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Introduction

These scripts aim at helping the students of the course on Gravitational Lensing to
better understand the arguments discussed in the class.

Their goal is to give an overview on gravitational lensing and on its wide phenomenology.
We will start from the basics of the lensing theory, discussing the deflection of light rays
and defining some quantities which will be necessary for the rest of the course.

Then, we will discuss lensing on different scales, starting from lensing of point sources
by point masses and ending with lensing by large-scale structures on the most extended
source on the sky: the Cosmic-Microwave-Background.
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1Introduction to lensing

1.1 Light deflection and resulting phenomena

It had been speculated even by Newton that masses should deflect light, but he did
not know how to describe the deflection properly, because he thought of light as only a
wave phenomenon.

In 1783, speculating that light consists of corpuscoles, a geologists, astronomer, nat-
ural phylosopher and what-so-ever, named John Mitchell (1724-1793) sent to Henry
Cavendish (1731-1810) a paper he had written on a method to measure the mass of
stars by detecting the reduction in the light speed by effect of gravity as the light cor-
puscoles propagated from the star’s gravitational field to the Earth. Among the other
things, in this paper Mitchel suggested that a sufficiently massive body could completely
stop the light it emitted and appear as invisible (hey, aren’t these balck holes?).

The paper from Mitchell pushed Cavendish to calculate the Newtonian deflection of
light for the first time, probably around 1784. Unfortunately, he did not pubilsh his
results. Some private notes where discovered only later.

The calculation was as follows (Will, 1988):

• let start from the assumption that light is composed of material corpuscles;

• according to the equivalence principle, the acceleration of a body in a gravitational
field is independent of its mass, structure, composition. Therefore we do not need
to care about the corpuscle mass;

• any light corpuscle should experience the acceleration

d2~r

dt2
= −Gm~r

r3
, (1.1)

where ~r define the position of the corpuscle in the gravitational field of the body
whose mass is m;

• the solutions of this equation of motion are conic sections. They can describe
bound or unbound orbits. However, the speed of light is so large that it exceeds
the escape velocity. Thus, the resulting orbit will be an hyperbolic orbit, which
can be parametrically written as

r =
R(1 + e)

1 + e cosφ
, r2

dφ
dt

= [GmR(1 + e)]1/2 , (1.2)
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In the previous equations R is the radius of the point of
closest approach between the corpuscle and the body of
mass m, chosen to lie of the x axis, e is the eccentricity
of the orbit and φ is an angle, counted from the x axis,
called true anomaly. r and φ define the position of the
corpuscle with respect to the mass m in polar coordi-
nates.

• the vecor ~r is written as

~r = r(~ex cosφ+ ~ey sinφ) (1.3)

in terms of the two components along the x and the y axes. Thus, the velocity
~v is

~v =
d~r
dt

=
(

Gm

R(1 + e)

)1/2

[−~ex sinφ+ ~ey(cosφ+ e)] , (1.4)

v2 =
Gm

R(1 + e)
(1 + 2e cosφ+ e2) . (1.5)

• as r → ∞, the trajectory approaches asymptotes that make an angle φ∞ with
the x-axis; this occurs when

(1 + e cosφ) = 0 ⇒ cosφ∞ = −1
e
. (1.6)

If we define φ∞ ≡ π/2 + δ, where δ is one-half the deflection angle, then

sin δ =
1
e

; (1.7)

• for determining the deflection angle, we need to determine the eccentricity. Now,
let assume that the corpuscle is emitted at infinity with velocity c. Then, from
Eq. 1.5 we obtain

c2 = v2|φ=φ∞ =
Gm

R(1 + e)
(e2 − 1) (1.8)

=
Gm

R
(e− 1) . (1.9)

Thus,

e =
Rc2

Gm
+ 1 ; (1.10)

• if the massive body is the Sun and the light is grazing its surface,

m = M� = 1.989× 1030kg (1.11)

R = R� = 6.96× 108m (1.12)

and the deflection angles is

∆θ ≡ 2δ ≈ 2Gm
c2R

≈ 0′′.875 (1.13)
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However, we have to wait until the beginning of the XIXth century for finding an
official document by Johann Soldner (1801), where these calculations were published.
The result shown above is just one half of the true deflection, because it is derived by
neglecting the local curvature of the space-time around massive bodies.

Using an argument based on the principle of equivalence, but still without full equations
of relativity, Albert Einstein realized that massive bodies deflect light. The argument
works like this. The principle of equivalence states that gravity and acceleration cannot
be distinguished. In other words, a free falling observer does not feel gravity and an
accelerated observer can interpret the resulting inertial force as due to a gravitational
field. Suppose that the observer is contained in a box with a hole on its left side (see
upper figure). If the box is accelerated upwards, the observer interprets the inertial force
on him as a gravitational force acting downwards. Suppose that a light ray enters the
hole on the left side of the box and propagates towards right. As the box is moving
upwards, the ray hits the wall of the box on the opposite side at a lower point than
it enter. As the box is accelerated the light ray appears curved. Then, based on the
principle of equivalence, light must be deflected by gravity. Indeed, we can imagine to
reverse the experiment: let the box to be stationary and within the gravitational field
whose intesity is such to resemble the previous acceleration. If light is not deflected
by gravity, then the oberver has the possibility to discriminate between gravity and
acceleration, violating the principle of equivalence.

In order to get the correct value of the deflection of light by a mass M, we need to use the
Theory of General Relativity (Einstein, 1916). According to this theory, the deflection is
described by geodesic lines following the curvature of the space-time. In curved space-
time, geodesic lines are lines which are as “straight as possible”, resembling straight
lines in flat space-time. As a light ray follows the curvature, it is bent towards the mass
which causes the space-time to be curved. This bending gives rise to several important
phenomena:

• multiple paths around a single mass become possible, e.g. one around the left and
one around the right side of the deflector. The observer, who will see an image
of the source along the backward tangent of each ray arriving at his position, will
then see multiple images of a single source;

• in addition, the light deflection of two neighbouring rays may be different. Sup-
pose a pair of rays, one from one side and one from the other side of a source,
passes by a lensing mass distribution. The ray which passes closer to the deflector
will be bent more than the other, thus the source will appear stretched. It is thus
expected that gravitational lensing will typically distort the sources. By the same
mechanism, they can appear larger or smaller than they originally are;

• since photons are not created, neither destroyed by the lensing effect the surface
brightness of the source will remain unchanged. Since, as we said, the size is not
conserved, this implys that the source can be either magnified or demagnified by
lensing. If it is enlarged it will appear brigher, otherwise fainter;

• in case that multiple light paths are possible between the source and the observer,
since they will be characterized by different lengths, the light travel times will differ
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for the different images. One of the images will appear first, the others will be
delayed.

Starting from the equivalence principle, we are thus arrived at the expectation of multiple
images, distortions, magnification, and time delayes. All of these phenomena have been
observed in numerous cases.
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Example: Multiply-imaged quasars

Identification of the lensing galaxy in a double quasar
system: the left panel shows on infrared (J-band) ob-
servation of the two images of double quasar HE 1104-
1825 (zQ = 2.316, θ = 3.2′′). The right panel obtained
with some new deconvolution technique nicely reveals
the lensing galaxy (at zG = 1.66) between the quasar
images (Credits: European Southern Observatory).

Example: Einstein ring

B1938+666 is another multiple-image lens, and was
discovered in JVAS (Jodrell/VLA Astrometric Sur-
vey). This is a survey of flat-spectrum radio sources
designed to identify gravitational lens candidates.
HST observations show an Einstein ring in IR. The
lens redshift is 0.878, but the source redshift is not
yet known (IR spectroscopy required).

The bottom figure shows a MERLIN image of this
system at 5GHz. In radio there is a significant arc
visible.

Credit: JVAS/CLASS

Example: Arcs in galaxy clusters

Abell 1689 is a galaxy cluster at z=0.183. The gravity of the cluster’s trillion stars -
plus dark matter - acts as a 2-million-light-year-wide ’lens’ in space. This ’gravitational
lens’ bends and magnifies the light of galaxies located far behind it, distorting their
shapes and creating multiple images of individual galaxies.

Credit: NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew University), H. Ford
(JHU), M. Clampin(STScI), G. Hartig (STScI), G. Illingworth (UCO/Lick Observa-
tory), the ACS Science Team and ESA.
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Example: Time delays

B1600+434 is a double gravitational lens
system. A distant QSO at redshift z =
1.59 is lensed by an edge-on-late-type
galaxy at z = 0.41 and has two images,
labeled with A and B in the upper image.
QSO’s are characterized by intrinsic vari-
ability of their luminosity. The light curves
of the two images have the same shape,
as expected since they arise from the same
source. However, the light curve of the im-
age B is shifted by ∼ 50 days with respect
to that of image A. The reason is the dif-
ferent path of the light coming from the
two images.
Credit: I. Burud, Institut d’Astrophysique
et de Gophysique de Lige, Avenue de
Cointe 5, B-4000 Lige, Belgium

1.2 Fermat’s principle and light deflection

Starting from the field equations of general relativity, light deflection can be calculated
by studying geodesic curves. It turns out that light deflection can equivalently be
described by Fermat’s principle, as in geometrical optics. This will be our starting
point.

Example: Fermat’s Principle in geometrical optics

In its simplest form the Fermat’s principle
says that light waves of a given frequency
traverse the path between two points which
takes the least time. The speed of light in
a medium with refractive index n is c/n,
where c is its speed in a vacuum. Thus, the
time required for light to go some distance
in such a medium is n times the time light
takes to go the same distance in a vacuum.

Referring to the figure above, the time required for light to go from A to B becomes

t = [{h2
1 + y2}1/2 + n{h2

2 + (w − y)2}1/2]/c.

We find the minimum time by differentiating t with respect to y and setting the result
to zero, with the result that

y

{h2
1 + y2}1/2

= n
w − y

{h2
2 + (w − y)2}1/2

.

However, we note that the left side of this equation is simply sin θI , while the right
side is n sin θR, so that the minimum time condition reduces to

sin θI = n sin θR

We recognize this result as Snell’s law.
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We first need an index of refraction n because Fermat’s principle says that light will
follow a path along which the travel time,∫

n

c
dl , (1.14)

will be extremal. As in geometrical optics, we thus search for a path, ~x(l), for which
the variation

δ

∫ B

A

n(~x(l))dl = 0 , (1.15)

where the starting point A and the end point B are kept fixed.

In order to find the index of refraction, we make a first approximation: we assume that
the lens is weak, and that it is small compared to the overall dimensions of the optical
system composed of source, lens and observer. With “weak lens”, we mean a lens
whose Newtonian gravitational potential Φ is much smaller than c2, Φ/c2 � 1. Note
that this approximation is valid in virtually all cases of astrophysical interest. Consider
for istance a galaxy cluster: its gravitational potential is |Φ| < 10−4c2 � c2.

The metric of unperturbed space-time is the Minkowski metric,

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

whose line element is

ds2 = ηµνdxµdxν = (dx0)2 − (d~x)2 = c2dt2 − (d~x)2 . (1.16)

A weak lens perturbs this metric such that

ηµν → gµν =


1 + 2Φ

c2 0 0 0
0 −(1− 2Φ

c2 ) 0 0
0 0 −(1− 2Φ

c2 )
0 0 0 −(1− 2Φ

c2 )


for which the line element becomes

ds2 = gµνdxµdxν =
(

1 +
2Φ
c2

)
c2dt2 −

(
1− 2Φ

c2

)
(d~x)2 . (1.17)

Now light propagates at zero eigentime, ds = 0, from which we gain(
1 +

2Φ
c2

)
c2dt2 =

(
1− 2Φ

c2

)
(d~x)2 . (1.18)

The light speed in the gravitational field is thus

c′ =
|d~x|
dt

= c

√
1 + 2Φ

c2

1− 2Φ
c2

≈ c

(
1 +

2Φ
c2

)
, (1.19)
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where we have used that Φ/c2 � 1 by assumption. The index of refraction is thus

n = c/c′ =
1

1 + 2Φ
c2

≈ 1− 2Φ
c2

. (1.20)

With Φ ≤ 0, n ≥ 1, and the light speed c′ is lower than in vacuum.

n will typically depend on the spatial coordinate ~x and perhaps also on time t. Let ~x(l)
be a light path. Then the light travel time is proportional to∫ B

A

n[~x(l)]dl , (1.21)

and the light path follows from

δ

∫ B

A

n[~x(l)]dl = 0 . (1.22)

This is a standard variational problem, which leads to the well known Euler equations.
In our case we write

dl =
∣∣∣∣d~xdλ

∣∣∣∣ dλ , (1.23)

with a curve parameter λ which is yet arbitrary, and find

δ

∫ λB

λA

dλn[~x(λ)]
∣∣∣∣d~xdλ

∣∣∣∣ = 0 (1.24)

The expression

n[~x(λ)]
∣∣∣∣d~xdλ

∣∣∣∣ ≡ L(~̇x, ~x, λ) (1.25)

takes the role of the Lagrangian in analytic mechanics, with

~̇x ≡ d~x
dλ

. (1.26)

Finally, we have∣∣∣∣d~xdλ
∣∣∣∣ = |~̇x| = (~̇x2)1/2 . (1.27)

Using these expressions, we find the Euler equations

d
dλ

∂L

∂~̇x
− ∂L

∂~x
= 0 . (1.28)

Now,

∂L

∂~x
= |~̇x|∂n

∂~x
= (~∇n)|~̇x| , ∂L

∂~̇x
= n

~̇x

|~̇x|
. (1.29)
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Evidently, ~̇x is a tangent vector to the light path , which we can assume to be normalized
by a suitable choice for the curve parameter λ. We thus assume |~̇x| = 1 and write ~e ≡ ~̇x
for the unit tangent vector to the light path. Then, we have

d
dλ

(n~e)− ~∇n = 0 , (1.30)

or

n~̇e+ ~e · [(~∇n)~̇x] = ~∇n , (1.31)

⇒ n~̇e = ~∇n− ~e(~∇n · ~e) . (1.32)

The second term on the right hand side is the derivative along the light path, thus the
whole right hand side is the gradient of n perpendicular to the light path. Thus

~̇e =
1
n
~∇⊥n = ~∇⊥ lnn . (1.33)

As n = 1− 2Φ/c2 and Φ/c2 � 1, lnn ≈ −2Φ/c2, and

~̇e ≈ − 2
c2
~∇⊥Φ . (1.34)

The total deflection angle of the light path is now the integral over −~̇e along the light
path,

~̂α =
2
c2

∫ λB

λA

~∇⊥Φdλ . (1.35)

The deflection is thus the integral over the ”pull” of the gravitational potential perpen-
dicular to the light path. Note that ~∇Φ points away from the lens centre, so ~̂α points
towards it.

As it stands, the equation for ~̂α is not useful, as we would have to integrate over the
actual light path. However, since Φ/c2 � 1, we expect the deflection angle to be
small. Then, we can adopt the Born approximation familiar from scattering theory and
integrate over the unperturbed light path.

Suppose, therefore, a light ray starts out into +~ez-
direction and passes a lens at z = 0, with impact pa-
rameter b. The deflection angle is then given by

~̂α(b) =
2
c2

∫ +∞

−∞
~∇⊥φdz (1.36)
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Special case: point mass lens

If the lens is a point mass, then

Φ = −GM
r

(1.37)

with r =
√
x2 + y2 + z2 =

√
b2 + z2, b =

√
x2 + y2 and

~∇⊥φ =
(
∂xΦ
∂yΦ

)
=
GM

r3

(
x
y

)
. (1.38)

The deflection angle is then

~̂α(b) =
2GM
c2

(
x
y

)∫ +∞

−∞

dz
(b2 + z2)3/2

=
4GM
c2

(
x
y

)[
z

b2(b2 + z2)1/2

]∞
0

=
4GM
c2b

(
cosφ
sinφ

)
, (1.39)

with (
x
y

)
= b

(
cosφ
sinφ

)
(1.40)

Notice that Rs = 2GM
c2 is the Schwarzschild radius of a (point) mass M , thus

|~̂α| = 4GM
c2b

= 2
Rs
b
. (1.41)

Also notice that ~̂α is linear in M , thus the deflection angles of an array of lenses can
linearly be superposed.
Note that the deflection angle found here in the framework of general relativity exceeds
by a factor of two that calculated by using standard Newtonian Gravity (see Eq. 1.13),
as anticipated at the beginning of this chapter.

Since the speed of the light is reduced in the gravitational field, c′ = c/n, the travel
time (along the perturbed path) is larger by

∆t =
∫

dl
c′
−
∫

dl
c

=
∫

(n− 1)dl = − 2
c3

∫
Φdl . (1.42)

This is the so-called Shapiro delay (Shapiro, 1964).



2General concepts

2.1 The general lens

The deflection angle in Eq. 1.41 depends linearly on the mass M . This ensures that
the deflection angles of an array of lenses can linearly be superposed. Suppose we have
a sparse distribution of N point masses on a plane, whose positions and masses are ~ξi
and Mi, 1 ≤ i ≤ N . The deflection angle of a light ray crossing the plane at ~ξ will be:

~̂α(~ξ) =
∑
i

~̂αi(~ξ − ~ξi) =
4G
c2

∑
i

Mi

~ξ − ~ξi

|~ξ − ~ξi|2
. (2.1)

We now consider more realistic lens models, i.e. three dimensional distributions of
matter. Even in the case of lensing by galaxy clusters, the physical size of the lens
is generally much smaller than the distances between observer, lens and source. The
deflection therefore arises along a very short section of the light path. This justifies the
usage of the thin screen approximation (see Fig. (2.1)): the lens is approximated by a
planar distribution of matter, the lens plane. Even the sources are assumed to lie on a
plane, called the source plane.

Within this approximation, the lensing matter distribution is fully described by its surface
density,

Σ(~ξ) =
∫
ρ(~ξ, z) dz , (2.2)

where ~ξ is a two-dimensional vector on the lens plane and ρ is the three-dimensional
density.

As long as the thin screen approximation holds, the total deflection angle is obtained
by summing the contribution of all the mass elements Σ(~ξ)d2ξ:

~̂α(~ξ) =
4G
c2

∫
(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′ . (2.3)

2.2 Lens equation

In Fig. (2.1) we sketch a typical gravitational lens system. A mass concentration is
placed at redshift zL, corresponding to an angular diameter distance DL. This lens
deflects the light rays coming from a source at redshift zS (or angular distance DS).
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Figure 2.1: Sketch of a typical gravitational lensing system (Figure from Bartelmann
& Schneider, 2001).

Remark:
It is not guaranteed that the relation between physical size, distance and angular size
can be written as [physical size] = [angular size] · [distance] if space is curved. It
is however possible to define distances in curved spacetime such that this relation
from Euclidean space holds. Then, however, distances are not additive, such that
DL +DLS 6= DS.

We first define an optical axis, indicated by the dashed line, perpendicular to the lens
and source planes and passing through the observer. Then we measure the angular
positions on the lens and on the source planes with respect to this reference direction.

Consider a source at the angular position ~β, which lies on the source plane at a distance
~η = ~βDS from the optical axis. The deflection angle ~̂α of the light ray coming from
that source and having an impact parameter ~ξ = ~θDL on the lens plane is given by
Eq. (1.36). Due to the deflection, the observer receives the light coming from the source

as if it was emitted at the angular position ~θ.

If ~θ, ~β and ~̂α are small, the true position of the source and its observed position on the
sky are related by a very simple relation, obtained by a geometrical construction. This
relation is called the lens equation and is written as

~θDS = ~βDS + ~̂αDLS , (2.4)

where DLS is the angular diameter distance between lens and source.

Defining the reduced deflection angle

~α(~θ) ≡ DLS

DS
~̂α(~θ) , (2.5)

from Eq. (2.4), we obtain

~β = ~θ − ~α(~θ) . (2.6)
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This equation, called lens equation is apparently very simple. All the interesting physics
of lensing arises because ~α depends on ~θ.

It is very common and useful to write Eq. (2.4) in dimensionless form. This can be
done by defining a length scale ξ0 on the lens plane and a corresponding length scale
η0 = ξ0DS/DL on the source plane. Then we define the dimensionless vectors

~x ≡
~ξ

ξ0
; ~y ≡ ~η

η0
, (2.7)

as well as the scaled deflection angle

~α(~x) =
DLDLS

ξ0DS
~̂α(ξ0~x) . (2.8)

Carrying out some substitutions, Eq. (2.4) can finally be written as

~y = ~x− ~α(~x) . (2.9)

Special case: axially symmetric lenses

In general, the deflection angle is a two-dimensional vector. In the case of axially
symmetric lenses we may compute it only in one dimension, since all light rays from
the source to the observer must lie in the plane spanned by the center of the lens, the
source and the observer. This can be seen explicitely as follows.

We start from Eq. 2.3. Let take the lens
center as the origin of the reference frame.
By symmetry, we can choose the refer-
ence frame such that ~ξ = (ξ, 0), ξ ≥
0. In polar coordinates, ~ξ′ = (ξ′1, ξ

′
2) =

ξ′(cosφ, sinφ).

Then,

~ξ − ~ξ′ = (ξ − ξ′ cosφ,−ξ′ sinφ) (2.10)

|~ξ − ~ξ′|2 = ξ2 + ξ′2 cos2 φ− 2ξξ′ cosφ+ ξ′2 sin2 φ

= ξ2 + ξ′2 − 2ξξ′ cosφ (2.11)

For a symmetric mass distribution Σ(~ξ) = Σ(|~ξ|). The components of the deflection
angle are thus

α̂1(~ξ) =
4G
c2

∫ ∞

0

dξ′ξ′Σ(ξ′)
∫ 2π

0

dφ
ξ − ξ′ cosφ

ξ2 + ξ′2 − 2ξξ′ cosφ

α̂2(~ξ) =
4G
c2

∫ ∞

0

dξ′ξ′Σ(ξ′)
∫ 2π

0

dφ
−ξ′ sinφ

ξ2 + ξ′2 − 2ξξ′ cosφ
(2.12)

By symmetry, the second component of the deflection angle is zero, therefore ~̂α is
parallel to ~ξ. Thus, using the lens equation, we find that also the vector ~η must be
parallel to ~ξ.
For the first component of the deflection angle in Eq. 2.12, the inner integral vanishes
for ξ′ > ξ, while it is 2π/ξ if ξ′ < ξ. Then, the deflection angle for an axially
symmetric lens is

α̂(ξ) =
4G
c2

2π
∫ ξ
0

Σ(ξ′)ξ′ dξ′

ξ
=

4GM(ξ)
c2ξ

. (2.13)

The formula is similar to that derived for a point mass. The deflection is determined
by the mass enclosed by the circle of radius ξ, M(ξ).
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2.3 Lensing potential

An extended distribution of matter is characterized by its effective lensing potential,
obtained by projecting the three-dimensional Newtonian potential on the lens plane and
by properly rescaling it:

Ψ̂(~θ) =
DLS

DLDS

2
c2

∫
Φ(DL

~θ, z)dz . (2.14)

The dimensionless counterpart of this function is given by

Ψ =
D2

L

ξ20
Ψ̂ . (2.15)

This lensing potential satisfies two important properties:

(1) the gradient of Ψ gives the scaled deflection angle:

~∇xΨ(~x) = ~α(~x) . (2.16)

Indeed,

~∇xΨ(~x) = ξ0~∇⊥
(
DLSDL

ξ20DS

2
c2

∫
Φ(~x, z)dz

)
(2.17)

=
DLSDL

ξ0DS

2
c2

∫
~∇⊥Φ(~x, z)dz (2.18)

= ~α(~x) (2.19)

(2) the Laplacian of Ψ gives twice the convergence:

4xΨ(~x) = 2κ(~x) . (2.20)

This is defined as a dimensionless surface density

κ(~x) ≡ Σ(~x)
Σcr

with Σcr =
c2

4πG
DS

DLDLS
, (2.21)

where Σcr is called the critical surface density, a quantity which characterizes the
lens system and which is a function of the angular diameter distances of lens and
source.

Eq. 2.20 is derived from the Poisson equation,

4Φ = 4πGρ . (2.22)

The surface mass density is

Σ(~θ) =
1

4πG

∫ +∞

−∞
4Φdz (2.23)

and

κ(~θ) =
1
c2
DLDLS

DS

∫ +∞

−∞
4Φdz . (2.24)
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Let us now introduce a two-dimensional Laplacian

4θ =
∂2

∂θ21
+

∂2

∂θ22
= D2

L

(
∂2

∂ξ21
+

∂2

∂ξ22

)
= D2

L

(
4− ∂2

∂z2

)
, (2.25)

which gives

4Φ =
1
D2

L

4θΦ +
∂2Φ
∂z2

. (2.26)

Inserting Eq. 2.26 into Eq. 2.24, we obtain

κ(~θ) =
1
c2

DLS

DSDL

[
4θ

∫ +∞

−∞
Φdz +D2

L

∫ +∞

−∞

∂2Φ
∂z2

dz
]
. (2.27)

If the lens is gravitationally bound, ∂Φ/∂z = 0 at its boundaries and the second
term on the right hand side vanishes. From Eqs. 2.14 and 2.15, we find

κ(θ) =
1
2
4θΨ̂ =

1
2
ξ20
D2

L

4θΨ . (2.28)

Since

4θ = D2
L4ξ =

D2
L

ξ20
4x , (2.29)

using adimensional quantities Eq. 2.28 reads

κ(~x) =
1
2
4xΨ(~x) (2.30)

Integrating Eq. (2.20), the effective lensing potential can be written in terms of the
convergence as

Ψ(~x) =
1
π

∫
R2
κ(~x′) ln |~x− ~x′|d2x′ , (2.31)

from which we obtain that the scaled deflection angle is

~α(~x) =
1
π

∫
R2

d2x′κ(~x′)
~x− ~x′

|~x− ~x′|
. (2.32)

2.4 Magnification and distortion

One of the main features of gravitational lensing is the distortion which it introduces
into the shape of the sources. This is particularly evident when the source has no
negligible apparent size. For example, background galaxies can appear as very long arcs
in galaxy clusters.

The distortion arises because light bundles are deflected differentially. Ideally the shape
of the images can be determined by solving the lens equation for all the points within
the extended source. In particular, if the source is much smaller than the angular size
on which the physical properties of the lens change, the relation between source and
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Figure 2.2: Distortion effects due to convergence and shear on a circular source (Figure
from Narayan & Bartelmann, 1995).

image positions can locally be linearized. In other words, the distortion of images can
be described by the Jacobian matrix

A ≡ ∂~y

∂~x
=
(
δij −

∂αi(~x)
∂xj

)
=
(
δij −

∂2Ψ(~x)
∂xi∂xj

)
, (2.33)

where xi indicates the i-component of ~x on the lens plane. Eq. (2.33) shows that
the elements of the Jacobian matrix can be written as combinations of the second
derivatives of the lensing potential.

For brevity, we will use the shorthand notation

∂2Ψ(~x)
∂xi∂xj

≡ Ψij . (2.34)

We can now split off an isotropic part from the Jacobian:(
A− 1

2
trA · I

)
ij

= δij −Ψij −
1
2
(1−Ψ11 + 1−Ψ22)δij (2.35)

= −Ψij +
1
2
(Ψ11 + Ψ22)δij (2.36)

=
(
− 1

2 (Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2 (Ψ11 −Ψ22)

)
. (2.37)

This is manifestly an antisymmetric, trace-free matrix is called the shear matrix. It
quantifies the projection of the gravitational tidal field (the gradient of the gravitational
force), which describes distortions of background sources.
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This allows us to define the pseudo-vector ~γ = (γ1, γ2) on the lens plane, whose
components are

γ1(~x) =
1
2
(Ψ11 −Ψ22) (2.38)

γ2(~x) = Ψ12 = Ψ21 , (2.39)

This is called the shear.

The eigenvalues of the shear matrix are

±
√
γ2
1 + γ2

2 = ±γ . (2.40)

Thus, there exists a coordinate rotation by an angle φ such that(
γ1 γ2

γ2 −γ1

)
= γ

(
cos 2φ sin 2φ
sin 2φ cos 2φ

)
(2.41)

Remark:
Note the factor 2 on the angle φ, which reminds that the shear component are elements
of a 2× 2 tensor and not a vector.

The remainder of the Jacobian is

1
2
trA =

[
1− 1

2
(Ψ11 + Ψ22)

]
δij (2.42)

=
(

1− 1
2
4Ψ

)
δij = (1− κ)δij . (2.43)

Thus, the Jacobian matrix becomes

A =
(

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (2.44)

The last equation explains the meaning of both convergence and shear. The distortion
induced by the convergence is isotropic, i.e. the images are only rescaled by a constant
factor in all directions. On the other hand, the shear stretches the intrinsic shape of the
source along one privileged direction. For this reason, a circular source, which is small
enough compared to the scale of the lens, like that shown in Fig. (2.2) is mapped into
an ellipse when κ and γ are both non-zero. The semi-major and -minor axes are

a =
r

1− κ− γ
, b =

r

1− κ+ γ
, (2.45)

where r is the radius of the circular source.

An important consequence of the lensing distortion is the magnification. Through the
lens equation, the solid angle element δβ2 (or equivalently the surface element δy2) is
mapped into the solid angle δθ2 (or in the surface element δx2). Since the Liouville
theorem and the absence of emission and absorbtion of photons in gravitational light
deflection ensure the conservation of the source surface brightness, the change of the
solid angle under which the source is seen implies that the flux received from a source
is magnified (or demagnified).
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Given Eq. (2.33), the magnification is quantified by the inverse of the determinant of
the Jacobian matrix. For this reason, the matrix M = A−1 is called the magnification
tensor. We therefore define

µ ≡ detM =
1

detA
=

1
(1− κ)2 − γ2

. (2.46)

The eigenvalues of the magnification tensor (or the inverse of the eigenvalues of the
Jacobian matrix) measure the amplification in the tangential and in the radial direction
and are given by

µt =
1
λt

=
1

1− κ− γ
(2.47)

µr =
1
λr

=
1

1− κ+ γ
. (2.48)

The magnification is ideally infinite where λt = 0 and where λr = 0. These two
conditions define two curves in the lens plane, called the tangential and the radial
critical line, respectively. An image forming along the tangential critical line is strongly
distorted tangentially to this line. On the other hand, an image forming close to the
radial critical line is stretched in the direction perpendicular to the line itself.
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Example: Numerically simulated galaxy cluster

Galaxy clusters are the most massive bound objects in the
Universe. They are “young” structures, whose assembling
process is still on-going. For this reason they are character-
ized by an high level of complexity. The luminous matter
within them (gas and stars) accounts for ∼ 10% of their
mass. The rest is dark matter. Numerical simulations pro-
vide the most realistic description of these cosmic struc-
tures. N-body and hydrodynamical simulations have been
used to simulate the formation and the evolution of sys-
tems on different scales. The figure on the left side shows
the adimensional surface mass density (or convergence) of
a cluster-sized dark matter halo simulated at z ∼ 0.3. The
mass of such object is ∼ 1015M�.

Imagine that a bundle of light rays passes through the mass
distribution showed above. Each mass element of the lens
contributes to deflect the light coming from background
sources. Eq.2.3 allows to calculate the deflection angle at
each position ~ξ on the lens plane. The resulting deflection
angle field is shown on the right.

The lensing effect can be decomposed into two terms: the
isotropic term given by the convergence and the anisotropic
term given by the shear γ. This is a pseudo-vector, whose
orientation define the direction into which an image is
stretched. All around the cluster, the shear tends to be tan-
gential to the lens iso-density contours (see the left panel
below). Close to the cluster cores, images can be distorted
also towards the cluster center. The intensity of γ deter-
mines the amplitude of the distortion. The shear pattern for
our numerical cluster is shown on the left.

By distorting them, the lens magnifies the sources. De-
pending on where the sources are located behind the clus-
ter, the resulting magnification is different. In the Figure
on the right shown is the magnification on the lens plane
(in logarithmic scale!). It is ideally infinite along the so-
called lens critical lines. The sources generating images
around the critical lines are located along the caustics.
The critical lines and the caustics are shown in the middle
and in the right panels below, respectively.
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2.5 Lensing to the second order

In section 2.4, we discussed the effects of lensing at the first order. We briefly men-
tion now some second order effects. Using a Taylor expansion around the origin, the
unperturbed coordinates can be linked to the perturbed ones through the following
equation

yi '
∂yi
∂xj

xj +
1
2

∂2yi
∂xj∂xk

xjxk . (2.49)

The lensing effect is described at the first order by the Jacobian matrix A. Now, we
introduce the tensor

Dijk =
∂2yi

∂xj∂xk
=
∂Aij
∂xk

. (2.50)

Then, Eq. 2.49 reads

yi ' Aijxj +
1
2
Dijkxjxk (2.51)

By simple algebra, it can be shown that

Dij1 =
(
−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)
, (2.52)

and

Dij2 =
(
−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

)
. (2.53)

Thus, the second order lensing effect can be expressed in terms of the derivatives of the
shear (or in terms of the third derivatives of the potential).

We can construct the complex quantities

F = F1 + iF2 = (γ1,1 + γ2,2) + i(γ2,1 − γ1,2) (2.54)

and

G = G1 + iG2 = (γ1,1 − γ2,2) + i(γ2,1 + γ1,2) (2.55)

which are called first and second flexion, respectively. They describe second order
distortions of the images of lensed sources.

The flexion is responsible for introducing a curvature and other anisotropic distortions
in the images. An illustration of the effects of first and second flexions on the shape of
a circular source is shown in Fig. 2.3.

Note that the vector ~F having components F1 and F2 is

~F = ~∇κ . (2.56)

Indeed:

γ1,1 =
1
2
(Ψ111 −Ψ221) (2.57)

γ2,2 = Ψ122 (2.58)

γ2,1 = Ψ121 (2.59)

γ1,2 =
1
2
(Ψ112 −Ψ222) (2.60)
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Figure 2.3: First and second order distortions on the image of a circular source. The
unlensed source is shown in the top left panel. The convergence simply changes the
size (bottom left panel). While the shear deforms the image such that it becomes
elliptical (third column of panels from the left), the first and the second flexion intro-
duce curvature and other distortions (second and fourth columns). Courtesy of Peter
Melchior.

Therefore:

F1 =
1
2
(Ψ111 −Ψ221) + Ψ122 =

1
2
(Ψ111 + Ψ221) =

∂κ

∂x1
(2.61)

F2 =
1
2
(Ψ112 −Ψ222) + Ψ121 =

1
2
(Ψ112 + Ψ222) =

∂κ

∂x2
. (2.62)

This means that the first flexion can be used to obtain the convergence field.

2.6 Occurrence of images

The deflection of light rays causes a delay in the time between the emission of radia-
tion by the source and the signal reception by the observer. This time delay has two
components:

t = tgeom + tgrav (2.63)

The first one has a geometrical reason and is due to the different path length of the
deflected light rays compared to the unperturbed ones. This time delay is proportional
to the squared angular separation between the intrisic position of the source and the
location of its image. The second one comes from the slowing down of photons traveling
through the gravitational field of the lens and is therefore related to the lensing potential.
Considering a lens at redshift zL, the total time delay introduced by gravitational lensing
at the position ~x on the lens plane is

t(~x) =
(1 + zL)

c

DSξ
2
0

DLDLS

[
1
2
(~x− ~y)2 −Ψ(~x)

]
. (2.64)
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Figure 2.4: Time delay surfaces of an axially symmetric lens for three different source
positions. Right panel: source and lens are perfectly aligned along the optical axis;
middle panel: the source is no more aligned with the lens. Its projected position on the
lens plane is moved along the line x1 = x2; right panel: the source is moved to an even
larger angular distance from the optical axis.

Through the effective lensing potential, the lens equation can be written as

(~x− ~y)−∇Ψ(~x) = ∇
[
1
2
(~x− ~y)2 −Ψ(~x)

]
= 0 . (2.65)

Eqs. (2.64) and (2.65) imply that images satisfy the Fermat Principle, ∇t(~x) = 0.
Images therefore are located at the stationary points of the time delay surface given by
Eq. (2.64). The Hessian matrix of this surface is

T =
∂2t(~x)
∂xi∂xj

∝ (δij −Ψij) = A (2.66)

We can distinguish between three types of image:

(1) type I images arise at the minima of the time delay surface, where the eigenvalues
of the Hessian matrix are both positive, hence detA > 0 and trA > 0. Therefore,
they have positive magnification;

(2) type II images arise at the saddle points of the time delay surface, where eigenval-
ues have opposite signs. Since detA < 0, they have negative magnification. The
interpretation of a negative µ is that the parity of the image is flipped compared
to the source;

(3) finally, type III images arise at the maxima of the time delay surface. Here, the
eigenvalues are both negative, hence detA > 0 and trA < 0. These images
therefore have positive magnification.

Since the Hessian matrix describes the local curvature of the time delay surface, the
smaller is the curvature along one direction at the position where the image forms,
the larger is its magnification along the same direction. We display in Fig. (2.4) some
examples of the time delay surface for a general axially symmetric lens with core. The
density profile of this lens scales with radius as r−2 outside the core. The surfaces are
plotted for three different source position ~y: in the left panel the source and the lens
are perfectly aligned along the optical axis passing through the lens center (~y = 0 and
~x = 0); in the middle and right panel, the source is moved far away, increasing its
angular distance from the optical axis. In order to better see where the minima and
the maxima arise, we show in Fig. (2.5) the profile along the line x1 = x2 of the same
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Figure 2.5: Profiles of the time delay surfaces displayed in Fig. (2.4) along the line
x1 = x2.

surfaces. When the source and the lens are perfectly aligned, the minima of the time
delay surface are located on a ring and the maximum is at the lens center. The source
therefore is mapped to a ring image of type I (the so called Einstein Ring) and to a
central type III image. This last one is generally demagnified, since the curvature of the
time delay surface here is large for density profiles peaked at the lens center.

As the source is moved far away from the optical axis, the time delay surface deforms. In
particular, the ring breaks, leading to the formation of a minimum and of a saddle point.
Three images therefore arise. In the case displayed in the middle panel of Fig. (2.4), the
type I image at the minimum and the type II image at the saddle point are stretched
in the tangential direction, since the local curvature of the time delay surface is small
in that direction. This explains the formation of tangential arcs in galaxy clusters.
However, as the source is moved to even larger angular distances from the optical axis,
the saddle point and the maximum move much closer to each other, while the minimum
follows the source. The local curvature of the time delay surface in the radial direction
becomes smaller between the saddle point and the maximum as they get closer. The
images arising at this two points therefore are stretched towards each other. Then a
radial image forms. When the saddle point and the maximum point touch, two images
disappear and only the image arising at the minimum of the time delay surface remains
(see right panels of Fig. (2.4) and Fig. (2.5)).

Here follows a number of other important properties of the time-delay surface:

• the height difference at different images of the surface t(~x) gives the difference in
arrival time between these images. This time delay can be measured if the source
is variable, and provides one way of potentially measuring the Hubble constant;

• in absence of the lens, the time-delay surface is a parabola which has a single
extremum (a minimum); additional extrema have to come in pairs, thus the total
number of images must be odd (as we showed earlier by continously deforming
the time-delay surface);

• when two additional images are formed, they must be a maximum and a saddle
point; in between them, the curvature changes from negative to positive, thus
it is zero between them; remember that detA = 0 is the condition for having
a critical point, where the magnification is (formally) infinite. The critical lines
thus separate multiple-image pairs; these pairs merge and desappear (as discussed
above) at the critical lines. In other words, the critical lines separate regions of
different image multiplicities.



24

Example: Determination of the Hubble Constant

The lens equation is dimensionless, and the positions of images as well as their magnifi-
cations are dimensionless numbers. Therefore, information on the image configuration
alone does not provide any constraint on the overall scale of the lens geometry or the
value of the Hubble constant. Refsdal 1964 realized that the time delay, however, is
proportional to the absolute scale of the system and does depend on H0.
To see this, we first note that the geometrical time delay is simply proportional to the
path lengths of the rays which scale as H−1

0 . The gravitational time delay also scales
as H−1

0 because the linear size of the lens and its mass have this scaling. Therefore
for any gravitational lens system, the quantity

H0∆t

depends only on the lens model and the geometry of the system. A good lens model
which reproduces the positions and magnifications of the images provides the scaled
time delay H0∆t between the images. Therefore, a measurement of the time delay
∆t will yield the Hubble constant H0.

As an example, we summarize here the results of Koop-
mans et al. (2003). They analyse the lens system
B1608+656, a quadruply-imaged QSO at reshift zS =
1.39 lensed by two lens galaxies at redshift zL = 0.63
(see Fig. on the right side). For this system very accu-
rate determinations of the time delays between the dif-
ferent images were obtained by Fassnacht et al. (2002),
by monitoring the VLA radio fluxes of the four images.
Labelling the images from A to D, the time-delays with
respect to the image B were found to be ∆tAB =
31.5 ± 1.5, ∆tCB = 36 ± 1.5 and ∆tDB = 77 ± 1.5
(days).

By combining several radio, optical, infrared observations plus some constraints on
the dynamics of stars in the main lens galaxy (G1), Koopmans et al. were able to
construct a detailed model of the lens system, and to reconstruct the shape of the
time-delay surface.

The lens critical lines (in red) and
caustics (in black) are shown in
the left panel, the contours of
constant time-delay on the right.
They start at ∆t = 0 at im-
age B and increase in steps of
10h−1 days. As expected, images
B and A correspond to minima of
the time-delay surface. Image C
and D are located at two saddle
points, instead.

Finally, a maximum falls onto the galaxy G1, where no images of the source QSO are
seen. For this galaxy, the lens model predicts a very large inner slope of its density
profile. Consequently, the local curvature of the time-delay surface is very large. Thus,
the image which should form at this position is strongly de-magnified. The light of
the lens galaxy also prevents to observe such image. Note that the critical lines pass
between the saddle and the minimal points.
Using this lens model, Koopmans et al. estimate the Hubble constant to beH0 = 75+7

−6

km s−1 Mpc−1.



3Lens models

One of the main goals of lensing theory is to determine which combinations of lenses and
sources can reproduce a particular image configuration. For solving this kind of problem,
it is very common to use analytic lens models. These models have the advantage that
they are very simple and their lensing properties can be derived quite easily.

A variety of models exists, which are more ore less reliable for describing lensing on
different scales. Compact objects like planets, stars, black holes or the so called Massive
Astrophysical Compact Halo Objects (MACHOs) are usually well aproximated by point
lenses. The most simple models which are used in studies of extended lenses are the
axially symmetric models. However, they are not sufficiently realistic for describing
the majority of astrophysical objects, and elliptical models turn out to be much more
appropriate in most cases.

3.1 Point masses

Let us begin with point masses as lenses. The deflection angle of a point mass was

~̂α = −4GM
c2b

~er , (3.1)

where ~er is the unit vector in radial direction. No direction is prefered in an axisymmetric
situation like that, so we can identify ~er with one coordinate axis and thus reduce the
problem to one dimension. Then

α̂ =
4GM
c2b

=
4GM
c2DLθ

, (3.2)

where we have expressed the impact parameter by the angle θ, b = DLθ.

The lensing potential is given by

Ψ̂ =
4GM
c2

DLS

DLDS
ln |~θ| , (3.3)

as one can show using

∇ ln |~x| = ~x

|~x|2
. (3.4)

The lens equation reads

β = θ − 4GM
c2DLθ

DLS

DS
. (3.5)
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With the definition of the Einstein radius,

θE ≡
√

4GM
c2

DLS

DLDS
, (3.6)

we have

β = θ − θ2E
θ
. (3.7)

Dividing by θE and setting y = β/θE and x = θ/θE , the lens equation in its adimen-
sional form is written as

y = x− 1
x

(3.8)

Multiplication with x leads to

x2 − xy − 1 = 0 , (3.9)

which has two solutions:

x± =
1
2

[
y ±

√
y2 − 4

]
. (3.10)

Thus, a point-mass lens has two images for any source, irrespective of its distance y
from the lens. Why not three? Because its mass is singular and thus the time-delay
surface is not continously deformed.

If y = 0, x± = ±1; that is, a source directly behind the point lens has a ring-shaped
image with radius θE . For order-of-magnitude estimates:

θE ≈ (10−3)′′
(
M

M�

)1/2(
D

10kpc

)−1/2

,

≈ 1′′
(

M

1012M�

)1/2(
D

Gpc

)−1/2

, (3.11)

where

D ≡ DLDS

DLS
(3.12)

is called effective lensing distance.

As β → ∞, we see that θ− = x−θE → 0, while obviously θ+ = x+θE → β: when
the angular separation between the lens and the source becomes large, the source is
unlensed. Formally, there is still an image at θ− = 0.

The magnifications follow from from the Jacobian. For any axially-symmetric lens,

detA =
y

x

∂y

∂x
=
(
1− α

x

)(
1− ∂α

∂x

)
=

(
1− 1

x2

)(
1 +

1
x2

)
= 1−

(
1
x

)4

⇒ µ =

[
1−

(
1
x

)4
]−1

, (3.13)
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i.e. a source at y = 1 has two images at

x± =
1±

√
5

2
, (3.14)

and their magnifications are

µ± =

[
1−

(
2

1±
√

5

)4
]−1

. (3.15)

For general source positions,

µ± =

[
1−

(
1
x±

)4
]−1

=
x4
±

x4
± − 1

=
1
2
± y2 + 2

2y
√
y2 + 4

. (3.16)

Note that limy→∞ µ− = 0 and that limy→∞ µ+ = 1: even if the lens equation has
always two solutions, for large angular separations between the source and the lens, one
image desappears because it is demagnified. The other is completely undistiguishable
from the source because it has the same flux and the same position.

The total magnification of a point source by a point mass is thus

µ = |µ+|+ |µ−| =
y2 + 2

y
√
y2 + 4

, (3.17)

and the magnification ratio of the two images is

|µ−
µ+
| =

(
y −

√
y2 + 4

y +
√
y2 + 4

)2

=
(
x−
x+

)
. (3.18)

If β = θE , y = 1 and the total magnification is µ = 1.17 + 0.17 = 1.34. In terms
of magnitudes, this correspond to ∆m = −2.5 log µ ∼ 0.3. The image forming at x+

contributes for ∼ 87% of the total magnification.

Lensing by point masses on point sources will be discussed in detail in a following
chapter. However, we can already answer to the question: how can lensing by a point
mass be detected? Unless the lens is more massive than 106M� (for a source at
cosmological distance), the angular separation between multiple images is too small to
be resolved. However, the magnification effect will be detectable in many cases if the
source is moving relative to the lens (for example, a star in the large magellanic cloud
is in relative motion with respect to a star in the halo of our galaxy). Thus, since the
magnification changes as a function of the angular separation between source and lens,
the lensing effect will induce a time variability in the light curve of the source.

3.2 Axially symmetric lenses

The main advantage of using axially symmetric lenses is that their surface density
is independent on the position angle with respect to lens center. If we choose the
optical axis such that it intercepts the lens plane in the lens center, this implies that
Σ(~ξ) = Σ(|~ξ|). The lensing equations therefore reduce to a one-dimensional form, since
all the light rays from a (point) source lie on the same plane passing through the center
of the lens, the source and the observer.
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The deflection angle for an axially symmetric lens was found to be

α̂(ξ) =
4GM(ξ)
c2ξ

. (3.19)

If want to use adimensional quantities:

α(x) =
DLDLS

ξ0DS
α̂(ξ0x)

=
DLDLS

ξ0DS

4GM(ξ0x)
c2ξ

πξ0
πξ0

=
M(ξ0x)
πξ20Σcr

1
x
≡ m(x)

x
, (3.20)

where we have introduced the dimensionless mass m(x). Note that

α(x) =
2
x

∫ x

0

x′κ(x′)dx′ ⇒ m(x) = 2
∫ x

0

x′κ(x′)dx′ . (3.21)

The lens equation (2.9) then becomes

y = x− m(x)
x

. (3.22)

Now, we derive formulas for several lensing quantities. To do that, we need to write the
deflection angle as a vector. For an axially symmetric lens, the deflection angle points
towards the lens center. Then,

~α(~x) =
m(~x)
x2

~x , (3.23)

where ~x = (x1, x2).
By differentiating we obtain:

∂α1

∂x1
=

dm
dx

x2
1

x3
+m

x2
2 − x2

1

x4
, (3.24)

∂α2

∂x2
=

dm
dx

x2
2

x3
+m

x2
1 − x2

2

x4
, (3.25)

∂α1

∂x2
=

∂α2

∂x1
=

dm
dx

x1x2

x3
− 2m

x1x2

x4
, (3.26)

which immediately give the elements of the Jacobian matrix:

A = I − m(x)
x4

(
x2

2 − x2
1 −2x1x2

−2x1x2 x2
1 − x2

2

)
−dm(x)

dx
1
x3

(
x2

1 x1x2

x1x2 x2
2

)
. (3.27)

This permits us to obtain the following expressions for the convergence and the shear
components:

κ(x) =
1
2x

dm(x)
dx

, (3.28)

γ1(x) =
1
2
(x2

2 − x2
1)
(

2m(x)
x4

− dm(x)
dx

1
x3

)
, (3.29)

γ2(x) = x1x2

(
dm(x)

dx
1
x3
− 2m(x)

x4

)
. (3.30)
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From these relations,

γ(x) =
m(x)
x2

− κ(x) . (3.31)

Since m(x) = 2
∫ x
0
x′κ(x′)dx′, we see that

m(x)
x2

= 2π

∫ x
0
x′κ(x′)dx′

πx2
= κ(x) . (3.32)

where κ(x) = m(x)/x2 is the mean surface mass density within x. Eq. 3.31 then
reduces to

γ(x) = κ(x)− κ(x) (3.33)

The Jacobian determinant of the lens mapping is

detA =
y

x

dy
dx

=
(

1− m(x)
x2

)[
1− d

dx

(
m(x)
x

)]
=

(
1− m(x)

x2

)(
1 +

m(x)
x2

− 2κ(x)
)

=
(

1− α(x)
x

)(
1− dα(x)

dx

)
. (3.34)

Since the critical lines arise where detA = 0, Eq. (3.34) implies that axially symmet-
ric lenses with monotonically increasing m(x) have at most two critical lines, where
m(x)/x2 = 1 and d(m(x)/x)/dx = dy/dx = 1. Both these conditions define circles
on the lens plane (see Fig. 3.1). The critical line along which m(x)/x2 = 1 is the
tangential one: any vector which is tangential to this line is an eigenvector with zero
eigenvalue of the Jacobian matrix. On the other hand, given that any vector perpen-
dicular to the critical line where d(m(x)/x)/dx = 1 is also an eigenvector with zero
eigenvalue, this line is the radial critical line.

From the lens equation it can be easily seen that all the points along the tangential
critical line are mapped on the point y = 0 on the source plane. Indeed:

y = x
(
1− m

x2

)
= 0 . (3.35)

if x indicates a tangential critical point. Therefore, axially symmetric models have
point tangential caustics. On the other hand, the points along the radial critical line
are mapped onto a circular caustic on the source plane.

As discussed previously, if the lens is strong, multiple images can be formed of the
same source. The number of these images depends on the position of the source
with respect to the caustics. Sources which lie within the radial caustic produce three
images. Sources outside the radial caustic have only one image. This is shown in
Fig. 3.1. Since the tangential critical curve does not lead to a caustic curve, but the
corresponding caustic degenerates to a single point ~y = 0, the tangential critical curves
have no influence on the image multiplicity. Thus, pairs of images can only be created
or destroyed if the radial critical curve exists. For axially symmetric lenses, it can be
shown that the necessary conditions for them to produce multiple images are (Schneider
et al., 1992):

(1) at least at one point 1− 2κ(x) + κ(x) < 0: if 1− 2κ(x) + κ(x) > 0 throughout,
a lens produces no multiple images, since y(x) increases monotonically. If on



30

Figure 3.1: Imaging of a point source by a non-singular, circularly-symmetric lens. Left:
image positions and critical lines; right: source position and corresponding caustics.
From Narayan & Bartelmann (1995).

the other hand, there is a point where dy/dx < 0, there is at least one local
maximum x1 and one local minimum x2 > x1 of the curve y(x) since dy/dx→ 1
for |x| → ∞. For values of y such that y(x2) < y < y(x1), there are at least
three images;

(2) κ > 1/2 at one point in the lens: if dy/dx < 0 at one point, then κ > (1+κ)/2 ≥
1/2; a sufficient condition for multiple imaging is that κ > 1 at one point. Indeed:
if κ have a a maximum at one point xm where κ(xm) > 1, then κ(xm) ≤ κ(xm)
and dy/dx < 0 at xm. The statement then follows from (1);

(3) if the surface density does not increase with x, κ′(x) ≤ 0, κ(0) > 1: from (2)
we know that it is sufficient that κ > 1 at one point for having multiple images.
On the other hand if κ(0) ≤ 1, then, since y = x(1 − κ), we have for x ≥ 0:
dy/dx = (1− κ)− xκ′. Since

κ(x) = 2
∫ 1

0

duuκ(ux) , (3.36)

then

dκ
dx

= 2
∫ 1

0

duu2κ′(ux) ≤ 0 (3.37)

and κ(x) ≤ κ(0) ≤ 1, we see that dy/dx ≥ 0, so that no multiple images can
occur.

Images are in odd numbers. A special case is that of singular lenses, i.e. lenses with
infinite density at the center: in this case only two images arise when the source is within
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Figure 3.2: Sketch of the mapping of an infinitesimal circular source onto an elliptical
image (Figure from Schneider et al., 1992).

the radial caustic. This is clear from the discussion in Sect. (2.6): when the singularity
is present, the central maximum of the time delay surface is suppressed. Therefore one
possible image is missed.

As was pointed out in the previous chapter, the eigenvalues of the Jacobian matrix
give the inverse magnification of the image along the tangential and radial directions.
Fig. (3.2) illustrates an infinitesimal source of diameter δ at position y and its image,
which is an ellipse, whose minor and major axes are ρ1 and ρ2 respectively, at position
x. With respect to the origin of the reference frame on the source plane, the circular
source subtends an angle φ = δ/y. Due to the axial symmetry of the lens, φ = ρ2/x.
Using the lens equation, we thus obtain

δ

ρ2
= 1− m(x)

x2
. (3.38)

The lens mapping gives δ = ρ1(dy/dx), from which

δ

ρ1
= 1 +

m(x)
x2

− 2κ(x) (3.39)

This means that the image is stretched in the tangential direction by a factor [1 −
m(x)/x2]−1 and in the radial direction by [1 +m(x)/x2 − 2κ(x)]−1.

Such distortions are more evident is the sources are extended. Fig. 3.3 shows the images
of two extended sources lensed by the same model as in Fig. 3.1. One source is located
close to the point-like caustic in the center of the lens. It is imaged onto the two long,
tangentially oriented arcs close to the outer critical curve and the very faint image at
the lens center. The other source is located on the outer caustic and forms a radially
elongated image which is composed of two merging images, and a third tangentially
oriented image outside the outer critical line.

3.2.1 Singular Isothermal Sphere

One of the most widely used axially symmetric model is the Singular Isothermal Sphere
(SIS hereafter). The density profile of this model can be derived assuming that the
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Figure 3.3: Imaging of an extended source by a non-singular circularly-symmetric lens.
A source close to the point caustic at the lens center produces two tangentially oriented
arc-like images close to the outer critical curve, and a faint image at the lens center.
A source on the outer caustic produces a radially elongated image on the inner critical
curve, and a tangentially oriented image outside the outer critical curve. From Narayan
& Bartelmann (1995).

matter content of the lens behaves as an ideal gas confined by a spherically symmetric
gravitational potential. This gas is taken to be in thermal and hydrostatic equilibrium.
One of the two density profiles satisfying these sets of equations is given by

ρ(r) =
σ2
v

2πGr2
, (3.40)

where σv is the velocity dispersion of the “gas” particles and r is the distance from the
sphere center. By projecting the three-dimensional density along the line of sight, we
obtain the corresponding surface density

Σ(ξ) = 2
σ2
v

2πG

∫ ∞

0

dz
ξ2 + z2

=
σ2
v

πG

1
ξ

[
arctan

z

ξ

]∞
0

=
σ2
v

2Gξ
. (3.41)

This density profile has a singularity at ξ = 0, where the density is ideally infinite.
Nevertheless, it has been used to describe the matter distribution in galaxies, expecially
because it can reproduce the flat rotation curves of spiral galaxies.
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By choosing

ξ0 = 4π
(σv
c

)2 DLDLS

DS
(3.42)

as the length scale on the lens plane, we obtain:

Σ(x) =
σ2
v

2Gξ
ξ0
ξ0

=
1
2x

c2

4πG
DS

DLDLS
=

1
2x

Σcr . (3.43)

Thus, the convergence for the singular isothermal profile is

κ(x) =
1
2x

, (3.44)

and the lensing potential (2.15) is

Ψ(x) = |x| . (3.45)

Using Eqs. (2.16), we obtain

α(x) =
x

|x|
, (3.46)

and the lens equation reads

y = x− x

|x|
. (3.47)

If y < 1, two solutions of the lens equation exist. They arise at x = y−1 and x = y+1,
on opposite sides of the lens center. The corresponding angular positions of the images
are

θ± = β ± θE (3.48)

where θE is the Einstein radius, defined now as

θE =

√
4GM(θE)

c2
DLS

DLDS
. (3.49)

The quantity M(θE) is the mass within the Einstein radius. The angular separation
between the two images therefore is ∆(θ) = 2θE : the Einstein radius defines a typical
scale for separation between multiple images.

On the other hand, if y > 1, Eq. (3.47) has a unique solution, x = y + 1. Images
arising at x > 0 are of type I (positive parity), while those arising at x < 0 are of type
II (negative parity).

The shear follows from the derivatives of Ψ. Since

∂Ψ
∂xi

=
xi
|x|

(3.50)

we have

∂Ψ
∂xi∂xj

=
δijx− xixj/x

x2
=
δijx

2 − xixj
x3

, (3.51)
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and thus

Ψ11 =
x2 − x2

1

x3
=
x2

2

x3
(3.52)

Ψ12 = −x1x2

x3
(3.53)

Ψ22 =
x2 − x2

2

x3
=
x2

1

x3
. (3.54)

The shear components are

γ1 =
1
2
(Ψ11 −Ψ22) =

1
2
x2

2 − x2
1

x3
=

1
2

sin2 φ− cos2 φ
x

= −1
2

cos 2φ
x

, (3.55)

γ2 = Ψ12 = −cosφ sinφ
x

= −1
2

sin 2φ
x

. (3.56)

Thus,

γ(x) = (γ2
1 + γ2

2)1/2 =
1
2x

= κ(x) . (3.57)

From Eq. (3.47), the magnification as a function of the image position is given by

µ =
|x|

|x| − 1
. (3.58)

Images are only magnified in the tangential direction, since the radial eigenvalue of the
Jacobian matrix is unity everywhere.

If y < 1, the magnifications of the two images are

µ+ =
y + 1
y

= 1 +
1
y

; µ− =
|y − 1|

|y − 1| − 1
=
−y + 1
−y

= 1− 1
y
, (3.59)

from which we see that for y → 1, the second image becomes weaker and weaker until it
disappears at y = 1. On the other hand, for y →∞, the source magnification obviously
tends to unity: sources which are at large distance from the lens can only be weakly
magnified by gravitational lensing.

3.2.2 Softened Isothermal Sphere

The singular isothermal sphere produces only two images of a background point source,
because the time-delay surface is not continously deformed due to the the singularity
in the lensing mass distribution. The singularity can be avoided by intoducing a core
radius, xc, into the potential,

Ψ =
√
x2 + x2

c . (3.60)

Then, the deflection angle is

~α(~x) =
~x√

x2 + x2
c

, (3.61)

and convergence and shear turn out to be

κ =
x2 + 2x2

c

2(x2 + x2
c)3/2

(3.62)

γ1 = − x2

2(x2 + x2
c)3/2

cos 2φ (3.63)

γ2 = − x2

2(x2 + x2
c)3/2

sin 2φ (3.64)
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3.2.3 The Navarro-Frenk & White density profile

Navarro et al. (1997) (NFW hereafter) found that the density profile of dark matter
halos numerically simulated in the framework of CDM cosmogony can be very well
described by the radial function

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (3.65)

within the wide mass range 3 × 1011 . Mvir/(h−1M�) . 3 × 1015. The logarithmic
slope of this density profile changes from −1 at the center to −3 at large radii. There-
fore, it is flatter than that of the SIS in the inner part of the halo, and steeper in the
outer part. The two parameters rs and ρs are the scale radius and the characteristic
density of the halo.

NFW parameterized dark matter halos by their masses M200, i.e. the masses enclosed
in spheres with radius r200 in which the average density is 200 times the critical density.
The relationship between M200 and r200 is given by

r200 = 1.63× 10−2

(
M200

h−1M�

)1/3 [ Ω0

Ω(z)

]−1/3

(1 + z)−1h−1 kpc . (3.66)

This definition depends on the redshift z at which the halo is identified as well as on
the background cosmological model.

From the former definition of r200, the concentration, c ≡ r200/rs, and the characteristic
density are linked by the relation,

ρs =
200
3
ρcr

c3

[ln(1 + c)− c/(1 + c)]
. (3.67)

Numerical simulations show that the scale radii of dark matter halos at any redshift z
systematically change with mass in such a way that concentration is a characteristic
function of M200.

Several algorithms have been suggested for describing the concentration of dark matter
halos. They are all based on the assumption that the central density of a halo reflects
the mean cosmic density at the time when the halo formed. This is justified by numerical
simulations of structure formation, which show that halos are the more concentrated
the earlier they form. Originally, NFW devised the following approach. Each halo is
assigned a collapse redshift, defined as the redshift at which half of the halo mass is
contained in progenitors more massive than a fraction fNFW of the final mass. Then,
the characteristic density is taken to be some factor C times the mean cosmic density
at the collapse redshift. For fitting the results of their numerical simulations, they use
fNFW = 0.01 and C = 3× 103.

Bullock et al. (2001) suggested a different definition, because they noticed that the
concentrations of numerically simulated dark matter halos change more rapidly with
redshift than predicted by the NFW approach. They define the collapse redshift such
that the non-linear mass scale at that redshift is a fraction fB of the final halo mass.
The halo concentration is then assumed to be a factor K times the ratio of the scale
factors at the redshift when the halo is identified and at the collapse redshift. The best
fitting values they found when comparing to numerical simulations are fB = 0.01 and
K = 4.

Finally, Eke et al. (2001) suggested another different approach. The collapse redshift
of a halo of mass M is defined such that the suitably defined amplitude of the linearly
evolving power spectrum at the mass scale M matches a constant C−1

E . The halo
concentration is then obtained by setting the characteristic density equal to the spherical



36

Figure 3.4: Halo concentration parameters as function of halo masses M200. Results
obtained for three different approaches for calculating the concentration are shown;
these are the approaches by Navarro, Frenk & White (NFW; top panel), by Bullock et
al. (B. et al.; middle panel) and by Eke et al. (E. et al.; bottom panel). In each panel
we show the curves for a low-density OCDM model (Ω0 = 0.3, Ω0Λ = 0; solid lines), for
a flat low-density ΛCDM model (Ω0 = 0.3, Ω0Λ = 0.7; dotted lines) and for a SCDM
model (Ω0 = 1, Ω0Λ = 0; dashed lines).

collapse density at the collapse epoch. Numerical results are well represented assuming
CE = 28.

The mass-dependence of the concentration parameter c is shown in Fig. (3.4) for all the
definitions of halo concentration discussed before and for different cosmological models.
The main features of these plots can be summarized as follows:

• although halo concentrations produced by these different algorithms differ in de-
tail, they have in common that the concentration increases toward lower masses
in all the cosmological models considered. This is a direct result of the higher
collapse redshift of less massive systems;

• the concentration depends on cosmology. The collapse redshift is determined by
Ω0 and Ω0Λ: halos form earlier in open low-density universes, then in flat low-
density universes and later in flat high-density universes. The concentration thus
reflects the mean cosmic density at the time when they collapse. For example,
halos in an OCDM model (Ω0 = 0.3, Ω0Λ = 0) are generally more concentrated
than halos in ΛCDM (Ω0 = 0.3, Ω0Λ = 0.7) or SCDM (Ω0 = 1, Ω0Λ = 0)
models, because they form earlier and the mean cosmic density is higher when
they collapse. On the other hand, halos formed in a low-density ΛCDM model
are less concentrated than those formed in the SCDM model: even if they have
an higher collapse redshift, the mean cosmic density is lower when they form.
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Several different aspects of lensing by halos with NFW or generalized NFW profiles
can be found in Bartelmann Bartelmann (1996), Wright & Brainerd Wright & Brainerd
(2000), Li & Ostriker Li & Ostriker (2002), Wyithe, Turner & Spergel Wyithe et al.
(2001), Perrotta et al. Perrotta et al. (2002), Meneghetti et al. Meneghetti et al.
(2002), Bartelmann et al. Bartelmann et al. (2002a,b). If we take ξ0 = rs, the density
profile (3.65) implies the surface mass density

Σ(x) =
2ρsrs
x2 − 1

f(x) , (3.68)

with

f(x) =


1− 2√

x2−1
arctan

√
x−1
x+1 (x > 1)

1− 2√
1−x2 arctanh

√
1−x
1+x (x < 1)

0 (x = 1)

. (3.69)

The lensing potential is given by

Ψ(x) = 4κsg(x) , (3.70)

where

g(x) =
1
2

ln2 x

2
+


2 arctan2

√
x−1
x+1 (x > 1)

−2 arctanh2
√

1−x
1+x (x < 1)

0 (x = 1)

, (3.71)

and κs ≡ ρsrsΣ−1
cr . This implies the deflection angle

α(x) =
4κs

x
h(x) , (3.72)

with

h(x) = ln
x

2
+


2√
x2−1

arctan
√

x−1
x+1 (x > 1)

2√
1−x2 arctanh

√
1−x
1+x (x < 1)

1 (x = 1)

. (3.73)

It is an important feature of the NFW lensing potential [Eq. (3.70)] that its radial profile
is considerably less curved near the center than the SIS profile [Eq. (3.45)]. Since the
local imaging properties are determined by the curvature of Ψ, this immediately implies
substantial changes to the lensing properties [see Fig. (3.5)].

The convergence can be written as

κ(x) =
Σ(ξ0x)

Σcr
= 2κs

f(x)
x2 − 1

, (3.74)

from which we obtain the dimensionless mass,

m(x) = 2
∫ x

0

κ(x′)x′dx′ = 4ksh(x) . (3.75)

The lens equation for this kind of lens model can be solved by using numerical methods.
At fixed halo mass, the critical curves of an NFW lens are closer to its center than for
SIS lens because of its flatter density profile. There, the potential is less curved, thus
the image magnification is larger and decreases more slowly away from the critical
curves. Therefore NFW lenses are less efficient in image splitting than SIS lenses, but
comparably efficient in image magnification.
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Figure 3.5: Some properties of NFW and SIS lenses as functions of the distance from
the lens center. Top left panel: reduced deflection angle; top right panel: lensing
potential; bottom left panel: convergence; bottom right panel: shear.

3.3 Towards more realistic lenses

3.3.1 External perturbations

It is often necessary to embed a lens into an external shear field which is created by
matter in the neighbourhood. We want to represent this shear by a potential Ψγ , which
must satisfy the following conditions:

γ1 =
1
2
(Ψ11 −Ψ22) = const.

γ2 = Ψ12 = const.

κ =
1
2
(Ψ11 + Ψ22) = const. . (3.76)

If Ψ11 ± Ψ22 are required to be constant, Ψ11 and Ψ22 must separately be constants,
thus

Ψγ = Cx2
1 + C ′x2

2 +Dx1x2 + E . (3.77)
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This requires

1
2
(Ψ11 −Ψ22) = C − C ′ = γ1

Ψ12 = D = γ2

1
2
(Ψ11 + Ψ22) = C + C ′ = κ

(3.78)

Imposing κ = 0, we obtain

C = −C ′ ⇒ C =
γ1

2
. (3.79)

Therefore,

Ψγ =
γ1

2
(x2

1 − x2
2) + γ2x1x2 (3.80)

Likewise, if we want to place our lens on a sheet of constant surface-mass density, the
shear of that sheet must be zero (because no direction can be prefered), and from
Eq. 3.78 we find

Ψκ =
κ

2
(x2

1 + x2
2) . (3.81)

Irrelevant constants have been suppressed above.

We can now embed e.g. a softened isothermal sphere into a constant shear field,

Ψ =
√
x2 + x2

c +
γ1

2
(x2

1 − x2
2) + γ2x1x2 (3.82)

yielding the deflection angle

~∇Ψ =
~x√

x2 + x2
c

+
(

γ1x1 + γ2x2

−γ1x2 + γ2x1

)
=

~x√
x2 + x2

c

+
(
γ1 γ2

γ2 −γ1

)
~x (3.83)

and the convergence remains unchanged by construction.

The deflection angle of a sheet of constant surface-mass density is

~α = ~∇Ψκ = κ~x . (3.84)

Thus, the lens equation reads, in this case,

~y = ~x− ~α = ~x(1− κ) . (3.85)

If κ = 1, y = 0 for all images, i.e. this sheet focuses all light rays exactly on the origin.
This gravitational lens thus has a well-defined focal point.

Remark:
When combining the potentials of the lens and of external perturbers the same scale
ξ0 must be chosen if using adimensional coordinates.
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Figure 3.6: Deflection angle map for an axially symmetric (left panel) and elliptically
distorted NFW lens model, for ellipticity 0.2 (central panel) and 0.4 (right panel). The
lens mass and redshift are 1015M�h

−1 and 0.3 respectively. The source redshift is 1.
The side length of each panel is ∼ 6′.

3.3.2 Elliptical lenses

A circularly symmetric lens model is too much idealized to describe the properties of
real lenses, like galaxies or galaxy clusters. Slighltly less unrealistic models are obtained
by adding two more parameters: the ellipticity and the position angle describing the
orientation of the lens.

The construction of lens models with elliptical or pseudo-elliptical isodensity contours
is generally quite complicated Kassiola et al. (1992); Kormann et al. (1994); Golse &
Kneib (2002). One can start from the projected surface-mass density of an axially
symmetric model

Σ(x) = f(x) (3.86)

and can obtain its elliptical generalization by substituting

x→ X =

√
x2

1

(1− e)
+ x2

2(1− e) , (3.87)

where e = 1 − b/a is the ellipticity and a and b are the major and minor axis of the
ellipse. This ensures that the mass inside circles of fixed radius remains constant as the
ellipticity changes. The resulting model will have elliptical iso-density contours whose
major axis will be oriented along the x2-direction. The model can then arbitrarily rotated
by the desired position angle, θ.

The complication in this approach comes from the fact that obtaining the potential
corresponding to these kinds of density distributions can become extremely complicated,
even for quite simple lens models. It is simpler and often sufficient to model a lens by
means of an elliptical effective lensing potential.

For any axially symmetric lensing potential in the form

Ψ(x) = g(x) (3.88)

the same substitution given in Eq. 3.87 can be carried out.

The Cartesian components of the deflection angle are then

α1 =
∂Ψ
∂x1

=
x1

(1− e)X
α̃(X) ,

α2 =
∂Ψ
∂x2

=
x2(1− e)

X
α̃(X) , (3.89)
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Figure 3.7: Critical lines (black lines) and caustics (red lines) for the same lens models
as in Fig. (3.6).

where α̃(X) is the unperturbed (i.e. axially-symmetric) deflection angle at the distance
X from the lens center.

Using these formulae, deflection-angle fields for different values of the ellipticity e are
readily computed. Some examples for deflection-angle maps are displayed in Fig. (3.6),
where ellipticity is included in the lensing potential of the sphere with the NFW den-
sity profile. Starting from an elliptical lensing potential is computationally much more
tractable, but has the disadvantage that the deflection angle field and the mass dis-
tribution corresponding to the elliptical potential can become dumbbell-shaped even
for moderate ellipticities. This is unwanted for galaxy lenses but admissible for galaxy
clusters, because they are less relaxed and exhibit substructure.

Increasing the ellipticity of the lensing potential strengthens the shear field of the lens,
and consequently the caustics and the critical lines expand and change. Examples for
the change of the caustics and of the critical lines with ellipticity e for a pseudo-elliptical
NFW halo are shown in Fig. (3.7), which refers to a lens with mass M = 1015 h−1M�
at redshift z = 0.3, and the underlying cosmology is the ΛCDM model. As discussed
above, the radial and tangential caustics are a circle and a point, respectively, for the
axially symmetric models. Increasing e, the caustics stretch, develop cusps, and enclose
an increasing area. The critical lines, which are originally circles on the lens plane,
are stretched as well and assume the dumbbell shape which characterizes the surface
density distribution of the lens.

In the case of non-axially symmetric lenses, a wide variety of image configurations can be
produced. Some examples are shown in Fig. (3.8). Compared to the axially-symmetric
case, when the source is enclosed within two caustics, it has five images. One appears
at the lens center, and the four others form a cross-shaped pattern. When the source
is moved outward, two of the four outer images move along the tangential critical line
towards each other, merge, and disappear when the source cross the tangential caustic.
Three images remain until the source crosses the radial caustic, when two more images
approach each other perpendicular to the radial critical line, merge and disappear. After
that, only one weakly distorted image remains.
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Figure 3.8: Compact source moving away from the center of an elliptical lens. Left
panel: source crossing a fold caustic; right panel: source crossing a cusp caustic. Within
each panel the digram on the right shows the caustics and the source positions and the
left diagram shows the critical lines and the corresponding image positions (Figure from
Narayan & Bartelmann, 1995).



4Microlensing

We derived in Chapter 3 the formalism to describe lensing by point masses. Such
simple model of lens is useful to describe a class of lensing phenomena which are called
microlensing events. These are produced by lenses whose sizes are small compared to the
scale of the lensing system. In other words, to classify a lensing event as microlensing,
we need sufficiently small masses and sufficiently distant lenses and sources. Such lenses
can be for example planets, stars or any compact object floating in the halo or in the
bulge of our or of other galaxies. Typically, a mass which gives raise to microlensing
events is in the range 10−6 ≤ M/M� ≤ 106. The corresponding Einstein radii are
smaller than a milli-arcsecond.

In this chapter we will briefly review some important results in microlensing studies.
For a more detailed discussion, we recommend the paper by Joachim Wambsganss
(astro-ph/0604278).

4.1 Lensing of single stars by single stars

We consider here the simplest case of microlensing: lensing by single foreground stars
on single background stars in the Milky Way or in the Local Group. In this regime, lens
and source distances are of the order kpc. The curvature of the space time is negligible
so that in most cases we can assume that DS = DL +DLS.

Moreover, we can generally safely adopt the approximation of point lens and point
source. This is justified in most of the cases of interest:

(1) the mass distribution of a star can be assumed to be spherically symmetric. This
implies that the projected mass distribution is axisymmetric, independent of the
direction. The mean free path of photons is small in all but the extreme outer
layers of stellar atmospheres, Therefore the star is not transparent. If it has a
radius R?, all the light approaching the lens with an impact parameter b ≤ R?
will be absorbed. On the other hand, all rays having b > R? will pass by the lens
and will be deflected by

α̂ =
4GM
c2b

, (4.1)

where M is the total mass of the star. The point mass approximation then holds
as long as we consider impact parameters larger than the star radius;

(2) the characteristic scale, which characterizes the lens is the Einstein radius, θE .
This scale defines the typical separation between multiple images, ∆θ ∼ 2θE .
Then, the source can be well approximated by a point if its angular size is smaller
than θE . Stellar sources subtend considerably smaller angles than the Einstein
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Figure 4.1: Einstein radius vs mass of the lens (red line), assuming that the lens and
the source are at ∼ 5kpc and ∼ 10kpc, respectively. The horizontal green line shows
the angular size of a red giant star at the distance of the source.

radii in most of the microlensing systems. Fig. 4.1 compares the Einstein radius
of lenses with different masses (red line) with the typical angular size of a red
giant star (green line), assuming that the star acting as source is at the border of
our galaxy (∼ 10kpc) and the lens at half way to the source (∼ 5kpc). Clearly,
the approximation holds even for source stars of the largest angular sizes.

Given the smallness of the Einstein radius, a microlensing event cannot be detected via
observation of multiple images of the background source. However, the Earth and the
stars in our galaxy participate to the motion of the galaxy around its center. Potential
lenses in the galaxy then move relative to potential sources in the halo or in some
external galaxies. The relative velocities are such that the time scale of the relative
change of lens and sources is of the order of weeks or shorter.

Since the magnification given by Eq. 3.17 is function of the source position, the relative
motion of the source with respect to the lens introduces a variability in the light curve
of source:

L[y(t)] = µ[y(t)]L̂ , (4.2)

where L̂ is the source intrinsic luminosity. The characteristic time scale of the change
of L is given by the time needed to the source to cross the lens Einstein ring,

tE =
DLθE
v⊥

. (4.3)

In the last equation, v⊥ is the component of the velocity of the source relative to the
lens which is perpendicular to the observer’s line of sight (transverse velocity).

Assuming that for the duration of the lensing event the motion of the source is rectilinear,
the trajectory of the source can be represented by

y(t) =

√
y2
0 +

(
t− t0
tE

)2

, (4.4)

where y0 is the minimal distance between the lens and t0 is the time of closest approach,
y(t0) = y0. Combining Eq. 3.17 with Eq. 4.4, we derive different light curves of the
source for different impact parameters y0, as shown in Fig. 4.2.
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Figure 4.2: Magnification of a point source lensed by a point lens for different impact
parameters y0. Figure taken from Wambsganss (2006).

Such light curves are described by four parameters: the unlensed luminosity (flux), L̂,
the time of closest approach, t0, the distance of closest approach, y0, and the Einstein
crossing time tE . Of these, L̂ can be measured when the source is at large angular
distances from the lens; t0 can be taken as the time when the light curve reaches
its maximum; y0 can be measured if the lens position is known, which happens very
rarely. In any case, y0 only depends on the random placement of lens and source on
the sky. Only tE contains physical informations about the lensing system, because it
depends on the lens mass M , on the distances between observer, lens and source and
on the transverse velocity v⊥. Assuming that the distance between observer and source
can be determined in some way, we remain with three physical parameters which are
embedded into tE in a degenerate combination. The microlensing event itself gives us
very little possibility to measure or estimate the lens mass M , the lens distance DL or
the transverse velocity v⊥ independently.

Example: degeneracy between mass M and distance DL

As an example, consider a Galactic mi-
crolensing system in which the source is
known to lie in the Galactic Bulge at 8kpc
and the Einstein time tE has been precisely
determined to be 40 days. Assuming that
the lens is within the galaxy, the transverse
velocity is likely to be 0 < v⊥ < 600km
s−1, with values nearer to the middle of the
range statistically favored. The figure on
the side illustrates the resulting degeneracy
in the mass and distance of the lens. The
distribution of the lens masses ranges from
those of massive brown dwarfs (. 0.1M�)
to that of a heavy stellar black hole (∼
102M�). From Wambsganss (2006)

Note also that, even if the source light typically dominates the lens light dramatically,
and the so called blending effect is generally negligible, in those cases when this does
not happen, the light curve depends on one additional parameter: the lens luminosity
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LL. This makes more problematic the determination of tE .

4.2 Searching for dark matter with microlensing

4.2.1 General concepts

Based on an idea proposed by Paczynski (1986), several groups have tried to use mi-
crolensing to measure the density and the total mass of a population of objects, in
particular the so called Massive Astrophysical Compact Halo Objects (MACHOs), one
of the possible candidates for the dark matter in the galaxy.

The idea is the following. Imagine that we are looking, through a distribution of mi-
crolenses in our galaxy, at some more distant sources, for example in the Magellanic
Clouds. The microlenses would produce time-variable magnification of the background
stars. The more abundant and massive the microlenses are, the more frequent and
longer the microlensing events would be.

Let the solid angle of the observation be δΩ, and the microlens density as a function of
distance be n(DL). Then, the optical depth is

τ =
1
δΩ

∫
dV n(DL)πθ2E , (4.5)

where πθ2E is the cross section of the microlensing event. Since the volume element is
δV = δΩD2

LdDL, we obtain

τ =
1
δΩ

∫ DS

0

δΩD2
LdDLn(DL)π

4GM
c2

DLS

DLDS

=
4πG
c2

∫ DS

0

dDL
DLSDL

DS
ρ(DL) , (4.6)

where ρ = Mn is the mass density of lenses (assumed to have all the same mass).
Assume further that the space-time is flat, so that DL + DLS = DS, and introduce
x = DL/DS. Then,

τ =
4πG
c2

D2
S

∫ 1

0

x(1− x)ρ(DSx)dx . (4.7)

If ρ ≈const along the line of sight to the sources

τ ≈ 2π
3
Gρ

c2
D2

S . (4.8)

For a galaxy whose stars rotate with velocity v,

v2 ≈ GMg

r
⇒Mg =

rv2

G
, (4.9)

the density is

ρ ≈ 3Mg

4πr3
≈ 3

4πG

(v
r

)2

, (4.10)

and the optical depth is

τ ≈ 1
2

(v
c

)2

. (4.11)
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Thus, the optical depth for a galaxy like the Milky way is of the order of 10−6, if all
of its matter is composed of microlenses and the sources are at the boundaries of the
galaxy (DS ∼ r). This means that roughly one out of a million stars in the nearby
galaxies will be lensed, i.e. magnified by at least µ ∼ 1.34.

Therefore, if one measures the optical depth for microlensing by counting the number of
microlensing events in a particular direction, he can characterize the whole population
of microlenses. The possibility of detecting such events depends on their duration (the
Einstein crossing time). This is determined by the transverse velocity v⊥ and by the
lens mass. For microlenses in the halo of the galaxy (DL ∼ 10kpc) with tangential
velocity v⊥ ∼ 200km s−1, it is

tE ≈ 6× 106 s
(
M

M�

)0.5

≈ 0.2 yr
(
M

M�

)0.5

(4.12)

In reality, since the lenses have velocity vectors with different orientations and intensities,
there will be a distribution of event durations characterized by a tail of long events,
caused by those lenses whose velocity is mainly radial. At the same time, also the lens
masses and distances are within a range of values, which also contributes to broaden
the distribution of the durations of the microlensing events.

If all events have the same time scale, then the number of events N expected in the
monitoring time ∆t would be given by

N =
2
π
nτ

∆t
tE

, (4.13)

(Paczynski, 1996), where n is the total number of sources monitored.

4.2.2 Observational results in searches for dark matter

Among the many candidates, it has been proposed that the dark matter could be in
the form of compact objects distributed in the halo of the galaxy. If the mass of
such objects is in the range 10−6 . M/M� . 106, they would originate detectable
microlensing signal, because they would occasionally pass close to the line-of-sight to a
background star in the Large or in the Small Magellanic Clouds.

Many groups have tried to detect such lensing signal. This was not an easy task because
it requires to monitor a huge number of stars with a good time resolution, waiting
for fluctuations of their luminosity. In the last fifteen years however, such campaigns
became possible. First, technological improvements in construction of astronomical
detectors allowed to build up wide field CCD cameras, so that large spots in the sky
could be observed simultaneously. Second, software for automatic data reduction was
developed and computer speed increased allowing to process huge amounts of data in
few time. Third, dedicated telescopes became available to the scientific community for
large monitoring campaigns.

A huge number of stars have then been monitored in the direction of the LMC/SMC.
The principal results found by the several groups active in this field can be summarized
as follows:

• the MACHO team (USA/Australia) analyzed data taken from 11.9 million stars in
the direction of the LMC over 5.7 years. They found 13-17 microlensing events,
while between 2 and 4 were expected from known stellar populations in the Milky
Way and in the LMC. The microlensing optical depth deduced from lensing events
lasting between 2 and 400 days is (Alcock et al., 2000)

τLMC(MACHO) = 1.2+0.4
−0.3 × 10−7 . (4.14)
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Figure 4.3: Example of likelihood contours obtained from the MACHO experiment for
one specific model for the Milky Way halo. The abscissa is the fraction of the halo
mass contained in MACHOs, the ordinate is the MACHO mass. The contours shown
are the 60%, 90%, 95% and 99% confidence levels. From Bartelmann (2005).

This implies that between 8% and 50% of the Milky Way’s halo can be composed
of MACHOs (at 95% confidence), whose most likely mass ranges between 0.15M�
and 0.9M�. The likelihood contours obtained from the MACHO experiment for
one specific model of the Milky Way are shown in Fig. 4.3;

• the EROS project (France) found results consistent with those of the MACHO
collaboration. Based on their observations of the LMC and SMC, MACHOs
cannot dominate the Galactic halo if their masses are . 1M�. They find that the
halo mass fraction in MACHOs is < 20% for MACHO masses between 10−7M�
and 0.1M� (at 95% confidence). The upper limit to the optical depth from the
data towards the SMC is (Afonso et al., 2003)

τSMC(EROS) ≤ 10−7 . (4.15)

Preliminary analysis of the full 6.7 year EROS data set on the LMC indicate an
optical depth (Wambsganss, 2006)

τLMC(EROS) ≈ 10−7 . (4.16)

Thus, although MACHOs have been detected between us and the Magellanic Clouds,
they are insufficient for explaining all of the Milky Way’s dark mass. These MACHO’s
can in principle be anywhere between the source stars and the observer, i.e. in the
dark halos of the Milky Way or of the Magellanic Clouds. It is unlikely that all of
the LMC lensing events are due to self-lensing by stars. The important results of the
microlensing experiments is that the Galaxy and the LMC must be embedded into
extended dark matter halos, only a fraction of which is composed of compact objects
of stellar and sub-stellar mass.

Microlensing monitoring programs are now targeting the Andromeda galaxy M31. M31
is roughly 15 times as distant as the LMC/SMC and the individual stars cannot be
resolved anymore. This means that we can only measure the flux of many stars within
any pixel of the CCD camera. Since the source is so much extended, the magnification
effect during a microlensing event is diluted. Only high magnification events will result
detectable.
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However, using the “pixel lensing” approach
towards M31 has also several important ad-
vanges. First, the high inclination of the
disc of M31 would result in an asymmetry
in the observed rate of microlensing events,
if the disc is surrounded by a halo filled with
MACHOs. The idea is illustrated in the fig-
ure on the right (taken from Kerins et al.
(2001)): the optical depth is expected to be
lower towards the “near” disk and higher to-
wards the “far” disk. Neither variable stars
or self-lensing events in the disc of M31
would exhibit such asymmetry.

Second, being far away from M31 has the advantage that the we can accurately measure
the rotation curve and the surface brightness profile of the galaxy and derive a more
reliable model than we can do from inside the Milky Way. Third, since M31 is a
large and massive galaxy, it contains a huge number of potential sources and we can
choose several line of sight through its halo, allowing to map the spatial distribution
of MACHOs. Fourth, due to the large distance of M31, microlensing events due to
the Milky Way halo objects are statistically distinguishable from those produced by
M31-halo objects.

A few teams are actually looking for microlensing events towards M31. Interestingly,
the POINT-AGAPE collaboration (UK/France) is finding a large microlensing signal
compared to that measured by the EROS team towards the Magellanic Clouds (Paulin-
Henriksson, private communication).

4.3 Binary lenses

We consider now a lens consisting of two point-mass components. Let assume that
these have masses Ma and Mb, respectively. Due to the linear dependence of the
deflection angle on the mass, the total deflection angle of a ray crossing the lens plane
at ~ξ is in this case

~̂α(~ξ) =
4G
c2

[
Ma

|~ξ − ~ξa|2
(~ξ − ~ξa) +

Mb

|~ξ − ~ξb|2
(~ξ − ~ξb)

]
. (4.17)

The presence of the second lens component breaks the axial symmetry of the system.
The resulting lensing effect is much different from the case of a single lens.

First of all, the lens becomes astigmatic. This results into a completely different mag-
nification pattern on the source plane and in the appearance of extended caustics. As
seen in the previous chapters, caustics are lines which separate regions with different
image multiplicities. When the source crosses a caustic during its motion relative to the
lens, new images are created or destroyed. As in the case of a single point mass, the
image separations are too small to allow to see them, but the light curves are generally
much more complicated and exhibit multiple peaks, asymmetries, etc.

Due to the presence of the second lens component, there are three new parameters
which characterize the light curves. These are

(1) the mass ratio, q = Ma/Mb;

(2) the separation between the two components, d, which is commonly expressed in
units of the Einstein radius for a point-mass lens of mass equal to the total mass
of the system, M = Ma +Mb;
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Figure 4.4: Critical lines and caustics for a binary lens system consisting of two equal
point masses with decreasing separation. From Schneider & Weiss (1986).

(3) the angle φ between the source trajectory and the line connecting the two lenses.

Thanks to the large number of parameters involved, the analytical derivation of the
critical lines and caustics of binary lens systems is very complicated. Qualitatively, we
can find three regimes, which are illustrated in Fig. 4.4 for two lenses with the same
mass (q = 1):

(1) when the two lenses are widely separated d > 1, they act like single lenses which
slightly feel the perturbation of the companion. The point caustic becomes an
asymmetric asterisk with four cusps. The corresponding critical line becomes an
oval (top left panel, d = 1.2);

(2) once the separation of the two lenses approaches d = 1, the critical lines and
the corresponding caustics merge together. They first touch in one point (top
right panel, d = 1), then, for further decreasing separations, there is one single
critical line and one single caustic, which is characterized by six cusps (middle
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Figure 4.5: Image configurations for an extended source lensed by a binary lens with
q = 1 and d = 0.5. The insets show the position of the source relative to the caustics.
From Schneider & Weiss (1986).

Figure 4.6: The left panel shown some possible trajectories of an extended source
(circles) relative to the caustics of a binary lens. In the right panel, the corresponding
lightcurves are displayed. From Wambsganss (2006).

panel, d = 0.5);

(3) when the separation reaches d = 8−0.5 ≈ 0.35355 (bottom left panel), two regions
inside the critical line detach and the caustic breaks down into three parts. These
are a central diamond-shaped and two triangular-shaped caustics. By reducing
further the separation between the two components, the two triangular caustics
move away from the central one, which also shrink (bottom right panel, d = 0.3.

The signs + and − in Fig. 4.4 indicate the parity of the images forming on the lens
plane. Several examples of image configurations for different positions of an extended
source with respect to the caustics of a binary lens with q = 1 and d = 0.5 are shown
in Fig.4.5. If the source is inside the caustic, it produces five images: three are inside
the critical line and two are outside it. When the source crosses the caustic, two or
three images merge together and disappear. During the transition the images assume
the usual arc-like shape. Their size increases and therefore they are highly magnified.

Microlensing lightcurves originated by binary lenses reflect the complexity of the caustic
structures. For example, in the left panel of Fig. 4.6 we consider several parallel tra-
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Figure 4.7: Variations of the lightcurves during a fold caustic crossing due to different
source sizes. From Schneider & Weiss (1986).

jectories of an extended source relative to the caustic of a binary lens, and in the right
panel we show the resulting lightcurves. A peak appears when the source crosses or
passes very close to the caustic. The number of the peaks and their height can differ
substantially. The peaks themselves can be more or less sharp. This depends on the size
of the source: small sources produce sharper peaks when they cross a caustic, larger
sources produce smoother lightcurves (Schneider & Weiss, 1986). Some examples are
shown in Fig.4.7, where the crossing of a source with varying radius along the fold of a
caustic is simulated. The source radius is expressed in units of the Einstein radius.

Based on the fact that more than 50% of all stars are in binary systems, Mao &
Paczynski (1991) predicted that a large number of microlensing events is originated by
binary lenses. Not all of them can be identified through the shape of the lightcurves
because of the large range of separations between the lens components. For very close
pairs of stars and for wide systems, these binaries act as single or two single lenses,
respectively. For this reason, only 10% of the microlensing lightcurves should show
signatures of binarity in the lens.
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Example: OGLE-7

OGLE-7 is the first microlensing event
whose lightcurve revealed the presence of
a binary lens. It was discovered in 1993 by
the OGLE team, a collaboration between
Poland and USA, who was monitoring the
LMC and the SMC in search of microlens-
ing events.
The source star had a constant flux during
the monitoring in 1992, then brightened up
by more than two magnitudes during 1993,
showing two sharp peaks separated by ∼ 60
days. Udalski et al. (1994) found a binary
lens solution for describing such lightcurve.
The lens have q = 1.02 and the projected
separation between the two components is
1.14θE . The star has a trajectory with im-
pact parameter b = 0.05θE and inclina-
tion angle φ = 48.3 degrees with respect
to the axis passing through the two lens
components. The Einstein crossing time is
tE = 80 days, the baseline magnitude is
I0 = 18.1, and the fraction of “blended”
light is f = 56%.
The “blending” is due to the presence of an additional source along the line of sight.
This can be the lens itself or another star in the foreground or in the background.
Witt & Mao (1995) found that the minimum total magnification for a source inside
the caustic is three. If this is not the case, it can be caused by “blending” or by a
third component in the lens (“triple lens”). For OGLE-7 the magnification in between
the caustic crossing was 2.2 and 2.4 in the R and I bands respectively.
The observed lightcurve and the best fit lens model are shown in the figure above
(taken from Udalski et al. (1994)).



54

4.4 Microlensing surveys in search of extrasolar plan-
ets

4.4.1 General concepts

A particular type of binary lenses is that consisting of a star and of a planet orbiting
around it. In this case, the lens is characterized by a mass ratio q = Mp/M? � 1,
where Mp and M? are the mass of the planet and of the star, respectively. Thus, the
light curve of a microlensing event produced by such lens systems consists of a single-
lens light curve, where the planet just add a brief perturbation. The detections of such
“anomalies” in the light-curves measured in microlensing event is one of the methods
proposed to reveal the presence of planets around stars. This method is sensitive to
masses as low as the mass of the Earth, and, as we will see, is giving the first interesting
results.

In the figure on the right, we
show the geometry of a microlens-
ing event involving a star and a
planet. The optical axis is chosen
such to pass through the observer
and the star. The large dots indi-
cate the lens and the source stars,
the small filled dot represents the
planet. Its projected position on
the lens plane, whose distance from
the lens star defines the parameter
d, is given by the small empty cir-
cle. (The figure is taken from Rat-
tenbury (2006))

The natural unit of length is the Einstein radius, θE . Being q � 1, this is determined
essentially by the mass of the star,

θE(Mp +M?) ≈ θE(M?)

=
(

4GM?

c2
DLDLS

DS

)1/2

= 4.42 AU
(

M?

0.3M�

)1/2(
DS

8kpc

)1/2

[x(1− x)]1/2 , (4.18)

where x = DL/DS and DLS ≈ DS −DL.

A planetary microlensing event falls into one of two broadly defined groups, based on
when and how the planet perturbation is produced. Typically, in these binary lenses, the
mass ratios and the distances between the components are such that both the planet
and the star develop separated and extended caustics. There is always a small central
caustic located near the lens-observer line of sight. This originates from the degenerate
point-like caustic of the star, slightly perturbed by the presence of the planet. One or
two planetary caustics are also present. Their size, position and orientation depends
on the planet-star mass ratio and projected orbit radius. The planet alone should also
develop a point caustic, but the strong perturbation given by the star transform such
a point into a much more extended caustic. This is shown in Fig. 4.10. In the upper
panel the caustics of a star-planet lens are recognizable along the axis y = 0. A zoom
over them, displayed in the two bottom panels, show their shape in detail.
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Figure 4.8: Comparison between detecting planets through caustic crossing events and
high magnification events. Both axes are in units of θE . Top: Critical and caustic curves
for a planetary lens system with q = 10−3 and d = 1.4. Two source star tracks are
shown, one corresponding to a low amplification planetary caustic crossing event, with
ymin = 0.2 and inclination angle 106◦; the other corresponding to a high amplification
event, passing close to the small central caustic (ymin = 0.01) with an inclination angle
of 135◦. Bottom: Zoom over the regions surrounding the planetary (left) and central
(right) caustics. The dashed and dotted lines refer to source radii r? = 2×10−3θE and
r? = 10−3θE , respectively. From Rattenbury (2006).

If a source star moves relative to the lens and passes across a planetary caustic line,
we have a first type of planetary microlensing event, namely a “caustic-crossing” event.
Such case corresponds to the solid track connecting the bottom left to upper right
corners of the upper panel in Fig. 4.10. The same source track is displayed in the
bottom-left panel. In this example, two values of star radius are used, r? = 2×10−3θE
(dashed lines) and r? = 1 × 10−3θE (dotted lines). The corresponding light curve is
shown in the upper panel of Fig. ??. It is characterized by three peaks super-imposed
to the single-mass light curve which should be originated by the star alone (dashed
line). The first peak corresponds to the passage of the star close to the left cusp of the
planetary caustic. The other two occur at the caustic crossings. The thick and the thin
lines refer to the larger and to the smaller source radii, respectively.

The second class of planetary microlensing events involves the source star passing close
to the central caustic. Approaching the cusp of two caustic lines also produces a
perturbation in the source magnification, which can be used to infer the presence of
the planet. Such case is illustrated again in Fig. 4.10. The source track is now given
by the line approaching the central caustic at ∼ (0, 0) from the bottom left. In this
case the source is strongly amplified by the star lens, and the perturbation produced
by the planet appears as a secondary bump in the light curve (see the bottom panel of
Fig. ??).

Extra-solar planets have been detected in both types of microlensing events.

4.4.2 Observing strategy

As previously seen in this chapter, the probability that a microlensing event takes place
is very small (10−6). Then, once such events have been detected, one needs to monitor
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Figure 4.9: Light curves of the microlensing events described in Fig 4.10. The source
amplification is shown as a function of the normalised time tN = (tJD − t0)/tE , where
t0 and tE are the time of closest approach of the source to the star and the time
required for crossing the Einstein ring, respectively. Top: planetary caustic crossing
event. Bottom: high-amplification event. The thin and thick lines refer to the smallest
and the largest source radii, respectively. The dashed line shows the light curve in
absence of the planet. From Rattenbury (2006).

accurately the light curve for obtaining information about the lens system. The search
for extra-solar planet is related to that for dark matter concentrations. As said, some
groups make routine observations towards the Galactic bulge and the Magellanic Clouds.
Those which are currently active are the OGLE and the MOA (New Zealand/Japan)
collaborations. OGLE uses a 1.3m telescope located at La Silla (Chile). MOA works
with a 1.8 telescope at Mount John, New Zealand. They analyze images at real-time
and whenever they find light curves which show clear deviations from a single lens light
profile they alert the scientific community.

Then, there are several other groups which perform follow-up observations of such mi-
crolensing events. These are PLANET (international collaboration), µFUN (US/SA/Is-
rael/Korea) and RoboNET (US/UK/Australia) who use telescopes longitudinally spaced
around the world to measure in detail the light curves.

So far four planets have been detected through microlensing (OGLE-2003-BLG-235/MOA-
2003-BLG-53, OGLE-2005-BLG-071, OGLE-2005-BLG-390, OGLE-2006-BLG-169). One
more detection is likely to be a planet (MACHO-98-BLG-35). A Table summarizing the
details of such detections, taken from Rattenbury (2006) is shown below. For the con-
firmed detections, the planetary masses are in the range between 5.5+5.5

−2.7M⊕ (OGLE-
2005-BLG-390) and 0.5 − 4MJ (OGLE-2005-BLG-071, preliminary result). MACHO-
98-BLG-35 is probably a very light planet (Mp ∼ 0.4− 1.5M⊕).
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Example: OGLE-2003-BLG/MOA-2003-BLG-53

This event was identified by the OGLE col-
laboration on June 22, 2003. It was inde-
pendently identified by the MOA collabora-
tion on July 21, 2003. The planetary signal
was discovered later (Bond et al., 2004).
The light curve in the I band is shown on
the right: it shows evidence of a plane-
tary caustic crossing feature, correspond-
ing to a crossing time of ∼ 7 days. The
data (1092 data points from MOA and 183
from OGLE) were fit with different classes
of models.

The fitting parameters were ymin, tE , t0, q, d, φ and the source size in units of the
Einstein radius. The best fit model corresponds to the light curve given by the solid
black line. This model has an extreme mass ratio of q = 0.0039, which is a strong
indication that the secondary lens component is a planet. Other “non planetary”
models with q > 0.03 are strongly disfavored (see the magenta dashed line in the
Figure), because they would require larger magnification inside the caustic curve than
is observed. Moreover they would deviate more from the single lens light curve before
and after the caustic crossing (as shown by the two insets). A single lens model is
obviously ruled out as well (blue long-dashed line).
Some degeneracy between the system parameters exists which can be broken using
some external constraints. The only parameter which is directly measurable is the
Einstein crossing time tE , which constraints the lens mass, distance and transverse
velocity with respect to the line of sight to the source. The color and baseline mag-
nitude of the source star suggested that this was a G-type bulge star near the Main
Sequence turn-off. Using color-color relation and empirical relations between V −K
and surface brightness, the source angular radius was determined. Modeling the light
curve gives instead the source radius in units of the Einstein radius. Combining the
two determinations, the Einstein radius was found to be θE = 520 ± 80 µas. Using
Eq. 4.18, the mass of the lens star was found to be

M?

M�
= 0.123

(
θE
mas

)2
DS

kpc
x

1− x
. (4.19)

The mass-luminosity relations for main-sequence stars allows to define an upper limit
to the lens distance star, which is determined to be DL < 5.4 kpc. Thus, if it is
a main sequence star, the lens must be in the Galactic disk. Using Galactic disk
models, a maximum likelihood analysis based on the measurements of θE and tE
gives DL = 5.2+0.2

−2.9 kpc, from which it was inferred that the lens star is an M2-M7

dwarf star of mass 0.36+0.03
−0.28M�. The best fitting q = 0.0039 and d = 1.12 therefore

suggest that the planetary companion has mass Mp = 1.5+0.1
−1.2MJ and orbits at a

distance of 3.0+0.1
−1.7 A.U. from the lens star.

4.4.3 Discussion

Other methods have been employed to search for extrasolar planets. Briefly, the most
used can be summarized as follows:

• astrometry: it consists of searching for the influences of planets on the proper
motions of the stars around which they orbit. A number of candidates have been
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Figure 4.10: Distribution of known exo-planets in the plane orbit radius/planet mass.
From Rattenbury (2006).

found using this method but none of them are confirmed. The main reason of
such uncertainty is that the changes in proper motion are so small that they can
be hardly measured with the instruments available today;

• Doppler effect: high precision spectroscopy allows to evidence the presence of a
planet around a star through the Doppler effect. Both the star and the planet orbit
around the center of mass of the system. The component of this motion along
the line of sight is revealed by changes in the radial velocity of the star which can
be deduced from the displacement in the star’s spectral lines due to the Doppler
effect. This method was very successful and allowed to detect ∼ 160 extra-solar
planets. However, its works for relatively close stars and it finds planets with small
orbital radii. Moreover, it cannot be used to detect planets whose orbital plane is
almost perpendicular to the line of sight;

• transit: this method detects a planet’s shadow when it transits in front of its
host star. This ”transit method” works only for the small percentage of planets
whose orbits happen to be perfectly aligned from astronomers’ vantage point, but
can be used on very distant stars. It has led to the discovery of a few planets
with high mass;

• pulsar timing: the presence of a planet around a pulsar is found by observing
anomalies in the regularity of pulses from the pulsar itself. Even if it has allowed
the discovery of a few planets, in particular that orbiting around the binary system
PSR B1620-26, the main limitation of the method is that it can be applied to a
specific class of lenses only.

In Fig. ?? the distribution of all the known extra-solar planets in the planet mass/orbit
radius plane is shown. Systems discovered via Doppler effect are indicated by the black
triangles. They are concentrated in the upper-left corner of the diagram, reflecting the
fact that this method is most efficient in detecting massive planets orbiting at small
distance from their star. The theoretical detection limits of this method are shown by
the solid black lines (sensitivities of 3 m/s and 1 m/s, respectively). Transit detections
are given by the blue-circled plus. This method is also efficient at detecting massive,
close planets. The theoretical detection limits are shown by the dashed dotted lines for
ground based and space observations (as expected for the Kepler Space Observatory,



60

scheduled for launch in 2008). Astrometry still have to provide detections. The region
of the diagram where instruments like Keck and VLTI could be able to find planets is
that enclosed by the upper green dot-dashed line. NASA is building a space interfer-
ometer called SIM PlanetQuest, which will measure the proper motion of stars with an
accuracy of one millionth of an arcsecond. The detection limits of this instrument are
give by the bottom green dot-dashed curve. Finally, the red ellipses show the microlens-
ing detections. The upper red dashed lines represent the detection limits reached by
the ongoing microlensing collaborations. The Microlensing Planet Finder, a proposed
space telescope dedicated to microlensing observations will dramatically increase the
detectability of low-mass, large orbital radius planets. The yellow dots indicate the
solar planets.

Clearly, microlensing is the most successful method for detecting low-mass planets. As
mentioned before, planets of a few Earth masses have already been found and, with the
next generation of experiments, objects of sub-earth mass will become detectable.

4.5 Microlensing of QSOs

In the next Chapter we will discuss in more detail the lensing effects of galaxies on
background QSOs. In general, if the QSO happens to be within the galaxy caustics,
it is strongly lensed and has multiple images (see also the discussion about axially
symmetric and elliptical lenses in Chapter 3). The galaxy is made of stars, star clusters
and possibly other compact objects, whose Einstein radii are of the order of

θE ≈ 10−6

√
M

M�
arcsec (4.20)

for “typical” lens and source redshifts of zL ∼ 0.5 and zS ∼ 2. The QSO continuum
emitting regions have sizes comparable or smaller than the Einstein radii of stellar mass
objects. Thus, such microlenses in the halo of the lensing galaxy can perturb the
multiple images of distant QSOs. Since the galactic halo participate to the motion of
the galaxy, the microlenses move relative to the background QSO. Thus their effect
remain imprinted in the luminosity curve of the source. In particular, there will be
luminosity fluctuations on a time scale of the order of

tcross =
Rsource
v⊥

≈ 4R15v
−1
600months , (4.21)

which corresponds to the the time required for a source of radius Rsource and transverse
velocity v⊥ to cross its own diameter. In the previous equation, the size of the QSO
and its relative velocity have been parameterized in units of 1015 cm and 600 km/s
respectively.

In microlensing of multiple QSOs, the convergence is of order unity. This means that a
any given time a whole ensemble of microlenses is affecting the QSO. The phenomenon is
illustrated in Fig.4.11. The ensemble of point lenses creates a complicated magnification
pattern on the source plane (left panel). High magnification regions are brighter and
correspond to a network of caustics. Three different tracks are given by the dashed
lines, along which a background QSO moves. The corresponding light curves are shown
in the right panel for small (solid lines) and large (dashed lines) sources. If the size of
the QSO is small compared to the intra-caustic spacing, each individual caustic crossing
is resolved. Otherwise, the light curves appear smooth. The shape of the light curve is
also determined by the brightness profile of the source. The steeper it is, the sharper
are the fluctuations.
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Figure 4.11: Left: microlensing magnification pattern produced by stars in a lensing
galaxy. The dashed lines indicate three tracks along which a background QSO moves.
Right: light curves corresponding to the tracks shown in the left panel. Solid and dashed
lines refer to small and large sources, respectively. This first is a source with a gaussian
luminosity profile with width of about 3% of the Einstein radius. The second is larger
than the first by a factor of 10. Figures from Wambsganss (2006).

Thus, several important informations about the lens and the source can be derived by
analyzing the light curves of multiply imaged QSOs:

• the existence and effects of compact objects between the observer and the source;

• the size of QSOs;

• the two-dimensional brightness profile of QSOs;

• the mass (and the mass distribution) of lensing objects

Example: QSO 2237+0305

QSOs are intrinsically variable sources.
Therefore, it is usually very difficult to
understand if the eventual fluctuations in
their light curves are due to microlensing.
However, if multiple images of a QSO ex-
ist, then this becomes possible. Indeed,
the intrinsic variability of the source should
show up in all the light curves (with some
time delay). Conversely, those fluctuations
which are not present in all the light curves
are due to microlensing events.

Irwin et al. (1989) found evidence for cosmological microlensing in one of the light
curves of the quadruply imaged QSO Q2237+0305. Such object has been accuretely
observed by the OGLE group (Woźniak et al., 2000a,b) who showed that all four
components show variations corresponding to ∆m between ∼ 0.4 and ∼ 1.3.
Comparison of the lightcurves with simulations show that the continuum emitting
region of the QSO is relatively small, of order 1014 cm (see e.g Wambsganss, 1990).
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Example: QSO Q0957+561

By measuring the microlensing effects, the
population of microlenses can be con-
strained. A decade ago, it was popular the
idea that dark matter halos could be made
of black holes in the mass range of about
106M�. If such a population of black holes
exist, it would produce clear lensing sig-
natures observable in the high resolution
images of radio jets observed with VLBI.
This was shown by Wambsganss & Paczyn-
ski (1992), who found that the microlenses
would produce features like kinks, holes,
additional milli-images in the images of the
two jets of Q0957+561. Based on these re-
sults, Garrett et al. (1994) ruled out that
the halo of the lensing galaxy in this double
QSO consist of such objects.



5Lensing by galaxies and galaxy
clusters

This Chapter gives an overview on the lensing phenomena produced by extended lenses
like galaxies and galaxy clusters in the universe.

The lensing events produced by such lenses fall into two broad classes. If the observer,
the lens and the source happen to be well aligned along the line of sight, i.e. if the
observer is looking at far sources which are projected on the sky at small angular
distances from the centre of the lens, and if the combination of convergence and shear
in the inner regions of the lens is appropriate, strong lensing events may be observed.
Depending on the characterisics of the lens and of the sources, such events may consist
of

• multiple images of background sources. For example, massive galaxies can split
one bright QSO into several images. The displacement of such images is deter-
mined by the mass distribution of the lenses. The spectra of all these images
conserve all the features contained in the spectrum of the corresponding source.
Therefore, multiple images can be identified thanks to spectral analysis;

• highly distorted images. If the source is extended, the differential deflection of
the light creates distortions in the images. As discussed earlier, such distortions
can be in the radial or in the tangential direction. The first is particularly large
around the tangential critical curves, the second close to the radial critical curves.
Typical and spectacular examples of distorted images are the gravitational arcs
which are observed in the core of many massive galaxy clusters;

Conversely, if the angular separation between source and lens is large, lensing shows
up in the weak regime. Such effect is detectable only by averaging on an ensamble of
extended sources (galaxies), which happen to lay behind the lens. The shape of the
images of these sources may be only weakly affected by lensing. The small distortions
are difficult to measure. It is impossible to do so on the images of single galaxies because
the deformation is indistiguishable from the intrinsic shape of the sources. Since the
distortion is coherent across a region on the sky surrounding the lens, it can be detected
only averaging over several sources in a given aperture.

Both the weak and the strong lensing regimes will be discussed in the following sections.

5.1 Strong lensing

5.1.1 General considerations

Strong lensing occurs in the central regions of galaxies and galaxy clusters when the lens
is “critical”. This happens when it develop extended critical lines. As seen in Chapter
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2, these form where the conditions

λt = 1− κ− γ = 0 (5.1)

λr = 1− κ+ γ = 0 . (5.2)

The first equation defines the tangential critical line, the second the radial critical line.

It is obvious that extended systems are much more complex lenses than point masses.
Their strong lensing properties are determined by a much larger number of parameters
than those which play a role in microlensing.

In particular

• galaxies and clusters are made of dark matter and baryons (stars, gas). These
components may have different spatial ditributions;

• we may think of extended lenses as composed of a main clump of matter and
many substructures orbiting around it. One can imagine a galaxy or a galaxy
cluster as the superposition of several surface density modes corresponding to
different spatial scales. Following this idea, we can write the surface density as a
multipole expansion:

κ(~x) = κ0(x) +
∞∑
m=1

κm(x) exp(imφ) ; (5.3)

• in this expansion the term κ0 is the monopole and it describes the axially sym-
metric part of the lens; the term with m = 1 is the dipole; the term with m = 2 is
the quadrupole, which gives the degree of ellipticity of the iso-density contours.
If a “power spectrum” is calculated with the coefficients κm, these result to be
the most important terms;

• the density profile κ(x) [ρ(r)] is a fundamental property of the lens. In Chapter
2, the differences between the lensing properties of the NFW and SIS profiles were
highlightened: different profiles produce remarkably different lensing features, for
example different multiplicities of the images, different strengths of the shear field
and of the magnification pattern on the source and on the lens planes;

• depending on the shape of its density profile, a lens can be more or lens sensitive
to external perturbations. For example, an external shear ~γe, which corresponds
to a lensing potential

Ψγ(~x) =
γe
2

(x2
1 − x2

2) , (5.4)

perturbs much more easily an NFW than a Singular-Isothermal sphere. The reason
is that the SIS density profile is significantly steeper than the NFW in the central
part. The situation is illustrated in Fig. 5.1. In the left panels, the critical lines
and caustics of two axially symmetric lenses with the same mass (M = 1014M�)
are shown. The lens and the source redshifts are assumed to be 0.3 and 1.0,
respectively. An external shear, whose amplitude is γe = 0.1, is applied to both
the lenses. The corresponding critical lines and caustics are shown in the two
right panels. Clearly, the deformation of the critical lines (and caustics) is more
significant for the NFW than for the SIS profile;

• the impact of the substructures, described by the higher order multipoles in
Eq. 5.3, is therefore much larger in halos whose density profiles are shallower.
The same two lenses which were earlier embedded into an external shear are now
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Figure 5.1: The figure illustrate how the shape of the critical lines (red) and of the
caustics (green) change when the lens is embedded into an external shear. The upper
and the bottom panels refer to an NFW and to a SIS lens model, respectively.

Figure 5.2: Different sensitivity to substructures of lenses with NFW (left) and SIS
(right) density profiles. The red curves show the critical lines after populating the halo
of the lens with 30 subhalos with masses 1010 < M/M� < 1011. The green curves
show the corresponding critical lines in absence of the subhalos.

shown in Fig. 5.2 after having been populated with 30 axially symmetric subhalos.
Each subhalo has mass between 1010 and 1011M� and has been modelled as a
SIS. One could think that they represent galaxies in the halo of a galaxy cluster.
The same subhalos have been used to populate both the lenses. Two important
features can be noticed. First, for both the NFW and SIS profiles, the critical
lines of the main clump are expanded. The relative expansion of the critical line of
the NFW lens is significantly larger than that of the SIS. Substructures typically
enhance the strong lensing hability of the lens, because they provide additional
convergence and shear. Second, the critical lines around the individual subhalos
have different sizes, depending on density profile of the halos within which they
are embedded. In other words: substructures are much stronger lenses when the
structure they belong to has a shallow density profile;
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Figure 5.3: The galaxy cluster SDSS J1004+4112 has 5 images of a QSO close to its
centre. A the same time, several other background galaxies are strongly lensed by this
cluster.

5.1.2 Observables

What can we learn from images like that in Fig. 5.3? In fact, we can extract a huge
amount of informations from this kind of observations. Indeed, lensing is a unique tool
for tracing the total mass distribution of the lens and at the same time it magnifies
distant sources, allowing to see objects which otherwise would be very faint. Finally,
since lensing is a geometrical effect, for lensing systems at cosmological distances some
important information about the geometry of the universe can be derived.

It is then crucial to use in the proper way the observational constraints given a lens
system.

Galaxies and galaxy clusters can strongly lens point or extended sources. The angular
separation between multiple images if of the order of the Einstein ring,

θE = 0.9′′
(

M

1011M�

)1/2(
D

Gpc

)1/2

= 1.5′
(

M

1015M�

)1/2(
D

Gpc

)1/2

, (5.5)

which means that the multiple images can be well resolved.

Among the things that can be measured for a lens are

(1) the relative positions of the components (lens and images; astrometric con-
straints);

(2) the relative fluxes of the images;

(3) the time delays between the images;

(4) several properties of the lens (dynamical properties, light distribution in different
bands, etc.);
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(5) the microlensing of the images.

The astrometric constraints are the most important. We can usually measure the relative
positions of the lensed components very accurately (5 mas or better). Substructures
and other perturbers set a lower limit of order 1-5 mas with which it is safe to im-
pose astrometric constraints. A given lens-source model provides a configuration of the
images which can be compared with the observations. If the images are extended, addi-
tional constraints derive from the fact that we can measure the relative transformation
between one image and the other.

Flux ratios are relatively easy to measure, but not very useful because of the systematic
uncertainties (see later in the text). As we will see, flux ratios are predictable. However,
if taken at a sigle epoch they are affected by time variablity in the source (which appears
with some time delay in the different images), microlensing (in galaxies) or lensing by
subhalos and substructures (in galaxies and clusters), absorption by ISM (galaxies) and
IGM (clusters). In fact, most applications of flux ratios have focused on probing these
perturbers rather than on studying the mass distribution of the lenses.

Measurements of time delays are possible mainly for sources which are lensed by galaxies.
Indeed, the angular separations between multiple images in galaxy clusters are typically
too large and the time delays too long (except for close pairs of multiple images, like
in SDSS J1004+4112, see astro-ph/0607513). For example, from Eqs. 2.64 and 3.48,
the time delay between the two images produced by a SIS is

∆tSIS =
1
2
DLDS

cDLS
(1 + zL)(θ2A − θ2B) . (5.6)

Such delay amounts to some months in the case of galaxies (θE ∼ 1′′) and to some
decades in the case of galaxy clusters. To date, time delays have primarily been used
to estimate the Hubble constant rather than the surface density, but if we assume to
know H0 or consider only time delays ratios, then time delays can be used to constrain
the mass distribution.

Any independent measurement of the mass of a component will also help to constrain
the structure of the lens. For galaxies, this primarily means making stellar dynamical
measurements of the lens galaxy and comparing the dynamical mass estimates to those
from the lens geometry. For clusters, the dynamics of cluster galaxies, the X-ray emission
from the hot intra-cluster gas, or weak lensing (see later) can be used to estimate
the cluster mass. Unfortunately, these independent mass estimates are frequently in
disagreement with those derived from strong lensing.

Using microlensing variability to constrain the mass distribution around where images
appear is actually more theory than practice due to the lack of microlensing light curves
for almost all lenses.

5.1.3 Mass modelling

One of the most important applications of strong lensing is that of using the observables
listed above to constrain the mass distribution of the lens in its inner region.

The mass modelization of the lens is never an easy task. In particular, the modeler has
to deal with huge degeneracies in the parameter space which make several models able
to fit the observed data.

There exist two different approaches to this problem. The first consists in using para-
metric fitting models to recover the mass distribution of the lens. The monopole term
is modelled using some analytic profile like those discussed in Chapter 3 (SIS, NFW,
SIE, etc.). The quadrupole is added by introducing ellipticity into the model. Higher
order terms in the multipole expansion of the surface density are generated by adding
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additional mass components to the lens. The effect of the enviroment is mimicked by
adding external shear. Each of the ingredients which are used to construct the model
is described by some parameters. The list p of all these parameters defines the lens
model.

Suppose we use only the astrometric constraints. The lens equation supplies the source
position for each combination of the model parameters:

~βi = ~θi − ~α(~θi,p) (5.7)

It is easy to project the images onto the source plane and then minimize the difference
between the projected source positions. This can be done with a χ2 fit statistic of the
form

χ2
src =

∑
i

(
~β − ~βi
σi

)2

. (5.8)

The position of the source ~β is unknown, therefore it is a model parameter. By min-
imizing the χ2, we look for the minimal scatter between the source points leading to
the observed images.

The advantage of using χ2
src is that mapping the observed positions of the images on

the source plane is straightforward and fast. In the previous equation the σi are the
astrometric uncertainties. These are known on the lens plane, not on the source plane.
Therefore, this method is conceptually wrong.

Alternatively, one can define a χ2 fit statistic on the lens plane. However, this implies
that the lens equation has to be solved in the opposite direction, which is numerically
much more expensive. The χ2 is then

χ2
img =

∑
i

(
~θi(~β)− ~θi

σi

)
. (5.9)

Additional χ2 variables can be constructed to fit the other observables, but, as we said
in the previous section, they provide much less solid constraints than the astrometric
data.

Note that even for relatively simple models the number of parameters can be very
large. Some parameters define the density profile: for example, the NFW density profile
has two free parameters, namely the scale radius rs and the characteristic density ρs.
These must be multiplied by the number of lens components. Each of them is also
characterized by an ellipticity and a position angle. The external shear also brings some
parameter in. For complicated models, the number of parameters grows significantly.
Conversely the constraints are usually few.

Another approach is the non-parametric one. The basic idea behind non-parametric
mass models is that the effective lens potential and the deflection equations are linear
functions of the surface density. As we saw earlier the surface density can be decom-
posed in multipoles but also in pixels or any other form in which the surface density is
represented as a linear combination of density functionals multiplied by unknown coef-
ficients k. (Kochanek, 2004; Diego et al., 2005). In any such model the lens equation
for image i takes the form

~β = ~θi −Aik (5.10)

where Ai is the matrix that gives the deflection at the position of image i in terms of
the coefficients of the surface density decomposition k. An example is the following.
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Suppose that we observe Nimg images and that the lens plane has been divided into Nc
cells. Each cell contains a mass mj with 1 ≤ j ≤ Nc. Then, we have Nc coefficients
which are the masses mj and the matrix A is a matrix of 2Nimg ×Nc elements casting
the mass vector into a vector of displacements angles. The factor 2 in fronts ofNi comes
from the fact that the images (and the sources) are identified by two coordinates.

For a lens with Nimg images of the same source, such a system can be solved exactly
if there are enough degrees of freedom in the description of the surface density. For
example, if there are two images, we can eliminate the position of the source, obtaining
the system of equations

~θ1 − ~θ2 = (A1 −A2)k , (5.11)

and we can solve it by taking the inverse of the matrix A1 −A2:

k = (A1 −A2)−1(~θ1 − ~θ2) . (5.12)

Unfortunately there are usually more degrees of freedom than constraints. In the ex-
ample given above, if the position of the sources are unknown, there are 2Nimg linear
equations for 2Nimg +Nc unknowns. In order to identify a suitable solution for such a
system, we need to add extra information or impose constraints.

One possibility is that of reducing the number of unknowns by removing the source
positions from the unknown category. If the images are known to be multiple images
of the same source, this can be achieved by minimizing the spread of the source points.
If there are images which are known to derive from different sources, one can make the
assumption that these sources are as much compact as possible.

5.1.4 When theory crashes againts reality: lensing near cusps

We consider now a particular class of images originated by sources close to the cusps of
the tangential caustic. Such an image forms at the position ~x(0) close to the tangential
critical line. The following conditions must be satisfied:

• given the Fermat potential

φ(~x, ~y) =
1
2
(~x− ~y)2 − ψ(~x) (5.13)

images form where ~∇φ = 0. Thus,

φ
(0)
1 = 0 = φ

(0)
2 ; (5.14)

• detA|0 = 0 obviously, given that, as said, ~x(0) is close to the critical line. Given
that Aij = φij ,

φ
(0)
11 φ

(0)
22 − (φ(0)

12 )2 = 0 ; (5.15)

• trA 6= 0, unless the source lays at the interception between the radial and the
tangential caustic;

• (~∇ detA)|0 6= 0, so that detA changes sign by crossing the critical line;

• the image on the source plane of a vector tangent to the critical line must vanish
(definition of cusp). Since (~∇ detA)|0 is normal to the critical line, a tangent
vector is obtained by applying a rotation of π/2, R(π/2). If the source is on the
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cusp, the image on the source plane of such a vector tangent to the critical line
must be

A0R(π/2)(~∇ detA)|0 = 0 . (5.16)

We choose the coordinate axes such that the image ~x(0) and its source ~y(0) are at
the origin, the axes on the lens and on the source planes are parallel and the Jacobian

matrix at ~x0 is diagonal A
(0)
11 6= 0, A

(0)
22 = 0. This implies that

φ
(0)
12 = φ

(0)
21 = 0

φ
(0)
11 6= 0

φ
(0)
22 = 0 . (5.17)

From

(~∇ detA)|0 = ~∇[φ(0)
11 φ

(0)
22 − (φ(0)

12 )2] 6= 0 (5.18)

together with 5.17, we obtain

φ
(0)
111φ

(0)
22 + φ

(0)
11 φ

(0)
221 − 2φ(0)

12 φ
(0)
121 = φ

(0)
11 φ

(0)
221 6= 0 , (5.19)

and/or

φ
(0)
112φ

(0)
22 + φ

(0)
11 φ

(0)
222 − 2φ(0)

12 φ
(0)
122 = φ

(0)
11 φ

(0)
222 6= 0 , (5.20)

so φ
(0)
122 and φ

(0)
222 cannot be both zero.

Moreover,

R(π/2)(~∇ detA)|0 =
(

0 −1
1 0

)
φ

(0)
11

(
φ

(0)
221

φ
(0)
222

)
= φ

(0)
11

(
−φ(0)

222

φ
(0)
122

)
. (5.21)

Mapping to the source plane, we find

A0R(π/2)(~∇ detA)|0 =
(
φ

(0)
11 0
0 0

)
φ

(0)
11

(
−φ(0)

222

φ
(0)
122

)

= φ
(0)
11

(
−φ(0)

11 φ
(0)
222

0

)
. (5.22)

Given Eq. 5.16, we obtain

φ
(0)
222 = 0 (5.23)

and thus

φ
(0)
122 6= 0 . (5.24)

Summaryzing:

φ
(0)
1 = φ

(0)
2 = φ

(0)
12 = φ

(0)
22 = φ

(0)
222 = 0 (5.25)

φ
(0)
11 6= 0 6= φ

(0)
122 , (5.26)
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thus, φ near the critical point (cusp point) is

φ = φ(0) +
1
2
~y2 − ~x~y +

1
2
φ

(0)
11 x

2
1 +

1
6
φ

(0)
111x

3
1 +

1
2
φ

(0)
112x

2
1x2

+
1
2
φ

(0)
122x1x

2
2 +

1
24
φ

(0)
2222x

4
2 + ... . (5.27)

Images form where ~∇φ = 0. Thus,

∂1φ = −y1 + φ
(0)
11 x1 +

1
2
φ

(0)
111x

2
1 + φ

(0)
112x1x2 +

1
2
φ

(0)
122x

2
2 = 0

∂2φ = −y2 +
1
2
φ

(0)
112x

2
1 + φ

(0)
122x1x2 +

1
6
φ

(0)
2222x

3
2 = 0 (5.28)

Then, the lens mapping near the cusp point is (using only the leading terms in x1 and
x2:

y1 = cx1 −
b

2
x2

2 + dx1x2

y2 =
d

2
x2

1 − bx1x2 − ax3
2 , (5.29)

where

a = −1
2
φ

(0)
2222, b = −φ(0)

122, c = φ
(0)
11 , d = φ

(0)
112 . (5.30)

The Jacobian matrix is

A =
∂~y

∂~x
=
(

c+ dx2 dx1 − bx2

dx1 − bx2 −bx1 − 3ax2
2

)
. (5.31)

The determinant is

detA = −(c+ dx2)(bx1 + 3ax2
2)− (dx1 − bx2)2

= −(cbx1 + 3acx2
2 + bdx1x2 + 3adx3

2)− (d2x2
1 + b2x2

2 − 2bdx1x2)
= −bcx1 − (3ac+ b2)x2

2 − d(dx2
1 − bx1x2 + 3ax3

2) . (5.32)

All term in detA involving d turn out to be negligible near the origin although this was
not obvious before.
The critical curve requires detA = 0, which implies

x1 = − 1
bc

(3ac+ b2)x2
2 . (5.33)

Thus the critical curve is a parabola (red curve in the Fig. on
the right).
The caustic curve is obtained from Eq. 5.29:

y1 = −3ac+ b2

b
x2

2 −
b

2
x2

2 = − 3
2b

(2ac+ b2)x2
2

y2 =
3ac+ b2

c
x2

2 − ax3
2 =

1
c
(2ac+ b2)x3

2 (5.34)

Then the caustic is a semicubic parabola (green curve in the
Fig. on the right),

y3
1 = −27c2(2ac+ b2)

8b3
y2
2 . (5.35)
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Let us now study the inversion of the lens mapping 5.29 near the cusp. We have:

y1 = cx1 −
b

2
x2

2 + dx1x2

⇒ x1(c+ dx2) = y1 +
b

2
x2

2

⇒ x1 =
1

c+ dx2

(
y1 +

b

2
x2

2

)
≈ 1
c

(
y1 +

b

2
x2

2

)
, (5.36)

and

y2 =
d

2
− bx1x2 − ax3

2

=
d

2c2

(
y2
1 + by1x

2
2 +

b2

4
x4

2

)
− b

c

(
y1x2 +

b

2
x3

2

)
− ax3

2

=
d

2c2

(
y2
1 + by1x

2
2 +

b2

4
x4

2

)
− x3

2

(
a+

b2

2c

)
− b

c
y1x2

⇒ x3
2

2ac+ b2

2c
+ y2 +

b

c
y1x2 −

d

2c2

(
y2
1 + by1x

2
2 +

b2

4
x4

2

)
= 0 . (5.37)

Neglecling the last term, we obtain

x3
2 +

2cy2
2ac+ b2

+
2by1x2

2ac+ b2
= 0 . (5.38)

The second of these equations is in third order in x2 and can be solved analytically.
This solution can then be inserted in Eq. 5.36 to yead x1. The number of solutions of
Eq. 5.38 depends on the discriminant ∆,

∆ =
1

(2ac+ b2)2

[
c2y2

2 +
8
27

b3y3
1

2ac+ b2

]
. (5.39)

If ∆ < 0 three real solutions exist. This correspond to the case of a source inside the
caustic. If ∆ > 0 only one real solution exists, which correspond to the case of a source
outside the caustic. If ∆ = 0, two solutions merge. It can be easily seen that

∆ = 0 ⇒ y3
1 = −27c2(2ac+ b2)

8b3
y2
2 , (5.40)

which is the equation of the caustic curve. Thus, two images disappear when the source
crosses the caustic curve. The caustic separates the regions of one and three solutions
on the source plane.

Since the general solution of Eqs. 5.36 and 5.38 is very complicated, we restrict to the
special case y2 = 0, when the source is located on the symmetry axis of the cusp. Then,

x3
2 +

2by1x2

2ac+ b2
= 0

⇒ x2 = 0 or x2
2 +

2by1
2ac+ b2

= 0

⇒ x2 = 0 or x2± =
1
2

[
±
√
− 8by1

2ac+ b2

]

⇒ x2 = 0 or x2± =

[
±
√
− 2by1

2ac+ b2

]
. (5.41)
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• If x2 = 0, x1 = y1
c (from Eq. 5.36);

• if x2 = ±
√
− 2by1

2ac+b2 , x1 = y1
c −

b
2c

2by1
2ac+b2 = 2ay1

2ac+b2 ;

• thus, images form at

(y1
c
, 0
)

;

(
2ay1

2ac+ b2
,±
√
− 2by1

2ac+ b2

)
. (5.42)

The magnifications are given by the inverse of the Jacobian determinant,

detA = −bcx1 − (3ac+ b2)x2
2 . (5.43)

• For image 1:

detA = −by1 ; (5.44)

• for image 2:

detA = − 2abcy1
2ac+ b2

+ (3ac+ b2)
2by1

2ac+ b2

=
(−2abc+ 6abc+ 2b3)y1

2ac+ b2
=

2by1(b2 + 2ac)
2ac+ b2

= 2by1 , (5.45)

which is valid also for image 3.

Thus:

µ(1) = − 1
by1

; µ(2) =
1

2by1
= µ(3) (5.46)

µ(1) + µ(2) + µ(3) = 0 signedmagnifications (5.47)

|µ(2)| = 1
2
|µ(1)| unsigned magnifications (5.48)

Thus, for cusp lenses we expect the three
brightest images to satisfy these conditions.
In fold lenses, analogous relations can be
found for the two brightest images. What
happens in reality? Unfortunately none of
the systems observed so far show flux ratios
in agreement with the theoretical expecta-
tions. For example, the famous quadruple
quasar B1422+231 (Patnaik et al., 1992)
displayed on the right strongly violates these
rules. The three brightest images are la-
beled in Patnaik et al. (1992) A,B and C. B
is the brightest images.

In our previous discussion it corresponds to the image 1 (inside the critical line). The
images A and C correspond to the images 2 and 3, which are outside the critical curve.
Based on the theoretical expectations, the flux ratios A/B and C/B should be ∼ 0.5,
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while the flux ratio A/C should be ∼ 1. Instead, VLBA observations of this system
found

A

B
∼ 0.9

C

B
∼ 0.5

C

A
∼ 0.5 .

Many authors have attempted at finding a solution to this problem. For example, Mao
& Schneider (1998) suggested that such anomalies may be due to substructures in the
lenses. However, recently Mao et al. (2004) using numerical simulations found that at
typical image positions the fraction of the surface density in substructures is < 0.5% in
a ΛCDM cosmology. Such low fraction seems lower than required to explain the flux
anomalies observed in B1422+231 and in other systems (e.g. B2045+265, B0712+472,
B1933+503). The problem of the “flux anomalies” in lenses quasars is still unresolved.
Generally, mass models can be found which fit very well all the observables but they fail
at reproducing the flux ratios between the images.

5.1.5 General results from strong lensing

Galaxies

The are about 70 cases of strong lensing by galaxies now known. Most of them have
two or four images, but a few have higher image numbers. Several important properties
of these lenses have been revealed thanks to lensing. Some of the them are:

• image splittings allow the projected mass to be constrained which is enclosed by
the images. In particular, galaxy lensing suggests that galaxies have inner density
profiles near to isothermal (Rusin et al., 2003). For example, we have seen in the
previous Chapter that gravitational lenses are expected to produce odd number
of images, unless the surface-mass distribution has a steep inner density profile.
All but very few observed galaxy-lens systems have an even image number, most
of them either two or four, as required by isothermal density profiles;

• the time delay between images of the same source, can be measured if the source
is instrinsically variable. The same features then are repeated in the light curves
of all the images but shifted in time. If a model for the lens mass distribution
is given, the time delay can be used to measure the Hubble constant. The most
recent determinations of H0 via lensing, H0 = 75+7

−6km s−1 Mpc−1 (Koopmans
et al., 2003), are in agreement with the HST Key Project results, which give
H0 = (72±8)km s−1 Mpc−1 and with the WMAP constraints, H0 = (74±3)km
s−1 Mpc−1;

• the observed abundance of quadruples is particularly large, comparable to that
of doubles. Such a large fraction of quads supports the view that galaxy lenses
contain substructures, which contribute to the shear field in the lens, pushing the
critical lines into regions of low density and then extending the lensing cross sec-
tions for quadruples. The large scale structure indeed seems to provide insufficient
external shear for explaining the observed frequency of quadruples.

Clusters

Much can be learned on clusters studying the arcs that some of them produce:
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• there must be more matter in clusters that what is contained in their galaxies,
and that dark matter must be more smoothly distribute; otherwise, arcs would
appear smaller and more strongly curved;

• prominent counter-arcs are often missing, thus clusters cannot typically be sym-
metric;

• arcs are thin, thus cluster density profiles must be steep; this can be seen as
follows: for critical curves to appear, we need κ ∼ 1 in the core; the radial
magnification of a tangential arc is

µr =
1

1− κ+ γ
, (5.49)

while 1− κ− γ = 0 ⇒ γ = (1− κ). Thus

µr =
1

2(1− κ)
. (5.50)

Thin arcs require µr . 1, which implies κ . 1/2. Thus, the density profile must
be steep enough to drop from κ ∼ 1 to κ ∼ 1/2 within ∼ θE ;

• cluster cores, if they exist, need to be small, because otherwise no arcs would be
formed, or radial arcs would be at much larger cluster centric distances;

• substructures need to be abundant in galaxy clusters, because otherwise “straight
arcs” could not appear;

• the simple estimates of cluster properties using arcs, radial or tangential, are
complicated in reality by cluster substructures or asymmetries; shear plays and
important role.

5.2 Weak lensing

5.2.1 Weak lensing by galaxy clusters

Due to the very high number density of distant galaxies, clusters appear placed in front
of a “cosmic wallpaper”, which they distort in a very characteristic way. There are about
30-40 galaxies per square arcmin of the sky (but in deep space observations the amazing
density of 80-100 galaxies per square arcmin has been reached!), thus approximately
20000 of them on the face of the full moon. Can the distortions imprinted on these
galaxies by clusters be used for reconstructing cluster mass distributions?

While source sizes are unknown individually, source shapes can more easily be measured.
Although sources are intrinsically irregulars, their large number allows averaging over
several of them. Assuming that they are intrinsically randomly oriented, the average
over their shapes should become circular.

If lensing is weak, the image of a circular source appears elliptical, with axes given by

r

1− κ− γ
,

r

1− κ+ γ
, (5.51)

assuming κ, γ � 1. Defining the ellipticity as

ε =
a− b

a+ b
=

2γ
2(1− κ)

=
γ

1− κ
≈ γ (5.52)
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in the limit of weak lensing, i.e. the ellipticity directly measures the shear.

Like the shear, the ellipticity has two components, an orientation and a magnitude,
which we can write as

ε1 = ε cos 2φ (5.53)

ε2 = ε sin 2φ . (5.54)

Note the dependence on 2φ rather than φ, which illustrates that an ellipse is symmetric
under rotations by π rather than 2π.

Let the intrinsic source ellipticity be ε(s), then, in the weak-lensing limit,

εi = ε
(s)
i + γi = ε(s)

(
cos 2φ
sin 2φ

)
+
(
γ1

γ2

)
; (5.55)

averaging over sufficiently many sources, the first term disappears and

〈ε〉 = 〈γ〉 . (5.56)

Suppose now that we know γ at many positions ~θ across a cluster, how can we find
the mass distribution? The key is the relation between both γ and κ and the lensing
potential ψ. If we transform ψ γ and κ to Fourier space, we find

κ =
1
2
(ψ11 + ψ22) ⇒ κ̂ = −1

2
(k2

1 + k2
2)ψ̂ (5.57)

γ1 =
1
2
(ψ11 − ψ22) ⇒ γ̂1 = −1

2
(k2

1 − k2
2)ψ̂ (5.58)

γ2 = ψ12 ⇒ γ̂2 = −k1k2ψ̂ , (5.59)

where ~k is a wave vector conjugate to the angular position vector ~θ. From these
relations, we can eliminate ψ̂. Noting that[

k−2

(
k2
1 − k2

2

2k1k2

)]
[k−2( k2

1 − k2
2 2k1k2 )] = 1 (5.60)

and writing(
γ̂1

γ̂2

)
= k−2

(
k2
1 − k2

2

2k1k2

)
κ̂ , (5.61)

we find immediately

κ̂ = k−2( k2
1 − k2

2 2k1k2 )
(
γ̂1

γ̂2

)
= k−2[(k2

1 − k2
2)γ̂1 + 2k1k2γ̂2] (5.62)

As a product in Fourier space, we can equally well write the result as a convolution in
real space, using the Fourier convolution theorem,

ˆ(f ∗ g) = f̂ ĝ . (5.63)

This yealds, in real space,

κ(~θ) =
1
π

∫
d2θ′[D1(~θ − ~θ′)γ1 +D2(~θ − ~θ′)γ2] , (5.64)

with

D1(~θ) =
θ22 − θ21
θ4

(5.65)

D2(~θ) =
2θ1θ2
θ4

. (5.66)
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In that way, mass maps of galaxy clusters can be constructed from shear measurements.

However, there are numerous problems in detail, which can all be overcome to some
degree. First of all, ellipticities measure〈

γ

1− κ

〉
= 〈g〉 , (5.67)

the so-called reduced shear, rather than the shear alone. This can be overcome by
writing

γ = g(1− κ) (5.68)

and using that in the convolution equation, thus

κ(~θ) =
1
π

∫
d2θ′[D1(~θ − ~θ′)g1(1− κ) +D2(~θ − ~θ′)g2(1− κ)] , (5.69)

which can be solved analytically starting from κ = 0.

Formally, the convolution for κ extends over all of two-dimensional space, while real
data fields are finite. In practice, this leads to a bias if the field is small, but modern
data fields are large enough for the method to work straightforwardly.

A problem of principle arises because the Jacobian can be transformed by multiplying
it with a factor λ 6= 0,

A → λA ≡ A′ , (5.70)

without the ellipticity measurements noticing it. Scaling the Jacobian in that way simply
enlarges the sources, but does not change their shape. Thus, such transformations leave
the shear signal invariant. Thus, transformations like

1− κ′ = λ(1− κ) ⇒ κ′ = 1− λ+ λκ (5.71)

cannot be detected, and κ is only determined up to such trasformations. For λ =
1− δ ≈ 1,

κ′ ≈ δ + κ , (5.72)

which corresponds to adding a sheet of constant surface mass density to the lens.
Therefore, this invariance has been called the mass sheet degeneracy.

There are other techniques for cluster reconstruction which can in principle avoid the
mass sheet degeneracy. Among them are the maximum-likelihood techniques. Suppose
shear measurements are given on a cluster field, then the goal is to search a lensing
potential ψ such as to reproduce the shear. This can be done by minimizing

χ2 =
∑
pixels

[γ1 − γ1(ψ)]2 + [γ2 − γ2(ψ)]2

2σ2
γ

, (5.73)

where γ1(ψ) and γ2(ψ) are the usual relations between shear and potential. This
minimization leads to an estimate for ψ at each point where a shear value has been
measured.

Additional information can now be added. Suppose we have a means to estimate galaxy
sizes, then the magnification is given by

µ =
d2Ωlensed

d2Ωunlensed
. (5.74)
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For weak lensing, the inverse magnification is

R =
1
µ

= (1− κ)2 − γ2 ≈ 1− 2κ . (5.75)

This can then be incorporated into χ2:

χ2 =
∑
pixels

{
[γ1 − γ1(ψ)]2 + [γ2 − γ2(ψ)]2

2σ2
γ

+
[R−R(ψ)]2

2σ2
R

}
, (5.76)

which is now no longer invariant under the mass sheet transformation.

In practice smoothing is required to suppress the noise in the data (shot noise, intrinsic
ellipticity) to a desired level.

5.2.2 Galaxy-galaxy lensing

Faint background galaxies are also lensed by brighter foreground galaxies. Although the
effect is certainly weak, galaxies can be superposed to enhance the signal.

Let p(s)(ε) be the intrinsic distribution of source ellipticities. The shear caused by a
lens changes the ellipticity to

ε→ ε+ γ , (5.77)

thus, the observed distribution of image ellipticities is

p(ε) = p(s)(ε− γ) ≈ p(s)(ε)− γi

(
∂p(s)

∂εi

)
(ε) . (5.78)

We introduce now two angles: a position angle of the lensed galaxy with respect to
the lens, α, and the angle between the major axis of the lensed galaxy and the line
connecting it with the lens, φ.

Without loss of generality, we can rotate the coordinate system such that α = 0. Then,
we are in the principal axis system of the shear, such that

γ′1 = −γt = γ1 cos 2α+ γ2 sin 2α , (5.79)

γ′2 = 0 (5.80)

We have defined the tangential component of the shear here as

γt = −(γ1 cos 2α+ γ2 sin 2α) . (5.81)

The example of a singular isothermal sphere shows that this definition is indeed useful.
There, we had

γ1 = −γ cos 2α (5.82)

γ2 = −γ sin 2α , (5.83)

such that

γt = −[−γ cos2 2α− γ sin2 2α] = γ . (5.84)

Note again that the shear components are elements of a 2 × 2 tensor, so that they
transform under rotations as(

γ′1 γ′2
γ′2 −γ′1

)
=

(
cosα sinα
− sinα cosα

)(
γ1 γ2

γ2 −γ1

)(
cosα − sinα
sinα cosα

)
=

(
γ1 cos 2α+ γ2 sin 2α −γ1 sin 2α+ γ2 cos 2α
−γ1 sin 2α+ γ2 cos 2α −γ1 cos 2α− γ2 sin 2α

)
(5.85)
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We now return to the probability distribution of the image ellipticity, p(ε). The deriva-
tives of the intrinisc ellipticity distribution can be written as(

∂p

∂ε1
,
∂p

∂ε2

)
→ ∂p

∂ε
cos 2φ (5.86)

in the principal axis frame of the shear, assuming that ellipticities are intrinsically
isotropic, such that ∂p/∂φ = 0. Then

p(ε) = p(s)(ε) + γt cos 2φ
∂p(s)

∂ε
. (5.87)

Integrating now over
∫∞
0
edε in order to find the angle distribution of the images, we

find

p(φ) =
2
π

+ γt cos 2φ
∫ ∞

0

εdε
∂p(s)

∂ε

=
2
π
− γt cos 2φ

∫ ∞

0

εdε
1
ε
p(s)(ε)

=
2
π

[
1− γt cos 2φ

〈
1
ε(s)

〉]
. (5.88)

here, the factors 2/π arise from the fact that p(φ) must be normalised when integrating
φ from 0 to π/2, because it suffices to restrict the angle φ to that interval.

Thus, galaxy-galaxy lensing modifies the distribution of the position angles of the lensed
galaxies to

p(φ) =
2
π

[
1− 〈γt〉 cos 2φ

〈
1
ε(s)

〉]
, (5.89)

where 〈γt〉 is the mean tangential shear of an ensemble of lensing galaxies. p(φ) can
be observed once an estimate for〈1/ε(s)〉 is known, which can be directly inferred from
observed galaxy images. Then, 〈γt〉 can be estimated and lens galaxy properties can be
derived from it.





6Lensing by large-scale
structures

6.1 Light propagation through an inhomogeneous uni-
verse

In unperturbed spacetime, light travels alog null geodesic lines of the symmetric, ho-
mogenous and isotropic Friedmann-Lemaitre space-time.

In contrast to the earlier treatment, we have to take into account that lenses can now
be of comparable size to the curvature scale of the universe, thus we need to refine the
picture of straight light paths which are instantly deflected by sheet-like, thin lenses.

Starting from null geodesic in space-time, it can be shown that light rays propagate
through the unperturbed Friedmann-Lemaitre spacetime such that the comoving sepa-
ration vector ~x between them changes with the radial coordinate w as

d2~x

dw2
+K~x = 0 , (6.1)

where K = (H0/c)2(Ω0 + ΩΛ − 1) is the curvature parameter of the universe. Note
that c/H0 is the Hubble length, so K has the unit of an inverse squared length, as it
has to be.

Ω0 is the density parameter of the universe today,

Ω0 =
(

3H2
0

8πG

)−1

ρ0 , (6.2)

while ΩΛ is the density parameter corresponding to the cosmological constant,

ΩΛ =
Λ

3H2
0

. (6.3)

H0 is the Hubble constant. According to present knowledge, Ω0 ≈ 0.3, ΩΛ ≈ 0.7 and
K ≈ 0.

Comoving means that the physical separation ~r between the rays is divided by the scale
factor of the universe,

~x =
~r

a
(6.4)

in order to get rid of the expansion of space-time.

The metric is written as

ds2 = c2dt2 − a2[dw2 + f2
K(w)d2Ω] , (6.5)
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such that dw is the radial, comoving distance element, and fK(w) is given by

fK(w) =


1√
K

sin(
√
Kw) (K > 0)

w (K = 0)
1√
−K sinh(

√
−Kw) (K < 0)

(6.6)

The propagation equation is easily solved. It is an oscillator equation, so that its general
solution is

~x = ~A cos
√
Kw + ~B sin

√
K (K > 0) . (6.7)

With the boundary conditions ~x(w = 0) = 0 and d~x/dw|w=0 = ~θ , we find

~x(w) = ~θ sin
√
Kw . (6.8)

Generally, for negative and vanishing K, we find

~x(w) = ~θfK(w) . (6.9)

These solutions have a very simple interpretation: obviously, for K = 0, ~x = ~θw, as
we know in Euclidean space. For positive or negative curvature, the light rays approach
each other, or depart from each other compared to the flat case, as the meridional lines
on a sphere or a hyperboloid do.

Adding perturbations is simple considering that the lensing masses are typically much
smaller than the Hubble radius. Then, space-time can be considered flat in their sur-
roundings, and we can use our earlier result on the deflection angle in the form

d2~x

dw2
= − 2

c2
~∇⊥φ , (6.10)

where it must now be noted that the perpendicular gradient of φ must be taken with
respect to the comoving coordinates as well. This means

~∇⊥φ =
1

fK(w)
~∇~θφ . (6.11)

The propagation equation changes to

d~x
dw2

+K~x = − 2
c2
~∇⊥φ , (6.12)

which now incorporates overall space-time curvature and local perturbations caused by
a potential φ.

The inhomogeneus oscillator equation can be solved by
constructing a Greens functionG(w,w′), which is defined
on the square 0 ≤ w ≤ ws, 0 ≤ w′ ≤ ws, where ws is
the coordinate distance to the source.

According to the definition of a Green function, G(w,w′) must satisfy the following
conditions
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• G(w,w′) is continously differentaible in both triangles A1,2 and satisfies the ho-
mogeneous differential equation

d2~x

dw2
+K~x = 0 ; (6.13)

• G(w,w′) is continous on the entire square;

• the derivative of G(w,w′) with respect to w jumps by 1 on the boundary between
A1 and A2;

• as a function of w, G(w,w′) satisfies the homogeneous boundary conditions on
the solution.

Accordingly, we set up

G(w,w′) =
{
A(w′) cos

√
Kw +B(w′) sin

√
Kw on A1

C(w′) cos
√
Kw +D(w′) sin

√
Kw on A2

. (6.14)

The homogeneous boundary conditions demand A = B = 0.

Continuity requires

C cos
√
Kw′ +D sin

√
Kw′ = 0 , (6.15)

and the jump in the derivative implies

−C sin
√
Kw′ +D cos

√
Kw′ =

1√
K

. (6.16)

Thus,

C = − 1√
K

sin
√
Kw′ (6.17)

D =
1√
K

cos
√
Kw′ . (6.18)

This implies

G(w,w′) =

{
0 (w < w′)

1√
K

sin
√
K(w − w′) (w > w′) . (6.19)

More generally, i.e. for arbitrary sign of K, we find instead

G(w,w′) =
{

0 (w < w′)
fK(w − w′) (w > w′) . (6.20)

Therefore the general solution of the propagation equation reads

~x = fK(w)~θ − 2
c2

∫ w

0

dw′fK(w − w′)~∇⊥φ . (6.21)

As in the single-lens plane approach, we evaluate this integral along the unperturbed
path fK(w)~θ.
The deflection angle is defined as the deviation between the perturbed and the unper-
turbed path,

~α =
fK(w)~θ − ~x
fK(w)

=
2
c2

∫ w

0

dw′
fK(w − w′)
fK(w)

~∇⊥φ[fK(w′)~θ, w′] . (6.22)
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This is now the deflection angle accumulated along a light path propagating into direc-
tion ~θ out to the coordinate distance w. Hence, we denote it as ~α(~θ, w).
For a spatially flat universe, K = 0 and fK(w) = w. Then,

~α(~θ, w) =
2
c2

∫ w

0

dw′
(

1− w′

w

)
~∇⊥φ(w′~θ, w′)

=
2w
c2

∫ 1

0

dy(1− y)~∇⊥φ(wy~θ, wy) . (6.23)

6.2 Effective convergence

In the single lens-plane case, the convergence is one half the divergence of ~α. Analo-
gously, we define here an effective convergence for large-scale structure lenses,

κeff(~θ, w) =
1
2
~∇~θ~α(~θ, w)

=
1
c2

∫
dw′

fK(w′)fK(w − w′)
fK(w)

4(2)φ[fK(w′)~θ′, w′] , (6.24)

where 4(2) is the two-dimensional Laplacian with respect to comoving coordinates,

4(2) = ~∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
. (6.25)

We now do the same as we did when we introduced the lensing potential: we replace

4(2) →4 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (6.26)

and assume that ∂φ/∂z = 0 at the boundaries of the perturbations. Then, we can
write

κeff =
1
c2

∫ w

0

dw′
fK(w′)fK(w − w′)

fK(w)
4φ(fK(w′)~θ, w′) , (6.27)

and substitute for 4φ using Poisson’s equation.

In its original form, Poisson’s equation reads

4rφ = 4πGρ , (6.28)

where the Laplacian is now taken with respect to physical coordinates. Introducing the
density contrast

δ ≡ ρ− ρ

ρ
, (6.29)

we can write

4φ = 4πGρ(1 + δ)a2 = 4πGρ0a
−1(1 + δ) , (6.30)

where we have inserted ρa−3 as for ordinary (non-relativistic) matter. Decoupling the
potential into a background potential

4φ = 4πGρ0a
−1 , (6.31)
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and a peculiar (perturbing) potential φ, we have

4φ = 4πGρ0a
−1δ . (6.32)

Using further

ρ0 = Ω0
3H2

0

8πG
(6.33)

yields the Poisson equation that we need,

4φ =
3
2
H2

0Ω0
δ

a
. (6.34)

The effective convergence can then be written as

κeff(~θ, w) =
3Ω0

2

(
H0

c

)2 ∫ w

0

dw′
fK(w′)fK(w − w′)

fK(w)
δ[fK(w′)~θ, w′]

a
. (6.35)

Notice the similarity of the distance factor with the factor DLDLS/DS that we had in
the single-lens case.

If the sources are distributed in redshift or, equivalently, in coordinate distance w, the
mean effective convergence is

〈κeff〉(~θ) = w

∫ wH

0

dwG(w)κeff(~θ, w) , (6.36)

where G(w)dw is the probability to find a source within dw of w. Then we can write

〈κeff〉(~θ) =
3H2

0Ω0

2c2

∫ wH

0

dwW (w)fK(w)
δ[fK(w)~θ, w]

a(w)
, (6.37)

with the effective weight function

W (w) =
∫ wH

w

dw′G(w′)
fK(w′ − w)
fK(w′)

. (6.38)

6.3 Limber’s equation

It is impossible to predict exactly which density fluctuations a light ray will find on its
way. Concerning the effective convergence, we thus need a statistical approach.

We want to compute the correlation function

〈κ(~θ)κ(~θ + ~φ)〉~θ = ξκ(φ) , (6.39)

in which the average extends over all positions ~θ on the sky, and over all directions of
the separation vector ~φ. Due to isotropy, the result cannot depend on the direction of
~φ.

It is typically more convenient to go into Fourier space and to use the power spectrum
instead. Suppose we have a function g(x) of n-dimensional space, whose correlation
function is

ξgg(y) = 〈g(x)g(x+ y)〉x . (6.40)
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We Fourier transform g(x),

ĝ(k) =
∫

dnxg(x) exp (ikx) g(x) =
∫

dnk
(2π)n

ĝ(k) exp (−ikx) (6.41)

and compute the correlation function in Fourier space,

〈ĝ(k)ĝ∗(k′)〉 =
〈∫

dnxg(x) exp (ikx)
∫

dnx′g(x′) exp (−ik′x′)
〉

=
∫

dnx exp (ikx)
∫

dnx′ exp (−ik′x′)〈g(x)g(x′)〉 . (6.42)

Inserting y+x = x′ and using the isotropy of the correlation function, we can continue
to compute

〈ĝ(k)ĝ∗(k′)〉 =
∫

dnx exp [i(k − k′)x]
∫

dny exp (−ik′y)ξgg(y)

= (2π)nδ(n)
D (k − k′)Pg(k) , (6.43)

where we have defined the power spectrum

Pg(k) ≡
∫

dny exp (−iky)ξgg(y) (6.44)

as the Fourier transform of the correlation function. δ
(n)
D is the Dirac delta function in

n dimensions.

Suppose we are given the power spectrum of a three-dimensional function δ(~x). What
is the power spectrum of a two-dimensional projection

g(~θ) =
∫

dwq(w)δ[fK(w)θ, w] , (6.45)

where q(w) is a weighting function?

Its correlation function is

ξgg = 〈g(~θ)g(~θ′)〉

=
∫
q(w)dw

∫
q(w′)dw′〈δ[fK(w)~θ, w]δ[fK(w′)~θ, w′]〉 . (6.46)

Inserting the Fourier transform of δ, we find

ξgg =
∫
q(w)dw

∫
q(w′)dw′

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈δ̂(~k)δ̂∗(~κ′)〉 exp (−ifK(w)~θ~k⊥

exp (−ifK(w′)~θ′~k′⊥ exp (−iksw) exp (−ik′sw′) , (6.47)

where we have split the wave vector ~k into a perpendicular and a parallel part, ~k⊥ and
ks, respectively. The average over δ̂δ̂∗ can be replaced by the power spectrum of δ,

ξgg =
∫
q(w)dw

∫
q(w′)dw′

∫
d3k

(2π)3
Pδ(k) exp [−i(fK(w)~θ − fK(w′)~θ′)~k⊥]∫

d(∆w) exp (−iks∆w) . (6.48)

The last factor,∫
d(∆w) exp (−iks∆w) = 2πδD(ks) , (6.49)
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means that only such modes contribute which are perpendicular to the line-of-sight,
~k = (~k⊥, 0).
The ks-integral can the be carried out and we get

ξgg =
∫
q2(w)dw

∫
d2k⊥
(2π)2

Pδ(|~k⊥|) exp (ifK(w)(~θ − ~θ′)~k⊥) . (6.50)

The difference ~θ−~θ′ is the separation vector between the two rays. Defining φ ≡ |~θ−~θ′|
and using isotropy, we get

ξgg(φ) =
∫
q2(w)dw

∫
d2k

(2π)2
Pδ(k) exp (−ifK(w)~k~φ)

=
∫
q2(w)dw

∫
kdk
(2π)

Pδ(k)J0[fK(w)φk] . (6.51)

The power spectrum of the projected quantity g(~θ) is

Pg(l) =
∫

d2φξgg(φ) exp (i~l~φ)

=
∫
q2(w)dw

∫
d2k

(2π)2
Pδ(k) exp {i[~l − fK(w)~k]~φ}

=
∫

dw
q2(w)
f2
K(w)

Pδ

(
l

fK(w)

)
. (6.52)

We can now simply read the power spectrum of the effective convergence off the ex-
pression for κeff . With

q(w) =
3H2

0Ω0

2c2
W (w)fK(w)

1
a
, (6.53)

we have

Pκ(l) =
9H4

0Ω2
0

4c2

∫ wH

0

W 2(w)
a2

Pδ

(
l

fK(w)

)
. (6.54)

This power spectrum will be central to all further considerations.

For example, the convergence correlation function is

ξκ(φ) =
∫

d2l

(2π)2
Pκ(l) exp (−i~l~φ)

=
∫
ldl
2π
Pκ(l)J0(lφ) . (6.55)

The magnification is, as in the single lens-plane case,

µ =
1

detA
A = I − ∂~α

∂~θ
(6.56)

⇒ µ ≈ 1 + ~∇~θ · ~α = 1 + 2κeff . (6.57)

Thus, the magnification fluctuation, i.e. its deviation from unity, has the correlation
function

〈δµ(~θ)δµ(~θ + ~φ)〉 = ξµ(φ) = 4ξκ(φ) . (6.58)
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Its r.m.s. value is

〈δµ2〉1/2 = ξ1/2µ (0) =
[∫ ∞

0

ldl
2π
Pκ(l)

]1/2
, (6.59)

which gives the typical magnification of cosmic sources by large-scale structures.

6.4 Shear correlation functions

Compared to the convergence, the shear depends on the direction with respect to which
it is defined. Let ψ be the effective lensing potential and the separation vector ~φ between
any two points have a polar angle α. Then, the tangential component of the shear with
respect to that direction is

γt = γ(cos2 α− sin2 α) = γ cos 2α , (6.60)

if α is the polar angle with respect to the principal-axis frame of the shear. Of course,
α will vary, so we have to average over it.

Let us now define the correlation function of the tangential shear,

〈γtγ′t〉 ≡ ξtt(φ) , (6.61)

which can be obtained from the power spectrum of the tangential shear component,

ξtt(φ) =
∫

d2l

(2π)2
Pγt

(l) exp (−i~l~φ) . (6.62)

According to its definition, the tangential component of the shear has the Fourier
transform

γ̂t = −1
2
(k2

1 + k2
2)ψ̂

=
k2

2
(cos2 α− sin2 α)ψ̂ . (6.63)

Thus, its power spectrum is

Pγt =
k4

4
(cos2 α− sin2 α)2Pψ . (6.64)

We know the power spectrum of κ,

Pκ =
1
4
(k2

1 + k2
2)

2Pψ =
k4

4
Pψ , (6.65)

so that we can infer Pγt :

Pγt
= (cos2 α− sin2 α)2Pκ . (6.66)

Now, (cos2 α− sin2 α) = cos2 2α = 1/2(1 + cos 4α), from which we find

〈γtγ′t〉 =
1
2

∫
ldl
2π
Pκ(l)[J0(lφ) + J4(lφ)] . (6.67)

Similarly, the “cross-component” of the shear is

γx = γ sin 2α , (6.68)
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and its autocorrelation function is

〈γxγ′x〉 = ξxx(φ) =
∫

d2l

(2π)2
Pγx(l) exp (−i~l~φ) . (6.69)

As before, we find

Pγx = k2
1k

2
2Pψ = k4 cos2 α sin2 αPψ

= 4 cos2 α sin2 αPκ . (6.70)

Since

4 cos2 α sin2 α = 1− cos2 2α = 1− 1
2
− 1

2
cos 4α

=
1
2
(1− cos 4α) , (6.71)

we find

〈γxγ′x〉 =
1
2

∫
ldl
2π
Pκ(l)[J0(lφ)− J4(lφ)] . (6.72)

Finally, the mixed correlation function,

〈γtγ′x〉 (6.73)

follows from the mixed power spectrum,

Pγtγx
=

1
2
(k2

1 − k2
2)k1k2

4
k4
Pκ

= 2(cos2 α− sin2 α) sinα cosαPκ . (6.74)

Now, 2(cos2 α − sin2 α) sinα cosα = cos 2α sin 2α = cos 2α sin 2α = 1/2 sin 4α, and
this factor makes the correlation function vanish, thus

ξtx(φ) = 0 . (6.75)

It therefore makes sense to define the correlation functions

ξ±(φ) ≡ 〈γtγ′t〉 ± 〈γxγ′x〉 , (6.76)

and

ξx(φ) ≡ 〈γtγ′x〉 . (6.77)

such that

ξ+(φ) =
∫
ldl
2π
Pκ(l)J0(lφ) , (6.78)

ξ−(φ) =
∫
ldl
2π
Pκ(l)J4(lφ) , (6.79)

and the expectation value of ξ(φ) = 0. For any measurement of cosmic shear, ξx(φ) = 0
provides a test for the reliability of the measurement, because ξx(φ) 6= 0 points at
systematic errors.
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6.5 Shear in apertures and aperture mass

Another convenient measure for the magnitude of the shear is to compute the mean
shear in a (circular) aperture of radius θ,

γav(θ) =
∫ θ

0

d2Θ
πΘ2

γ(~Θ) , (6.80)

and to study its variance,

〈|γav|2〉 =

〈∫ θ

0

d2Θ
πΘ2

∫ θ

0

d2Θ′

πΘ′2
[γ1(~Θ)γ1(~Θ′) + γ2(~Θ)γ2(~Θ′)]

〉

=
∫ θ

0

d2Θ
πΘ2

∫ θ

0

d2Θ′

πΘ′2
ξκ(|~Θ′ − ~Θ|) . (6.81)

The latter equality follows from the fact that the correlation functions of convergence
and absolute value of the sheare are identical, as is best seen from their power spectra.
We have

Pγ =

[(
k2
1 − k2

2

2

)2

+ k2
1k

2
2

]
Pψ

=
1
4
(k4

1 + k4
2 − 2k2

1k
2
2 + 4k2

1k
2
2)Pψ

=
1
4
(k2

1 + k2
2)

2Pψ =
k4

4
Pψ = Pκ . (6.82)

Inserting the convergence power spectrum into the shear variance, we obtain

〈|γav|2〉(θ) =
∫ θ

0

d2Θ
πΘ2

d2Θ′

πΘ′2

∫
d2l

(2π)2
Pκ(l) exp(−i~l(~Θ− ~Θ′)

= 4π2

∫ ∞

0

ldl
2π
Pκ(l)

[
J1(lΘ)
πlΘ

]2
, (6.83)

for which we have used∫ 1

0

xdxJ0(ax) =
1
a
J1(a) . (6.84)

The aperture mass is defined as a weighted integral over the (effective) convergence
within a (circular) aperture,

Map(θ) =
∫ θ

0

d2ΘU(~Θ)κeff(~Θ) . (6.85)

If the weight function satisfies the condition∫ θ

0

ΘdΘU(Θ) = 0 , (6.86)

i.e. if it is compensated, the aperture mass can also be written as

Map(θ) =
∫ θ

0

d2ΘQ(Θ)γt(~Θ) , (6.87)
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where γt is the tangential shear with respect to the aperture centre. Q is related to U
through

Q(x) =
2
x2

∫ x

0

dx′x′U(x′)− U(x) . (6.88)

A common choice (but not a neccessary one) is

U(Θ) =
9

πΘ2
(1− x2)

(
1
3
− x2

)
, (6.89)

with x ≡ θ/Θ. This implies

Q(Θ) =
6

πΘ2
x2(1− x2) . (6.90)

Using this choice the variance of the aperture mass turns out to be

〈M2
ap〉 =

〈∫ θ

0

d2Θ
∫ θ

0

d2Θ′U(Θ)U(Θ′)κeff(~Θ)κeff(~Θ′)

〉

=
∫

d2Θ
∫

d2Θ′U(Θ)U(Θ′)ξκ(|~Θ′ − ~Θ|)

=
∫

d2Θ
∫

d2Θ′U(Θ)U(Θ′)
∫

d2l

(2π)2
Pκ(l) exp[−i~l(~Θ− ~Θ′)]

= 4π
∫
ldl
2π
Pκ(l)J2(lθ) , (6.91)

where

J(lθ) ≡ 12
π(lθ)2

J4(lθ) . (6.92)

Obviously, the magnification correlation, the shear correlation functions ξpm, the shear
in apertures or the aperture mass all measure weighted integrals of Pκ(l), where the
weight functions can be more or less peaked.

6.6 E- and B-modes

Shear caused by gravitational lensing cannot have a curl component because of its origin
in a scalar potential. If there is a curl component in measured shear, it must therefore be
caused by systematic effects. In analogy to electromagnetic fields, real (scalar) modes
are called E-modes, others (vectorial modes) are called B-modes.

Assuming E- and B-modes to be independent, the shear powerspectrum can be written
as

〈γ(~l)γ∗(~l′)〉 = (2π)2δ2D(~l −~l′)[PE(l) + PB(l)] . (6.93)

As before, we now use

γt = γ(cos2 α− sin2 α) = γ cos 2α (6.94)

γx = γ2 sinα cosα = γ sin 2α , (6.95)

and find

ξ+(φ) =
∫
ldl
2π

[PE(l) + PB(l)]J0(lφ) (6.96)
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and

ξ−(φ) =
∫
ldl
2π

[PE(l)− PB(l)]J4(lφ) . (6.97)

Using Fourier transforms, these relations can be inverted to yield

PE(l) =
∫ ∞

0

φdφ[ξ+(φ)J0(lφ) + ξ−(φ)J4(lφ)] , (6.98)

PE(l) =
∫ ∞

0

φdφ[ξ+(φ)J0(lφ)− ξ−(φ)J4(lφ)] . (6.99)

This allows quantifying E- and B-mode contributions to the signal.

In particular, the aperture mass is only sensitive to E modes, while

Map⊥ ≡
∫ θ

0

ΘdΘQ(Θ)γx(Θ) (6.100)

is only sensitive to B-modes. That way, they can be easily compared.

6.7 Lensing of the Cosmic Microwave Background

Lensing also changes the appearance of the CMB, because temperature fluctuations
originally at a position ~β are shifted to ~θ = ~β + ~α due to lensing.

The CMB is characterized by its relative temperature fluctuations

τ(~θ) ≡ T (~θ)
〈T 〉

(6.101)

and their power spectrum

PT (l) = 〈τ̂(~l)τ̂∗(~l′)〉 =
∫

d2φξT (φ) exp(−i~φ~l) . (6.102)

We wish to calculate how the power spectrum of the CMB will change due to lensing.

The temperature autocorrelation function without lensing would be

〈τ(~θ)τ(~θ + ~φ)〉 , (6.103)

with lensing it is

〈τ(~θ − ~α)τ(~θ′ − ~α′)〉 , (6.104)

where ~α = ~α(~θ) and ~α′ = ~α′(~θ′); ~θ′ = ~θ + ~φ.

In terms of Fourier transforms

τ(~θ − ~α) =
∫

d2l

(2π)2
τ̂(~l) exp[−i(~θ − ~α)] , (6.105)

thus

ξT (φ) =
〈∫

d2l

(2π)2
τ̂(~l) exp[−i(~θ − ~α)~l]

∫
d2l′

(2π)2
τ̂∗(~l′) exp[i(~θ′ − ~α′)~l′]

〉
=

∫
d2l

(2π)2

∫
d2l′

(2π)2
〈τ̂(~l)τ̂∗(~l′)〉〈exp[−i(~θ − ~α)~l] exp[i(~θ′ − ~α′)~l′]〉

=
∫

d2l

(2π)2
PT (l) exp[−i(~θ − ~θ′)~l]〈exp[i(~α− ~α′)~l〉 . (6.106)
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The two averages are separated because one extends over the unlensed CMB tempera-
ture fluctuations and the other over the deflection-angle differences.

Typical angular scales in the CMB are large compared to the deflection-angle differences,
so ~l(~α− ~α′) is usually a small number. Thus,

〈exp[i(~α− ~α′)~l]〉 ≈ 1 + i〈(~α− ~α′)~l〉 − 1
4
〈< (~α− ~α′)2〉l2

≈ exp
[
−1

2
σ2(φ)l2

]
, (6.107)

with

σ2(φ) ≡ 1
2
〈(~α− ~α′)2〉 . (6.108)

Thus,

ξT (φ) =
∫

d2l

(2π)2
PT (l) exp(−σ2l2/2) exp(−i~φ~l)

=
∫
ldl
2π
PT (l) exp(−σ2l2/2)J0(lφ) . (6.109)

Therefore, the effect of lensing on the CMB is to smooth the CMB fluctuations on
scales smaller than ∼ σ(φ).
In order to calculate σ(φ), we use the deflection-angle correlation function,

ξ~α = 〈~α~α′〉 = 〈α1α
′
1〉+ 〈α2α

′
2〉 = ξα1 + ξα2 . (6.110)

In terms of ξ~α, we have

σ2(φ) =
1
2
〈~α2 + ~α~α′ + ~α′~α+ ~α′2〉

= ξ~α(0) + ξ~α(φ) . (6.111)

Since ~α = ~∇ψ, the power spectrum of ~α is

〈~̂α~̂α′∗〉 = l2Pψ =
4
l2
Pκ , (6.112)

hence

ξ~α(φ) =
∫
ldl
2π

4
l2
Pκ(l)J0(lφ) . (6.113)

For φ ∼ 10′, σ(φ) ∼ 0.05′ ≈ 3′′.
The lensed CMB power spectrum is

P ′T (l) =
∫

dφξT (φ) exp(i~φ~l

=
∫

d2φ

∫
d2l′

(2π2)
PT (l′) exp(−σ2l′2/2) exp[i~φ(~l −~l′)] , (6.114)

which illustrates again that lensing smoothes the intrinsic CMB power spectrum.
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Marquette, J. B., Maurice, É., Maury, A., Milsztajn, A., Moniez, M., Palanque-
Delabrouille, N., Perdereau, O., Prévot, L., Rahal, Y. R., Rich, J., Spiro, M., Tis-
serand, P., Vidal-Madjar, A., Vigroux, L., & Zylberajch, S., 2003, A & A , 400,
951

Alcock, C., Allsman, R. A., Alves, D. R., Axelrod, T. S., Becker, A. C., Bennett,
D. P., Cook, K. H., Dalal, N., Drake, A. J., Freeman, K. C., Geha, M., Griest, K.,
Lehner, M. J., Marshall, S. L., Minniti, D., Nelson, C. A., Peterson, B. A., Popowski,
P., Pratt, M. R., Quinn, P. J., Stubbs, C. W., Sutherland, W., Tomaney, A. B.,
Vandehei, T., & Welch, D., 2000, ApJ , 542, 281

Bartelmann, M., 1996, A&A, 313, 697

Bartelmann, M., Meneghetti, M., Perrotta, F., Baccigalupi, C., & Moscardini, L., 2002a,
astro-ph/0210066

Bartelmann, M., Perrotta, F., & Baccigalupi, 2002b, astro-ph/0206507
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