly it also holds for the fully
non-linear power spectrum. Indeed, varying h between 1@ and 100@, R varies by less than 2% for the
models considered in van van Waerbeke (1998). This is an extremely important result, in that any
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observed variation of R with angular scale indicates a corresponding scale dependence of the bias
factor b. A direct observation of this variation would provide valuable constraints on the models
for the formation and evolution of galaxies.

We point out that the ratio R depends, in the linear regime, on the combination X
0
/b,

independent of the normalisation of the power spectrum. This is to be compared with the
combination X0.6

0
/b determined by peculiar motions of galaxies (e.g., Strauss and Willick, 1995 and

references therein). Since these combinations of the two parameters di!er, one might hope that they
can be derived separately by combining them.

6.9. Numerical approach to cosmic shear, cosmological parameter estimates, and observations

6.9.1. Cosmic shear predictions from cosmological simulations
So far, we have treated the lensing e!ect of the large-scale structure with analytic means. This

was possible because of two assumptions. First, we considered only the lowest-order lensing
e!ect, by employing the Born approximation and neglecting lens-lens coupling in going from
Eq. (6.9) to Eq. (6.11). Second, we used the prescription for the non-linear power spectrum as given
by Peacock and Dodds (1996), assuming that it is a su$ciently accurate approximation. Both of
these approximations may become less accurate on small angular scales. Providing a two-point
quantity, the analytic approximation of Pi is applicable only for two-point statistical measures of
cosmic shear. In addition, the error introduced with these approximations cannot be controlled,
i.e., we cannot attach &error bars' to the analytic results.

A practical way to avoid these approximations is to study the propagation of light in a model
Universe which is generated by cosmological structure-formation simulations. They typically
provide the three-dimensional mass distribution at di!erent redshifts in a cube whose sidelength is
much smaller than the Hubble radius. The mass distribution along a line-of-sight can be generated
by combining adjacent cubes from a sequence of redshifts. The cubes at di!erent redshifts should
either be taken from di!erent realisations of the initial conditions, or, if this requires too much
computing time, they should be translated and rotated such as to avoid periodicity along the
line-of-sight. The mass distribution in each cube can then be projected along the line-of-sight,
yielding a surface mass density distribution at that redshift. Finally, by employing the multiple
lens-plane equations, which are a discretisation of the propagation equation ((6.9); Seitz et al.,
1994), shear and magni"cation can be calculated along light rays within a cone whose size is
determined by the sidelength of the numerical cube. This approach was followed by many authors
(e.g., Jaroszynski et al., 1990; Jaroszynski, 1991; Bartelmann and Schneider, 1991; Blandford et al.,
1991; Waxman and Miralda-EscudeH , 1995), but the rapid development of N-body simulations of
the cosmological dark-matter distribution render the more recent studies particularly useful
(Wambsganss et al., 1998; van Waerbeke et al., 1999b; Jain et al., 2000).

As mentioned below Eq. (6.30), the Jacobian matrix A is generally asymmetric when the
propagation equation is not simpli"ed to (6.11). Therefore, the degree of asymmetry of A provides
one test for the accuracy of this approximation. Jain et al. (2000) found that the power spectrum of
the asymmetric component is at least three orders of magnitude smaller than that of i

%&&
. For

a second test, we have seen that the power spectrum of i
%&&

should equal that of the shear in the
frame of our approximations. This analytic prediction is very accurately satis"ed in the numerical
simulations.
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Jain et al. (2000) and Reblinsky et al. (1999) found that analytic predictions of the dispersions
of i and M

!1
, respectively, are very accurate when compared to numerical results. For both

cosmic shear measures, however, the analytic predictions of the skewness are not satisfactory on
angular scales below &10@. This discrepancy re#ects the limited accuracy of the second-order
Eulerian perturbation theory employed in deriving the analytic results. Hui (1999b) showed
that the accuracy of the analytic predictions can be much increased by using a prescription
for the highly nonlinear three-point correlation function of the cosmic density contrast, as
developed by Scoccimarro and Frieman (1999). On larger angular scales, the predictions from
perturbation theory as described in Section 6.7.1 are accurate, as shown by Gaztanaga and
Bernardeau (1998).

The signal-to-noise ratio of the dispersion of the cosmic shear, given explicitly for M
!1

in
Eq. (6.58), is determined by the intrinsic ellipticity dispersion of galaxies and the sampling variance,
expressed in terms of the curtosis. As shown by van Waerbeke et al. (1999b), Reblinsky et al. (1999),
and White and Hu (1999), this curtosis is remarkably large. For instance, the curtosis of the
aperture mass exceeds unity even on scales larger than 10@, revealing non-Gaussianity on such large
scales. Unfortunately, this large sampling variance implies not only that the area over which cosmic
shear needs to be measured to achieve a given accuracy for its dispersion must be considerably
larger than estimated for a Gaussian density "eld, but also that numerical estimates of cosmic shear
quantities need to cover large solid angles for an accurate numerical determination of the relevant
quantities.

From such numerical simulations, one can not only determine moments of the shear distribu-
tion, but also consider its full probability distribution. For example, the predictions for the number
density of dark matter halos that can be detected through highly signi"cant peaks of M

!1
} see

Section 6.7.2 } have been found by Reblinsky et al. (1999) to be fairly accurate, perhaps surprisingly
so, given the assumptions entering the analytic results. Similarly, the extreme tail (say more than
"ve standard deviations from the mean) of the probability distribution for M

!1
, calculated

analytically in Kruse and Schneider (1999a), does agree with the numerical results; it decreases
exponentially.

6.9.2. Cosmological parameter estimates
Since the cosmic shear described in this section directly probes the total matter content of

the Universe, i.e., without any reference to the relation between mass and luminosity, it pro-
vides an ideal tool to investigate the large-scale structure of the cosmological density "eld.
Assuming the dominance of cold dark matter, the statistical properties of the cosmic mass
distribution are determined by a few parameters, the most important of which are X

0
, XK ,

the shape parameter of the power spectrum, C, and the normalisation of the power spectrum
expressed in terms of p

8
. For each set of these parameters, the corresponding cosmic shear

signals can be predicted, and a comparison with observations then constrains the cosmological
parameters.

Furthermore, since weak lensing probes the shape of the projected power spectrum, modi"ca-
tions of the CDM power spectrum by a contribution from hot dark matter (such as massive
neutrinos) may be measurable; e.g. Cooray (1999a) estimated that a deep weak-lensing survey of
100 square degrees may yield a lower limit on the neutrino mass of 3.5 eV.
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Several approaches to this parameter estimation have been discussed in the literature. For
example, van Waerbeke et al. (1999b) used numerical simulations to generate synthetic cosmic
shear data, "xing the normalisation of the density #uctuations to p

8
X

0
"0.6, which is essentially

the normalisation by cluster abundance. A moderately wide and deep weak-lensing survey,
covering 25 square degrees and reaching a number density of 30 galaxies per arcmin2 with
characteristic redshift z

4
&1, will enable the distinction between an Einstein}de Sitter model and

an open universe with X
0
"0.3 at the 6-p level, though each of these models is degenerate in the

X
0

vs. XK plane. For this conclusion, only the skewness of the reconstructed e!ective surface mass
density or the aperture mass was used. Kruse and Schneider (1999a) instead considered the highly
non-Gaussian tail of the aperture mass statistics to constrain cosmological parameters, whereas
Kruse and Schneider (1999b) considered the abundance of highly signi"cant peaks of M

!1
as

a probe of the cosmological models. The peak statistics of reconstructed surface density maps
(Jain and van Waerbeke, 2000) also provides a valuable means to distinguish between various
cosmological models.

Future work will also involve additional information on the redshifts of the background galaxies.
Hu (1999) pointed out that splitting up the galaxy sample into several redshift bins substantially
increases the ability to constrain cosmological parameters. He considered the power spectrum of
the projected density and found that the accuracy of the corresponding cosmological parameters
improves by a factor of &7 for XK , and by a factor of &3 for X

0
, estimated for a median redshift

of unity.
All of the quoted work concentrated mainly on one particular measure of cosmic shear. One

goal of future theoretical investigations will certainly be the construction of a method which
combines the various measures into a &global' statistics, designed to minimise the volume of
parameter space allowed by the data of future observational weak lensing surveys. Future,
larger-scale numerical simulations will guide the search for such a statistics and allow one to make
accurate predictions.

In addition to a pure cosmic shear investigation, cosmic shear constraints can be used in
conjunction with other measures of cosmological parameters. One impressive example has been
given by Hu and Tegmark (1999), who showed that even a relatively small weak lensing survey
could dramatically improve the accuracy of cosmological parameters measured by future Cosmic
Microwave Background missions.

6.9.3. Observations
One of the "rst attempts to measure cosmic shear was reported in Mould et al. (1994), where the

mean shear was investigated across a "eld of 9.6@]9.6@, observed with the Hale 5-m Telescope. The
image is very deep and has good quality (i.e., a seeing of 0.87A FWHM). It is the same data as used
by Brainerd et al. (1996) for the "rst detection of galaxy}galaxy lensing (see Section 8). The mean
ellipticity of the 4363 galaxies within a circle of 4.8 @ radius with magnitudes 234r426 was found
to be (0.5$0.5)%. A later, less conservative reanalysis of these data by Villumsen (unpublished),
where an attempt was made to account for the seeing e!ects, yielded a 3-p detection of a non-
vanishing mean ellipticity.

Following the suggestion that the observed large-angle QSO-galaxy associations are due to
weak lensing by the large-scale structure in which the foreground galaxies are embedded (see
Section 7), Fort et al. (1996) searched for shear around "ve luminous radio quasars. In one of the
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14This "eld was subsequently used to demonstrate the superb image quality of the SUSI instrument on the ESO NTT.

"elds, the number density of stars was so high that no reasonable shear measurement on faint
background galaxies could be performed.14 In the remaining four QSO "elds, they found a shear
signal on a scale of &1@ for three of the QSOs (those which were observed with SUSI, which has
a "eld-of-view of &2.2@), and on a somewhat larger angular scale for the fourth QSO. Taken at
face value, these observations support the suggestion of magni"cation bias caused by the large-
scale structure. A reanalysis of the three SUSI "elds by Schneider et al. (1998b), considering the rms
shear over the "elds, produced a positive value for SDcD2T at the 99% signi"cance level, as
determined by numerous simulations randomising the orientation angles of the galaxy ellipticities.
The amplitude of the rms shear, when corrected for the dilution by seeing, is of the same magnitude
as expected from cluster-normalised models. However, if the magni"cation bias hypothesis is true,
these three lines-of-sight are not randomly selected, and therefore this measurement is of no
cosmological use.

Of course, one or a few narrow-angle "elds cannot be useful for a measurement of cosmic shear,
owing to cosmic variance. Therefore, a meaningful measurement of cosmic shear must either
include many small "elds, or must be obtained from a wide-"eld survey. Using the "rst strategy,
several projects are under way: The Hubble Space Telescope has been carrying out the so-called
parallel surveys, where one or more of the instruments not used for primary observations are
switched on to obtain data of a "eld located a few arcmin away from the primary pointing. Over the
past few years, a considerable database of such parallel data sets has accumulated. Two teams are
currently analysing parallel data sets taken with WFPC2 and STIS, respectively (see Seitz et al.,
1998a; Rhodes et al., 1999). In addition, a cosmic-shear survey is currently under way, in which
randomly selected areas of the sky are mapped with the FORS instrument (&6.7 @]6.7 @ ) on the
VLT. Some of these areas include the "elds from the STIS parallel survey.

The alternative approach is to map big areas and measure the cosmic shear on a wide range of
scales. The wide-"eld cameras currently being developed and installed are ideally suited for this
purpose, and several groups are actively engaged in this work (see the proceedings of the Boston
lens conference, July 1999).

Very recently, four groups have independently and almost simultaneously reported statistically
signi"cant detections of cosmic shear. In alphabetic order: Bacon et al. (2000) used 14 independent
"elds of size 8@]16@ obtained with the WHT to measure the rms shear in squares of 8@]8@. Kaiser
et al. (2000) used six independent images taken with the UH8K camera on CFHT, each 30@]30@ in
size, to measure the cosmic shear on scales between 2@ and 30@. van Waerbeke et al. (2000) observed
eight independent "elds with the UH8K and UH12K (30@]45@) cameras at CFHT and measured
the rms shear on scales below 3.5@ since they avoided measurements in apertures crossing chip
edges. Finally, Wittman et al. (2000) took three independent "elds of size 43@]43@ with the BTC at
CTIO to measure the two-point correlation function of galaxy ellipticities on scales between 2@ and
30@. All four groups discuss their statistical and systematic uncertainties in detail and employ
various tests to convincingly demonstrate the physical reality of the signal. In particular, they show
that remaining systematics most probably contribute to the shear signal at a level below 1%, i.e.
much less than the measured signal on scales [10@}15@. The results of these groups are presented in
Fig. 25. The yet unpublished result by Maoli et al. is not included. It was obtained from 45 images
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Fig. 25. Compilation of the results of four di!erent measurements of the cosmic-shear dispersion (with the two-point
shear correlation function of Wittman et al. (2000) transformed into an equivalent dispersion for comparison). Open
triangle: Bacon et al. (2000); "lled squares: Kaiser et al. (2000); open squares: van Waerbeke et al. (2000); crosses: Wittman
et al. (2000). The error bars include both statistical errors and cosmic variance. Points from the same group at di!erent
angular scales are not statistically independent. The dotted curves are predictions for a cluster-normalised KCDM model
with e!ective source redshifts of z

4
"1 (lower curve) and z

4
"2 (upper curve), taken from Jain and Seljak (1997) (adapted

from Kaiser et al., 2000).

taken with the FORS1 instrument (6.7@]6.7@) on UT1 of VLT. Evidently, the results of the various
groups are in excellent agreement despite the data being taken with di!erent optical "lters, di!erent
cameras, di!erent telescopes, and reduced with di!erent data analysis techniques. This provides
additional evidence for the reality of the cosmic-shear signal. The signi"cance of the results extends
up to 5.5p, dependent of course on the total size of the "elds used for the respective analyses. Since,
except for the VLT data, the number of independent "elds used for these studies is small, the error
is entirely dominated by cosmic variance.

These impressive results prove the power of cosmic-shear measurements as a novel tool for
probing the statistical properties of large-scale structures on small scales and at late times in the
universe. In the near future, such measurements will become comparably important, and will
provide complementary cosmological information to that obtained from CMB experiments.

There is nothing special about weak lensing being carried out predominantly in the optical
wavelength regime, except that the optical sky is full of faint extended sources, whereas the radio
sky is relatively empty. The FIRST radio survey covers at present about 4200 square degrees and
contains 4]105 sources, i.e., the number density is smaller by about a factor &1000 than in deep
optical images. However, this radio survey covers a much larger solid angle than current or
foreseeable deep optical surveys. As discussed in Refregier et al. (1998), this survey may yield
a signi"cant measurement of the two-point correlation function of image ellipticities on angular
scales Z10@. On smaller angular scales, sources with intrinsic double-lobe structure cannot be
separated from individual independent sources. The Square Kilometer Array (van Haarlem and
van der Hulst, 1999) currently being discussed will yield such a tremendous increase in sensitivity
for cm-wavelength radio astronomy that the radio sky will then be as crowded as the current
optical sky. Finally, the recently commissioned Sloan telescope will map a quarter of the sky
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in "ve colours. Although the imaging survey will be much shallower than current weak-lensing
imaging, the huge area surveyed can compensate for the reduced galaxy number density and
their smaller mean redshift Stebbins et al. (1996). Indeed, "rst weak-lensing results were already
reported at the Boston lensing conference (July 1999) from commissioning data of the telescope
(see also Fischer et al., 1999).

7. QSO magni5cation bias and large-scale structure

7.1. Introduction

Magni"cation by gravitational lenses is a purely geometrical phenomenon. The solid angle
spanned by the source is enlarged, or equivalently, gravitational focusing directs a larger fraction of
the energy radiated by the source to the observer. Sources that would have been too faint without
magni"cation can therefore be seen in a #ux-limited sample. However, these sources are now
distributed over a larger patch of the sky because the solid angle is stretched by the lens, so that the
number density of the sources on the sky is reduced. The net e!ect on the number density depends
on how many sources are added to the sample because they appear brighter. If the number density
of sources increases steeply with decreasing #ux, many more sources appear due to a given
magni"cation, and the simultaneous dilution can be compensated or outweighed.

This magni"cation bias was described in Section 4.4.1 and quanti"ed in Eq. (4.38). As introduced
there, let k(h) denote the magni"cation into direction h on the sky, and n

0
('S) the intrinsic counts

of sources with observed #ux exceeding S. In the limit of weak lensing, k(h)Z1, and the #ux will not
change by a large factor, so that it is su$cient to know the behaviour of n

0
('S) in a small

neighbourhood of S. Without loss of generality, we can assume the number-count function to be
a power law in that neighbourhood, n

0
('S)JS~a. We can safely ignore any redshift dependence

of the intrinsic source counts here because we aim at lensing e!ects of moderate-redshift mass
distributions on high-redshift sources. Eq. (4.43) then applies, which relates the cumulative source
counts n('S, h) observed in direction h to the intrinsic source counts

n('S, h)"ka~1(h)n
0
('S) . (7.1)

Hence, if a'1, the observed number density of objects is increased by lensing, and reduced
if a(1. This e!ect is called magnixcation bias or magnixcation anti-bias (e.g. Schneider et al.,
1992).

The intrinsic number-count function of QSOs is well "t by a broken power law with a slope of
a&0.64 for QSOs fainter than &19th blue magnitude, and a steeper slope of a&2.52 for brighter
QSOs (Boyle et al., 1988; Hartwick and Schade, 1990; Pei, 1995). Faint QSOs are therefore
anti-biased by lensing, and bright QSOs are biased. In the neighbourhood of gravitational lenses,
the number density of bright QSOs is thus expected to be higher than average, in other words, more
bright QSOs should be observed close to foreground lenses than expected without lensing.
According to Eq. (7.1), the overdensity factor is

q(h)"
n('S, h)
n
0
('S)

"ka~1(h) . (7.2)

419M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



If the lenses are individual galaxies, the magni"cation k(h) drops rapidly with increasing distance
from the lens. The natural scale for the angular separation is the Einstein radius, which is of order
an arcsec for galaxies. Therefore, individual galaxies are expected to increase the number density of
bright QSOs only in a region of radius a few arcsec around them.

Fugmann (1990) reported an observation which apparently contradicts this expectation. He
correlated bright, radio-loud QSOs at moderate and high redshifts with galaxies from the Lick
catalogue (Seldner et al., 1977) and found that there is a signi"cant overdensity of galaxies around
the QSOs of some of his sub-samples. This is intriguing because the Lick catalogue contains the
counts of galaxies brighter than &19th magnitude in square-shaped cells with 10@ side length.
Galaxies of [19th magnitude are typically at much lower redshifts than the QSOs, z[0.1}0.2, so
that the QSOs with redshifts zZ0.5}1 are in the distant background of the galaxies, with the two
samples separated by hundreds of megaparsecs. Physical correlations between the QSOs and the
galaxies are clearly ruled out. Can the observed overdensity be expected from gravitational lensing?
By construction, the angular resolution of the Lick catalogue is of order 10@, exceeding the Einstein
radii of individual galaxies by more than two orders of magnitude. The result that Lick galaxies are
correlated with bright QSOs can thus neither be explained by physical correlations nor by
gravitational lensing due to individual galaxies.

On the other hand, the angular scale of &10@ is on the right order of magnitude for lensing by
large-scale structures. The question therefore arises whether the magni"cation due to lensing by
large-scale structures is su$cient to cause a magni"cation bias in #ux-limited QSO samples which
is large enough to explain the observed QSO}galaxy correlation. The idea is that QSOs are then
expected to appear more abundantly behind matter overdensities. More galaxies are expected
where the matter density is higher than on average, and so the galaxies would act as tracers for the
dark material responsible for the lensing magni"cation. This could then cause foreground galaxies
to be overdense around background QSOs. This exciting possibility clearly deserves detailed
investigation.

Even earlier than Fugmann, Tyson (1986) had inferred that galaxies apparently under-
went strong luminosity evolution from a detection of signi"cant galaxy overdensities on scales
of 30A around 42 QSOs with redshifts 14z41.5, assuming that the excess galaxies were at
the QSO redshifts. In the light of later observations and theoretical studies, he probably was
the "rst to detect weak-lensing-induced associations of distant sources with foreground
galaxies.

7.2. Expected magnixcation bias from cosmological density perturbations

To estimate the magnitude of the e!ect, we now calculate the angular cross-correlation function
m
QG

(/) between background QSOs and foreground galaxies expected from weak lensing due to
large-scale structures (Bartelmann, 1995b; Dolag and Bartelmann, 1997; Sanz et al., 1997). We
employ a simple picture for the relation between the number density of galaxies and the density
contrast of dark matter, the linear biasing scheme (e.g. Kaiser, 1984; Bardeen et al., 1986; White
et al., 1987). Within this picture, and assuming weak lensing, we shall immediately see that the
desired correlation function m

QG
is proportional to the cross-correlation function mkd between

magni"cation k and density contrast d. The latter correlation can straightforwardly be computed
with the techniques developed previously.
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7.2.1. QSO}galaxy correlation function
The angular cross-correlation function m

QG
(/) between galaxies and QSOs is de"ned by

m
GQ

(/)"
1

Sn
Q
TSn

G
T
S[n

Q
(h)!Sn

Q
T][n

G
(h#/)!Sn

G
T]T , (7.3)

where Sn
Q,G

T are the mean number densities of QSOs and galaxies averaged over the whole sky.
Assuming isotropy, m

QG
(/) does not depend on the direction of the lag angle /. All number

densities depend on #ux (or galaxy magnitude), but we leave out the corresponding arguments for
brevity.

We saw in Eq. (7.1) in the introduction that n
Q
(h)"ka~1(h)Sn

Q
T. Since the magni"cation

expected from large-scale structures is small, k"1#dk with DdkD;1, we can expand
ka~1+1#(a!1)dk. Hence, we can approximate

n
Q
(h)!Sn

Q
T

Sn
Q
T

+(a!1)dk(h) , (7.4)

so that the relative #uctuation of the QSO number density is proportional to the magni"cation
#uctuation, and the factor of proportionality quanti"es the magni"cation bias. Again, for a"1,
lensing has no e!ect on the number density.

The linear biasing model for the #uctuations in the galaxy density asserts that the relative
#uctuations in the galaxy number counts are proportional to the density contrast d

n
G
(h)!Sn

G
T

Sn
G
T

"bdM (h) , (7.5)

where dM (h) is the line-of-sight integrated density contrast, weighted by the galaxy redshift
distribution, i.e. the w-integral in Eq. (6.66). The proportionality factor b is the e!ective biasing
factor appropriately averaged over the line-of-sight. Typical values for the biasing factor are
assumed to be bZ1}2. Both the relative #uctuations in the galaxy number density and the density
contrast are bounded by !1 from below, so that the right-hand side should be replaced by
max[bdM (h),!1] in places where dM (h)(!b~1. For simplicity we use (7.5), keeping this limitation
in mind.

Using Eqs. (7.4) and (7.5), the QSO}galaxy cross-correlation function (7.3) becomes

m
QG

(/)"(a!1)bSdk(h)dM (h#/)T . (7.6)

Hence, it is proportional to the cross-correlation function mkd between magni"cation and
density contrast, and the proportionality factor is given by the steepness of the intrinsic
QSO number counts and the bias factor (Bartelmann, 1995b). As expected from the discussion
of the magni"cation bias, the magni"cation bias is ine!ective for a"1, and QSOs and galaxies
are anti-correlated for a(1. Furthermore, if the number density of galaxies does not re#ect
the dark-matter #uctuations, b would vanish, and the correlation would disappear. In order to
"nd the QSO}galaxy cross-correlation function, we therefore have to evaluate the angular cross-
correlation function between magni"cation and density contrast.
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7.2.2. Magnixcation-density correlation function
We have seen in Section 6 that the magni"cation #uctuation is twice the e!ective convergence

dk(h)"2i
%&&

(h) in the limit of weak lensing, see Eq. (6.29). The latter is given by Eq. (6.19), in which
the average over the source-distance distribution has already been performed. Therefore, we can
immediately write down the source-distance averaged magni"cation #uctuation as

dk6 (h)"
3H2

0
X

0
c2 P

wH

0

dw=M
Q
(w)f

K
(w)

d[ f
K
(w)h, w]
a(w)

. (7.7)

Here,=M
Q
(w) is the modi"ed QSO weight function

=M
Q
(w),P

wH

w

dw@G
Q
(w@)

f
K
(w@!w)
f
K
(w@)

(7.8)

and G
Q
(w) is the normalised QSO distance distribution.

Both the average density contrast dM and the average magni"cation #uctuation dk6 are weighted
projections of the density #uctuations along the line-of-sight, which is assumed to be a homogene-
ous and isotropic random "eld. As in the derivation of the e!ective-convergence power spectrum in
Section 6, we can once more employ Limber's equation in Fourier space to "nd the cross power
spectrum Pkd (l) for projected magni"cation and density contrast,

Pkd(l)"
3H2

0
X

0
c2 P

wH

0

dw
=M

Q
(w)G

G
(w)

a(w)f
K
(w)

PdA
l

f
K
(w)B . (7.9)

The cross-correlation function between magni"cation and density contrast is obtained from
Eq. (7.9) via Fourier transformation, which can be carried out and simpli"ed to yield

mkd(/)"
3H2

0
X

0
c2 P

wH

0

dw@ f
K
(w@)=M

Q
(w@)G

G
(w@)a~1(w@)P

=

0

kdk
2p

Pd(k,w@)J
0
[f

K
(w@)k/] . (7.10)

Quite obviously, there is a strong similarity between this equation and that for the magni"cation
auto-correlation function, Eq. (6.34). We note that Eq. (7.10) automatically accounts for galaxy
auto-correlations through the matter power spectrum Pd(k).

We point out that the dependence of the QSO}galaxy correlation function scales like
m
QG

JbX
0
Pd(k%&&

), where k
%&&

is the comoving wave number determined by the peak of the redshift
distribution of the foreground galaxies and the angular separation / considered. On the other
hand, the auto-correlation function of the foreground galaxies behaves like m

GG
Jb2Pd (k%&&

), which
implies that the ratio m

QG
/m

GG
JX/b, the same dependence as already stressed earlier (Section 6.8).

Again, this ratio is nearly independent of the normalisation of the power spectrum, and therefore
a convenient measure of the ratio X/b (BenmH tez and Sanz, 1999).

7.2.3. Distance distributions and weight functions
The QSO and galaxy weight functions G

Q,G
(w) are normalised representations of their respective

redshift distributions, where the redshift needs to be transformed to comoving distance w.
The redshift distribution of QSOs has frequently been measured and parameterised. Using the

functional form and the parameters determined by Pei (1995), the modi"ed QSO weight function
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Fig. 26. QSO and galaxy weight functions,=M
Q
(w) and G

G
(w), respectively. Top panel:=M

Q
(w) for "ve di!erent choices of

the lower cut-o! redshift z
0

imposed on the QSO sample; z
0

increases from 0.0 (solid curve) to 2.0 in steps of 0.5. The peak
in=M

Q
(w) shifts to larger distances for increasing z

0
. Bottom panel: G

G
(w) for "ve di!erent galaxy magnitude limits m

0
,

increasing from 18.5 to 22.5 (solid curve) in steps of one magnitude. The peak in the galaxy distance distribution shifts
towards larger distances with increasing m

0
, i.e. with decreasing brightness of the galaxy sample.

=M
Q
(w) has the shape illustrated in the top panel of Fig. 26. It is necessary for our present purposes

to be able to impose a lower redshift limit on the QSO sample. Since we want to study
lensing-induced correlations between background QSOs and foreground galaxies, there must be
a way to exclude QSOs physically associated with galaxy overdensities. This is observationally
achieved by choosing a lower QSO redshift cut-o! high enough to suppress any redshift overlap
between the QSO and galaxy samples. This procedure must be reproduced in theoretical calcu-
lations of the QSO}galaxy cross-correlation function. This can be achieved by cutting o! the
observed redshift distribution G

Q
below some redshift z

0
, re-normalising it, and putting the result

into Eq. (7.8) to "nd=M
Q
. The "ve curves shown in the top panel of Fig. 26 are for cut-o! redshifts

z
0

increasing from 0.0 (solid curve) to 2.0 in steps of 0.5. Obviously, the peak in=M
Q

shifts to larger
w for increasing z

0
.

Galaxy redshift distributions G
G

can be obtained by extrapolating local galaxy samples to higher
redshifts, adopting a constant comoving number density and a Schechter-type luminosity function.
For the present purposes, this is a safe procedure because the galaxies to be correlated with the
QSOs should be at su$ciently lower redshifts than the QSOs to avoid overlap between the samples.
Thus, the extrapolation from the local galaxy population is well justi"ed. In order to convert galaxy
luminosities to observed magnitudes, k-corrections need to be taken into account. Conveniently,
the resulting weight functions should be parameterised by the brightness cut-o! of the galaxy
sample, in practice by the maximum galaxy magnitude m

0
(i.e. the minimum luminosity) required

for a galaxy to enter the sample. The "ve representative curves for G
G
(w) in the lower panel of
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Fig. 26 are for m
0

increasing from 18.5 to 22.5 (solid curve) in steps of one magnitude. R-band
magnitudes are assumed. For increasing cut-o! magnitude m

0
, i.e. for fainter galaxy samples, the

distributions broaden, as expected. The correlation amplitude as a function of m
0

peaks if m
0

is
chosen such that the median distance to the galaxies is roughly half the distance to the bulk of the
QSO population considered.

7.2.4. Simplixcations
It turns out in practice that the exact shapes of the QSO and galaxy weight functions=M

Q
(w) and

G
G
(w) are of minor importance for the results. Allowing inaccuracies of order 10%, we can replace

the functions G
Q,G

(w) by delta distributions centred on typical QSO and galaxy distances w
Q

and
w
G
(w

Q
. Then, from Eq. (7.8),

=M
Q
(w)"

f
K
(w

Q
!w)

f
K
(w

Q
)

H(w
Q
!w) , (7.11)

where H(x) is the Heaviside step function, and the line-of-sight integration in Eq. (7.7) becomes
trivial. It is obvious that matter #uctuations at redshifts higher than the QSO redshift do not
contribute to the cross-correlation function mkd (/): Inserting (7.11) together with G

G
"d(w!w

G
)

into Eq. (7.10), we "nd mkd(/)"0 if w
G
'w

Q
, as it should be.

The expression for the magni"cation-density cross-correlation function further simpli"es
if we specialise to a model universe with zero spatial curvature, K"0, such that f

K
(w)"w.

Then,

=M
Q
(w)"A1!

w
w

Q
BH(w

Q
!w) (7.12)

and the cross-correlation function mkd (/) reduces to

mkd(/)"
3H2

0
X

0
c2

w
G

a(w
G
)A1!

w
G

w
Q
BP

=

0

kdk
2p

Pd (k,w
G
)J

0
(w

G
k/) (7.13)

for w
Q
'w

G
, and mkd (/)"0 otherwise.

7.3. Theoretical expectations

7.3.1. Qualitative behaviour
Before we evaluate the magni"cation-density cross-correlation function fully numerically, we

can gain some insight into its expected behaviour by inserting the CDM and HDM model spectra
de"ned in Eq. (6.37) into Eq. (7.10) and expanding the result into a power series in / (Bartelmann,
1995b). As in the case of the magni"cation auto-correlation function before, the two model spectra
produce qualitatively di!erent results. To "rst order in /, mkd(/) decreases linearly with increasing
/ for CDM, while it is #at for HDM. The reason for this di!erent appearance is the lack of
small-scale power in HDM, and the abundance thereof in CDM. The two curves shown in Fig. 27
illustrate this for an Einstein}de Sitter universe with Hubble constant h"0.5. The underlying
density-perturbation power spectra were normalised by the local abundance of rich clusters, and
linear density evolution was assumed.
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Fig. 27. Cross-correlation functions between magni"cation and density contrast, mkd (/), are shown for an Einstein}de
Sitter universe with h"0.5, adopting CDM (solid curve) and HDM (dotted curve) density #uctuation spectra. Both
spectra are normalised to the local cluster abundance, and linear density evolution is assumed. The lower cut-o! redshift
of the QSOs is z

0
"0.3, the galaxy magnitude limit is m

0
"20.5. In agreement with the expectation derived from the

CDM and HDM model spectra (6.37), the CDM cross-correlation function decreases linearly with increasing / for small
/, while it is #at to "rst order in / for HDM. The small-scale matter #uctuations in CDM compared to HDM cause
mkd(/) to increase more steeply as /P0.

Fig. 28. Angular magni"cation-density cross-correlation functions mkd (/) are shown for the four cosmological models
speci"ed in Table 1. Two curves are shown for each cosmological model; those with the higher (lower) amplitude at /"0
were calculated with the non-linearly (linearly) evolving density-perturbation power spectra, respectively. The models
are: SCDM (solid curves), pCDM (dotted curves), OCDM (short-dashed curves), and KCDM (long-dashed curves).
Obviously, non-linear evolution has a substantial e!ect. It increases the correlation amplitude by about an order of
magnitude. The Einstein}de Sitter model normalised to p

8
"1 has a signi"cantly larger cross-correlation amplitude than

the cluster-normalised Einstein}de Sitter model. For the low-density models, the di!erence is much smaller. The curves
for the cluster-normalised models are very similar, quite independent of cosmological parameters.

The linear correlation amplitude, mkd(0), for CDM is of order 3]10~3, and about a factor of "ve
smaller for HDM. The magni"cation-density cross-correlation function for CDM drops to half its
peak value within a few times 10 arcmin. This, and the monotonic increase of mkd towards small /,
indicate that density perturbations on angular scales below 10@ contribute predominantly to mkd . At
typical lens redshifts, such angular scales correspond to physical scales up to a few Mpc. Evidently
therefore, the non-linear evolution of the density perturbations needs to be taken into account, and
its e!ect is expected to be substantial.

7.3.2. Results
Fig. 28 con"rms this expectation; it shows magni"cation-density cross-correlation functions for

the four cosmological models detailed in Table 1. Two curves are shown for each model, one for
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linear and the other for non-linear density evolution. The two curves of each pair are easily
distinguished because non-linear evolution increases the cross-correlation amplitude at small / by
about an order of magnitude above linear evolution, quite independent of the cosmological model.
At the same time, the angular cross-correlation scale is reduced to a few arcmin. At angular scales
[30@, the non-linear cross-correlation functions are above the linear results, falling below at larger
scales. The correlation functions for the three cluster-normalised models (SCDM, OCDM and
KCDM; see Table 1) are very similar in shape and amplitude. The curve for the pCDM model lies
above the other curves by a factor of about "ve, but for low-density universes, the in#uence of
di!erent power-spectrum normalisations are much less prominent.

The main results to be extracted from Fig. 28 are that the amplitude of the magni"cation-density
cross-correlation function, mkd (0), reaches approximately 5]10~2, and that mkd drops by an order
of magnitude within about 20@. This behaviour is quite independent of the cosmological parameters
if the density-#uctuation power spectrum is normalised by the local abundance of rich galaxy
clusters. More detailed results can be found in Dolag and Bartelmann (1997) and Sanz et al. (1997).

7.3.3. Signal-to-noise estimate
The QSO}galaxy correlation function m

QG
(/) is larger than mkd (/) by the factor (a!1)b. The

value of the bias factor b is yet unclear, but it appears reasonable to assume that it is between 1 and
2. For optically selected QSOs, a+2.5, so that (a!1)b+2}3. Combining this with the correlation
amplitude for CDM read o! from Fig. 28, we can expect m

QG
(0)[0.1.

Given the meaning of m
QG

(/), the probability to "nd a foreground galaxy close to a background
QSO is increased by a factor of [1#m

QG
(/)][1.1 above random. In a small solid angle d2u

around a randomly selected background QSO, we thus expect to "nd

N
G
+[1#m

QG
(0)]Sn

G
Td2u,[1#m

QG
(0)]SN

G
T (7.14)

galaxies, where SN
G
T is the average number of galaxies within a solid angle of d2u. In a sample of

N
Q
"elds around randomly selected QSOs, the signal-to-noise ratio for the detection of a galaxy

overdensity is then

S
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+

N
Q
(N

G
!SN

G
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Q
SN

G
T)1@2

"(N
Q
SN

G
T)1@2m

QG
(0) . (7.15)

Typical surface number densities of reasonably bright galaxies are of order n
G
&10 per square

arcmin. Therefore, there should be of order SN
G
T&30 galaxies within a randomly selected disk of

1 arcmin radius, in which the QSO}galaxy cross correlation is su$ciently strong. If we require
a certain minimum signal-to-noise ratio such that S/N5(S/N)

0
, the number of QSO "elds to be

observed in order to meet this criterion is

N
Q
5A

S
NB

2

0

m~2
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TB , (7.16)
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where we have inserted typical numbers in the last step. This estimate demonstrates that
gravitational lensing by non-linearly evolving large-scale structures in cluster-normalised CDM
can produce correlations between background QSOs and foreground galaxies at the 5p level
on arcmin scales in samples of Z20 QSOs. The angular scale of the correlations is expected to be
of order 1}10 arcmin. Eq. (7.16) makes it explicit that more QSO "elds need to be observed in
order to establish the signi"cance of the QSO}galaxy correlations if (i) the QSO number count
function is shallow (a close to unity), and (ii) the galaxy bias factor b is small. In particular,
no correlations are expected if a"1, because then the dilution of the sources and the increase
in QSO number exactly cancel. Numerical simulations (Bartelmann, 1995b) con"rm estimate
(7.16).

The Fugmann (1990) observation was also tested in a numerical model universe based on the
adhesion approximation to structure formation (Bartelmann and Schneider, 1992). This model
universe was populated with QSOs and galaxies, and QSO}galaxy correlations on angular scales
on the order of &10@ were investigated using Spearman's rank-order correlation test (Bartelmann
and Schneider, 1993a). Light propagation in the model universe was described with the multiple
lens-plane approximation of gravitational lensing. In agreement with the analytical estimate
presented above, it was found that lensing by large-scale structures can indeed account for the
observed correlations between high-redshift QSOs and low-redshift galaxies, provided the QSO
number-count function is steep. Lensing by individual galaxies was con"rmed to be entirely
negligible.

7.3.4. Multiple-waveband magnixcation bias
The magni"cation bias quanti"ed by the number-count slope a can be substantially increased if

QSOs are selected in two or more mutually uncorrelated wavebands rather than one (Borgeest
et al., 1991). To see why, suppose that optically bright and radio-loud QSOs were selected, and that
their #uxes in the two wavebands are uncorrelated. Let S

1,2
be the #ux thresholds in the optical

and in the radio regimes, respectively, and n
1,2

the corresponding number densities of either
optically bright or radio-loud QSOs on the sky. As in the introduction, we assume that n

1,2
can be

written as power laws in S
1,2

, with exponents a
1,2

.
In a small solid angle d2u, the probability to "nd an optically bright or radio-loud QSO is then

p
i
(S

i
)"n

i
(S

i
) d2u, and the joint probability to "nd an optically bright and radio-loud QSO is the

product of the individual probabilities, or

p(S
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d2u , (7.17)

provided there is no correlation between the #uxes S
1,2

so that the two probabilities are indepen-
dent. Suppose now that lensing produces a magni"cation factor k across d2u. The joint probability
is then changed to

p@(S
1
, S

2
)JA

k
S
1
B

a1
A

k
S
2
B

a2 d2u
k

"ka1`a2~1p(S
1
,S

2
) . (7.18)

Therefore, the magni"cation bias in the optically bright and radio-loud QSO sample is as e$cient
as if the number-count function had a slope of a"a

1
#a

2
.
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More generally, the e!ective number-count slope for the magni"cation bias in a QSO sample
that is #ux limited in m mutually uncorrelated wave bands is

a"
m
+
i/1

a
i
, (7.19)

where a
i

are the number-count slopes in the individual wavebands. Then, the QSO}galaxy
cross-correlation function is

m
QG

(/)"A
m
+
i/1

a
i
!1Bbmkd (/) (7.20)

and can therefore be noticeably larger than for a QSO sample which is #ux limited in one
waveband only.

7.4. Observational results

After this theoretical investigation, we turn to observations of QSO}galaxy cross-correlations on
large angular scales. The existence of QSO}galaxy correlations was tested and veri"ed in several
studies using some very di!erent QSO- and galaxy samples.

Bartelmann and Schneider (1993b) repeated Fugmann's analysis with a well-de"ned sample of
background QSOs, namely the optically identi"ed QSOs from the 1-Jansky catalogue (KuK hr et al.,
1981; Stickel et al., 1993; Stickel and KuK hr, 1993). Optically identi"ed QSOs with measured
redshifts need to be bright enough for detection and spectroscopy, hence the chosen sample is
implicitly also constrained by an optical #ux limit. Optical and radio QSO #uxes are generally not
strongly correlated, so that the sample is a!ected by a double-waveband magni"cation bias, which
can further be strengthened by explicitly imposing an optical #ux (or magnitude) limit.

Although detailed results di!er from Fugmann's, the presence of the correlation is con"rmed at
the 98% con"dence level for QSOs with redshifts 50.75 and brighter than 18th magnitude. The
number of QSOs matching these criteria is 56. The correlation signi"cance decreases both for
lower- and higher-redshift QSO samples, and also for optically fainter ones. This is in accordance
with an explanation in terms of a (double-waveband) magni"cation bias due to gravitational
lensing. For low-redshift QSOs, lensing is not e$cient enough to produce the correlations. For
high-redshift QSOs, the most e$cient lenses are at higher redshifts than the galaxies, so that the
observed galaxies are uncorrelated with the structures which magnify the QSOs. Hence, the
correlation is expected to disappear for increasing QSO redshifts. For an optically unconstrained
QSO sample, the e!ective slope of the number-count function is smaller, reducing the strength of
the magni"cation bias and therefore also the signi"cance of the correlation.

With a similar correlation technique, correlations between the 1-Jansky QSO sample and IRAS
galaxies (Bartelmann and Schneider, 1994) and di!use X-ray emission (Bartelmann et al., 1994; see
also Cooray, 1999b) were investigated, leading to qualitatively similar results. IRAS galaxies are
correlated with optically bright, high-redshift z51.5 1-Jansky sources at the 99.8% con"dence
level. The higher QSO redshift for which the correlation becomes signi"cant can be understood if
the IRAS galaxy sample is deeper than the Lick galaxy sample, so that the structures responsible
for the lensing can be traced to higher redshift.
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Bartsch et al. (1997) re-analysed the correlation between IRAS galaxies and 1-Jansky QSOs
using a more advanced statistical technique which can be optimised to the correlation function
expected from lensing by large-scale structures. In agreement with Bartelmann and Schneider
(1994), they found signi"cant correlations between the QSOs and the IRAS galaxies on angular
scales of &5@, but the correlation amplitude is higher than expected from large-scale structure
lensing, assuming linear evolution of the density-perturbation power spectrum. Including non-
linear evolution, however, the results by Bartsch et al. (1997) can well be reproduced (Dolag and
Bartelmann, 1997).

X-ray photons from the ROSAT All-Sky Survey (e.g. Voges, 1992) are correlated with optically
bright 1-Jansky sources both at low (0.54z41.0) and at high redshifts (1.54z42.0), but
there is no signi"cant correlation with QSOs in the intermediate redshift regime. A plausible
explanation for this is that the correlation of X-ray photons with low-redshift 1-Jansky QSOs is
due to hot gas which is physically associated with the QSOs, e.g. which resides in the host clusters
of these QSOs. Increasing the source redshift, the #ux from these clusters falls below the detection
threshold of the All-Sky Survey, hence the correlation disappears. Upon further increasing the QSO
redshift, lensing by large-scale structures becomes e$cient, and the X-ray photons trace hot gas in
the lenses.

Rodrigues-Williams and Hogan (1994) found a highly signi"cant correlation between optically
selected, high-redshift QSOs and Zwicky clusters. Their cluster sample was fairly bright, which
indicates that the clusters are in the foreground of the QSOs. This rules out that the clusters are
physically associated with the QSOs and thus exert environmental e!ects on them which might
lead to the observed association. Rodrigues-Williams and Hogan discussed lensing as the most
probable reason for the correlations, although simple mass models for the clusters yield lower
magni"cations than required to explain the signi"cance of the e!ect. Seitz and Schneider (1995b)
repeated their analysis with the 1-Jansky sample of QSOs. They found agreement with Rodrigues-
Williams and Hogan's result for intermediate-redshift (z&1) QSOs, but failed to detect signi"cant
correlations for higher-redshift sources. In addition, a signi"cant under-density of low-redshift
QSOs close to Zwicky clusters was found, for which environmental e!ects like dust absorption are
the most likely explanation. A variability-selected QSO sample was correlated with Zwicky clusters
by Rodrigues-Williams and Hawkins (1995). They detected a signi"cant correlation between QSOs
with 0.44z42.2 with foreground Zwicky clusters (with SzT&0.15) and interpreted it in terms of
gravitational lensing. Again, the implied average QSO magni"cation is substantially larger than
that inferred from simple lens models for clusters with velocity dispersions of &103km s~1. Wu
and Han (1995) searched for associations between distant 1- and 2-Jansky QSOs and foreground
Abell clusters. They found no correlations with the 1-Jansky sources, and a marginally signi"cant
correlation with 2-Jansky sources. They argue that lensing by individual clusters is insu$cient if
cluster velocity dispersions are of order 103km s~1, and that lensing by large-scale structures
provides a viable explanation.

BenmH tez and MartmHnez-GonzaH lez (1995) found an excess of red galaxies from the APM catalog
with moderate-redshift (z&1) 1-Jansky QSOs on angular scales (5@ at the 99.1% signi"cance
level. Their colour selection ensures that the galaxies are most likely at redshifts 0.24z40.4, well
in the foreground of the QSOs. The amplitude and angular scale of the excess is compatible with its
originating from lensing by large-scale structures. The measurements by BenmH tez and MartmHnez-
GonzaH lez (1995) are plotted together with various theoretical QSO}galaxy cross-correlation
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Fig. 29. QSO}galaxy cross-correlation measurements are plotted together with theoretical cross-correlation functions
m
QG

(/) for various cosmological models as indicated by line type. The CDM density-perturbation power spectrum was
cluster-normalised, and non-linear evolution was taken into account. The "gure shows that the measurements fall above
the theoretical predictions at small angular scales, /[2@. This excess can be attributed to gravitational lensing by
individual galaxy clusters (see the text for more detail). The theoretical curves depend on the Hubble constant h through
the shape parameter C"X

0
h, which determines the peak location of the power spectrum.

functions in Fig. 29, which clearly shows that the QSO}galaxy cross-correlation measurements
agree quite well with the cross-correlation functions m

QG
(/), but they fall above the range of

theoretical predictions at small angular scales, /[2@. This can be attributed to the magni"cation
bias due to gravitational lensing by individual clusters. Being based on the weak-lensing approxi-
mation, our approach breaks down when the magni"cation becomes comparable to unity, kZ1.5,
say. This amount of magni"cation occurs for QSOs closer than &3 Einstein radii to cluster cores.
Depending on cosmological parameters, QSO and galaxy redshifts, &3 Einstein radii correspond
to &1@}2@. Hence, we expect the theoretical expectations from lensing by large-scale structures
alone to fall below the observations on angular scales /[1@}2@.

Norman and Impey (1999) took wide-"eld R-band images centred on a subsample of 1-Jansky
QSOs with redshifts between 1 and 2. They searched for an excess of galaxies in the magnitude
range 19.5(R(21 on angular scales of Z10@ around these QSOs and found a correlation at
the 99% signi"cance level. The redshift distribution of the galaxies is likely to peak around z&0.2.
The angular cross-correlation function between the QSOs and the galaxies agrees well with the
theoretical expectations, although the error bars are fairly large.

All these results indicate that there are correlations between background QSOs and foreground
&light', with light either in the optical, the infrared, or the (soft) X-ray wavebands. The angular scale
of the correlations is compatible with that expected from lensing by large-scale structures, and the
amplitude is either consistent with that explanation or somewhat larger. Wu and Fang (1996)
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discussed whether the auto-correlation of clusters modelled as singular isothermal spheres can
produce su$cient magni"cation to explain this result. They found that this is not the case, and
argued that large-scale structures must contribute substantially.

If lensing is indeed responsible for the correlations detected, other signatures of lensing should be
found in the vicinity of distant QSOs. Indeed, Fort et al. (1996) searched for the shear induced by
weak lensing in the "elds of "ve luminous QSOs with z+1 and found coherent shear signals in
four of them (see also Schneider et al., 1998b). In addition, they detected galaxy groups in three of
their "elds. Earlier, Bonnet et al. (1993) had found evidence for coherent weak shear in the "eld of
the potentially multiply-imaged QSO 2345#007, which was later identi"ed with a distant cluster
(Mellier et al., 1994; Fischer et al., 1994).

Bower and Smail (1997) searched for weak-lensing signals in "elds around eight luminous radio
sources at redshifts &1. They con"rmed the coherent shear detected earlier by Fort et al. (1996)
around one of the sources (3C336 at z"0.927), but failed to "nd signatures of weak lensing in the
combined remaining seven "elds.

A cautionary note was recently added to this discussion by Williams and Irwin (1998) and
Norman and Williams (1999). Cross-correlating LBQS and 1-Jansky quasars with APM galaxies,
they claimed signi"cant galaxy overdensities around QSOs on angular scales of order one degree.
As discussed above, lensing by currently favoured models of large-scale structures is not able to
explain such large correlation scales. Thus, if these results hold up, they would provide evidence
that there is a fundamental di$culty with the current models of large-scale structure formation.

7.5. Magnixcation bias of galaxies

The investigation of the angular correlation between QSOs and foreground galaxies was
motivated by observational evidence of this e!ect, as described in the previous subsection.
However, the magni"cation bias generates a similar correlation function between foreground
galaxies and di!erent classes of background sources, provided the latter have a slope of the
cumulative sources counts di!erent from unity. QSOs are particularly convenient due to their steep
number counts and their high redshift. Moessner et al. (1998) and Moessner and Jain (1998) studied
the angular correlation between two di!erent populations of galaxies. If, for example, the two
populations of galaxies were selected by their apparent magnitude, the fainter one will on average
be more distant than the brighter one; therefore, matter traced by the brighter galaxies magni"es
the fainter population of galaxies. Unfortunately, owing to the broad redshift distribution of
galaxies at "xed apparent magnitude, there will be a signi"cant overlap in redshift between
these two populations. Since galaxies are auto-correlated, this intrinsic clustering contribution
is likely to swamp any lensing-induced correlation. Note that, owing to the high-redshift cut used
for the QSO samples considered in the previous subsection, this intrinsic correlation is of little or
no importance there.

However, if the foreground and background populations can be better separated, the lensing
e!ect may be stronger than the intrinsic correlation. For example, by using photometric redshift
estimates, the two galaxy populations may be nicely separated in their redshift distribution. In that
case, the cross-correlation function will take the form

m
12

(/)"(a
2
!1)b

1
mkd(/)#m@(/) , (7.21)
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where the "rst term is the contribution due to the magni"cation and has the same form as that
derived for the QSO}galaxy correlation in the the previous sub-section, and m@ is the intrinsic
cross-correlation function coming from imperfect redshift separation of the two galaxy popula-
tions. Note that a

2
is the number-count slope of the background galaxies, and b

1
the bias factor of

the foreground population. If mkd and m@ have di!erent functional forms with respect to /, these two
contributions to the cross-correlation function may be separable.

From early commissioning data of the Sloan Digital Sky Survey, covering 100 square degrees
in "ve passbands, Jain et al. (1999) attempted to detect this magni"cation bias-induced cross-
correlation between two galaxy populations. From their photometric redshift estimates for the
galaxies, they de"ne the foreground and background galaxy samples by 04z

1
40.15 and

0.354z
2
40.45, together with a magnitude cut at r420.5. The large gap between the two redshift

ranges accounts for the fact that photometric redshifts have an uncertainty of slightly less that
*z"0.1, so that this conservative cut should minimise the overlap between the two populations.
At the magnitude cut, the so-de"ned background sample exhibits an e!ective slope of a&0.5, so
that lensing should produce an anti-correlation. In fact, Jain et al. (1999) found that m

12
is negative

for /Z1@, but slightly positive for smaller angular separations. Note that this behaviour is expected
from Eq. (7.21), since the positive correlation at small angles is due to the prevalence of the intrinsic
cross-correlation owing to the redshift overlap of the two samples. In order to strengthen their
interpretation of this result, Jain et al. (1999) split their background sample into a red and a blue
half. The number-count slope of these two sub-samples of background galaxies at the magnitude
cut is a&0 and 1, respectively. Correspondingly, they "nd that m

12
calculated with the blue

subsample shows no sign of an anti-correlation at any angular separation, whereas the red
subsample shows a stronger anti-correlation than for the total sample of background galaxies.
Hence, it seems that the magni"cation bias of galaxies has been measured; given that the data on
which this result is based constitutes only &1% of the total imaging data the Sloan Survey will
accumulate, it is clear that the correlation function m

12
will be measurable with high precision out

to large angular separations, providing a very convenient handle on X/b, and the scale dependence
of b at redshifts z&0.1.

7.6. Outlook

Cross-correlations between distant QSOs and foreground galaxies on angular scales of about
10 arcmin have been observed, and they can be attributed to the magni"cation bias due to
gravitational lensing by large-scale structures. Coherent shear patterns have been detected around
QSOs which are signi"cantly correlated with galaxies. The observations so far are in reasonable
agreement with theoretical expectations, except for the higher observed signal in the innermost few
arcmin, and the claimed correlation signal on degree scales. While the excess cross-correlation on
small scales can be understood by the lensing e!ects of individual galaxy clusters, correlations on
degree scales pose a severe problem for the lensing explanation if they persist, because the
lensing-induced cross-correlation quickly dies o! beyond scales of approximately 10@.

QSO}galaxy cross-correlations have the substantial advantage over other diagnostics of weak
lensing by large-scale structures that they do not pose any severe observational problems. In
particular, it is not necessary to measure either shapes or sizes of faint background galaxies
accurately, because it is su$cient to detect and count comparatively bright foreground galaxies
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near QSOs. However, such counting requires homogeneous photometry, which is di$cult to
achieve in particular on photographic plates, and requires careful calibration.

Since the QSO}galaxy cross-correlation function involves "ltering the density-perturbation
power spectrum with a fairly broad function, the zeroth-order Bessel function J

0
(x) [cf. Eq. (7.10)],

these correlations are not well suited for constraining the power spectrum. If the cluster normalisa-
tion is close to the correct one, the QSO}galaxy cross-correlation function is also fairly insensitive
to cosmological parameters.

Rather, QSO}galaxy cross correlations are primarily important for measuring the bias para-
meter b. The rationale of future observations of QSO}galaxy correlations should therefore be to
accurately measure the correlation amplitude on scales between a few and 10 arcmin. On smaller
scales, the in#uence of individual galaxy clusters sets in, and on larger scales, the correlation signal
is expected to be weak. Once it becomes possible to reliably constrain the density-#uctuation
power spectrum, such observations can then be used to quantify the bias parameter, and thereby
provide most valuable information for theories of galaxy formation. A possible dependence of the
bias parameter on scale and redshift can also be extracted.

Su$ciently large data "elds for this purpose will soon become available, in particular through
wide-"eld surveys like the 2dF Survey (Colless, 1998) and the Sloan Digital Sky Survey (Gunn and
Knapp, 1993; Loveday and Pier, 1998). It therefore appears feasible that within a few years weak
lensing by large-scale structures will be able to quantify the relation between the distributions of
galaxies and the dark matter.

8. Galaxy}galaxy lensing

8.1. Introduction

Whereas the weak lensing techniques described in Section 5 are adequate to map the projected
matter distribution of galaxy clusters, individual galaxies are not su$ciently massive to show up in
the distortion of the images of background galaxies. From the signal-to-noise ratio (4.55) we see
that individual isothermal halos with a velocity dispersion in excess of &600km s~1 can be
detected at a high signi"cance level with the currently achievable number densities of faint galaxy
images. Galaxies have halos of much lower velocity dispersion: The velocity dispersion of an
¸H elliptical galaxy is &220 kms~1, that of an ¸H spiral &145 km s~1.

However, if one is not interested in the mass properties of individual galaxies, but instead in the
statistical properties of massive halos of a population of galaxies, the weak lensing e!ects of several
such galaxies can statistically be superposed. For example, if one considers N

&
identical foreground

galaxies, the signal-to-noise ratio of the combined weak lensing e!ect increases as N1@2
&

, so that for
a typical velocity dispersion for spiral galaxies of p

v
&160km s~1, a few hundred foreground

galaxies are su$cient to detect the distortion they induce on the background galaxy images.
Of course, detection alone does not yield new insight into the mass properties of galaxy halos.

A quantitative analysis of the lensing signal must account for the fact that &identical' foreground
galaxies cannot be observed. Therefore, the mass properties of galaxies have to be parameterised
in order to allow the joint analysis of the foreground galaxy population. In particular, one is
interested in the velocity dispersion of a typical (¸H , say) galaxy. Furthermore, the rotation curves
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of (spiral) galaxies which have been observed out to &30h~1kpc show no hint of a truncation of
the dark halo out to this distance. Owing to the lack of dynamical tracers, with the exception of
satellite galaxies (Zaritsky and White, 1994), a direct observation of the extent of the dark halo
towards large radii is not feasible with conventional methods. The method described in this section
uses the light bundles of background galaxies as dynamical tracers, which are available at all
distances from the galaxies' centres, and are therefore able, at least in principle, to probe the size (or
the truncation radius) of the halos. Methods for a quantitative analysis of galaxy halos will be
described in Section 8.2.

The "rst attempt at detecting this galaxy}galaxy lensing e!ect was reported by Tyson et al.
(1984), but the use of photographic plates and the relatively poor seeing prevented them
from observing a galaxy}galaxy lensing signal. The "rst detection was reported by Brainerd et al.
(1996), and as will be described in Section 8.3, several further observational results have been
derived.

Gravitational light de#ection can also be used to study the dark matter halos of galaxies
in clusters. The potential in#uence of the environment on the halo properties of galaxies
can provide a strong hint on the formation and lifetimes of clusters. One might expect that
galaxy halos are tidally stripped in clusters and therefore physically smaller than those of "eld
galaxies. In Section 8.4, we consider galaxy}galaxy lensing in clusters, and report on some "rst
results.

Intermediate in mass between clusters and galaxies are groups of galaxies. With a characteristic
velocity dispersion of &300km s~1, they are also not massive enough to be detected
individually with weak lensing techniques. For them, the foregoing remarks also apply: as
galaxies, groups can be statistically superposed to investigate the statistical properties of their
mass pro"le. Hoekstra et al. (1999) describe a "rst application of this technique, "nding a
highly signi"cant shear signal in a sample of 59 groups detected by spectroscopic methods,
which yields an average velocity dispersion of &320km s~1 and a mass-to-light ratio of
&250h~1.

8.2. The theory of galaxy}galaxy lensing

A light bundle from a distant galaxy is a!ected by the tidal "eld of many foreground galaxies.
Therefore, in order to describe the image distortion, the whole population of foreground galaxies
has to be taken into account. But "rst we shall consider the simple case that the image shape is
a!ected (mainly) by a single foreground galaxy. Throughout this section we assume that the shear is
weak, so that we can replace (4.12) by

e(4)"e!c . (8.1)

Consider an axi-symmetric mass distribution for the foreground galaxy, and background images at
separation h from its centre. The expectation value of the image ellipticity then is the shear at h,
which is oriented tangentially. If p(e) and p(4)(e(4)) denote the probability distributions of the image
and source ellipticities, then according to (8.1),

p(e)"p(4)(e!c)"p(4)(e)!ca
R
Rea

p(4)(e) , (8.2)
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where the second equality applies for DcD;1. If u is the angle between the major axis of the image
ellipse and the line connecting source and lens centre, one "nds the probability distribution of u by
integrating (8.2) over the modulus of e,

p(u)"PdDeD DeD p(e)"
1
2p

!c
5
cos(2u)

1
2p PdDeD p(4)(e) , (8.3)

where u ranges within [0, 2p]. Owing to the symmetry of the problem, we can restrict u to within
0 and p/2, so that the probability distribution becomes

p(u)"
2
pC1!c

5T
1
e(4)Ucos(2u)D , (8.4)

i.e., the probability distribution is skewed towards values larger than p/4, showing preferentially
a tangential alignment.

Lensing by additional foreground galaxies close to the line-of-sight to the background galaxy
does not substantially change the probability distribution (8.4). First of all, since we assume weak
lensing throughout, the e!ective shear acting on a light bundle can well be approximated by the
sum of the shear contributions from the individual foreground galaxies. This follows either from the
linearity of the propagation equation in the mass distribution, or from the lowest-order approxima-
tion of multiple-de#ection gravitational lensing (e.g., Blandford and Narayan, 1986; Seitz and
Schneider, 1992). Second, the additional lensing galaxies are placed at random angles around the
line-of-sight, so that the expectation value of their combined shear averages to zero. Whereas they
slightly increase the dispersion of the observed image ellipticities, this increase is negligible since the
dispersion of the intrinsic ellipticity distribution is by far the dominant e!ect. However, if the lens
galaxy under consideration is part of a galaxy concentration, such as a cluster, the surrounding
galaxies are not isotropically distributed, and the foregoing argument is invalid. We shall consider
galaxy}galaxy lensing in clusters in Section 8.4, and assume here that the galaxies are generally
isolated.

For an ensemble of foreground}background pairs of galaxies, the probability distribution for the
angle u simply reads

p(u)"
2
pC1!Sc

5
TT

1
e(4)Ucos(2u)D , (8.5)

where Sc
5
T is the mean tangential shear of all pairs considered. The function p(u) is an observable.

A signi"cant deviation from a uniform distribution signals the presence of galaxy}galaxy lensing.
To obtain quantitative information on the galaxy halos from the amplitude of the cosine term, one
needs to know S1/e(4)T. It can directly be derived from observations because the weak shear
assumed here does not signi"cantly change this average between source and image ellipticities,
from a parameterised relation between observable galaxy properties, and from the mean shear
Sc

5
T. Although, in principle, "ne binning in galaxy properties (like colour, redshift, luminosity,

morphology) and angular separation of foreground}background pairs is possible in order to probe
the shear as a function of angular distance from a well-de"ned set of foreground galaxies and thus
to obtain its radial mass pro"le without any parameterisation, this approach is currently unfeasible
owing to the relatively small "elds across which observations of su$cient image quality are
available.
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15 It is physically realisable in the sense that there exists an isotropic, non-negative particle distribution function which
gives rise to a spherical density distribution corresponding to (8.6).

A convenient parameterisation of the mass pro"le is the truncated isothermal sphere with surface
mass density

R(m)"
p2
v

2GmA1!
m

Js2#m2B , (8.6)

where s is the truncation radius. This is a special case of the mass distribution (3.20). Brainerd et al.
(1996) showed that this mass pro"le corresponds to a physically realisable dark-matter particle
distribution.15 The velocity dispersion is assumed to scale with luminosity according to (2.68),
which is supported by observations. A similar scaling of s with luminosity ¸ or velocity dispersion
p
v

is also assumed,

s"sHA
p
v

p
v,HB

2
"sHA

¸

¸H B
2@a

, (8.7)

where the choice of the exponent is largely arbitrary. The scaling in (8.7) is such that the ratio of
truncation radius and Einstein radius at "xed redshift is independent of ¸. If, in addition, a"4, the
total mass-to-light ratio is identical for all galaxies. The "ducial luminosity ¸H may depend on
redshift. For instance, if the galaxies evolve passively, their mass properties are una!ected, but
aging of the stellar population cause them to become fainter with decreasing redshift. This e!ect
may be important for very deep observations, such as the Hubble Deep Field (Hudson et al., 1998),
in which the distribution of lens galaxies extends to high redshifts.

The luminosity ¸ of a lens galaxy can be inferred from the observed #ux and an assumed redshift.
Since the scaling relation (2.68) applies to the luminosity measured in a particular waveband, the
calculation of the luminosity from the apparent magnitude in a speci"ed "lter needs to account
for the k-correction. If data are available in a single waveband only, an approximate average
k-correction relation has to be chosen. For multi-colour data, the k-correction can be estimated for
individual galaxies more reliably. In any case, one assumes a relation between luminosity, apparent
magnitude, and redshift,

¸"¸(m, z) . (8.8)

The "nal aspect to be discussed here is the redshift of the galaxies. Given that a galaxy}galaxy
analysis involves at least several hundred foreground galaxies, and even more background galaxies,
one cannot expect that all of them have spectroscopically determined redshifts. In a more
favourable situation, multi-colour data are given, from which a redshift estimate can be obtained,
using the photometric redshift method (e.g., Connolly et al., 1995; Gwyn and Hartwick, 1996; Hogg
et al., 1998). These redshift estimates are characteristically accurate to *z&0.1, depending on the
photometric accuracy and the number of "lter bands in which photometric data are measured. For
a single waveband only, one can still obtain a redshift estimate, but a quite unprecise one. One then
has to use the redshift distribution of galaxies at that particular magnitude, obtained from
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spectroscopic or multi-colour redshift surveys in other "elds. Hence, one assumes that the redshift
probability distribution p

z
(z;m) as a function of magnitudes is known su$ciently accurately.

Suppose for a moment that all galaxy redshifts were known. Then, one can predict the e!ective
shear for each galaxy, caused by all the other galaxies around it,

c
i
"+

j

c
ij
(h

i
!h

j
, z

i
, z

j
, m

j
) , (8.9)

where c
ij

is the shear produced by the jth galaxy on the ith galaxy image, which depends on the
angular separation and the mass properties of the jth galaxy. From its magnitude and redshift, the
luminosity can be inferred from (8.8), which "xes p

v
and the halo size s through the scaling relations

(2.68) and (8.7). Of course, for z
i
4z

j
, c

ij
"0. Although the sum in (8.9) should, in principle, extend

over the whole sky, the lensing e!ect of all foreground galaxies with angular separation larger than
some h

.!9
will average to zero. Therefore, the sum can be restricted to separations4h

.!9
. We shall

discuss the value of h
.!9

further below.
In the realistic case of unknown redshifts, but known probability distribution p

z
(z;m), the shear

c
i
cannot be determined. However, by averaging (8.9) over p

z
(z;m), the mean and dispersion, Sc

i
T

and pc,i , of the shear for the ith galaxy can be calculated. Instead of performing the high-
dimensional integration explicitly, this averaging can conveniently be done by a Monte-Carlo
integration. One can generate multiple realisations of the redshift distribution by randomly
drawing redshifts from the probability density p

z
(z;m). For each realisation, the c

i
can be calculated

from (8.9). By averaging over the realisations, the mean Sc
i
T and dispersion pc,i of c

i
can be

estimated.

8.3. Results

The "rst attempt at detecting galaxy}galaxy lensing was made by Tyson et al. (1984). They
analysed a deep photographic survey consisting of 35 prime-focus plates with the 4-m Mayall
Telescope at Kitt Peak. An area of 36 arcmin2 on each plate was digitised. After object detection,
&12,000 &foreground' and &47,000 &background' galaxies were selected by their magnitudes, such
that the faintest object in the &foreground' class was one magnitude brighter than the brightest
&background' galaxy. This approach assumes that the apparent magnitude of an object provides
a good indication for its redshift, which seems to be valid, although the redshift distributions of
&foreground' and &background' galaxies will substantially overlap. There were &28,000 fore-
ground-background pairs with *h463A in their sample, but no signi"cant tangential alignment
could be measured. By comparing their observational results with Monte-Carlo simulations,
Tyson et al. concluded that the characteristic velocity dispersion of a foreground galaxy in their
sample must be smaller than about 120km s~1. This limit was later revised upwards to
&230 kms~1 by Kovner and Milgrom (1987) who noted that the assumption made in the Tyson
et al. analysis that all background galaxies are at in"nite distance (i.e., D

$4
/D

4
"1) was critical. This

upper limit is fully compatible with our knowledge of galaxy masses.
This null-detection of galaxy}galaxy lensing in a very large sample of objects apparently

discouraged other attempts for about a decade. After the "rst weak-lensing results on clusters
became available, it was obvious that this method requires deep data with superb image quality. In
particular, the non-linearity of photographic plates and mediocre seeing conditions are probably
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Fig. 30. The probability distribution p(u) for the 3202 foreground-background pairs (204r423 and 234r424,
respectively) with 5A4*h434A in the sample used by Brainerd et al. (1996), together with the best "t according to (8.5).
The observed distribution is incompatible with a #at distribution (dotted line) at a high con"dence level of 99.9% (from
Brainerd et al.).

fatal to the detection of this e!ect, owing to its smallness. The shear at 5A from an ¸H galaxy with
p
v
"160 km s~1 is less than 5%, and pairs with smaller separations are very di$cult to investigate

as the bright galaxy will a!ect the ellipticity measurement of its close neighbour on ground-based
images.

Using a single 9.6@]9.6@ blank "eld, with a total exposure time of nearly seven hours on the 5-m
Hale Telescope on Mount Palomar, Brainerd et al. (1996) reported the "rst detection of galaxy}
galaxy lensing. Their co-added image had a seeing of 0.87A at FWHM, and the 97% completeness
limit was r"26. They considered &foreground' galaxies in the magnitude range 204r423, and
several fainter bins for de"ning the &background' population, and investigated the distribution
function p(u) for pairs with separation 5A4*h434A. The most signi"cant deviation of p(u) from
a #at distribution occurs for &background' galaxies in the range 234r424. For fainter (and thus
smaller) galaxies, the accuracy of the shape determination deteriorates, as Brainered et al.
explicitly show. The number of &foreground' galaxies, &background' galaxies, and pairs, is
N

&
"439, N

"
"506 and N

1!*34
"3202. The binned distribution for this &background' sample is

shown in Fig. 30, together with a "t according to (8.5). A Kolmogorov}Smirnov test rejects
a uniform distribution of p(u) at the 99.9% level, thus providing the "rst detection of galaxy}galaxy
lensing.

Brainerd et al. performed a large number of tests to check for possible systematic errors,
including null tests (e.g., replacing the positions of &foreground' galaxies by random points, or stars),
splitting the whole sample into various subsamples (e.g., inner part vs. outer part of the image,
upper half vs. lower half, etc.), and these tests were passed satisfactorily. Also a slight PSF
anisotropy in the data, or contamination of the ellipticity measurement of faint galaxies by brighter
neighbouring galaxies, cannot explain the observed relative alignment, as tested with extensive
simulations, so that the detection must be considered real.
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Fig. 31. Contours of constant s2 in the <H}h sH parameter plane, where <H"J2p
v,H , obtained from a comparison of

the observed tangential alignment Sc
5
T with the distribution found in Monte-Carlo simulations. The solid contours range

from 0.8 (innermost) to 8 per degree of freedom; the dotted curve displays s2"1 per degree of freedom. (from Brainerd
et al., 1996).

Brainerd et al. then quantitatively analysed their observed alignment, using the model outlined
in Section 8.2, with a"4. The predictions of the model were inferred from Monte-Carlo simula-
tions, in which galaxies were randomly distributed with the observed number density, and redshifts
were assigned according to a probability distribution p

z
(z;m), for which they used a slight

extrapolation from existing redshift surveys, together with a simple prescription for the k-correc-
tion in (8.8) to assign luminosities to the galaxies. The ellipticity for each background galaxy image
was then obtained by randomly drawing an intrinsic ellipticity, adding shear according to (8.9). The
simulated probability distribution p(u) was discretised into several bins in angular separation *h,
and compared to the observed orientation distribution, using s2-minimisation with respect to the
model parameters p

v,H and sH . The result of this analysis is shown in Fig. 31. The shape of the
s2-contours is characteristic in that they form a valley which is relatively narrow in the p

v,H-
direction, but extends very far out into the sH-direction. Thus, the velocity dispersion p

v,H can
signi"cantly be constrained with these observations, while only a lower limit on sH can be derived.
Formal 90% con"dence limits on p

v,H are &100 and &210km s~1, with a best-"tting value
of about 160 km s~1, whereas the 1- and 2-p lower limits on sH are 25 h~1 and &10 h~1kpc,
respectively.

Finally, Brainerd et al. studied the dependence of the lensing signal Sc
5
T on the colour of their

&background' sample, by splitting it into a red and a blue half. The lensing signal of the former is
compatible with zero on all scales, while the blue sample reveals a strong signal which decreases
with angular separation as expected. This result is in accordance with that discussed in
Section 5.5.3, where the blue galaxies showed a stronger lensing signal as well, indicating that their
redshift distribution extends to larger distances.
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We have discussed the work of Brainerd et al. (1996) in some detail since it provided the "rst
detection of galaxy}galaxy lensing, and since it was the only one obtained from the ground until
recently. Also, their careful analysis exempli"es the di$culties in deriving a convincing result.

Gri$ths et al. (1996) analysed the images from the Hubble Space Telescope Medium Deep Survey
(MDS) in terms of galaxy}galaxy lensing. The MDS is an imaging survey, using parallel data
obtained with the WFPC2 camera on-board HST. They identi"ed 1600 &foreground' (15(I(22)
and 14000 &background' (22(I(26) galaxies. Owing to the spatial resolution of the HST,
a morphological classi"cation of the foreground galaxies could be performed, and spiral and
elliptical galaxies could separately be analysed. They considered the mean orientation angle
SuT"p/4#p~1Sc

5
T/De(4)DT as a statistical variable, and scaled the truncation radius in their mass

models in proportion to the half-light radius. They found that p
v,H"220 and 160 km s~1 are

compatible with their shear data for elliptical and spiral galaxies, respectively. For their sample of
elliptical foreground galaxies, they claim that the truncation radius must be more than 10 times the
half-light radius to "t their data, and that a de Vaucouleurs mass pro"le is excluded. Unfortunately,
no signi"cance levels are quoted.

A variant of the method for a quantitative analysis of galaxy}galaxy lensing was developed by
Schneider and Rix (1997). Instead of a s2-analysis of Sc

5
T in angular separation bins, they suggested

a maximum-likelihood analysis, using the individual galaxy images. In their Monte-Carlo
approach, the galaxy positions (and magnitudes) are kept "xed, and only the redshifts of the
galaxies are drawn from their respective probability distribution p

z
(z;m), as described at the end

of Section 8.2. The resulting log-likelihood function

l"!+
i

De
i
!Sc

i
TD2

o2#p2c,i
!+

i

ln[p(o2#p2c,i)] , (8.10)

where o is the dispersion of intrinsic ellipticity distribution, here assumed to be a Gaussian, can
then be maximised with respect to the model parameters, e.g., p

v,H and sH . Extensive simulations
demonstrated that this approach, which utilises all of the information provided by observations,
yields an unbiased estimate of these model parameters. Later, Erben (1997) showed that this
remains valid even if the lens galaxies have elliptical projected mass pro"les.

This method was applied to the deep multi-colour imaging data of the Hubble Deep Field (HDF;
Williams et al., 1996) by Hudson et al. (1998), after Dell'Antonio and Tyson (1996) detected
a galaxy}galaxy lensing signal in the HDF on an angular scale of [5A. The availability of data in
four wavebands allows an estimate of photometric redshifts, a method demonstrated to be quite
reliable by spectroscopy of HDF galaxies (e.g., Hogg et al., 1998). The accurate redshift estimates,
and the depth of the HDF, compensates for the small "eld-of-view of &5 arcmin2. A similar study
of the HDF data was carried out by the Caltech group (see Blandford et al., 1998).

In order to avoid k-corrections, using the multi-colour photometric data to relate all magnitudes
to the rest-frame B-band, Hudson et al. considered lens galaxies with redshift z[0.85 only, leaving
208 galaxies. Only such source-lens pairs for which the estimated redshifts di!er by at least 0.5
were included in the analysis, giving about 104 foreground}background pairs. They adopted the
same parameterisation for the lens population as described in Section 8.2, except that the depth
of the HDF suggests that the "ducial luminosity ¸H should be allowed to depend on redshift,
¸HJ(1#z)f. Assuming no evolution, f"0, and a Tully}Fisher index of 1/a"0.35, they found
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p
v,H"(160$30) km s~1. Various control tests were performed to demonstrate the robustness of

this result, and potential systematic e!ects were shown to be negligible.
As in the previous studies, halo sizes could not be signi"cantly constrained. The lensing signal is

dominated by spiral galaxies at a redshift of z&0.6. Comparing the Tully}Fisher relation at this
redshift to the local relation, the lensing results indicate that intermediate-redshift galaxies are
fainter than local spirals by 1$0.6 magnitudes in the B-band, at "xed circular velocity.

Hence, all results reported so far yield compatible values of p
v,H , but do not allow upper bounds

on the halo size to be set. The #atness of the likelihood surface in the sH-direction shows that
a measurement of sH requires much larger samples than used before. We can understand the
insensitivity to sH in the published analyses at least qualitatively. The shear caused by a galaxy at
a distance of, say, 100kpc is very small, of order 1%. This implies that the di!erence in shear caused
by galaxies with truncation radius of 20 kpc and s"100 kpc is very small indeed. In addition, there
are typically other galaxies closer to the line-of-sight to background galaxies which produce
a larger shear, making it more di$cult to probe the shear of widely separated foreground galaxies.
Hence, to probe the halo size, many more foreground}background pairs must be considered. In
addition, the angular scale h

.!9
within which pairs are considered needs to be larger than the

angular scale of the truncation radius at typical redshifts of the galaxies, and on the other hand,
h
.!9

should be much smaller than the size of the data "eld available. Hence, to probe large scales of
the halo, wide-"eld imaging data are needed.

There is a related problem which needs to be understood in greater detail. Since galaxies are
clustered, and probably (biased) tracers of an underlying dark-matter distribution (e.g., most
galaxies may live in groups), it is not evident whether the shear caused by a galaxy at a spatial
separation of, say, 100 kpc is caused mainly by the dark-matter halo of the galaxy itself, or rather by
the dark-matter halo associated with the group. Here, numerical simulations of the dark matter
may indicate to which degree these two e!ects can be separated, and observational strategies for
this need to be developed.

In fact, the two points just mentioned were impressively illustrated by a galaxy}galaxy lensing
analysis of early commissioning imaging data from the Sloan Digital Sky Survey (Fischer et al.,
1999), covering 225 square degrees. The separation between foreground and background galaxies
was based on apparent magnitude, with an estimated mean redshift of the foreground sample of
Sz

$
T+0.17. Fischer et al. (1999) used data in three optical "lters for their analysis; the number of

foreground (background) galaxies in each "lter is &28,000 (1.4]106). The galaxy}galaxy lensing
signal is seen out to &10@ in all three "lters, and the mean tangential shear in the annulus
10A4h410@ is +6]10~4. With an assumed redshift distribution of foreground and background
galaxies, the characteristic velocity dispersion could be estimated to be pH"170$20 kms~1 at
95% con"dence. Even at the large angular separation probed by this data set, no sign of a cut-o!
radius of the galaxy halos is seen, and a lower limit of sH5275h~1kpc can be derived. At such
scales, the shear is probably no longer dominated by the foreground galaxy used as the origin
for the de"nition of tangential shear, but by neighbouring galaxies and/or dark matter correlated
with the galaxy. Therefore, the results of such a study may best be interpreted as a galaxy-
mass correlation function (Kaiser, 1992), which brings us back to the issue of biasing discussed in
Section 6.8. A preliminary analysis presented in Fischer et al. (1999) yields X

0
/b&0.3, if a linear

biasing factor b is assumed. At least as important as the quantitative results from the Sloan Survey
is the fact that they demonstrate the enormous potential of this method } this analysis used about
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2% of the imaging data the full Sloan Survey will provide, and did not yet utilise photometric
redshift information which, as mentioned before, will increase the accuracy of the physical
parameters derived.

8.4. Galaxy}galaxy lensing in galaxy clusters

An interesting extension of the work described above aims at the investigation of the dark-matter
halo properties of galaxies within galaxy clusters. In the hierarchical model for structure formation,
clusters grow by mergers of less massive halos, which by themselves formed by merging of even
smaller substructures. Tidal forces in clusters, possible ram-pressure stripping by the intra-cluster
medium, and close encounters during the formation process, may a!ect the halos of galaxies, most
of which presumably formed at an early epoch. Therefore, it is unclear at present whether the halo
properties of galaxies in clusters are similar to those of "eld galaxies.

Galaxy}galaxy lensing o!ers an exciting opportunity to probe the dark galaxy halos in clusters.
There are several di!erences between the investigation of "eld and of cluster galaxies. First, the
number of massive galaxies in a cluster is fairly small, so the statistics for a single cluster will be
limited. This can be compensated by investigating several clusters simultaneously. Second,
the image distortion is determined by the reduced shear, g"c/(1!i). For "eld galaxies, where the
shear and the surface mass density is small, one can set g+c, but this approximation no longer
holds for galaxies in clusters, where the cluster provides i substantially above zero. This implies
that one needs to know the mass distribution of the cluster before the statistical properties of the
massive galaxy halos can be investigated. On the other hand, it magni"es the lensing signal from
the galaxies, so that fewer cluster galaxies are needed to derive signi"cant lensing results compared
to "eld galaxies of similar mass. Third, most cluster galaxies are of early type, and thus their
p
v,H } and consequently, their lensing e!ect } is expected to be larger than for typical "eld galaxies.
In fact, the lensing e!ect of individual cluster galaxies can even be seen from strong lensing.

Modelling clusters with many strong-lensing constraints (e.g., several arcs, multiple images of
background galaxies), the incorporation of individual cluster galaxies turns out to be necessary
(e.g., Kassiola et al., 1992; Wallington et al., 1995; Kneib et al., 1996). However, the resulting
constraints are relevant only for a few cluster galaxies which happen to be close to the strong-
lensing features, and mainly concern the mass of these galaxies within &10h~1kpc.

The theory of galaxy}galaxy lensing in clusters was developed in Natarajan and Kneib (1997)
and Geiger and Schneider (1998), using several di!erent approaches. The simplest possibility is
related to the aperture mass method discussed in Section 5.3.1. Measuring the tangential shear
within an annulus around each cluster galaxy, perhaps including a weight function, permits
a measurement of the aperture mass, and thus to constrain the parameters of a mass model for the
galaxies. Provided the scale of the aperture is su$ciently small, the tidal "eld of the cluster averages
out to "rst order, and the local in#uence of the cluster occurs through the local surface mass density
i. In particular, the scale of the aperture should be small enough in order to exclude neighbouring
cluster galaxies.

A more sophisticated analysis starts from a mass model of the cluster, as obtained by one of the
reconstruction techniques discussed in Section 5, or by a parameterised mass model constructed
from strong-lensing constraints. Then, parameterised galaxy models are added, again with a pre-
scription similar to that of Section 8.2, and simultaneously the mass model of the cluster is
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multiplied by the relative mass fraction in the smoothly distributed cluster mass (compared to the
total mass). In other words, the mass added by inserting galaxies into the cluster is subtracted from
the smooth density pro"le. From the observed galaxy ellipticities, a likelihood function can be
de"ned and maximised with respect to the parameters (p

v,H , sH) of the galaxy model.
Natarajan et al. (1998) applied this method to WFPC2 images of the cluster AC 114 (z

$
"0.31).

They concluded that most of the mass of a "ducial ¸H cluster galaxy is contained in a radius of
&15 kpc, indicating that the halo size of galaxies in this cluster is smaller than that of "eld galaxies.

Using their HST mosaic image, Hoekstra et al. (2000) also detected galaxy}galaxy lensing in the
high-redshift cluster MS1054!03 at z"0.83. Avoiding the densest part of the cluster in selecting
their foreground galaxies, they investigated the average tangential shear around them, after subtract-
ing the shear from the cluster as determined from the mass reconstruction (see Section 5.3), also using
scaling (2.68). The galaxy}galaxy lensing signal is seen at the 99.8% con"dence level. Using the
redshift distribution of background galaxies as determined from photometric redshift estimates in the
Hubble Deep Fields, their lensing signal yields pH+200$35kms~1 for the cluster galaxies. Not
unexpectedly, this value is larger than those obtained from "eld galaxies, since the cluster preferen-
tially hosts early-type galaxies for which pH is known to be larger than for spirals. It is indeed
encouraging that this method is able to measure the mass of high-redshift galaxies.

Once the mass contained in the cluster galaxies is a signi"cant fraction of the total mass of the
cluster, this method was found to break down, or give strongly biased results. Geiger and Schneider
(1999) modi"ed this approach by performing a maximum-likelihood cluster mass reconstruction
for each parameter set of the cluster galaxies, allowing the determination of the best representation
of the global underlying cluster component that is consistent with the presence of the cluster
galaxies and the observed image ellipticities of background galaxies.

This method was then applied to the WFPC-2 image of the cluster Cl0939#4713, already
described in Section 5.4. The entropy-regularised maximum-likelihood mass reconstruction of the
cluster is very similar to the one shown in Fig. 14, except that the cluster centre is much better
resolved, with a peak very close to the observed strong lensing features (Trager et al., 1997). Cluster
galaxies were selected according to their magnitudes, and divided by morphology into two
subsamples, viz., early-type galaxies and spirals. In Fig. 32 we show the likelihood contours in the
sH}pv,H plane, for both subsets of cluster galaxies. Whereas there is no statistically signi"cant
detection of lensing by spiral galaxies, the lensing e!ect of early-type galaxies is clearly detected.
Although no "rm upper limit of the halo size sH can be derived from this analysis owing to the small
angular "eld of the image (the maximum of the likelihood function occurs at 8h~1kpc, and a 1-p
upper limit would be &50h~1kpc), the contours &close' at smaller values of sH compared to the
results obtained from "eld galaxies. By statistically combining several cluster images, a signi"cant
upper limit on the halo size can be expected.

The maximum-likelihood estimate of pH for the early-type galaxies is &200 km s~1, in agree-
ment with that found by Hoekstra et al. (2000).

It should be noted that the results presented above still contain some uncertainties, most notably
the unknown redshift distribution of the background galaxies and the mass-sheet degeneracy,
which becomes particularly severe owing to the small "eld-of-view of WFPC2. Changing the
assumed redshift distribution and the scaling parameter j in (5.10) shifts the likelihood contours in
Fig. 32 up or down, i.e., the determination of p

v,H is a!ected. As for galaxy}galaxy lensing of "eld
galaxies, the accuracy can be increased by using photometric redshift estimates. Similarly, the
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Fig. 32. Results of applying the entropy-regularised maximum-likelihood method for galaxy}galaxy lensing to the
WFPC2 image of the cluster Cl0939#4713. The upper and lower panels correspond to early-type and spiral galaxies,
respectively. The solid lines are con"dence contours at 68.3%, 95.4% and 99.7%, and the cross marks the maximum
of the likelihood function. Dashed lines correspond to galaxy models with equal aperture mass MH((8h~1 kpc)"
(0.1, 0.5, 1.0)]1011h~1M

_
. Similarly, the dotted lines connect models of constant total mass for an ¸H-galaxy,

of MH"(0.1, 0.5, 1.0, 5.0, 10)]1011h~1M
_

, which corresponds to a mass fraction contained in galaxies of
(0.15, 0.75, 1.5, 7.5, 15)%, respectively (from Geiger and Schneider, 1999).

allowed range of the mass-sheet transformation can be constrained by combining these small-scale
images with larger-scale ground-based images, or, if possible, by using magni"cation information
to break the degeneracy. Certainly, these improvements of the method will be a "eld of active
research in the immediate future.

9. The impact of weak gravitational light de6ection on the microwave background radiation

9.1. Introduction

The Cosmic Microwave Background originated in the hot phase after the Big Bang, when
photons were created in thermal equilibrium with electromagnetically interacting particles. While
the Universe expanded and cooled, the photons remained in thermal equilibrium until the
temperature was su$ciently low for electrons to combine with the newly formed nuclei of mainly
hydrogen and helium. While the formation of atoms proceeded, the photons decoupled from the
matter due to the rapidly decreasing abundance of charged matter. Approximately 300,000 years
after the Big Bang, corresponding to a redshift of z+1000, the universe became transparent for the
radiation, which retained the Planck spectrum it had acquired while it was in thermal equilibrium,
and the temperature decreased in proportion with the scale factor as the Universe expanded. This
relic radiation, cooled to ¹"2.73K, forms the Cosmic Microwave Background (hereafter CMB).
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16The (thermal) Sunyaev}Zel'dovich e!ect is due to Compton-upscattering of CMB photons by thermal electrons in
the hot plasma in galaxy clusters. Since the temperature of the electrons is much higher than that of the photons, CMB
photons are e!ectively re-distributed towards higher energies. At frequencies lower than +272GHz, the CMB intensity
is thus decreased towards galaxy clusters; in e!ect, they cast shadows on the surface of the CMB.

Penzias and Wilson (1965) detected it as an `excess antenna temperaturea, and Fixsen et al. (1996)
used the COBE-FIRAS instrument to prove its perfect black-body spectrum.

Had the Universe been ideally homogeneous and isotropic, the CMB would have the intensity of
black-body radiation at 2.73K in all directions on the sky, and would thus be featureless. Density
perturbations in the early Universe, however, imprinted their signature on the CMB through
various mechanisms, which are thoroughly summarised and discussed in Hu (1995). Photons in
potential wells at the time of decoupling had to climb out, thus losing energy and becoming slightly
cooler than the average CMB. This e!ect, now called the Sachs}Wolfe ewect was originally studied
by Sachs and Wolfe (1967), who found that the temperature anisotropies in the CMB trace the
potential #uctuations on the &surface' of decoupling. CMB #uctuations were "rst detected by the
COBE-DMR experiment (Smoot et al., 1992) and subsequently con"rmed by numerous ground-
based and balloon-borne experiments (see Smoot, 1997 for a review).

The interplay between gravity and radiation pressure in perturbations of the cosmic &#uid' before
recombination gave rise to another important e!ect. Radiation pressure is only e!ective in perturba-
tions smaller than the horizon. Upon entering the horizon, radiation pressure provides a restoring
force against gravity, leading to acoustic oscillations in the tightly coupled #uid of photons and
charged particles, which cease only when radiation pressure drops while radiation decouples. There-
fore, for each physical perturbation scale, the acoustic oscillations set in at the same time, i.e. when the
horizon size becomes equal the perturbation size, and they end at the same time, i.e. when radiation
decouples. At "xed physical scale, these oscillations are therefore coherent, and they show up as
distinct peaks (the so-called Doppler peaks) and troughs in the power spectrum of the CMB #uctua-
tions. Perturbations large enough to enter the horizon after decoupling never experience these oscill-
ations. Going through the CMB power spectrum from large to small scales, there should therefore be
a &"rst' Doppler peak at a location determined by the horizon scale at the time of decoupling.

A third important e!ect sets in on the smallest scales. If a density perturbation is small enough,
radiation pressure can blow it apart because its self-gravity is too weak. This e!ect is comparable to
the Jeans' criterion for the minimal mass required for a pressurised perturbation to collapse. It
amounts to a suppression of small-scale #uctuations and is called Silk damping, leading to an
exponential decline at the small-scale end of the CMB #uctuation power spectrum.

Other e!ects arise between the &surface' of decoupling and the observer. Rees and Sciama (1968)
pointed out that large non-linear density perturbations between the last-scattering surface and us
can lead to a distinct e!ect if those #uctuations change while the photons traverse them. Falling
into the potential wells, they experience a stronger blue-shift than climbing out of them because
expansion makes the wells shallower in the meantime, thus giving rise to a net blue-shift of photons.
Later, this e!ect was re-examined in the framework of the &Swiss-Cheese' (Dyer, 1976) and &vacuole'
(Nottale, 1984) models of density perturbations in an expanding background space}time. The
masses of such perturbations have to be very large for this e!ect to become larger than the
Sunyaev}Zel'dovich e!ect16 due to the hot gas contained in them; Dyer (1976) estimated that
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masses beyond 1019M
_

would be necessary, a value four to "ve orders of magnitude larger than
that of typical galaxy clusters.

The gravitational lens e!ect of galaxy clusters moving transverse to the line-of-sight was
investigated by Birkinshaw and Gull (1983) who found that a cluster with &1015M

_
and

a transverse velocity of &6000 kms~1 should change the CMB temperature by &10~4K. Later,
Gurvits and Mitrofanov (1986) re-investigated this e!ect and found it to be about an order of
magnitude smaller.

Cosmic strings as another class of rapidly moving gravitational lenses were studied by Kaiser
and Stebbins (1984) who discussed that they would give rise to step-like features in the CMB
temperature pattern.

9.2. Weak lensing of the CMB

The introduction shows that the CMB is expected to display distinct features in a hier-
archical model of structure formation. The CMB power spectrum should be featureless on
large scales, then exhibit pronounced Doppler peaks at scales smaller than the horizon at the
time of decoupling, and an exponential decrease due to Silk damping at the small-scale end.
We now turn to investigate whether and how gravitational lensing by large-scale structures
can alter these features.

The literature on the subject is rich (see Blanchard and Schneider, 1987; CayoH n et al., 1993b;
CayoH n et al., 1993a; Cole and Efstathiou, 1989; Fukugita et al., 1992; Kashlinsky, 1988; Linder,
1988; Linder, 1990a,b; MartmHnez-GonzaH lez et al., 1990; Sasaki, 1989; Tomita, 1989; Watanabe and
Tomita, 1991), but di!erent authors have sometimes arrived at contradicting conclusions. Perhaps,
the most elegant way of studying weak lensing of the CMB is the power-spectrum approach, which
was most recently advocated by Seljak (1994, 1996).

We should like to start our discussion by clearly stating two facts concerning the e!ect of lensing
on #uctuations in the Cosmic Microwave Background which clarify and resolve several apparently
contradictory discussions and results in the literature:

(1) If the CMB was completely isotropic, gravitational lensing would have no ewect whatsoever
because it conserves surface brightness. In this case, lensing would only magnify certain
patches in the sky and de-magnify others, but since it would not alter the surface brightness
in the magni"ed or de-magni"ed patches, the temperature remained una!ected. An analogy
would be observers facing an in"nitely extended homogeneously coloured wall, seeing
some parts of it enlarged and others shrunk. Regardless of the magni"cation, they would
see the same colour everywhere, and so they would notice nothing despite the
magni"cation.

(2) It is not the absolute value of the light deyection due to lensing which matters, but the relative
deyection of neighbouring light rays. Imagine a model universe in which all light rays are
isotropically de#ected by the same arbitrary amount. The pattern of CMB anisotropies seen by
an observer would then be coherently shifted relative to the intrinsic pattern, but remain
unchanged otherwise. It is thus merely the dispersion of de#ection angles what is relevant for the
impact of lensing on the observed CMB #uctuation pattern.
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9.3. CMB temperature yuctuations

In the absence of any lensing e!ects, we observe at the sky position h the intrinsic CMB
temperature ¹(h). There are #uctuations *¹(h) in the CMB temperature about its average value
S¹T"2.73K. We abbreviate the relative temperature #uctuations by

*¹(h)
S¹T

,q(h) (9.1)

in the following. They can statistically be described by their angular auto-correlation function

m
T
(/)"Sq(h) q(h#/)T (9.2)

with the average extending over all positions h. Due to statistical isotropy, m
T
(/) depends neither on

the position h nor on the direction of /, but only on the absolute separation / of the correlated
points.

Commonly, CMB temperature #uctuations are also described in terms of the coe$cients a
lm

of
an expansion into spherical harmonics

q(h,/)"
=
+
l/0

l
+

m/~l

a
lm
>m

l
(h,/) (9.3)

and the averaged expansion coe$cients constitute the angular power spectrum C
l

of the CMB
#uctuations

C
l
"SDa

lm
D2T . (9.4)

It can then be shown that the correlation function m
T
(/) is related to the power-spectrum

coe$cients C
l
through

C
l
"P

p

0

d/ sin(/)P
l
(cos /)m

T
(/) (9.5)

with the Legendre functions P
l
(cos/).

9.4. Auto-correlation function of the gravitationally lensed CMB

9.4.1. Dexnitions
If there are any density inhomogeneities along the line-of-sight towards the last-scattering

surface at z+1000 (the &source plane' of the CMB), a light ray starting into direction h at the
observer will intercept the last-scattering surface at the de#ected position

b"h!a(h) , (9.6)

where a(h) is the (position-dependent) de#ection angle experienced by the light ray. We will
therefore observe, at position h, the temperature of the CMB at position b, or

¹(b),¹@(h)"¹[h!a(h)] . (9.7)
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The intrinsic temperature auto-correlation function is thus changed by lensing to

m@
T
(/)"Sq[h!a(h)] q[(h#/)!a(h#/)]T . (9.8)

For simplicity of notation, we further abbreviate a(h),a and a(h#/),a@ in the following.

9.4.2. Evaluation
In this section we evaluate the modi"ed correlation function (9.8) and quantify the lensing e!ects.

For this purpose, it is convenient to decompose the relative temperature #uctuation q(h) into
Fourier modes

q(h)"P
d2l

(2p)2
q( (l) exp(i l h) . (9.9)

The expansion of q(h) into Fourier modes rather than into spherical harmonics is permissible
because we do not expect any weak-lensing e!ects on large angular scales, so that we can consider
¹(h) on a plane locally tangential to the sky rather than on a sphere.

We insert the Fourier decomposition (9.9) into the expression for the correlation function (9.8)
and perform the average. We need to average over ensembles and over the random angle between
the wave vector l of the temperature modes and the angular separation / of the correlated points.
The ensemble average corresponds to averaging over realisations of the CMB temperature
#uctuations in a sample of universes or, since we focus on small scales, over a large number of
disconnected regions on the sky. This average introduces the CMB #uctuation spectrum P

T
(l),

which is de"ned by

Sq( (l) q( H(l@)T,(2p)2 d(2)(l!l@) P
T
(l) . (9.10)

Averaging over the angle between l and the position angle / gives rise to the zeroth-order Bessel
function of the "rst kind, J

0
(x). These manipulations leave Eq. (9.8) in the form

m@
T
(/)"P

=

0

l dl
2p

P
T
(l)Sexp[i l(a!a@)]TJ

0
(l/) . (9.11)

The average over the exponential in Eq. (9.11) remains to be performed. To do so, we "rst expand
the exponential into a power series

Sexp(i l da)T"
=
+
j/0

S(i l da)jT
j!

, (9.12)

where da,a!a@ is the de#ection-angle di!erence between neighbouring light rays with initial
angular separation /. We now assume that the de#ection angles are Gaussian random "elds. This
is reasonable because (i) de#ection angles are due to Gaussian random #uctuations in the
density-contrast "eld as long as the #uctuations evolve linearly, and (ii) the assumption of linear
evolution holds well for redshifts where most of the de#ection towards the last-scattering surface
occurs. Of course, this makes use of the commonly held view that the initial density #uctuations
are of Gaussian nature. Under this condition, the odd moments in Eq. (9.12) all vanish. It can then
be shown that

Sexp(i l da)T"exp(!1
2
l2p2(/)) (9.13)

448 M. Bartelmann, P. Schneider / Physics Reports 340 (2001) 291}472



holds exactly, where p2(/) is the dispersion of one component of the de#ection angle,

p2(/),1
2
S(a!a@)2T . (9.14)

Even if the assumption that da is a Gaussian random "eld fails, Eq. (9.13) still holds approximately.
To see this, we note that the CMB power spectrum falls sharply on scales lZl

#
+(10@X1@2

0
)~1. The

scale l
#

is set by the width of the last-scattering surface at redshift z&1000. Smaller-scale
#uctuations are e$ciently damped by acoustic oscillations of the coupled photon}baryon #uid.
Typical angular scales l~1 in the CMB #uctuations are therefore considerably larger than the
di!erence between gravitational de#ection angles of neighbouring rays, da, so that l(a!a@) is
a small number. Hence, ignoring fourth-order terms in lda, the remaining exponential in (9.11) can
be approximated by

Sexp(i l da)T+1!1
2
l2p2(/)+exp[!1

2
l2p2(/)] . (9.15)

Therefore, the temperature auto-correlation function modi"ed by gravitational lensing can safely
be written

m@
T
(/)"P

=

0

l dl
2p

P
T
(l) expC!

1
2
l2p2(/)DJ

0
(l/) . (9.16)

This equation shows that the intrinsic temperature-#uctuation power spectrum is convolved with
a Gaussian function in wave number l with dispersion p~1(/). The e!ect of lensing on the CMB
temperature #uctuations is thus to smooth #uctuations on angular scales of order or smaller
than p(/).

9.4.3. Alternative representations
Eq. (9.16) relates the unlensed CMB power spectrum to the lensed temperature auto-correlation

function. Noting that P
T
(l) is the Fourier transform of m

T
(/),

P
T
(l)"Pd2/ m

T
(/) exp(!i l/)"2pP/d/ m

T
(/)J

0
(l/) , (9.17)

we can substitute one for the other. Isotropy permitted us to perform the integration over the
(random) angle between l and / in the last step of (9.17). Inserting (9.17) into (9.16) leads to

m@
T
(/)"P/@d/@ m

T
(/@)K(/,/@) . (9.18)

The kernel K(/,/@) is given by

K(/,/@),P
=

0

ldl J
0
(l/)J

0
(l/@) expC!

1
2
l2p2(/)D

"

1
p2(/)

expC!
/2#/@2
2p2(/) D I

0C
//@
p2(/)D , (9.19)

where I
0
(x) is the modi"ed zeroth-order Bessel function. Eq. (6.66) (3.2) of Gradshteyn and Ryzhik

(1994) was used in the last step. As will be shown below, p(/);/, so that the argument of I
0

is
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generally a very large number. Noting that I
0
(x)+(2px)~1@2 exp(x) for xPR, we can write

Eq. (9.18) in the form

m@
T
(/)+

1
(2p/)1@2p(/) P d/@/ @1@2 m

T
(/@) expC!

(/!/@)2
2p2(/) D . (9.20)

Like Eq. (9.16), this expression shows that lensing smoothes the intrinsic temperature auto-
correlation function m

T
(/) over angular scales of p(/). Note in particular that, if p(/), the

exponential in (9.20) tends towards a Dirac delta distribution

lim
p(()?0

1

J2pp(/)
expC!

(/!/@)2
2p2(/) D"d(/!/@) , (9.21)

so that the lensed and unlensed temperature auto-correlation functions agree, m
T
(/)"m@

T
(/).

Likewise, one can Fourier back-transform Eq. (9.16) to obtain a relation between the lensed and
the un-lensed CMB power spectra. To evaluate the resulting integral, it is convenient to assume
p(/)"e/, with e being either a constant or a slowly varying function of /. This assumption will be
justi"ed below. One then "nds

P@
T
(l@)"P

=

0

dl
e2l

P
T
(l) expA!

l2#l@2
2e2l2 B I

0A
l@
e2lB . (9.22)

For e;1, this expression can be simpli"ed to

P@
T
(l@)"P

=
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dl

J2pel
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(l) expC!

(l!l@)2
2e2l2 D . (9.23)

9.5. Deyection-angle variance

9.5.1. Auto-correlation function of deyection angles
We proceed by evaluating the dispersion p2(/) of the de#ection angles. This is conveniently

derived from the de#ection-angle auto-correlation function

ma(/),Sa a@T . (9.24)

Note that the correlation function of a is the sum of the correlation functions of the components
of a,

ma"Sa a@T"Sa
1
a@
1
T#Sa

2
a@
2
T"ma1

#ma2
. (9.25)

In terms of the auto-correlation function, the dispersion p2(/) can be written as

p2(/)"1
2
S[a!a@]2T"ma (0)!ma(/) . (9.26)

The de#ection angle is given by Eq. (6.11) in terms of the Newtonian potential U of the density
#uctuations d along the line-of-sight. For lensing of the CMB, the line-of-sight integration extends
along the (unperturbed) light ray from the observer at w"0 to the last-scattering surface at
w (z+1000); see the derivation in Section 6.2 leading to Eq. (6.11).
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Fig. 33. The "lter function F(l,/) as de"ned in Eq. (9.30), divided by /2, is shown as a function of l/. Compare Fig. 22.
For "xed /, the "lter function emphasises large-scale projected density perturbations (i.e. structures with small l).

We introduced the e!ective convergence in (6.14) as half the divergence of the de#ection angle. In
Fourier space, this equation can be inverted to yield the Fourier transform of the de#ection angle

a( (l)"!

2ii(
%&&

(l)
DlD2

l . (9.27)

The de#ection-angle power spectrum can therefore be written as

Pa (/)"
4
l2

Pi (l) . (9.28)

The de#ection-angle auto-correlation function is obtained from Eq. (9.28) via Fourier transforma-
tion. The result is

ma(/)"P
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(2p)2
Pa(l) exp(!i l/)"2pP
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0
(l/)

(pl)2
, (9.29)

similar to the form (6.59), but here the "lter function is no longer a function of the product l/ only,
but of l and / separately,

F(l,/)"
J
0
(l/)

(pl)2
"/2

J
0
(l/)

(pl/)2
. (9.30)

We plot /~2F(l,/) in Fig. 33. For "xed /, the "lter function suppresses small-scale #uctuations,
and it tends towards F(l,/)P(pl)~2 for lP0.

Inserting Pi(l) into (9.29), we "nd the explicit expression for the de#ection-angle auto-correlation
function

ma(/)"
9H4

0
X2

0
c4 P

w

0

dw@=2(w,w@) a~2(w@)P
=

0

dk
2pk

Pd (k,w@)J
0
[ f

K
(w@)k/] . (9.31)
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Despite the obvious similarity between this result and the magni"cation auto-correlation function
(6.34), it is worth noting two important di!erences. First, the weighting of the integrand along the
line-of-sight di!ers by a factor of f 2

K
(w@) because we integrate de#ection-angle components rather

than the convergence, i.e. "rst rather than second-order derivatives of the potential U. Conse-
quently, structures near the observer are weighted more strongly than for magni"cation or shear
e!ects. Secondly, the wave-number integral is weighted by k~1 rather than k, giving most weight to
the largest-scale structures. Since their evolution remains linear up to the present, it is expected that
non-linear density evolution is much less important for lensing of the CMB than it is for cosmic
magni"cation or shear.

9.5.2. Typical angular scale
A typical angular scale /

'
for the coherence of gravitational light de#ection can be ob-

tained as

/
'
,C

1
ma (0) AK

R2ma (/)
R/2 K

(/0
BD

~1@2
. (9.32)

As Eq. (9.31) shows, the de#ection-angle auto-correlation function depends on / only through the
argument of the Bessel function J

0
(x). For small arguments x, the second-order derivative of the

J
0
(x) is approximately JA

0
(x)+!J

0
(x)/2. Di!erentiating ma(/) twice with respect to /, and

comparing the result to the expression for the magni"cation auto-correlation function mk(/) in
Eq. (6.34), we "nd

R2ma(/)
R/2

+!

1
2

mk(/) (9.33)

and thus

/2
'
+2

ma (0)
mk(0)

. (9.34)

We shall estimate /
'
later after giving a simple expression for ma(/). The angle /

'
gives an estimate

of the scale over which gravitational light de#ection is coherent.

9.5.3. Special cases and qualitative expectations
We mentioned before that it is less critical here to assume linear density evolution because

large-scale density perturbations dominate in the expression for ma (/). Specialising further to an
Einstein}de Sitter universe so that w+2c/H

0
, Eq. (9.31) simpli"es to

ma(/)"
9H4

0
c4

wP
1

0

dy(1!y)2P
=

0

dk
2pk

P(0)d (k)J
0
(wyk/) (9.35)

with wy,w@.
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Adopting the model spectra for HDM and CDM speci"ed in Eq. (6.37) and expanding ma(/) in
a power series in /, we "nd, to second order in /,

ma(/)"A@wk
0 G

3
2pC1!

/2

20
(wk

0
)2D for HDM ,

3J3
8 C1!

3/2

40
(wk

0
)2D for CDM .

(9.36)

Combining these expressions with Eqs. (9.34) and (6.38), we "nd for the de#ection-angle coherence
scale /

'

/
'
+3(wk

0
)~1 . (9.37)

It is intuitively clear that /
'

should be determined by (wk
0
)~1. Since k~1

0
is the typical length scale

of light-de#ecting density perturbations, it subtends an angle (wk
0
)~1 at distance w. Thus, the

coherence angle of light de#ection is given by the angle under which the de#ecting density
perturbation typically appears. The source distance w in the case of the CMB is the comoving
distance to z"1000. In the Einstein}de Sitter case, w"2 in units of the Hubble length. Hence,
with k~1

0
+12(X

0
h2)Mpc [cf. Eq. (2.49)], we have wk

0
+500. Therefore, the angular scale of the

de#ection-angle auto-correlation is of order

/
'
+6]10~3+20@ . (9.38)

To lowest order in /, the de#ection-angle dispersion (9.26) reads

p2(/)J(wk
0
)3/2 . (9.39)

The dispersion p(/) is plotted in Fig. 34 for the four cosmological models speci"ed in Table 1 for
linear and non-linear evolution of the density #uctuations.

The behaviour of p(/) expressed in Eq. (9.39) can qualitatively be understood describing the
change in the transverse separation between light paths as a random walk. Consider two light
paths separated by an angle / such that their comoving transverse separation at distance w is w/.
Let k~1 be the typical scale of a potential #uctuation U. We can then distinguish two di!erent cases
depending on whether w/ is larger or smaller than k~1. If w/'k~1, the transverse separation
between the light paths is much larger than the typical potential #uctuations, and their de#ection
will be incoherent. It will be coherent in the opposite case, i.e. if w/(k~1.

When the light paths are coherently scattered passing a potential #uctuation, their angular
separation changes by d/

1
+w/+

M
(2k~1+

M
U/c2), which is the change in the de#ection angle

across w/. If we replace the gradients by the inverse of the typical scale, k, we have
d/

1
+2 w/ kU/c2. Along a distance w, there are N+kw such potential #uctuations, so that the

total change in angular separation is expected to be d/+N1@2d/
1
.

In case of incoherent scattering, the total de#ection of each light path is expected to be
d/+N1@2 (2k~1+

M
U/c2)+N1@2 2U/c2, independent of /. Therefore,

p2(/)+G
Nd/2

1
+(2U/c2)2 (wk)3/2 for /((wk)~1,

N (2U/c2)2+(2U/c2)2 (wk) for /'(wk)~1.
(9.40)
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Fig. 34. The de#ection-angle variance p(/) is shown for the four cosmological models speci"ed in Table 1. Two curves
are shown for each model, one for linear and one for non-linear evolution of the density #uctuations. Solid curves:
SCDM; dotted curve: pCDM; short-dashed curves: OCDM; and long-dashed curves: KCDM. The somewhat steeper
curves are for linear density evolution. Generally, the de#ection-angle variance increases linearly with / for small /, and
#attens gradually for /Z20@. At /+10@, p(/) reaches +0.1@, or +0.01/, for the cluster-normalised model universes (all
except pCDM; dotted curves). As expected, the e!ect of non-linear density evolution is fairly moderate, and most
pronounced on small angular scales, /[10@.

This illustrates that the dependence of p2(/) on (wk)3/2 for small / is merely a consequence of the
random coherent scattering of neighbouring light rays at potential #uctuations. For large /, p(/)
becomes constant, and so p(/)/~1P0. As Fig. 34 shows, the dispersion p(/) increases linearly with
/ for small / and #attens gradually for /'/

'
+(10}20)@ as expected, because /

'
divides coherent

from incoherent scattering.

9.5.4. Numerical results
The previous results were obtained by specialising to linear evolution of the density contrast in

an Einstein}de Sitter universe. For arbitrary cosmological parameters, the de#ection-angle disper-
sion has to be computed numerically. We show in Fig. 34 examples for p(/) numerically calculated
for the four cosmological models detailed in Table 1. Two curves are plotted for each model. The
somewhat steeper curves were obtained for linear, the others for non-linear density evolution.

Fig. 34 shows that typical values for the de#ection-angle variance in cluster-normalised model
universes are of order p(/)+(0.03}0.1)@ on angular scales between /+(1}10)@. While the results for
di!erent cosmological parameters are fairly close for cluster-normalised CDM, p(/) is larger by
about a factor of two for CDM in an Einstein}de Sitter model normalised to p

8
"1. For the other

cosmological models, the di!erences between di!erent choices for the normalisation are less
pronounced. The curves shown in Fig. 34 con"rm the qualitative behaviour estimated in the
previous section: The variance p(/) increases approximately linearly with / as long as / is small,
and it gradually #attens o! at angular scales /Z/

'
+20@.

In earlier chapters, we saw that non-linear density evolution has a large impact on weak
gravitational lensing e!ects, e.g. on the magni"cation auto-correlation function mk (/). As men-
tioned before, this is not the case for the de#ection-angle auto-correlation function ma(/) and the
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variance p(/) derived from it, because the "lter function F(l,/) relevant here suppresses small-scale
density #uctuations for which the e!ect of non-linear evolution are strongest. Therefore, non-linear
evolution is expected to have less impact here. Only on small angular scales /, the "lter function
extends into the su$ciently non-linear regime. The curves in Fig. 34 con"rm and quantify this
expectation. Only on scales of /[10@, the non-linear evolution does have some e!ect. Obviously,
non-linear evolution increases the de#ection-angle variance in a manner quite independent of
cosmology. At angular scales /+1@, the increase amounts to roughly a factor of two above the
linear results.

9.6. Change of CMB temperature yuctuations

9.6.1. Summary of previous results
We are now ready to justify assumptions and approximations made earlier, and to quantify the

impact of weak gravitational lensing on the Cosmic Microwave Background. The main assump-
tions were that (i) the de#ection-angle variance p(/) is small, and (ii) p(/)+e/, with e a (small)
constant or a function slowly varying with /. The results obtained in the previous section show that
p(/) is typically about two orders of magnitude smaller than /, con"rming e;1. Likewise, Fig. 34
shows that the assumption p(/)J/ is valid on angular scales smaller than the coherence scale for
the de#ection, /[/

'
+20@. As we have seen, this proportionality is a mere consequence of random

coherent scattering of neighbouring light rays in the #uctuating potential "eld. For angles larger
than /

'
, p(/) gradually levels o! to become constant, so that the ratio between p(/) and / tends to

zero while / increases further beyond /
'
. We can thus broadly summarise the numerical results on

the de#ection-angle variance by

p(/)+G
0.01/ for /[ 20@,

0.7@ for /<20@
(9.41)

which is valid for cluster-normalised CDM quite independent of the cosmological model; in
particular, p(/)(1@+3]10~4 radians for all /.

9.6.2. Simplixcations
Accordingly, the argument of the exponential in Eq. (9.16) is a truly small number. Even for large

l+103, l2p2(/);1. We can thus safely expand the exponential into a power series, keeping only
the lowest-order terms. Then, Eq. (9.16) simpli"es to

m@
T
(/)"m

T
(/)!p2(/)P

=

0

l3dl
4p

P
T
(l)J

0
(l/) , (9.42)

where we have used that the auto-correlation function m
T
(/) is the Fourier transform of the power

spectrum P
T
(l). Employing again the approximate relation JA

0
(x)+!J

0
(x)/2 which holds for

small x, we notice that

P
=

0

l3dl
4p

P
T
(l)J

0
(l/)+!

R2m
T
(/)

R/2
. (9.43)
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We can introduce a typical angular scale /
#

for the CMB temperature #uctuations in the same
manner as for light de#ection in Eq. (9.32). We de"ne /

#
by

/~2
#

,!

1
m
T
(0)
R2m

T
(/)

R/2 K
(/0

, (9.44)

so that, up to second order in /, Eq. (9.42) can be approximated as

m@
T
(/)+m

T
(/)!

p2(/)
/2
#

m
T
(0) . (9.45)

We saw earlier that p(/)+e/ for /[/
'
. Eq. (9.45) can then further be simpli"ed to read

m@
T
(/)+m

T
(/)!e2m

T
(0)

/2

/2
#

. (9.46)

In analogy to Eq. (9.26), we can write the mean-square temperature #uctuations of the CMB
between two beams separated by an angle / as

p2
T
(/)"S[q(h)!q(h#/)]2T"2[m

T
(0)!m

T
(/)] . (9.47)

Weak gravitational lensing changes this relative variance to

p@2
T
"2[m@

T
(0)!m@

T
(/)] . (9.48)

Using Eq. (9.46), we see that the relative variance is increased by the amount

*p2
T
(/)"p@2

T
(/)!p2

T
(/)+e2m

T
(0)

/2

/2
#

. (9.49)

Now, the auto-correlation function at zero lag, m
T
(0), is the temperature-#uctuation variance, p2

T
.

Hence, we have for the rms change in the temperature variation

[*p2
T
(/)]1@2"ep

T

/
/

#

. (9.50)

Weak gravitational lensing thus changes the CMB temperature #uctuations only by a very small
amount, of order e+10~2 for /+/

#
.

9.6.3. The lensed CMB power spectrum
However, we saw in Eq. (9.23) that the gravitationally lensed CMB power spectrum is smoothed

compared to the intrinsic power spectrum. Modes on an angular scale / are mixed with modes on
angular scales /$p(/), i.e. the relative broadening d/// is of order 2p(/)//. For /[/

'
+20@, this

relative broadening is of order 2e+2]10~2, while it becomes negligible for substantially larger
scales because p(/) becomes constant. This e!ect is illustrated in Fig. 35, where we show the
unlensed and lensed CMB power spectra for CDM in an Einstein}de Sitter universe.

The "gure clearly shows that lensing smoothes the CMB power spectrum on small angular scales
(large l), while it leaves large angular scales una!ected. Lensing e!ects become visible at l Z 500,
corresponding to an angular scale of /[ (p/500) rad+20@, corresponding to the scale where
coherent gravitational light de#ection sets in. An important e!ect of lensing is seen at the high-l tail
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Fig. 35. The CMB power spectrum coe$cients l(l#1)C
l
are shown as a function of l. The solid line displays the intrinsic

power spectrum, the dotted line the lensed power spectrum for an Einstein}de Sitter universe "lled with cold dark matter.
Evidently, lensing smoothes the spectrum at small angular scales (large l), while it has no visible e!ect on larger scales.
The curves were produced with the CMBfast code, see Zaldarriaga and Seljak (1998).

of the power spectra, where the lensed power spectrum falls systematically above the unlensed one
(Metcalf and Silk, 1997). This happens because the Gaussian convolution kernel in Eq. (9.23)
becomes very broad for very large l, so that the lensed power spectrum at l@ can be substantially
increased by intrinsic power from signi"cantly smaller l. In other words, lensing mixes power from
larger angular scales into the otherwise featureless damping tail of P

T
(l).

9.7. Discussion

Several di!erent approximations entered the preceding derivations. Firstly, the de#ection-angle
variance p(/) was generally assumed to be small, and for some expressions to be proportional to
/ with a small constant of proportionality e. The numerical results showed that the "rst assump-
tion is very well satis"ed, and the second assumption is valid for /[/

'
, the latter being the

coherence scale of gravitational light de#ection.
We further assumed the de#ection-angle "eld to be a Gaussian random "eld, the justi"cation

being that the de#ecting matter distribution is also a Gaussian random "eld. While this fails to be
exactly true at late stages of the cosmic evolution, we have seen that the resulting expression can
also be obtained when p(/) is small and a is not a Gaussian random "eld; hence, in practice this
assumption is not a limitation of validity.

A "nal approximation consists in the Born approximation. This should also be a reasonable
assumption at least in the case considered here, where we focus on statistical properties of light
propagation. Even if the light rays would be bent considerably, the statistical properties of the
potential gradient along their true trajectories are the same as along the approximated unpertur-
bed rays.

Having found all the assumptions made well justi"able, we can conclude that the random walk
of light rays towards the surface of recombination leads to smoothing of small-scale features in the
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CMB, while large-scale features remain una!ected. The border line between small and large
angular scales is determined by the angular coherence scale of gravitational light de#ection by
large-scale matter distributions, which we found to be of order /

'
+20@, corresponding to

l
'
"2p/~1

'
+1000. For the smallest angular scales, well into the damping tail of the intrinsic CMB

power spectrum, this smoothing leads to a substantial re-distribution of power, which causes the
lensed CMB power spectrum to fall systematically above the unlensed one at lZ2000, or
/[2pl~1+10@. Future space-bound CMB observations, e.g. by the Planck Surveyor satellite, will
achieve angular resolutions of order Z5@, so that the lensed regime of the CMB power spectrum
will be well accessible. Highly accurate analyses of the data of such missions will therefore need to
take lensing e!ects by large-scale structures into account.

One of the foremost goals of CMB observations is to derive cosmological parameters from the
angular CMB power spectrum C

l
. Unfortunately, there exists a parameter degeneracy in the sense

that for any given set of cosmological parameters "tting a given CMB spectrum, a whole family of
cosmological models can be found that will "t the spectrum (almost) equally well (Zaldarriaga
et al., 1997). Metcalf and Silk (1998) and Stompor and Efstathiou (1999) showed that the rise in
the damping-tail amplitude due to gravitational lensing of the CMB can be used to break this
degeneracy once CMB observations with su$ciently high angular resolution become available.

We discussed in Section 4.2 how shapes of galaxy images can be quanti"ed with the tensor Q
ij

of
second surface-brightness moments. Techniques for the reconstruction of the intervening projected
matter distribution are then based on (complex) ellipticities constructed from Q

ij
, e.g. the quantity

s de"ned in (4.4). Similar reconstruction techniques can be developed by constructing quantities
comparable to s from the CMB temperature #uctuations q(h). Two such quantities were suggested
in the literature, namely

q2
,1
!q2

,2
#2i q

,1
q
,2

(9.51)

(Zaldarriaga and Seljak, 1999) and

q
,11

!q
,22

#2 i q
,12

(9.52)

(Bernardeau, 1997). As usual, comma-preceded indices i denote di!erentiation with respect to h
i
.

The transformation of the tensor q
,i
q
,j

between the lensed and unlensed CMB anisotropy
distribution is mediated by the e!ective surface mass distribution i

%&&
(h), de"ned as in (6.16) with

w set to the comoving distance to the last-scattering surface at z&1000. As shown by Zaldarriaga
and Seljak (1999) and Seljak and Zaldarriaga (1999), one can reconstruct the power spectrum of the
projected surface density from the observed statistical properties of q

,i
q
,j
; in fact, this power

spectrum can be obtained either from the trace-part of this tensor, corresponding to i
%&&

itself, or
from the trace-free part, corresponding to the power spectrum of the shear which, as was shown
earlier, is the same as that of i

%&&
. In contrast to similar studies based on the distortion of faint

galaxies, the power-spectrum estimate from the CMB has the advantage that the redshift of the
source is known. Furthermore, the power spectrum of the projected matter distribution can be
obtained over a wide range of angular scales, corresponding to a wide range of spatial scales.

Even if the temperature anisotropies are intrinsically Gaussian, lensing will induce non-Gaussian
features of the measured temperature map (e.g. Winitzki, 1998). Hence, measurements of non-
Gaussian temperature #uctuations must be interpreted with care. However, the lensing-induced
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non-Gaussian features on small angular scales are correlated with large-scale temperature
gradients (Zaldarriaga, 1999), thus providing a signature of the presence of lensing e!ects in
the maps.

Lensing of the CMB can also be correlated with lensing e!ects of faint galaxies at lower redshift.
The shear acting on these galaxies is part of the shear acting on the CMB, the di!erence being due
to the di!erent redshift of galaxies and the last scattering surface. Hence, one expects a correlation
between these two shears (van Waerbeke et al., 1999a), as can be measured by correlating galaxy
ellipticities with either of quantities (9.51) or (9.52).

Finally, it is worth noting that gravitational lensing mixes di!erent types of CMB polarisation
(the `electrica and `magnetica, or E and B modes, respectively) and can thus create B-type
polarisation even when only E-type polarisation is intrinsically present (Zaldarriaga and Seljak,
1998). This e!ect, however, is fairly small in typical cosmological models and will only marginally
a!ect future CMB polarisation measurements.

10. Summary and outlook

We have summarised the basic ideas, theoretical developments, and "rst applications of weak
gravitational lensing. In particular, we showed how the projected mass distribution of clusters can
be reconstructed from the image distortion of background galaxies, using parameter-free methods,
how the statistical mass distribution of galaxies can be obtained from galaxy}galaxy lensing, and
how the larger-scale mass distribution in the Universe a!ects observations of galaxy shapes and
#uxes of background sources, as well as the statistical properties of the CMB. Furthermore, weak
lensing can be used to construct a mass-selected sample of clusters of galaxies, making use only of
their tidal gravitational "eld which leaves an imprint on the image shapes of background galaxies.
We have also discussed how the redshift distribution of these faint and distant galaxies can be
derived from lensing itself, well beyond the magnitude limit which is currently available through
spectroscopy.

Given that the "rst coherent image alignment of faint galaxies around foreground clusters was
discovered only a decade ago (Fort et al., 1988; Tyson et al., 1990), the "eld of weak lensing has
undergone a rapid evolution in the last few years, for three main reasons: (i) Theoreticians have
recognised the potential power of this new tool for observational cosmology, and have developed
speci"c statistical methods for extracting astrophysically and cosmologically relevant information
from astronomical images. (ii) Parallel to that e!ort, observers have developed new observing
strategies and image analysis software in order to minimise the in#uence of instrumental artefacts
on the measured properties of faint images, and to control as much as possible the point-spread
function of the resulting image. It is interesting to note that several image analysis methods,
particularly aimed at shape measurements of very faint galaxies for weak gravitational lensing,
have been developed by a coherent e!ort of theoreticians and observers (Bonnet and Mellier, 1995;
Kaiser et al., 1995; Luppino and Kaiser, 1997; van Waerbeke et al., 1997; Kaiser, 1999; Rhodes
et al., 1999; Kuijken, 1999), indicating the need for a close interaction between these two groups
which is imposed by the research subject.

(iii) The third and perhaps major reason for the rapid evolution is the instrumental development
that we are witnessing. Most spectacular was the refurbishment of the Hubble Space Telescope
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17See http://www-star.qmw.ac.uk/jpe/vista/

(HST) in December 1993, after which this telescope produced astronomical images of angular
resolution unprecedented in optical astronomy. These images have not only been of extreme
importance for studying multiple images of galaxy-scale lens systems (where the angular separation
is of order 1 arcsecond) and for detailed investigations of giant arcs and multiple galaxy images in
clusters of galaxies, but also for several of the most interesting results of weak lensing. Owing to the
lack of atmospheric smearing and the reduced sky background from space, the shape of fainter and
smaller galaxy images can be measured on HST images, increasing the useful number density of
background galaxies, and thus reducing the noise due to the intrinsic ellipticity distribution. Two of
the most detailed mass maps of clusters have been derived from HST data (Seitz et al., 1996;
Hoekstra et al., 1998), and all but one published results on galaxy}galaxy lensing are based on data
taken with the HST. In parallel to this, the development of astronomical detectors has progressed
quickly. The "rst weak-lensing observations were carried out with CCD detectors of &10002
pixels, covering a fairly small "eld-of-view. A few years ago, the "rst (8K)2 camera was used for
astronomical imaging. Its 30@]30@ "eld can be used to map the mass distribution of clusters at large
cluster-centric radii, to investigate the potential presence of "laments between neighbouring
clusters (Kaiser et al., 1998), or simply to obtain high-quality data on a large area. Such data will be
useful for galaxy}galaxy lensing, the search for halos using their lensing properties only, for the
investigation of cosmic shear, and for homogeneous galaxy number counts on large "elds, needed
to obtain a better quanti"cation of the statistical association of AGNs with foreground galaxies.

It is easy to foresee that the instrumental developments will remain the driving force for this
research "eld. By now, several large-format CCD cameras are either being built or already
installed, including three cameras with a one square degree "eld-of-view and adequate sampling of
the PSF (MEGAPRIME at CFHT, MEGACAM at the refurbished MMT, and OMEGACAM at
the newly built VLT Support Telescope at Paranal; see the recent account of wide-"eld imaging
instruments in Arnaboldi et al., 1998). Within a few years, more than a dozen 8- to 10-m telescopes
will be operating, and many of them will be extremely useful for obtaining high-quality astronomi-
cal images, due to their sensitivity, their imaging properties and the high quality of the astronomi-
cal site. In fact, at least one of them (SUBARU on Mauna Kea) will be equipped with a large-
format CCD camera. One might hypothesise that weak gravitational lensing is one of the main
science drivers to shift the emphasis of optical astronomers more towards imaging, in contrast to
spectroscopy. For example, the VLT Support Telescope will be fully dedicated to imaging, and the
fraction of time for wide-"eld imaging on several other major telescopes will be substantial. The
Advanced Camera for Surveys (ACS) is planned to be installed on the HST in 2001. Its larger
"eld-of-view, better sampling, and higher quantum e$ciency } compared to the current imaging
camera WFPC2 } promises to be particularly useful for weak lensing observations.

Even more ambitious ground-based imaging projects are currently under discussion. Funding
has been secured for the VISTA project17 of a 4 m telescope in Chile with a "eld-of-view of at least
one square degree. Another 4 m Dark Matter Telescope with a substantially larger "eld-of-view (nine
square degrees) is being discussed speci"cally for weak lensing. Kaiser et al. (1999a) proposed a new
strategy for deep, wide-"eld optical imaging at high angular resolution, based on an array of
relatively small (D&1.5m) telescopes with fast guiding capacity and a `rubbera focal plane.
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18Whereas with the 8- to 10-m class ground-based telescopes deeper images can be obtained, this does not drastically
a!ect the &useful' number density of faint galaxy images. Since fainter galaxies also tend to become smaller, and since
a reliable shape estimate of a galaxy is feasible only if its size is not much smaller than the size of the seeing disk, very
much deeper images from the ground will not yield much larger number densities of galaxy images which can be used for
weak lensing.

Associated with this instrumental progress is the evolution of data-analysis capabilities. Whereas
a small-format CCD image can be reduced and analysed &by hand', this is no longer true for the
large-format CCD images. Semi-automatic data-reduction pipelines will become necessary to keep
up with the data #ow. These pipelines, once properly developed and tested, can lead to a more
&objective' data analysis. In addition, specialised software, such as for the measurement of shapes of
faint galaxies, can be implemented, together with tools which allow a correction for PSF aniso-
tropies and smearing.

Staying with instrumental developments for one more moment, the two planned CMB satellite
missions (MAP and Planck Surveyor) will provide maps of the CMB at an angular resolution and
a signal-to-noise ratio which will most likely lead to the detection of lensing by the large-scale
structure on the CMB, as described in Section 9. Last but not least, the currently planned Next
Generation Space Telescope (NGST, Kaldeich, 1999), with a projected launch date of 2008, will
provide a giant step in many "elds of observational astronomy, not the least for weak lensing. It
combines a large aperture (of order 8 m) with a position far from Earth to reduce sky background
and with large-format imaging cameras. Even a relatively short exposure with the NGST, which
will be optimised for observations in the near infrared, will return images with a number density of
several hundred background galaxies per square arcminute, for which a shape can be reliably
measured; more accurate estimates are presently not feasible due to the large extrapolation into
unknown territory. Comparing this number with the currently achievable number density in
ground-based observations of about 30 per square arcminute, NGST will revolutionise this "eld.18
In addition, the corresponding galaxies will be at much higher mean redshift than currently
observable galaxy samples. Taken together, these two facts imply that one can detect massive
halos at medium redshifts with only half the velocity dispersion currently necessary to detect
them with ground-based data, or that the investigations of the mass distribution of halos can
be extended to much higher redshifts than currently possible (see Schneider and Kneib, 1998).
The ACS on board HST will provide an encouraging hint of the increase in capabilities that NGST
has to o!er.

Progress may also come from somewhat unexpected directions. Whereas the Sloan Digital Sky
Survey (SDSS; e.g. Szalay, 1998) will be very shallow compared to more standard weak-lensing
observations, its huge angular coverage may compensate for it (Stebbins, 1996). The VLA-FIRST
survey of radio sources (White et al., 1997) su!ers from the sparsely populated radio sky, but this is
also compensated by the huge sky coverage (Refregier et al., 1998). The use of both surveys for weak
lensing will depend critically on the level down to which the systematics of the instrumental image
distortion can be understood and compensated for.

Gravitational lensing has developed from a stand-alone research "eld into a versatile tool for
observational cosmology, and this also applies to weak lensing. But, whereas the usefulness of
strong lensing is widely accepted by the astronomical community, weak lensing is only beginning
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to reach that level of wide appreciation. Part of this di!erence in attitude may be due to the fact that
strong-lensing e!ects, such as multiple images and giant arcs, can easily be seen on CCD images,
and their interpretation can readily be explained also to the non-expert. In contrast, weak lensing
e!ects are revealed only through thorough statistical analysis of the data. Furthermore, the number
of people working on weak lensing on the level of data analysis is still quite small, and the methods
used to extract shear from CCD data are rather intricate. However, the analysis of CMB data is
certainly more complicated than weak-lensing analyses, but there are more people in the latter
"eld, who checked and cross-checked their results; also, more people implies that much more
development has gone into this "eld. Therefore, what is needed in weak lensing is a detailed
comparison of methods, preferably by several independent groups, analysing the same data sets,
together with extensive work on simulated data to investigate down to which level a very weak
shear can be extracted from them. Up to now, no show stopper has been identi"ed which prohibits
the detection of shear at the sub-percent level.

Weak-lensing results and techniques will increasingly be combined with other methods. A few
examples may su$ce to illustrate this point. The analysis of galaxy clusters with (weak) lensing will
be combined with results from X-ray measurements of the clusters and their Sunyaev}Zel'dovich
decrement. Once these methods are better understood, in particular in terms of their systematics,
the question will no longer be, `Are the masses derived with these methods in agreement?a, but
rather, `What can we learn from their comparisona? For instance, while lensing is insensitive to the
distribution of matter along the line-of-sight, the X-ray emission is, and thus their combination
provides information on the depth of the cluster (see, e.g., Zaroubi et al., 1998). Joint analyses of
weak-lensing, X-ray and Sunyaev}Zel'dovich data on galaxy clusters promise to substantially
improve determinations of the baryonic-matter fraction in clusters and of the structure and
distribution of cluster-galaxy orbits.

One might expect that clusters will continue for some time to be main targets for weak-lensing
studies. In addition to clusters selected by their emission, mass concentrations selected only by their
weak-lensing properties shall be investigated in great detail, both with deeper images to obtain
a more accurate measurement of the shear, and by X-ray, IR, sub-mm, and optical/IR multi-colour
techniques. It would be spectacular, and of great cosmological signi"cance, to "nd mass concentra-
tions of exceedingly high mass-to-light ratio (well in excess of 1000 in solar units), and it is
important to understand the distribution of M/L for clusters. A "rst example may have been found
by Erben et al. (2000).

As mentioned before, weak lensing is able to constrain the redshift distribution of very faint
objects which do not allow spectroscopic investigation. Thus, lensing can constrain extrapolations
of the z-distribution, and the models for the redshift estimates obtained from multi-colour
photometry (&photometric redshifts'). On the other hand, photometric redshifts will play an
increasingly important role for weak lensing, as they will allow to increase the signal-to-noise ratio
of local shear measurements. Furthermore, if source galaxies at increasingly higher redshifts are
considered (as will be the case with the upcoming giant telescopes, cf. Clowe et al., 1998), the
probability increases that more than one de#ector lies between us and this distant screen of sources.
To disentangle the corresponding projection e!ects, the dependence of the lensing strength on the
lens and source redshift can be employed. Lenses at di!erent redshifts cause di!erent source-
redshift dependences of the measured shear. Hence, photometric redshifts will play an increasingly
important role for weak lensing. Whereas a fully three-dimensional mass distribution will probably
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be di$cult to obtain using this relatively weak redshift dependence, a separation of the mass
distribution into a small number of lens planes appears feasible.

Combining results from cosmic-shear measurements with the power spectrum of the cosmic
density #uctuations as measured from the CMB will allow a sensitive test of the gravitational
instability picture for structure formation. As was pointed out by Hu and Tegmark (1999),
cosmic-shear measurements can substantially improve the accuracy of the determination of
cosmological parameters from CMB experiments, in particular by breaking the degeneracies
inherent in the latter (see also Metcalf and Silk, 1998). The comparison between observed cosmic
shear and theory will at least partly involve the increasingly detailed numerical simulations of
cosmic structure evolution, from which predictions for lensing observations can directly be
obtained. For example, if the dark-matter halos in the numerical simulations are populated with
galaxies, e.g., by using semi-empirical theories of galaxy evolution (Kau!mann et al., 1997), detailed
prediction for galaxy}galaxy lensing can be derived and compared with observations, thus
constraining these theories. The same numerical results will predict the relation between the
measured shear and the galaxy distribution on larger scales, which can be compared with the
observable correlation between these quantities to investigate the scale- and redshift dependence of
the bias factor.

The range of applications of weak lensing will grow in parallel to the new instrumental develop-
ments. Keeping in mind that many discoveries in gravitational lensing were not really expected (like
the existence of Einstein rings, or giant luminous arcs), it seems likely that the introduction and
extensive use of wide-"eld cameras and giant telescopes will give rise to real surprises.
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