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Über die Kombination von schwachem und starkem

Gravitationslinseneffekt zur Rekonstruktion der Massenverteilung in

Galaxienhaufen

Zusammenfassung

In der vorliegenden Arbeit präsentieren wir eine neue Methode zur Rekonstruktion der
Massenverteilung von Galaxienhaufen mit Hilfe einer Kombination des schwachen und des
starken Gravitationslinseneffektes. Für die Entwicklung und zur Bestätigung kosmologischer
Modelle ist ein profundes Wissen über die Häufigkeitsverteilung, Gesamtmasse und
Massenverteilung von Galaxienhaufen nötig.
Der starke Gravitationslinseneffekt ist entscheidend für eine gute Rekonstruktion des
Galaxienhaufenkerns, während der schwache Gravitationslinseneffekt eine Rekonstruktion
des Galaxienhaufens innerhalb des gesamten Beobachtungsfeldes erlaubt.
Nachdem wir die Grundgedanken unserer Rekonstruktionsmethode vorgestellt haben,
beschreiben wir die numerische Implementierung. Abschließend widmen wir uns konkreten
Anwendungen und stellen dabei einen neu entwickelten Gravitationslinsensimulator vor,
welcher realistische Simulationen des Gravitationslinseneffektes erzeugt und daher eine
umfassende Kalibrierung unserer Rekonstruktionsmethode erlaubt. Alle durchgeführten
Tests bestätigen die Genauigkeit und Zuverlässigkeit unserer Methode, was uns abschließend
die Rekonstruktion der Massenverteilungs des bekannten Galaxienhaufens MS 2137 erlaubt.

Combining Weak and Strong Gravitational Lensing for

Galaxy-Cluster Mass Reconstructions

Abstract

In this thesis; we present a novel method to combine weak and strong gravitational lensing for
reconstructing the mass distribution in galaxy clusters, which are important objects for
cosmology. Their abundance, total mass and mass distribution has to be known very
accurately to develop and to support cosmological models.
While strong-lensing effects are important for a good reconstruction of a galaxy cluster near
its core, weak-gravitational lensing allows a reconstruction in the complete observed field.
After describing the main principles of our method, we show how it is implemented
numerically. The last part of the thesis is dedicated to applications and introduces a lately
developed lensing simulator which creates realistic lensing simulations and allows therefore
comprehensive calibrations of any reconstruction method, based on gravitational lensing. All
tests confirm the accuracy and reliability of our method and allow for the mass-distribution
reconstruction of the well-known galaxy cluster MS 2137 in the end of this work.
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This is the kind of conversation
that ends in a gunshot!

Dr. Stephen Franklin
Head of Medical Staff, Babylon 5

The discovery of a double Einstein ring in the SDSS data
using HST/ACS. (from Gavazzi et al., 2008)
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1 Introduction

Cosmology describes the evolution of the universe as a whole and has become one of the most
interesting and exciting fields in astrophysics during the last decades. Based on Einstein’s General
Theory of Relativity, cosmology now also includes parts of the particle physics branch like the quan-
tum theory of fields and its applications. Starting point for cosmological models are the assumptions
of homogeneity and isotropy of the universe, which might sound strange in the first place. Inserting
those assumptions into Einstein’s field equations leads to the Friedmann equations which describe
the scale evolution of the universe.
Today most cosmologists have great confidence in the so called cosmological standard model which
predicts a Big-Bang as the starting point of the universe, which is defined as that moment in time
when the scale factor of the universe was identical or close to zero. Shortly after the Big-Bang
the universe entered a phase of inflationary expansion, driven by a scalar quantum field called infla-
ton. During that phase the universe expanded exponentially and the first structures in the universe
were seeded by quantum fluctuations of the inflaton field. After inflation stopped, the universe was
dominated by radiation, followed by a matter dominated phase, and apparently entered a phase of
exponential expansion again. Today the energy content of the universe is dominated by the cosmo-
logical constant Λ or something similar which is sometimes also called Dark Energy. We live in a
universe where Λ contributes ∼ 75% to the energy content of the universe. The remaining ∼ 25%
consist of matter, of which only 20% consist of matter contained in the standard model of particle
physics, like leptons or baryons1. The remaining matter is called Dark Matter and its nature is not
completely understood by now. The most prominent candidate for the dark-matter particle arises
from the simplest supersymmetric extension of the standard model of particle physics and is a linear
combination of the zino, the photino and the higgsino2. Because of the notation of the cosmological
constant as Λ and the short notation ”DM” for dark matter, the cosmological model described above
is simply called ΛCDM model. The ”C” stands for cold and means that the dark particles are treated
as non-relativistic.
Another very important step for comology was the discovery and the study of the Cosmic Microwave
Background (CMB). Imprinted in the slight temperature fluctuations of the CMB is information on
the universe at a much earlier time, namely from the time of recombination ∼ 360000 years after
the Big-Bang. The CMB opened a window for a better understanding of structure formation in the
universe.
Among the most important structures in the observed universe are galaxy clusters, which are the
largest gravitationally bound objects in the universe. Multiple techniques to inverstigate their mass
distribution are known and gravitational lensing is one of them.
In this thesis, we present a method to combine weak and strong gravitational-lensing effects. While
strong-lensing effects are observed near the cores of massive galaxy clusters, including spectacular
features like giant, luminous arcs or Einstein rings, weak-lensing effects are a lot more difficult to
observe, but cover the complete observed field of a galaxy cluster. Therefore, a combination of the
two effects allows a reconstruction of the galaxy-cluster mass distribution on all cluster scales.

1In cosmology all ”ordinary” matter as we know it is called baryonic matter which is wrong in the context of
particle physics

2Supersymmetric partners of the Z-boson, the photon and the Higgs-boson
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The outline of this thesis is as follows. After discussing the basic theory of galaxy clusters and
gravitational lensing in chapters two and three, we give the theoretical framework of our joint re-
construction method in chapter four. Chapters five and six are dedicated to the concrete numerical
implementation of the reconstruction method using state-of-the-art computer and algorithms. Start-
ing from the analysis of observational data, we show step-by-step how the mass distribution of a
galaxy cluster is reconstructed. Chapter seven is then focused on applications. After testing and
calibrating the method with simulated cluster data, we also perform the reconstruction of the real
galaxy cluster MS 2137.



2 Galaxy Clusters

Galaxy Clusters (GCs) are the largest gravitationally bound objects in the universe (for reviews
see Bartelmann, 2007; Schneider, 2006). At first they were identified as regions with a significant
overdensity of galaxies. For example in 1958, Abell compiled a catalog of GCs with the criterion
that within an angular radius of θA = 1‘.7

z , he found more than 50 galaxies in a magnitude
interval of m3 6 m 6 m3 + 2, with m3 being the apparent magnitude of the third brightest
galaxy in the cluster. GCs normally fill volumes with linear dimensions of some Mpc and their
mass lies in a range of 1014 − 1015M�. They consist of mainly three different kinds of mass
components. First there are the visible stars and galaxies. Furthermore we have the intracluster
medium (ICM), which is composed of thermal baryonic gas, hot enough to emit in the X-Ray
band, making GCs the brightest extragalactic X-Ray sources besides AGNs. The missing mass
is located in a dark matter halo, which contributes by far the largest fraction to the total mass
of the cluster.

2.1 General properties

2.1.1 Observations and Virial Theorem

The most important thing to know about a GC

Figure 2.1: A typical rotation curve.

is its total mass and the distribution of mass within
the cluster, thus its density profile. First observa-
tional hints on this issue were obtained by looking
at the velocity distribution of the contained galax-
ies, which is centered around the bulk velocity of
the whole cluster. One can define a velocity dis-
persion by

σ2
v = 〈v2

‖〉 − 〈v‖〉
2, (2.1)

where v‖ is the velocity component along the line
of side. Measurements yield a typical velocity dis-
persion of galaxies in galaxy clusters of . 1000km s−1.

By applying the virial theorem

2〈T〉 = −〈V〉 (2.2)

3mσ2
m =

GMm
R

(2.3)

for a galaxy of mass m enclosed in a cluster of mass M at Radius R, we derive our first mass
estimate

M ∼ 3Rσ2
v

G
= 1015h−1Mpc

(
R

1.5h−1Mpc

)(
σv

1000km s−1

)
. (2.4)

Vera Rubin first pointed out that there is a strong need for additional mass, because of the shape
of rotation curves, which plot velocity dispersion against radius. The flatness of these curves for
high r could not be explained by only the visible amount of mass in stars and galaxies. This
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was another hint for the existence dark matter in galaxy clusters, which was proposed for the
first time by Zwicky (1933).
Combining the virial theorem with observations requires

σ2
v =

GM
3R

large r
=⇒ const. (2.5)

which means that every suggested density profile, which should match the observations, has
to fulfill the following radial dependence

ρ(r) ∝ 1
r2 , (2.6)

due to the obvious relation between density and mass

M(r) = 4π
Z r

0
r
′2dr

′
ρ(r

′
). (2.7)

2.1.2 Density Profiles

Let us assume a GC to be a virialised self-gravitating system, consisting only of gravitationally
interacting dark matter particles. By assuming hydrostatic equilibrium Euler’s equation reads
as following:

dP
dr

= −ρGM(r)
r2 , (2.8)

which states that the pressure gradient is equal to the acceleration caused by the self-gravity of
the system. The derivative with respect to r yields

d
dr

(
r2

ρ

dP
dr

)
+ 4πGr2ρ = 0. (2.9)

By further assuming thermal equilibrium, we treat the cluster material as an ideal gas with
temperature T and use the relation between pressure and density Pm = ρkT, as well as the
relation between temperature and velocity dispersion 3kT = m〈v2〉, with 〈v2〉 being the mean
squared velocity of a particle, we arrive at

dP
dr

=
kT
m

dρ
dr

=
〈v2〉

3
dρ
dr

= σ2
v

dρ
dr
. (2.10)

Here we assumed that T is independent of r and the fact that 〈v2〉 = σ2
x + σ2

y + σ2
z , giving the

line-of-sight velocity dispersion

σ2
v =

〈v2〉
3
, (2.11)

which can be measured by the redshifts of the cluster galaxies.
Using all together we obtain

d
dr

(
σ2

vr2

ρ

dρ
dr

)
+ 4πGr2ρ = 0. (2.12)

As is shown easily, one solution of this differential equation is

ρ(r) =
σ2

v
2πGr2 . (2.13)

This density distribution is called Singular Isothermal Sphere and satisfies obviously the condi-
tion for a flat rotation curve. Unfortunately the distribution is singular at r = 0 and the total
mass goes to infinity for r →∞.
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To avoid these problems, one can introduce more elaborate self-gravitating models with an
upper cut-off in the velocity distribution. These models are called King models (King, 1966,
1972, 1981) and have no analytical expression. An approximation for the central region of these
profiles is given by

ρ(r) = ρ0

[
1 +

(
r
rc

)2
]− 3

2

, with ρ0 =
9σ2

v
4πGr2

c
. (2.14)

A generalisation of the King profile is the so called β profile (Cavaliere & Fusco-Femiano, 1976,
1978), which introduces an additional fitting parameter β.

ρ(r) = ρ0

[
1 +

(
r
rc

)2
]− 3β

2

. (2.15)

We can repeat these calculations for the motion of galaxies within the external potential wells
created by the dark-matter dominated total mass of the cluster. Therefor the distribution of
galaxies in a galaxy cluster also follows a King profile which is confirmed by obseravtions.

2.1.3 Intra-Cluster Medium and X-Ray Emission

Having started our discussion mainly on dark matter particles and their density profiles, we
now focus on the ICM. This is directly related to the discovery that GCs are strong X-Ray
emitters; in fact they are one of the brightest X-Ray sources in the sky. Looking at the spectra
of the X-Ray emission, it was shown that the emission is thermal and spatially distributed over
the whole cluster, exceeding the area of light emitting galaxies.

It was concluded that the ICM consists of a hot,

Figure 2.2: Chandra archival images of twelve
distant clusters at 0.7 < z < 1.3.

thermal plasma, where the electrons scatter from
the ions and emit thermal bremsstrahlung (so called
free-free emission).
The theory of radiation processes states that the
X-Ray emissivity jv(x) is given by

jν(x) = C
ρ2
√

T
e−hν/kT, (2.16)

with the photon frequency ν and the plasma tem-
perature T. One should notice the squared depen-
dence on the density which is due to the fact that
the X-Ray emission is a two body process.
By also assuming thermal and hydrostatic equi-
librium for the ICM particles, and because of the
comparison with the density distribution of galaxies which see the same potential wells created
by the overall mass of the GC, the ICM density should follow a β-profile:

ρgas = ρ0

(
1 +

r2

r2
c

)−3β/2

. (2.17)

Using the ρ2-dependence for the X-Ray-emissivity we obtain

jν(r) ∝
(

1 +
r2

r2
c

)3β

, (2.18)
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and after projecting in the observation plane, we arrive at the X-Ray-flux per unit solid angle

SX = SXO

(
1 +

θ

θc

)−3β+1/2

. (2.19)

Fitting the density profile to the observed surface brightness of Galaxy Clusters in X-Ray bands,
gives rc ∼ 200h−1kpc and β ∼ 2/3.
Furthermore, Eq. 2.10 yields the following total mass of the system in hydrostatic equilibrium:

M(r) = −rkT
Gm

(
dlnρ
dlnr

+
dlnT
dlnr

)
. (2.20)

So with the β-profile for the ICM particles fitted by X-Ray observations, we get the X-Ray mass
estimate:

M(r) =
3βrkT

Gm
r2/r2

c
1 + r2/r2

c
. (2.21)

Please note that with the advancement to high resolution X-Ray space telescopes, like Chandra
or XMM-Newton, multiple fits of the observed X-Ray-flux with differing temperature are pos-
sible.
Unfortunately one has to be very careful with these mass estimates, because they rely on quite
strong assumptions regarding the dynamical and thermal state of the cluster. Especially cluster
mergers can contaminate the result significantly. This makes it necessary to compare with other
methods like gravitational lensing, which do not rely on the same assumptions.

2.2 Galaxy Clusters and Cosmology

2.2.1 Cluster Abundance in the Universe

In this chapter we want to point out why GCs are important objects for cosmology. The first
thing is that cosmological structure formation in a ΛCDM universe predicts a bottom-up model,
which means that large structures form last. So GCs reflect the late evolution of cosmic struc-
tures. Second, GCs are very large objects, so we are talking about scales which are not so far
in the nonlinear regime as typical scales for galaxies for example; so the abundance of galaxy
clusters and their evolution can be a profound test for cosmological structure formation.
The pioneering work regarding the abundance of GCs in the universe by cosmological consid-
erations was done by Press & Schechter (1974). Without going into the details of the formalism,
we present the main results.
The fraction of the overall volume occupied by collapsed structures depending on the smooth-
ing radius of the density field, where the smoothing radius is set by the mass of the objects one
is interested in, is given by

fcoll(M(r), z) =
2√

2πσ(R, z)

Z ∞

δc

dδ e−δ
2/2σ2(R,z), (2.22)

under the assumption that the density field is well described by a Gaussian random field.
By differentiating with respect to M and multiplying with the mean number density of these
objects one arrives at a more convenient form of Press-Schechter mass funtion, which gives the
number density of collapsed objetcs in a mass interval between M and M + dM.

dn(M, z)
dM

=

√
2
π

ρmδc

3M2σ
e−δ

2
c /2σ2

[
−R
σ

dσ
dR

]
, (2.23)

where z is cosmological redshift, ρm the mean density of the objects with mass M and δc the
critical overdensity, which is needed for an object to collapse.
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This formula is of particular importance because it computes the expected abundance of GCs
in a given cosmological model. This can then be verified by observations. For doing so, one
needs to identifiy GCs and determine their mass, which is the focus of this thesis.

2.2.2 Cosmological Simulations

Since the development of powerful computation facilities, simulations have become more and
more important for studying cosmological structure formation. The main concept of these sim-
ulations is quite simple. One takes N particles of a given mass and puts them into a box of a
given size. After setting the initial conditions for the particle distribution in the box, one adds
physics like gravity and hydrondynamics. By dividing the time evolution of the simulation
into finite time steps, positions and velcocities for each particle are updated at each time step.
As long as you want to have as many particles as possible, this can become very expensive in
computation time.

A state-of-the-art simulation is the Millenium Simu-

Figure 2.3: The filament structure of the
Millenium run on different scales.

lation (Springel et al., 2005) which contains 21603 par-
ticles in a box of 500 h−1Mpc. The simulation was
performed using the SPH tree code1 Gadget (Springel
et al., 2001; Springel, 2005). This kind of simulation
provides a very powerful tool to study the evolution
of the universe, because one can observe its behaviour
for different kinds of cosmologies and physics.
Especially it allows one to look at the formation and
evolution of Dark Matter halos and their density pro-
files, and to compare them with observations.
Navarro, Frenk and White (see Navarro et al., 1996)
determined the density distributions of dark matter
Halos in numerical simulations and found a universal
fitting formula which is the NFW-profile

ρNFW(r) =
ρs

r
rs

(
1 + r

rs

)2 . (2.24)

This density profile has two parameters, the character-
istic density ρs and the scaling radius rs. This profile in different varations is now largely used
to model the structure of GCs, even if it is not known why the structure of dark matter halos
should have this specific shape.

1SPH stands for smoothed particle hydrodynamics, which treats the particles not as pointlike but as expanded
quantities with a certain cut-off kernel. A tree code computes not all interaction equations for a particles by
dividing the simulation into subgrids and averaging, with increasing resolution for high density areas
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Figure 2.4: Density profiles of dark matter halos in the simulations of Navarro, Frenk and White.



3 Gravitational Lensing

3.1 Basic Theory of Lensing

3.1.1 Light Deflection

Now we focus on Gravitational Lensing, which is the the main theory this thesis is based on (see
Meneghetti, 2006; Bartelmann & Schneider, 2001; Wambsganss, 1998, for reviews on lensing).

Einsteins’s Theory of General Relativity predicts that

Figure 3.1: Sketch of a typical gravita-
tional lens system (Figure from Bartel-
mann & Schneider, 2001)

light follows the null geodesics of a given space-time
metric. That means nothing else than the deflection
of light rays in the presence of massive objects like
GCs. Because clusters are such massive objects, con-
centrated on a relatively small volume, compared to
the distances of sources and observer where one wants
to measure the light deflection, one can describe the
theory of gravitational lensing with a geometrical-optics
approach. (For a strict treatment in the context of Gen-
eral Relativity refer to Bartelmann & Schneider (2001)).
As sketched in Fig.3.1, there are three main ingredients
to a lensing scenario. The source, placed on the source
plane, the lens itself, localised on the lens plane and
the observer. The corresponding angular-diameter dis-
tances are Dd for the observer-lens distance, Ds for the
observer-source distance and Dds for the lens-source
distance. Let θ be the angular position of an observed
image, β the position of this image in the sky if it was
not lensed, and α̂ the corresponding deflection angle.
If we consider in a first step the deflecting mass as a point mass, General Relativity predicts a
deflection angle

α̂ =
4GM
c2ξ

, (3.1)

where ξ is the impact parameter in the lens plane. (A complete calculation can be seen in
Meneghetti (2006)). For a general mass distribution with a mass element dm at r = (ξ

′
1, ξ

′
2, r

′
3),

the impact parameter becomes a vector ξ− ξ′
. This holds if r3 is chosen such that the light rays

propagate along this coordinate and you assume the light rays to be straight lines while passing
the mass. (Similar to the Born approximation in quantum physics). These assumptions make
sense if the deflection of the light rays is weak, compared to the scales where the deflecting mass
distribution changes significantly. This is true for lensing by galaxies or clusters of galaxies. We
finally obtain

α̂(ξ) =
4G
c2

Z
d2ξ

′
Z

dr
′
3ρ(ξ

′
1, ξ

′
2, r

′
3)
ξ− ξ′

|ξ− ξ′ |2 , (3.2)

α̂(ξ) =
4G
c2

Z
d2ξ

′
Σ(ξ

′
)
ξ− ξ′

|ξ− ξ′ |2 . (3.3)
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In the last step we introduced the surface mass density,

Σ(ξ
′
) ≡

Z
dr3ρ(ξ

′
1, ξ

′
2, r

′
3). (3.4)

3.1.2 The Lens Equation

As one can see from Fig 3.1

η =
Ds

Dd
ξ− Ddsα̂(ξ); (3.5)

and by using η = Dsβ and ξ = Ddθ, we find the lens equation

β = θ− Dds

Ds
α̂(Ddθ) ≡ θ−α(θ), (3.6)

with the scaled deflection angle α(θ). In addition we define another crucial lensing quantity,
namely the convergence κ

κ(θ) =
Σ(Ddθ)

Σcr
with Σcr =

c2

4πG
Ds

DdDds
. (3.7)

Now the deflection angle reads

α(θ) =
1
π

Z
R2

d2θ
′
κ(θ

′
)
θ− θ′

|θ− θ′ |2 . (3.8)

The important thing about the convergence is that it decides if a lens system is called critical.
Because if κ ≥ 1 somewhere in the mass distribution, the lens equation has more than one
solution and multiple images can be formed from the same source. This is a sufficient but not
necessary condition.

3.1.3 The Lensing Potential

As Eq. 3.8 implies, the deflection angle can be written as the gradient of a potential, which we
call from now on lensing potential

ψ(θ) =
1
π

Z
R2

d2θ
′
κ(θ

′
)ln|θ− θ′ |. (3.9)

The important lensing quantities become now derivatives of this potential with respect to an-
gular coordinates

α =∇ψ (3.10)

κ =
1
2
∇2ψ =

1
2

(
∂2

∂θ2
1

+
∂2

∂θ2
2

)
ψ =

1
2

(ψ,11 +ψ,22) (3.11)

γ1 =
1
2

(
∂2

∂θ2
1
− ∂2

∂θ2
2

)
ψ =

1
2

(ψ,11 −ψ,22) (3.12)

γ2 =
∂2

∂θ1θ2
ψ = ψ,12. (3.13)

In the last two lines, we defined the components of the shear

γ = γ1 + iγ2 = |γ|e2iφ. (3.14)
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3.1.4 Magnification and Distortion

We now come to the effect of gravitational lensing on image shapes, compared to the shapes
of the sources. With a given surface-brightness distribution I(s)(β) in the source plane and an
observed surface-brightness distribution I(θ), the statement of Liouville’s theorem is

I(θ) = I(s)[β(θ)], (3.15)

because no photon creation or destruction is involved in gravitational lensing.
The relation between β and θ is given by the lens

Figure 3.2: Illustration of the effects
caused by shear and convergence (From
Narayan & Bartelmann, 1996).

equation and if we assume that the size of the source is
negligible, compared to the scales on which the prop-
erties of the lens change, we can locally linearize the
lens equation. Linearising Eq. 3.6 around a point θ0
leads to

I(θ) = I(s)[β0 + A (β0) · (θ− θ0)], (3.16)

with β0 = β(θ0) and the Jacobian Matrix

A (θ) =
∂β

∂θ
=

(
δi j −

∂2ψ(θ)
∂θi∂θ j

)
=

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ2

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
.

(3.17)

The last form of the Jacobian is convenient, because one can nicely see that the convergence is
responsible for a change in size of the images while the shear causes also a change in the shape
of the images, see Fig 3.2.
The magnification µ is the ratio between the fluxes of the observed image and the unlensed
source. It is given by

µ =
1

detA =
1

(1− κ)2 − |γ|2 . (3.18)

A set of points in the source plane where the Jacobian becomes singular is called critical curve
and the corresponding image curves in the source plane are called caustics.

3.1.5 Lensing by an Isothermal Sphere

As a very nice example we want to present lensing by a singular isothermal sphere. With the
results from Chapter 2.1.2 we obtain

Σ(ξ) =
σ2

v
2Gξ

, κ(θ) =
θE

2θ
, with θE = 4π

(σv

c

)2 Dds

Ds
, (3.19)

where θE is called the Einstein deflection angle, which sets an important lensing scale (e.g. the
angular separation of multiple images). In our example, also the other lensing quantities look
very simple

|α| = θE, ψ = θE|θ|, µ(θ) =
|θ|

|θ| − θE
. (3.20)

We see that the Einstein angle defines a critical curve, which is called Einstein circle.
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Figure 3.3: Lens system SDSSJ0737+3216, left panel: reduced image; right panel: reconstructed critical
curve and caustic (From Marshall et al., 2007).

3.2 Lensing by Galaxy Clusters

3.2.1 Weak Lensing

We will now focus more concretely on lensing by galaxies and especially galaxy clusters. A
lens is called critical if it develops extended critical curves. This usually happens if κ ≈ 1. This
also distinguishes between two very characteristic regimes, weak lensing and strong lensing.
Let us first focus on weak lensing, which means κ� 1.
With a given set of background galaxies behind our lens, the images of these galaxies are
slightly distorted due to lensing. While talking about images, we always talk about the sur-
face brightness I(θ) that we can observe. Once we have measured the surface brightness, we
can define the centre of the image and the tensor of its second brightness moments

θ̄ ≡
R

d2θqI[I(θ)]θR
d2θqI[I(θ)]

, Qi j ≡
R

d2θqI[I(θ)](θi − θ̄i)(θ j − θ̄ j)R
d2θqI[I(θ)]

, i, j ∈ {1,2} (3.21)

with a suitable weight function qI , which cuts the image off in the observed field (e.g. a Heavi-
side step function).
With the knowledge of the brightness tensor, we can define the complex ellipticity (please note
that other definitions of ellipticity are possible):

ε ≡ Q11 − Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 − Q2
12)1/2

. (3.22)

In the same way we define the surface brightness tensor for the sources Q(s). Then the lensing
transformation is given by

Q(s) = A QA T = A QA . (3.23)

In terms of ellipticities we get

ε(s) =


ε− g

1− g∗ε
for |g| ≤ 1

1− gε∗

ε∗− g∗
for |g| > 1

(3.24)

with the reduced shear
g(θ) ≡ γ(θ)

1− κ(θ)
. (3.25)

The inverse transformation is given by

ε =


ε(s) + g

1 + g∗ε(s) for |g| ≤ 1

1 + gε(s)∗

ε(s)∗ + g∗
for |g| > 1

. (3.26)
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As long as the lensing signal is weak and has to be treated statistically, we want to average
over a certain number of galaxies. By doing so, we assume that the intrinsic average source
ellipticity will vanish and we get the following simple expression for the expectation value of
the measured ellipticity

〈ε〉 =


g for |g| ≤ 1
1
g∗

for |g| > 1
. (3.27)

This relation is true if we assume that all our

Figure 3.4: The cosmological weight funtion
for different cosmologies and lens redshifts
(from Bartelmann & Schneider, 2001).

sources are located at the same redshift, but as we
saw in Subsection 3.2.1 the critical surface mass
density depends on redshift through the angular
diameter distances. To take this into account we
define the cosmological weight function

Z(z) ≡ D∞Dds

Dd∞Ds
H(z− zd), (3.28)

where zd is the redshift of the lens and D∞,Dd∞
are the angular diameter distances between ob-
server and infinity and between lens and infin-
ity respectively. Our expectation for the ellipticity
then becomes

〈ε〉 =


Z(z)γ

1− Z(z)κ
for |g| ≤ 1

1− Z(z)κ
Z(z)γ∗

for |g| > 1
. (3.29)

With this knowledge we are now in the position to perform a mass reconstruction, based on
weak lensing. We focus here on so called direct inversion methods, because we will discuss
different approaches later in more detail. So let us go back to Eq. 3.9 and rewrite it as

γ(θ) =
1
π

Z
R2

d2θ
′D(θ− θ′)κ(θ

′
), (3.30)

with the geometric kernel

D(θ) ≡ θ2
2 − θ2

1 − 2iθ1θ2

|θ|4 =
−1

(θ1 − iθ2)2 . (3.31)

Convergence and shear are both related to the lensing potential. By transforming ψ,κ and γ to
Fourier-Space (ψ̂, κ̂, γ̂) with the wavevector k corresponding to θwe find the following relation
by eliminating the potential:

κ̂ = k−2
[
(k2

1 − k2
2)γ̂1 + 2k1k2γ̂2

]
. (3.32)

By applying the convolution theorem and going back to real space we obtain the result

κ(θ)− κ0 =
1
π

Z
R2

d2θ
′D∗(θ− θ′)γ(θ

′
) =

1
π

Z
R2

d2θ
′<[D∗(θ− θ′)γ(θ

′
)], (3.33)

which can be used with observations, in the case of pure weak lensing (κ� 1, |γ| � 1), where
< ε >∼ γ. If we have n ellipticity measurements εi, we find

κ(θ) =
1

nπ ∑
i
<[D∗(θ− θi)εi]. (3.34)
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Figure 3.5: The ”Cosmic Train Wreck” A520 with Chandra X-Ray Map (red) and weak lensing contours
(blue). (From Mahdavi et al, 2007).

A generalisation of this method also takes into account the reduced shear, while using an iter-
ative approach

κ(θ)− κ0 =
1
π

Z
R2

d2θ
′
[1− κ(θ

′
)]<[D∗(θ− θ′)γ(θ

′
)], (3.35)

where one starts from a convergence κ ≡ 0 and reinserts the updated value at each iteration
step. This process converges quickly towards a unique solution.
Several weak lensing reconstructions with these direct methods have been carried out in the
last years. For a reconstruction of the Bullet Cluster (1ES 0657-558) see Clowe et al. (2004). A
recent reconstruction of Abell 520 was performed by Mahdavi et al. (2007) and a compilation
of weak lensing reconstruction is given in Dahle (2007). Although the mass reconstruction
method described above is fast and easy to implement, it suffers from several weaknesses:

• It is quite sensitive to noise, so one has to introduce for example a Gaussian smoothing
kernel;

• In reality one is dealing with limited observation fields. But the integral in Eq. 3.33
extends over the whole R2, which means that you have to set γ = 0 outside the observed
field. This leads to unwanted boundary artefacts;

• The method is not very flexible, in the sense that it is not possible to add additional
constraints from other observations, besides ellipticity measurements;

• As one can check easily, the reduced shear is invariant under the transformation κ→ κ
′ =

(1− λ) + λκ, γ → γ
′ = λγ, which makes it impossible to find a unique result, without

additional considerations. The invariance under this transformation is called mass sheet
degeneracy.

3.2.2 Strong Lensing

While weak lensing has slightly distorted background galaxies as observables, which can only
be treated statistically, strong lensing is based on more spectacular effects. Another difference
to weak lensing is that strong lensing only takes place near the cluster core where the lens
becomes critical. The main observations are the following:
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• Multiple images of background sources, where all the different images carry the spectral
information of the source. Due to this fact mutiple images can be identified through a
spectral or colour analysis;

• Highly distorted images of background sources like gravitational arcs or arclets, which
were first identified by Fort et al. (1988). Here the images lie close to the critical curve of
the cluster.

To do a mass reconstruction based on strong lensing constraints, one has to take into account
several things. First a cluster can either have a more or less uniform shape, or it can contain a
lot of substructure. This can be treated with a multipole expansion

κ(θ) = κ0(θ) +
∞
∑

m=1
κm(θ)eimφ, (3.36)

where it depends on the level of accuracy,

Figure 3.6: The very massive Galaxy Cluster A1689

to which order one can expand. The monopole
term describes an axially symmetric lens. The
quadrupole term, for example, describes the
ellipticity of the lens, which plays a very im-
portant role for a good reconstruction.
Furthermore, one should also think of the so
called external shear, i.e. perturbations com-
ing from the outer regions of the cluster. Here
strong lensing is normally not important any-
more, but it can affect very well the lensing
properties in the strong regime and act as an
additional lensing potential

ψγ(θ) =
γe

2
(θ2

1 − θ2
2). (3.37)

Once one has collected all available constraints,
there are two possibilities for a mass recon-
struction. First, there is a parametric approach,
which is by now more common and succes-
ful. Hence we have a set of parameters p de-
scribing our lens, and N observations. We now use the lens equation,

βi = θi −α(θi,p) 1 ≤ i ≤ N, (3.38)

to define a χ2-Function

χ2
src =

N

∑
i=1

(
β−βi

σi

)2

, (3.39)

where the source position β is of course also not known and is thus a model parameter.
Analogously we can define for the image positions

χ2
img = ∑

i

(
θi(β)− θi

σi

)2

. (3.40)

Finally the overall χ2 is minimised with respect to the parameters and the result is obtained
with an accuracy that depends on the parametrisation and on the quality of the data.
Another possibility is a completely non-parametric approach, where the surface mass density
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Figure 3.7: The Galaxy Cluster A2218 which shows a lot of strong lensing features.

of the lens is decomposed into an adequate set of density functionals. These funtionals are
multiplied with unknown decomposition coefficients and create a set of parameters k. Now
the lens equation for every image i looks as follows:

βi = θi − Aik, (3.41)

with a matrix A, which gives the deflection angles of the images in terms of the unknown de-
composition coefficients k. The problem with such an approach is that the resulting systems of
equations are underdetermined so in the end one has to make additional assumptions again.
For recent strong lensing reconstructions of A1689 see Broadhurst et al. (2005), Halkola et al.

(2006) or Tu et al. (2007). A reconstruction of A2218 was done by Elı́asdóttir et al. (2007). Com-
erford et al. (2006) analysed a sample of 10 GCs, observed with the HST and Rzepecki et al.
(2007) reconstructed RCS0224-0002. To see examples of non-paramteric approaches, refer to
Diego et al. (2007) or Liesenborgs et al. (2007).
Another important aspect of strong lensing that we have not mentioned so far, is that the abun-
dance of gravitational arcs can be used to draw conclusions on cosmology (see Bartelmann
et al., 1998; Wambsganss et al., 2004; Fedeli et al., 2006).

3.3 Lensing to 2nd Order: Flexion

3.3.1 2nd Order Lens Equation

At the end of our introduction to gravitational lensing we turn our focus again to the lens
equation (Eq. 3.6). In the weak lensing approach, we expanded the lens equation to first order,
to find the source-image relations. Due to this fact, weak gravitional lensing loses information,
especially in richly structured parts of the lens. We try to alleviate this by expanding to second
order.
Starting from Eq. 3.15 we expand the components of β around the origin

βi =
∂βi

∂θ j
θ j +

1
2
∂2βi

∂θ jθk
θ jθk + O(θ3). (3.42)

We already expressed the first term with the help of the Jacobian (Eq.3.17), and by defining

Di jk =
∂Ai j

∂θk
, (3.43)
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we express the second order term through derivatives of the Jacobian.
The gradient of the convergence,

∇κ =
(
γ1,1 + γ2,2
γ2,1 − γ1,2

)
, (3.44)

gives us the coefficients of Di jk

Di j1 =
(
−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)
, Di j2 =

(
−γ2,1 −γ2,2
−γ2,2 2γ1,2 − γ2,1

)
. (3.45)

By Taylor expanding again Eq. 3.15 and inserting our results, we arrive at the 2nd-order lens
equation

I(θ) '
{

1 +
[

(A− I)i jθ j +
1
2

Di jkθ jθk

]
∂

∂θi

}
I(s)(θ). (3.46)

3.3.2 Flexion Formalism

We now present a formalism developed by Goldberg & Bacon (2005), which describes the lens-
ing quantites in a very elegant and convenient way.
In our case we deal with 2-dimensional vector fields so it is reasonable to map these fields into
the complex plane:

v =
(

v1
v2

)
→ v1 + iv2. (3.47)

By doing so, it is also necessary to define derivative operators, which obey the condition that
they reproduce our results obtained so far in the classical formalism. This is done by the fol-
lowing complex gradient operators,

∂ ≡ ∂1 + i∂2 ∂† ≡ ∂1 − i∂2. (3.48)

Applying this to the scalar lensing potential reproduces the deflection angle, the Laplacian and
the convergence

∂ψ = α (3.49)

∂∂† = ∂†∂ =∇2 (3.50)

∂†α = ∂†∂ψ = 2κ. (3.51)

We should note here that the potential is a scalar field and the deflection angle is a spin 1 vector
field. So we raised the spin by one, by applying ∂. On the other hand, we obtained the scalar
convergence field by applying ∂† to α. This shows that the complex gradient operators can be
understood as spin-raising and spin-lowering operators.
This also shows that the shear is a spin-2 field

γ =
1
2
∂∂ψ, (3.52)

and the relation between convergence and shear is now given by

κ = ∂−1∂†γ. (3.53)

So far we just reproduced the classical lensing quantities, but as long as every quantity which
appears in the expansion of the lens equation will be a derivative of the lensing potential, we
developed a tool to describe higher-order lensing in a very intuitve way. Going to second order
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Figure 3.8: Estimated convergence maps from the shear (top left panel), the first flexion (top centre
panel) and the second flexion (top right panel) with 40 x 40 lens cells. In the bottom center panel these
maps are combined with minimal noise weighting. The comparison with the true convergence map
rebinned at this resolution (bottom right panel) shows very little deviation.

introduces two new quantities called first flexion F and second flexion G, which are the third
derivative combinations of the potential:

F =
1
2
∂∂†∂ψ = ∂κ∂†γ, (3.54)

G =
1
2
∂3ψ = ∂γ. (3.55)

Wrting this out gives us quantities similar to Eq. 3.45

F = [γ1,1 + γ2,2] + i[γ2,1 − γ1,2] =
1
2

[
[ψ,111 +ψ,122] + i[ψ,112 +ψ,222]

]
, (3.56)

G = [γ1,1 + γ2,2] + i[γ2,1 − γ1,2] =
1
2

[
[ψ,111 − 3ψ,122] + i[3ψ,112 −ψ,222]

]
. (3.57)

3.3.3 Applications

In principle, every weak lensing approach can only benefit from the additional flexion infor-
mation, but the implementation of flexion in current lensing reconstructions suffers from dif-
ficulties. A big problem is to extract the flexion signal from observations, which is not trivial
at all, since also the correct extraction of the shear alone is still under discussion. Also it is
not completely clear how to treat this signal in the right way, because also flexion is affected
by a mass-sheet-degeneracy problem (see Schneider & Er, 2007). For a recommended review
on these issues refer to Melchior (2006). Included there is also a combined shear and flexion
analysis for a simulated galaxy cluster lensing scenario, which we present in Fig 3.8. As one
can see the results look quite promising and justify the effort to implement flexion in future
lensing reconstructions, based on real data.



4 Combining Weak and Strong Lensing for
Potential Reconstruction

In this chapter we will give a summary of the basic concepts of our reconstruction method,
which combines weak and strong gravitational lensing methods. To justify a newly developed
method, one should first look at the current status of observations. While we want to apply our
method to current data, what do we gain if it relies on a data quality that has not been reached
so far?

4.1 Status of Observations

4.1.1 Ground Based Telescopes

We start with a compilation of state-of-the-art ground based telescopes, which are able to pro-
duce high quality data, which is essential for modern astronomy. Of course there are a lot more
telescopes around the world, but we want to give a brief overview of the most important ones:

• The Canada-France-Hawaii-Telescope (CFHT) is based on Mauna Kea (4200 m), Hawaii.
It is operated by the National Research Council Canada, the Centre National de la Recherche
Scientifique of France and the University of Hawaii. The optics mainly consist of a 3.6 m
main mirror and it is equipped with several scientific instruments. The most important is
the MegaPrime/MegaCam optical camera, which covers a huge area of one deg2. This re-
sults in a resolution of 0.187

′′
per pixel. The second important instrument is the WIRCam

for near infrared, which covers a field of (20 x 20) arcmins2, with an angular resolution
of 0.3

′′
per pixel. The telescope became famous because of the CFHT Legacy Survey

(CFHTLS), providing a huge observational database, from wide to deep exposures.

• The Very Large Telescope (VLT) is located on Cerro Paranal (2600 m), Atacama Desert,
Chile. The operator is the European Southern Observatory (ESO). This very impressive
telescope consists of four 8.2m main mirrors, in separated enclosures, accompanied by
four 1.8 m auxiliary telecopes and two additional survey telescopes. The four main tele-
scopes can be combined via interferometry and thus have the effective area of a 16 m class

Figure 4.1: CFHT, with Keck and Subaru shadows.
Figure 4.2: Schematic Drawing of VLT and its in-
struments.
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Figure 4.3: The Japanese Subaru telescope.
Figure 4.4: The two Kecks from above. Notice the
huge main mirrors.

telescope. There is a huge amount of attached instruments, which we are not willing to
list here. One of the most important is FORS1 for optical imaging, which covers an area
of (6.8 x 6.8) arcmins2, with a resolution of 0.25

′′
per pixel.

• Also on Mauna Kea, Hawaii, we find Subaru, run by the National Astronomical Obser-
vatory of Japan. Equipped with a 8.2 m main mirror, it carries instruments in the optical
and infrared band. The Suprime Cam optical camera covers a large field size of (32 x 27)
arcmins2, with a resolution of 0.26

′′
per pixel. The Multiple Object Infrared camera and

spectrograph (MOIRCS) covers a (4 x 7) arcmins2 field with a 0.117
′′

resolution.

• The last major telescope on Mauna Kea is Keck, which is the largest optical telescope
in the world. It is composed of two 9.8 m main mirrors, in separated enclosures. At-
tached are multiple instruments for observations in the optical and near infrared band,
in combination with an advanced adaptive optics system. Also combined exposures via
interferometry are possible.

• We finish our overview of ground based telscopes with the Large Binocular Telescope
(LBT), located on Mount Graham (3300 m), Arizona, USA. It is operated by a consortium
of Institutes from the USA, Italy and Germany 1. The main optics are two 8.4 m mirrors,
mounted in a single enclosure. The most important instrument is the Large Binocular
camera, for optical and infrared exposures. It covers a field of (23 x 23) arcmins2, with an
angular resolution of 0.23

′′
.

4.1.2 Space Based Telescopes

Besides the classical ground based telescopes, there is also the possibility to use space based
telescopes. Because of their very special location, they provide major advantages. First of all,
they can also observe in the ultraviolet regime, which cannot be done with ground telescopes,
because the atmosphere does not give an observation window in that wavelength regime. Two
other advantages related to the absence of the atmosphere, are the far higher angular resolution
and the ability to resolve also very faint objects with relatively small mirrors. A more econom-
ical advantage is the much higher time of possible usage, because daylight and weather do not
play a role in space.
But this also brings us to the main disadvantage of space telescopes, which is the sheer cost of
such a mission, which execeeds ground based observatories by several factors.
In the following, we list two space based missions, where one of them is well known and in
space for some time and the other is a future project, with the focus on cosmological applica-
tions:

1MPIA and LSW Heidelberg are highly involved in LBT instrumentation
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Figure 4.5: Face on shot of LBT.
Figure 4.6: Picture of the Hubble Space Telescope
taken from space.

• The famous Hubble Space Telescope (HST) is in a 570 km orbit around Earth and oper-
ated by NASA. Installed inside the satellite is a 2.4 m mirror with several attached optical
and near infrared instruments. Installed since 2002 is the Advanced Camera for Surveys
(ACS), which can be used in different modes. In wide mode it covers a (202 x 202) arcsecs2

field, with an amazing resolution of 0.049
′′

per pixel and in high resolution mode it covers
a field of (29.1 x 26.1) arcsecs2, with an astonishing resolution of 0.026

′′
per pixel. Unfor-

tunately not operational anymore is the Wide Field and Planetary Camera 2 (WFPC2),
which is responsible for most of the nice pictures in the press.

• To give a preview on future space missions, we also add here the Dark Universe Explorer
(DUNE), which was object of a pre-study phase by the French space agency (CNEF) and
is now propsed to the Cosmic Vision program of the European Space Agency (ESA). The
proposal contains many contributions from Europe and the US. It is designed to contain
a 1.2 m mirror with a 0.5 deg2 camera, specialised on the needs of large sky coverage and
weak lensing surveys. It will make it possible to obtain tight constraints on cosmological
models. Unfortunately the lift-off of this mission is scheduled not before 2015 if it will be
approved by ESA.

4.1.3 Lensing Observables

Now we know how to obtain high quality CCD images of a certain object in the sky, but this
is not exactly what we want. What we will need for our lensing analysis are weak and strong
lensing observables, which are measured background galaxy ellipticities and arc or multiple
image positions. The whole process of CCD image reduction and analysis is a highly non-
trivial and challenging task and fills many diploma and Ph. D. theses, but we want to give at
least a short outline of the methods applied. So assuming that we have a raw CCD image from
a telescope camera, the following steps lead to the desired data:

1. Image Detection,

2. Shape Determination,

3. PSF Corrections.

The first step is more or less straightforward, including de-biasing and flat-fielding, which
means that one removes the background and thermal dark-current noise of your CCD. Also
the removal of cosmic rays and bad pixels is done in this step, which requires to have several
frames of the same image, slightly shifted in position. For a final image, these frames are
remapped and stacked. After one has obtained the reduced image, one can use well established
software packgages, like FOCAS (Jarvis & Tyson, 1981) or SExtractor (Bertin & Arnouts, 1996)
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to extract and distinguish the objects in the image. This is not easy because objects can overlap
and have to be distinguished and separated from stars. Also, weak lensing needs a very high
density of background galaxies, which includes very faint objects, where the S/N ratio becomes
small.
Having identified the objects, one needs to determine their shapes, which is probably the most
difficult part in the analysis-pipeline. Measuring shapes means finding the second moments
of the brightness tensor, where the important quadrupole moment is given in Eq. 3.21. The
main problem in this measurement is that the shape of the image is distorted by the PSF2, due
to atmospheric seeing or inaccuracies of the telescope. The physical meaning of the PSF is that
pointlike sources are smeared out and the mathematical meaning is that the surface brightness
before observation I(θ), is convolved with the PSF, P(θ):

Iobs(θ) =
Z

d2ϑI(ϑ)P(θ−ϑ). (4.1)

The PSF is usually obtained by looking at reference stars which are assumed to be point sources,
and measuring their shapes
The deconvolution of Eq. 4.1 is rather complicated and has been established in several ways.
One is the so called KSB-method (Kaiser, Squires, & Broadhurst, 1995) and its variants. Another
possibility is the image decomposition into shapelets (Refregier, 2003; Massey & Refregier, 2005;
Melchior et al., 2007). We want to point out again that this step in the analysis is crucial, be-
cause weak lensing relies on slight distortions which have to be measured with high precision.
Compared to ellipticity measurements, the detection of arcs is rather easy, as long as one possi-
bly has high resolution Hubble ACS images. It is usually done by eye, but efficient algorithms
are also available (Seidel & Bartelmann, 2007). More complicated is the detection of multiple
images, where additional spectroscopic or photometric redshift information is necessary.

4.2 Maximum Likelihood Reconstruction

We present now the main concept of our mass reconstruction method for GCs, which is a so
called maximum likelihood reconstruction. We have seen maximum likelihood reconstructions
before, namely in Eq. 3.38, and we will use them to combine weak and strong lensing. This
approach is quite different from the direct inversion methods in 3.2.1 and works as follows:
We have N measurements yi which we assume to be Gaussian distributed, with variance σi and
parameter values xi. This gives us triples (xi, yi, σi). For these, we try to find a function which
approximates the measured values as well as possible. Such a function g(xi) is called a fitting
function. A convenient definiton of a good fit is the minimum of the mean square deviations
χ2, weighted with the corresponding datapoint variances:

χ2 ≡
N

∑
i=1

(yi − g(xi))2

σ2
i

. (4.2)

This assumes that datapoints are statistically independent. The straightforward generalisation
of this case, with statistically dependent datapoints, is the following definition:

χ2 ≡
N

∑
i, j

(yi − g(xi))C−1
i j (y j − g(x j)), (4.3)

with the covariance matrix Ci j. Now the difficulty is to find a reasonable representation of the
fitting funtion g(xi), which was done in 3.2.2 by a set of parameters. In our reconstruction, we
will do this in a purely nonparametric way.

2Point-Spread-Function, crucial quantity for every telescope, which has to be known as good as posssible
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Figure 4.7: Dividing the observed galaxy-field into a grid. The red crosses are possible galaxy positions
with ellipticity measurement. The grid resolution shown here is 15x15 pixels

4.2.1 Dividing the Field into a Grid

As a starting point, we take the output from a galaxy-shape and strong-lensing analysis. This
will be a list of the two ellipticity values and the strongly lensed images, at certain angular
positions.
As we pointed out before, a single galaxy ellipticity measurement is useless for a weak lensing
signal, due to the intrinsic ellipticity of the sources. We avoid this by averaging over a certain
number of galaxies to get one datapoint. Afterwards, we divide the observed galaxy cluster
field into a grid of N subcells and assign to each cell an ellipticity value due to the averaging
process, and obtain N datapoints for our χ2-minimisation. Because of that, the following re-
construction will highly depend on the resolution of this grid.
Furthermore, if a number of M gridcells, which we will call from now on pixels, is covered
by strongly lensed images, we will gain an additional number of M constraints for the recon-
struction. What we have to do now, is to describe our fitting function g in such a way, that it is
defined on the grid described above.

4.2.2 Resolution Problems

Before we can start to define the χ2-functions for our joint lensing reconstruction, we have to
address two issues, concerning the resolution of our reconstruction grid.
The first aspect is related to the weak lensing regime. So let us do a little back-of-the-envelope
calculation.

• We want to average over ≈ 10 galaxies per pixel.

• Ground based observations today can deliver ρgal ∼ 35 background galaxies per arcmin2.

• The typical angular field size of a galaxy cluster is Afield = 40 arcmin2.

• The field is assumed to be quadratic and we divide it into Npix equal quadratic pixels.

Apix · ρgal
!= 10

Afield = Npix · Apix

⇒ Npix =
1

10
· Afield · ρgal = 126.
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Figure 4.8: Left panel: Very coarse 10x10 pixel grid. In greenan example for a pixel with 8 included
galaxies is shown. One can also see the irregular distribution of galaxies with several voids. This prob-
lem is fixed in the right panel, where a 20x20 pixel grid is presented. The circles show the adaptive
averaging for each individuel pixel, which causes overlap, illustrated in green.

Figure 4.9: Zoom on the inner part of the cluster. As one can see in the left panel, a coarse 20x20 original
resolution for the whole field, is not able to resolve arc positions. On the right panel a 100x100 pixel
resolution with respect to the whole field is able to follow the shape of the arcs.

That gives us the possibility to divide the field into a 11x11 grid, which is of course not a
convenient resolution if one wants to see substructures in the cluster. Another problem arises
from the fact that in a realistic field, the galaxies are not homogeneously distributed, so by
applying a homogeneous grid, it is likely to have pixels with less than 10 or even without any
galaxy contained. We solve both problems with an adaptive averaging procedure, which means
that we average within circles around the pixel centre. The radius of these circles is stepwise
increased until the circle contains the wanted number of galaxies. Different pixels will need
different radii, depending on the galaxy density in that area of the field. If one does this on a
high resolution grid, one has to take into account that ellipticity datapoints can be correlated,
because they share galaxies during the averaging process (see Fig.4.8).
The second aspect affects the strong lensing regime, especially arc positions. Because strong
lensing is confined to much smaller scales, a lot of position information is lost, if one uses
strong lensing constraints at the same resolution as weak lensing. This requires a refined grid
at the cluster center which is capable of resolving the exact shape of the arcs (see Fig. 4.9).
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4.2.3 Defining χ2-Functions

We now address the most important ingredient of our mass reconstruction, the definition of
the χ2-functions. As we mentioned before, we want to perform a non-parametric reconstruc-
tion, which means that we do not want to have any model-dependent parameters in the χ2-
minimisation. The key to do so is the lensing potential. By relating a datapoint on the grid
directly to the lensing potential ψ, evaluated at this specific grid point, the values of ψ at ev-
ery grid position become the quantities with respect to which we minimise the χ2-function. In
other words, we are searching for a discrete representation of the lensing potential, which is
most likely to cause the observed effects.
Because the weak and strong lensing constraints are independent of each other but reflect the
same underlying potential, the overall χ2 becomes the sum of two contributions,

χ2(ψ) = χ2
w(ψ) + χ2

s (ψ). (4.4)

The reason why we were choosing the lensing potential as a reconstruction quantity is that it
is a much smoother quantity than e.g. the convergence, which makes it much more resistant
against noise.
The reconstruction result is then obtained by minimising the χ2 with respect to the potential
on every grid position l, as minimisation parameters

∂χ2(ψ)
∂ψl

=
∂χ2

w(ψ)
∂ψl

+
∂χ2

s (ψ)
∂ψl

!= 0 (4.5)

Let us first have a look at the weak lensing term. We saw in Eq. 3.29 what the expectation value
of the ellipticity looks like, so we define

χ2
w = ∑

i, j
(εk − g(ψ))iC−1

i j (εk − g(ψ)) j, (4.6)

and in the case of |g| ≤ 1, we get:

χ2
w(ψ) =

(
ε− Z(z)γ(ψ)

1− Z(z)κ(ψ)

)
i
C−1

i j

(
ε− Z(z)γ(ψ)

1− Z(z)κ(ψ)

)
j
, (4.7)

where we used Einstein’s sum convention as we will do from now on without explicitely men-
tioning it again. The case |g| > 1 is not interresting in our reconstruction since it would only
affect very few pixels in the reconstruction grid.
A quantity that we have not discussed yet is the covariance matrix Ci j. The standard deviation
σi, for each weak lensing pixel, is obtained during the averaging as the standard deviation of
the mean. This standard deviation is composed of three different parts

σ = σint + σsys + σl, (4.8)

with the noise due to intrinsic ellipticty σint, systematic error (measurement noise) σsys and
lensing noise σl. Under lensing noise we understand the noise which arises from the fact that
the galaxies over which we average, are spatially separated, so the properties of the lens change
inside a pixel. Here one can also see, that the radii of the averaging circles should not become
too large, otherwise the correlation in the lensing signal tends to be lost.
We assume that for a sample of sufficient size, the intrinsic ellipticity noise tends to zero, which
leaves the lensing and the systematic noise. Starting from the definition of the covariance ma-
trix:

Ci j = 〈
(
xi − 〈xi〉

) (
x j − 〈x j〉

)
〉, (4.9)
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and by using the fact that the correlation between two pixels due to lensing is proportional to
the overlap area shown in Fig. 4.8, we arrive at

Ci j = wi jσiσ j. (4.10)

We approximate the overlap area by the number of galaxies shared by two pixels which gives
the weighting factor

wi j =
Ni j

1/2(Ni + N j)
. (4.11)

Ni and N j are the sizes of each pixel-averaging sample and Ni j is the number of galaxies that
belong to both samples. This factor has exactly the wanted properties, i.e. it is unity on the
diagonal and vanishes for completely separated and uncorrelated pixels.
The strong lensing term looks much simpler. We have seen in Chapter 3 that the critical curve
of a lens is defined as the line where the determinant of the Jacobian vanishes. So given that
we know at which pixels the critical curve is located, we define

χ2
s (ψ) =

|detA(ψ)|2i
σ2

is
=
|(1− Z(z)κ(ψ))2 − |Z(z)γ(ψ)|2|2i

σ2
is

, (4.12)

where the error estimate σs is mainly related to the pixelization of our grid, which determines
the inaccuracy of the position of the critical curve. We approximate this uncertainty to first
order with the help of the Einstein angle (see Cacciato et al., 2006).

σs ≈
∂detA
∂θ

∣∣∣∣
θc

δθ ≈ δθ

θE
, (4.13)

with the angular inaccuracy due to pixelization δθ.
Strictly speaking, the formula above only holds for an isothermal sphere, but nevertheless it
gives us a good approximation for the noise in the critical curve position.
To evaluate Eq. 4.5 we have to connect convergence and shear to the grid values of the potential,
which we will do in Chapter 6.

4.2.4 Advantages of our Method

At the end of this section we want to emphasize that the main advantage of the maximum
likelihood approach is its enourmous flexibility. In principle, one can use every observable
constraint and connect it in some way to the lensing potential. Of course this is not limited to
lensing. One simply has to define separated χ2-functions which are statistically independent,
and minimise their sum with respect to the potential. Possible other constraints than those
used in our work are:

• Multiple image systems (see Bradač et al., 2005),

• Flexion (see Leonard et al., 2007),

• Magnification,

• Galaxy dynamics (see Sand et al., 2007),

• X-Ray surface brightness (see Lemze et al., 2007).

Future improvements of our method should include as many of these constraints as possible.
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4.3 The Result: Lensing Potential

As we pointed out before, we are reconstructing the lensing potential ψ, because it is more sta-
ble against noise and we can directly relate it to the lensing observables in an easy way (see Eq.
3.13). The potential itself is not a direct observable, but linear combinations of its derivatives,
so we always can add a constant, a linear funtion in θ, or a harmonic function. Also the lensing
potential is affected by the mass-sheet-degeneracy, because the quantities, from which we ob-
tain it are. Recall, that not only the reduced shear, but also the critical curve is invariant under
the mass-sheet transformation. In the final analysis, this allows us the following transformation
of the potential (Bradač et al., 2004):

ψ(θ, z) → ψ
′
(θ, z) =

1− λ
2

θ2 + λψ(θ, z), (4.14)

where λ is an arbitrary constant.
This is the reason why the resulting potential on every grid position ψ j might look shifted or
distorted. In fact, this is not a problem at all because we only need its curvature.

4.3.1 Convergence Maps

We obtain a physically meaningful quantity like the convergence by simply applying the Lapla-
cian to the potential. To obtain the shear, we have to apply the other combinations of second
derivatives to the potential. The convergence is a reasonable quantity, because it shows us in
an intuitive way the mass distribution of the cluster through the surface mass density.
Unfortunately, the convergence is again affected by the mass-sheet-degeneracy. It can be trans-
formed like

κ(θ, z) → κ
′
(θ, z) = (1− λ) + λκ(θ, z). (4.15)

So how to fix the convergence? First of all, it has the meaning of a density, so it should not
be negative. Our reconstruction method does not take this into account, so it is possible that
we will find results with negative convergence values. This can be transformed, using Eq.
4.15. Furthermore, if our observed field is sufficiently large, we would assume that κ→ 0 for
the outskirts of our field, so we can use Eq. 4.15 again, for normalisation. A more elaborate
method is the use of a quantity in the reconstruction, which is not invariant under the mass
sheet transformation and determines potential and convergence. One possibility would be the
use of inverse magnification

R =
1
µ

= (1− κ)2 − γ2 ≈ 1− 2κ, (4.16)

embedded in the maximum likelihood approach

χ2
mag(ψ) =

(R− R(ψ))2
i

σ2
Ri

. (4.17)

Of course in order to use this method, one has to provide a good idea how to measure a mag-
nification signal:

µ =
d2Ωlensed

d2Ωunlensed
. (4.18)

Another approach to solve the transformation problem was proposed by Bradač et al. (2004,
2005), who used the knowledge of the redshift distribution of the sources.
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4.3.2 Mass estimates

Once we have the convergence possibly transformed with the methods shown above, it is quite
easy to get a mass estimate for our lens. Convergence and surface mass density are connected
by

Σ(Ddθ) =
c2

4πG
Ds

DdDds
κ(θ). (4.19)

If we have the redshift of the lens, we also know the area of one pixel and if we have at least
the mean redshift of the sources, we can calculate the surface mass density, which gives us the
total mass of the cluster after summing over the whole grid.



5 Implementation I: General Considerations
and Input Data Handling

After the theoretical outline of the basic ideas and concepts of the joint weak and strong lensing
reconstruction method, we now focus on the concrete numerical implementation. In this and
the following chapter, we will show that the method is implemented in a self-contained pack-
age1. This allows us to perform a complete reconstruction, from input data to final the result,
without ”by hand” adjustments.
The complete galaxy cluster reconstruction can be split into two parts. The first part, which is
addressed in this chapter, is the preparation of the weak and strong lensing input data. This
means obtaining the grid data points, described in 4.2.3, which can be used as input of the
second part, the reconstruction itself. This will be addressed in Chapter 6.

5.1 General Implementation Framework

5.1.1 Code Language

We decided to write the code in C++ for several reasons. C++ has become a quasi-standard in
the scientific community, more and more replacing Fortran. Of course it is not a good reason
to write one’s own code in a certain language just because everybody else is writing in that
language. So we will point out the main advantages of our choice.
First of all C++ is object oriented. This makes it flexible and allows to extend existing code in an
easy and convenient way. Also, the usage of classes and objects disentangles the code and does
not produce long and confusing ”Spaghetti-Code”, like in procedural languages. As a result it
is much easier for an external user to understand, apply and develop the code.
Another issue is the availability of external packages and libraries. One wants to be able, to
use well known standards and algorithms, for which reliable routines have already been im-
plemented. This is the case for C++, because of its broad distribution. For example, this can
be seen very well, if one thinks of graphical user interfaces, where powerful interfaces exist
for a long time. One of the most important advantages of C++ over Fortran, besides its object-
orientation, is that C++ is also very common outside the physics community, where one will
almost not find Fortran at all. This makes it also possible to interact with other branches, like
applied mathematics, for example.
Now that we talked about the advantages, we should also mention the disadavantages of a
C++ implementation. Unfortunately a lot of mathematical concepts are not implemented from
the beginning, like vectors, matrices and linear algebra operations. To use them, one has to
rely on external packages. Another difficulty is the visualisation of data and results, where
one often has to use commerical, external packages like IDL or MatLab, to get a satisfactory re-
sult. A fast and easy to use OpenSource alternative is Python2 and the corresponding plotting
libraries, like Matplotlib3.

1The source code is available in our repository: https://www.ita.uni-heidelberg.de/svn/sawlens
2http://www.python.org
3http://matplotlib.sourceforge.net/
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5.1.2 External Packages

As we pointed out, there exists a huge variety of external, freely available libraries besides the
comprehensive C Standard Library. In our implementation, we make use of several external
packages with different functions, that we want to list and describe here:

• The GNU Scientific Library4 (GSL), is a very substantial compilation of mathematical rou-
tines and tools, for scientific applications. It covers a whole bunch of different areas, like
differential equations, polynomials, minimization methods, numerical integration and
Fourier transformation. It is very well documented and easy to use. In our code we
use GSL for vector and matrix handling, random number generation, statistics and for
solving linear systems of equations.

• Numerical Recipes5 (NR) is a series of books providing numerical solutions for mathemat-
ical problems. It is available for several programming languages, including Pascal, C,
C++ and Fortran. The advantage of NR is its availability in printed form, which makes it
worth reading if one is interested in numerics. The provided routines seem to be outper-
formed by equivalent routines from GSL. In our code we use NR for two dimensional,
bicubic spline interpolation.

• The Linear Algebra Package6 (LAPACK) was originally written in Fortran 77, but is also
available in C and C++. It is highly optimized for linear algebra operations and in this sec-
tor still the best package available. In our code we use the LAPACK routines, contained in
the Automatically Tuned Linear Algebra Software7 (ATLAS), for high-dimension matrix
inversion and linear system solution.

• The common standard in Astronomy for data transport is the Flexible Image Transport
System (FITS). We also make wide use of this data format to store information on disk
during the reconstruction process. The library which is needed by C++ to read and write
files in the FITS-format is CFITSIO8 and the C++ wrapper CCfits9.

• To make the execution of our code as fast as possible, we also implemented a parallel
version, which means that the code is not running on a single processor, but on several
processors in parallel. The communication between the processors is done by the Mes-
sage Passing Interface10 (MPI), which is the standard interface for parallel implementation
and available in Fortran and C/C++. Also the N-Body-Code Gadget that we mentioned
before uses MPI.

These are the packages our code uses during the reconstruction. We want to point out that
all these packages are in the public domain and freely available. One exception is Numerical
Recipes, which could be easily replaced by GSL routines. For visualisation we used different
solutions like fitsview, DS9, gnuplot, or the Python module Matplotlib.

5.1.3 Runtime and Requirements

Having talked about the software requirements, we should also discuss the requirements on
hardware, especially memory and CPU speed.
The largest objects our code has to handle are matrices of dimension∼ 1000x1000. Normally, no

4http://www.gnu.org/software/gsl
5http://www.nr.com
6http://www.netlib.org/lapack
7http://www.netlib.org/atlas
8http://heasarc.gsfc.nasa.gov/fitsio
9http://heasarc.gsfc.nasa.gov/fitsio/CCfits/

10http://www.mcs.anl.gov/mpi
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more than 10 of these matrices are needed simultaneously in the main memory. While we are
calculating with double precision, this means a memory need of less than 100MB, which is not
a problem on current machines. A much bigger issue is computation time. We will see later that
taking into account all pixel correlations in the reconstruction process, which is necessary for
input fields with low galaxy density, becomes extremely expensive with respect to computation
time. While calculating with adequate accuracy and resolution, this can take several days on
a normal desktop machine. This can be avoided, by ignoring pixel correlations or working at
lower resolution. Both mean loosing accuracy, but the runtime drops down to∼ 1h for a single
galaxy cluster. The more appropriate way to avoid long runtime is using the parallel version
of the code. On a 16 processor machine, the runtime for a complete reconstruction of a single
galaxy cluster at maximum resolution is again at the level of ∼ 1h.

5.2 Preparing Ellipticity Field Data

5.2.1 Input Data

We will now focus on the analysis of the weak lensing data. This data consists only of a plain-
text file, which lists the position and ellipticity measurement for every distorted background
galaxy. A cutout of such a file can be seen in List. 5.1. One should mention here that the
coordinates are arbitrary as long as they are consistent, which means that all constraints, used
as input for the code, are related to the same coordinate system. In this work we will give the
coordinates in arcseconds relative to the brightest cluster galaxy (BCG).

rec dec e l l i p 1 e l l i p 2
−75.7 170 .4 −0.1893 0 .3443
−65.3 199 .1 0 .0559 0 .0728
−79.8 197 .2 0 .3716 0 .1883
−27.0 −153.7 0 .0726 0 .0158
−46.6 −75.4 0 .0917 −0.4271
−31.6 −64.8 −0.0202 −0.2538
−23.6 −6.0 0 .2162 0 .4960
−46.3 −0.9 −0.3442 0 .1080
−27.7 1 7 . 5 0 .2529 0 .0060
−18.1 105 .6 −0.1647 0 .4169

Listing 5.1: An example for input data, for a sample of 10 galaxies

The code reads and saves internally the positions and ellipticities for all galaxies. While con-
structing the corresponding C++ class, the user has to give the resolution in terms of the num-
ber of pixels that the reconstruction grid should have. Afterwards, all the important field in-
formation, like minimum and maximum coordinate values, field size, galaxy density and the
pixel size are calculated in the chosen resolution. The final grid is then build up, by calculating
the coordinates of each pixel center, in the coordinates, given by the input file.

5.2.2 Adaptive Averaging

With the information of the pixel-coordinates, the user can start the adaptive averaging process
by giving the number of galaxies that an averaging-sample for a single pixel should contain.
For all pixels, the code checks how many galaxies lie in a certain radius around the pixel center.
The initial radius is given by the pixel size and is then increased stepwise until the given galaxy
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number is reached. The step size of the increment can be defined by the user and controls
accuracy and speed of the process. Once the final number of galaxies is reached, the average
and standard deviation values of the ellipticity sample are calculated and stored. Of course this
is done for both ellipticity components. An example of the result in different grid resolutions
can be seen in Fig. 5.1.

5.2.3 The Covariance-Matrix

To derive the covariance matrix as described in 4.2.3, the code remembers for each individual
pixel which galaxies were used in the averaged sample. As a result it can be determined easily
how many galaxies two pixels share and visualised in form of a matrix (see Fig. 5.2). For a
22x22 grid, this will be a 484x484 matrix, where each row-column combination represents the
connection between two pixels. Of course this matrix is symmetric, and on the diagonal we
can see how many galaxies where used during averaging for a specific pixel. On the number
of secondary diagonals one can see the grade of correlation. In the example of Fig. 5.2, each
pixel is correlated with its two nearest neighbours. We obtain the final covariance matrix with
Eq. 4.9, because we can now calculate the weighting factor wi j (see Eq. 4.11). This procedure
has to be done for both ellipticity components and the resulting covariance matrices have to be
inverted. At this point we use LAPACK, because inverting a matrix of dimension ∼ 1000x1000
is not a simple task. LAPACK does this fast and reliably. The resulting inverse of the covariance
matrix, can be seen in Fig. 5.2. As an additional example, we also add the case of a much
coarser grid of resolution 12x12. The corresponding matrices have dimension 144x144 and one
can clearly see that the correlations become much weaker. In fact only direct neighbours are
correlated. This is easy to understand, because the pixel size is larger and the overlap of the
averaging circles is much smaller. Of course this is only true, if the number of galaxies in a
sample considered sufficient is kept constant.

5.2.4 Output Data

As a result of the ellipticity field preparation, the code writes the complete results into a FITS
file, which contains:

• Average ellipticity for both components and every pixel in the form of a matrix;

• Modulus of complex ellipticity;

• Standard deviation for both components and all pixels;

• The galaxies assigned to a pixel in form of a ”galaxy number” x ”pixel number” punch-
card matrix;

• The matrix which indicates the number of galaxies shared by two pixels;

• Both inverses of the covariance matrices;

Furthermore, all relevant field information, like the field size, the pixel size and the number of
averaged galaxies per pixel, are stored separately.
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Figure 5.1: Result of the adaptive averaging procedure. Top panels show a grid resolution of 22x22,
bottom panels a resolution of 12x12. Left panels show the first ellipticity component , right panels show
the second component.
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Figure 5.2: The figures on the right panels show the number of galaxies that two pixel have in common.
One can clearly see the decrease when leaving the diagonal area. One can also see the decrease in the
correlation when one goes from 22x22 (top) to 12x12 (bottom) resolution. The figures on the right show
the corresponding inverse of the covariance matrix on high (top) and low (bottom) resolution.
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5.3 Preparing Critical Curve Data

5.3.1 Approximation of Critical Curve positions

Before we show how to handle the strong lensing data, we have to deal with the fact that
we cannot observe the critical curves directly. What we need is a good approximation for the
position of the critical curve, which is given by arc positions that we can observe very well. We
show in Fig. 5.3 that arcs follow the position of the critical curves, as long as the resolution
of the grid is not extremely high. But even on high resolution, the difference in pixel-position
between arc and critical curve is at most two pixels, and Cacciato et al. (2006) showed that
deviations of this size do not affect the reconstruction significantly. A more severe problem is
that not everywhere around a critical curve, arcs are forming, so we will not be able to trace
the complete curve. It will be the task of future work to deal with this issue more accurately,
including high resolution Hubble ACS data, which shows the strong lensing features much
more clearly.
Another possibility would be to rely on critical-curve reconstructions from a parametric strong
lensing analysis and feed that critical curve into the code. The drawback of this approach is
that one gives up the completely non-parametric reconstruction by using profile assumptions
in the critical curve determination.
Once decided how to treat the critical curves, the input file will be again just a plain text file,
with a series of position coordinates of arcs or the critical curve estimation. Of course, one has
to be careful that the coordinates match with the coordinates used in the weak lensing data.

5.3.2 Arcs on Different Resolution

Once the critical curve positions are read by the code, it depends again on the chosen resolution
how this is translated onto the grid. In the case of the critical curves, this translation is much
easier than in the weak lensing case because we only have to decide if a pixel of the grid is
crossed by a critical curve or not. This is done by a matrix which represents the grid and has
two possible values which declare a pixel as critical curve member or not. Two examples on
different resolutions are given in Fig. 5.4.

5.3.3 Output Data

In addition to the results from the ellipticity field analysis, the output FITS file is now extended
by a matrix which contains the information if a pixel is part of the critical curve. Also, not sig-
nificant pixels are removed, if to few of the input data points fall into that pixel. This threshold
can be set (e.g. 1% of the overall input coordinates).
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Figure 5.3: Arc position and estimated position of the critical curves. Left panel shows 32x32 grid
resolution where one can see no deviation. Right panel shows 75x75 where one sees that the deviation
in position is still small. The critical curves were estimated by a parametric strong lensing reconstruction
from Comerford et al. (2006).

Figure 5.4: The output matrix of the critical curve data preparation. Left panel shows a realistic weak
lensing resolution of 26x26 pixels. Right panel shows a realistic strong lensing resolution of 75x75 pixels,
which can follow the arc positions.
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In this chapter we will explain how the reconstruction itself works, that is minimising the χ2-
Function (Eq. 4.5) and obtaining the lensing potential. This can be done in a non-parametric
way with our grid approach, also allowing the use of numerical techniques keeping the com-
putation time at an agreeable level.

6.1 Grid Methods

6.1.1 The Missing Link

Let us briefly summarise what we have achieved so far. We gave the theoretical framework of
the reconstruction in section 4.2 and obtained the datapoints for the reconstruction in chapter
5. What we have to do now is to combine both aspects and implement the method numerically.
We defined the χ2-functions in section 4.2.3 and we already pointed out that we want to use
the values of the lensing potential values on every grid point as minimisation parameters. The
fitting function in the case of weak lensing is the reduced shear:

g(z, ψ) =
Z(z)γ(ψ)

1− Z(z)κ(ψ)
, (6.1)

and in the case of strong lensing the Determinant of the Jacobian:

detA (z, ψ) = (1− Z(z)κ(ψ))2 − |Z(z)γ(ψ)|2. (6.2)

In order to minimise the resulting χ2-function just with respect to the lensing potential, we
have to write the convergence and the shear in terms of the lensing potential. The relation
between these quantitities is

κ(ψ) =
1
2

(ψ,11 +ψ,22), (6.3)

γ1(ψ) =
1
2

(ψ,11 −ψ,22), (6.4)

γ2(ψ) = ψ,12. (6.5)

Using a well known approach in numerical mathematics to solve the Laplace-equation (see
Rannacher, 2006), we approximate the second derivatives of the potential with finite differencing
techniques.

6.1.2 Finite Differences

Hence, chosen a certain grid resolution, we want to reconstruct the potential for every grid
position (x, y), x, y ∈ N. First, we enumerate these grid positions, line by line. (See Fig. 6.1)
Afterwards, we use the central difference quotients, to find a discrete representation of func-
tions, which approximate the second derivatives at a certain grid position. This is called finite
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1 2 3 4 5

(1,1) (1,2) (1,3) (1,4) (1,5)
6 7 8 9 10

(2,1) (2,2) (2,3) (2,4) (2,5)
11 12 13 14 15

(3,1) (3,2) (3,3) (3,4) (3,5)
16 17 18 19 20

(4,1) (4,2) (4,3) (4,4) (4,5)
21 22 23 24 25

(5,1) (5,2) (5,3) (5,4) (5,5)

Figure 6.1: Possible grid positions (x,y) on a 5x5 grid, enumerated line by line.

differencing. The approximation functions are given by:

κ(x, y) ≈ h−2
{
−2

3
ψ(x, y)− 1

6
ψ(x− 1, y)− 1

6
ψ(x + 1, y)

− 1
6
ψ(x, y− 1) +

1
3
ψ(x− 1, y− 1) +

1
3
ψ(x + 1, y− 1)

−1
6
ψ(x, y + 1) +

1
3
ψ(x− 1, y + 1) +

1
3
ψ(x + 1, y + 1)

}
,

(6.6)

γ1(x, y) ≈ h−2
{

1
2
ψ(x− 1, y) +

1
2
ψ(x + 1, y)− 1

2
ψ(x, y− 1)− 1

2
ψ(x, y + 1)

}
, (6.7)

γ2(x, y) ≈ h−2
{
ψ(x, y)− 1

2
ψ(x− 1, y)− 1

2
ψ(x + 1, y)

−1
2
ψ(x, y− 1)− 1

2
ψ(x, y + 1) +

1
2
ψ(x− 1, y− 1) +

1
2
ψ(x + 1, y + 1

}
,

(6.8)

where h is the sidelength of a pixel. Please note that one has to use different finite difference
schemes at the edges and borders of the grid, because not every needed pixel still lies within
the grid. The full schemes for convergence and shear are shown in Fig. 6.2 and 6.3.

With the enumeration shown in Fig. 6.1, we can write the discrete potential ψ on a (n x m)
grid, n,m ∈N, as a vectorψ ∈Rnm. What becomes slightly more complicated now is addressing
the correct positions in the vector. Of course, direct left and right grid-point neighbours are just
separated by -1 and +1 positions in the vector, respectively. But top and bottom neighbours are
now separated by -n and +n positions, respectively. The advantage of this enumeration is that
the finite differencing becomes a simple matrix multiplication:

κi = Ki jψ j (6.9)

γ1
i = G1

i jψ j (6.10)

γ2
i = G2

i jψ j (6.11)

Here Ki j, G1
i j, G2

i j are sparse band matrices, which carry the finite differencing scheme infor-
mation. This means that every line has only nine entries for the convergence, four entries for
the first shear component and seven for the second shear component, the rest are zero. An
example for such a band matrix is given in Fig. 6.2.

6.1.3 Adaptive Grids

During our reconstruction process it may become necessary to calculate on grids which are not
necessarily rectangular anymore. This is the case if we want to follow particular critical-curve
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Figure 6.2: Left panel: The finite differencing scheme for the convergence approximation. Written in the
cells are the coefficients in the difference quotients. Right panel: The corresponding band matrix repre-
sentation. One can see the change in the scheme near top and bottom. The distance of the secondary
diagonals to the main diagonal gives exactly the x-dimension of the grid, because it is the separation
between top/bottom grid neighbours.

shapes, as we shall see in one of the following sections. Also on these adaptive grids, we want
to use our approach to represent the whole grid by a vector ψ ∈ RN, where N is the number
of gridpoints, and do the finite differences by matrix multiplications. This is still possible if
one takes into account two difficulties. First, the grid points which are sitting at the edges and
borders have to be identified and flagged in order to use the right schemes at the right positions.
The other problem is that the distance between top and bottom grid-point neighbours in the
vector is not trivial anymore and has to be calculated.
Both is done automatically by the code. Only the shape of the grid has to be given, then the code
builds up a border structure and defines each pixel as border, edge or normal pixel. Afterwards,
the non-trivial distances in the vector are calculated. An example is given in Fig. 6.4 and the
corresponding pixel information is given in List. 6.1

# type xpos ypos top 2 top bottom 2bottom
1 11 5 3 4 10 0 0
2 15 6 3 4 10 0 0
3 12 7 3 4 10 0 0
4 11 4 4 6 14 0 0
5 15 5 4 6 14 4 0
6 10 6 4 6 14 4 0

Listing 6.1: The grid information on the first 6 pixels in Fig. 6.4. First column gives just the pixel number
within the adaptive grid, second column declares pixels as edge, border or normal. Columns three and
four give the positions in the shape grid for book-keeping and the last columns count the distances to
the top/bottom neighbours. One should compare this list with certain pixels in Fig. 6.4 for a better
understanding.
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Figure 6.3: Left panel: Finite differencing scheme for the first shear component. Right panel: Second
shear component.

Figure 6.4: An example for an irregulary shaped grid. In the left panel one sees the adaptive grid with
a border structure, introducing the needed edges and border points which are distinguished by color.
The right panel shows the original input shape which is meant to be followed by the adaptive grid.
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6.2 Minimising the χ2-Function

6.2.1 Linearisation in Grid Space

The matrix representation of the finite differences (Eqs. 6.10, 6.11 and 6.11) allows us finally to
formulate the χ2-minimisation, which reads for the weak lensing term as follows:

χ2
w = χ2

1 + χ2
2, (6.12)

where we splitted the weak lensing χ2 into two parts for the two ellipticity components.
Of course, we have to perform the minimisation for both components , but for simplicity
we show the calculation just for one component, and one has to substitute ε, γ,C ,G with
ε1, γ1,C 1,G1 and ε2, γ2,C 2,G2, respectively.

χ2 =
(
εi −

Ziγi

1− Ziκi

)
C−1

i j

(
ε j −

Z jγ j

1− Z jκ j

)

=
C−1

i j

(1− Ziκi)(1− Z jκ j)︸ ︷︷ ︸
Fi j

(εi(1− Ziκi)− Ziγi)
(
ε j(1− Z jκ j)− Z jγ j

)

= Fi j
[
(εi − εiZiκi − Ziγi)(ε j − ε jZ jκ j − Z jγ j)

]
= Fi j

[
εiε j − εiε jZ jκ j − εiZ jγ j − εiε jZiκi + εiε jZiZ jκiκ j

+εiZiZ jκiγ j − ε jZiγi + ε jZiZ jκ jγi + ZiZ jγiγ j
]
,

(6.13)

where we put the nonlinearities (1− Zκ) together in the prefactor-matrix Fi j. We will deal with
this term later and simply keep it constant for now.
Now we minimise this equation for every potential parameter ψl,

∂χ2(ψ)
∂ψl

!= 0 (6.14)

∂χ2(ψ)
∂ψl

= Fi j

[
−εiε jZ j

∂

∂ψl
κ j(ψ)− εiZ j

∂

∂ψl
γ j(ψ)− εiε jZi

∂

∂ψl
κi(ψ)

+ εiε jZiZ jκi
∂

∂ψl
κ j(ψ) + εiε jZiZ jκ j

∂

∂ψl
κi(ψ)

+ εiZiZ jκi
∂

∂ψl
γ j(ψ) + εiZiZ jγ j

∂

∂ψl
κi(ψ)

− ε jZiZ j
∂

∂ψl
γi(ψ) + ε jZiZ jκ j

∂

∂ψl
γi(ψ)

+ε jZiZ jγi
∂

∂ψl
κ j(ψ) + ZiZ jγi

∂

∂ψl
γ j(ψ) + ZiZ jγ j

∂

∂ψl
γi(ψ)

]
.

(6.15)

Using γi = Gikψk, κi = Kikψk and ∂
∂ψl

Kikψk = Kikδkl allows us to take the derivatives:

∂χ2(ψk)
∂ψl

= Fi j
[
−εiε jZ jK jkδkl − εiZ jG jkδkl − εiε jZiKikδkl

+ εiε jZiZ jKikψkK jkδkl + +εiε jZiZ jK jkψkKikδkl

+ εiZiZ jKikψkG jkδkl + εiZiZ jG jkψkKikδkl

− ε jZiZ jGikδkl + ε jZiZ jK jkψkGikδkl

+ε jZiZ jGikψkK jkδkl + ZiZ jGikψkG jkδkl + ZiZ jG jkψkGikδkl
]
.

(6.16)
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From the last equation one can see that we can now write Eq. 6.14 as a linear system of equa-
tions

Blkψk = Vl, (6.17)

with the coefficient matrix

Blk = Fi j
[
εiε jZiZ jKikK jl + εiε jZiZ jK jkKil + εiZiZ jKikG jl

+ εiZiZ jG jkKil + ε jZiZ jK jkGil + εiZiZ jGikK jl

+ZiZ jGikG jl + ZiZ jG jkGil
]
,

(6.18)

and the result vector

Vl = Fi j
[
εiε jK jl + εiZ jG jl + εiε jZiKil + ε jZiGil

]
. (6.19)

At this point, one should not forget that we still have non-linear terms in the Fi j-matrix, which
we just assume as constant right now. We will take care of them in the next section.
We now repeat the exercise for the strong lensing term:

χ2
s =

(detA )2
i

σ2
i

=
((1− Ziκi)2 − |Ziγi|2)2

σ2
i

, (6.20)

where the non-linear terms are isolated and taken as a constant for now:

∂χ2
s (ψk)
∂ψl

=
2(detA )i

σ2
i

∂

∂ψl
(detA (ψk))i

=
2(detA )i

σ2
i

[
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This gives another linear sytem:
B∗

lkψk = V ∗
l , (6.22)

with a strong lensing coefficient matrix:
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il), (6.23)

and the result vector:
V ∗

l =
4(detA )i

σ2
i

ZiKil. (6.24)

Finally, we collect the results to obtain the solution for Eq. 4.5, by solving a linear system with
the following coefficient matrix and result vector:
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where i,j indicate the summation over the complete grid and m over those pixels which are
assumed to be part of a critical curve.

6.2.2 Numerics and MPI Implementation

The main problem with respect to computation time is now to build up the linear system,
because of the following reason. Hence, performing a reconstruction of a cluster at a resolution
of (32x32) pixels:

• 1024 potential values ψk.

• The dimension of the coefficient matrix Blk is (1024 x 1024)
⇒ 1048576 matrix elements

• The length of the result vector Vl is 1024
⇒ 1024 vector elements

• One matrix element is built up by 16 terms, each of which is a summation over i,j and
three terms, each of which is a summation over m.
One result vector element consists of 8 terms, which are summations over i,j and one
summation term over m.

• Each term in one of these sums is a product of seven numbers at maximum.

• Both indices i and j run from 1 to 1024

• The index m runs over the number of critical curve pixels and is therefor negligible.

⇒ 1048576 · 16 · 1024 · 1024 · 7 + 1024 · 8 · 1024 · 7 ≈ 1.2 · 1014 arithmetic operations.

By assuming the standard performance of an ordinary desktop machine to be ∼ 3 GFLOPS,
we expect a runtime for a single reconstruction of ∼ 1 day. If we take into account all the it-
erations we need and which we shall discuss in the next section, we end up with 20 of these
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Figure 6.5: Zoom on the area around the diagonal of the Ki j matrix. One can see all points in a column
which are not zero.

reconstructions. The result is a runtime of two to three weeks. We will now show how to re-
duce this to ∼ 1 hour.

1. The first thing one should recognise is that some of the terms in the coefficient matrix and
the result vector (Eq. 6.25) look quite similar. In fact, pairs of them become identical if
the covariance matrix is symmetric. In our case this is true, so we reduced the number of
terms by a factor of two.

2. Now we look directly at the terms which build up the linear system. Each term contains at
least one of the finite differencing matrices Ki j, G1

i j or G2
i j. From these matrices we know

that they are sparse band matrices with at most nine entries per column, so it would make
absolutely no sense to sum over a complete column, like in Eq. 6.25. (To see a closeup of
the diagonal area, see Fig 6.5). In our code we sum only over these entries near the main
diagonal, which are non-vanishing and save a factor of (matrix-dimension)2/9 for each
index summation. This is a huge achievement and this alone makes it possible to run the
code also on high grid dimensions.

3. Another aspect is directly connected to the one above. In earlier versions, we used higher
order finite differences schemes, which included up to 25 surrounding points for a sin-
gle derivative. By doing so, one gains accuracy in the derivative approximation, but
the drawback is an increase in computation time, because the bandwidth of the corre-
sponding matrices becomes bigger. This corresponds to significantly larger sums in the
coefficient matrix terms.

4. Even with the huge decrease of calculations mentioned above, calculating all coeffcient
matrix and result vector terms is still quite a task for a single processor. But since all these
terms are completely independent of each other, they can be easily partitioned to different
processors. Once all single terms are calculated on different nodes, the headnode sums
the different results. This part is implemented in our code in such a way that it is checked
how many nodes are available and the summing process is divided into the given number
of processors, using MPI. We also note here that only the different terms are given to the
different processors, not the matrix multiplication itself, so one would not gain anything
by using more processors then terms available. One task for future work will be to also
partition the matrix multiplications, by splitting the summation interval.

By using all the techniques mentioned above, we decreased the calculation time by a factor of
order ∼ 500. The numerical analysis of the problem is not completed yet and will allow more
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computation time decrement, which will be necessary for future high resolution reconstruc-
tions.

6.2.3 Solving Linear Systems

After the full linear system of equations has been obtained, the lensing potential is derived by
solving the linear system. In our case, this is done by GSL routines, using advanced Gauss-
Jordan algorithms (see Rannacher, 2006). The computation time for solving a linear system of
this dimension is negligible in comparison to the time needed to build up the linear system.
This changes when going to higher dimensions, which might make it necessary to migrate to
LAPACK-routines.

6.3 Regularisation and 2-Step-Iteration

6.3.1 Regularisation

By now the χ2-function looks as follows:

χ2(ψ) = χ2
w(ψ) + χ2

s (ψ) (6.26)

with the weak and strong lensing contributions. We now introduce a third term, which is a
so-called regularisation term R,

χ2(ψ) = χ2
w(ψ) + χ2

s (ψ) + R(ψ). (6.27)

The regularisation term is dependent on the potential and disfavors certain reconstruction so-
lutions. R is defined in such a way that unwanted solutions make the regularisation term large.
By doing so one can avoid that the reconstruction is following intrinsic noise patterns, which do
not reflect the correct solution. In this work we follow the regularisation scheme of Bradač et al.
(2005), where the regularisation term is just a comparison with a convergence result obtained
before:

R = ηi

(
κbefore

i − κi(ψ)
)2

(6.28)

The prefactor ηi controls the strength of the regularisation and is crucial for the reconstruction.
It should be chosen in such a way that the overall χ2 is of order unity and of course low enough
that changes in the reconstruction still can take effect. Minimising Eq. 6.28 leads again to a
linear system:
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(6.29)

which contributes one additional term to the coefficient matrix and the result vector.

Breg
lk = ∑

i
ηiKikKil (6.30)

V reg
l = ∑

i
ηiκ

b
i Kil (6.31)

Additional regularisation terms for the shear are also possible.
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6.3.2 Inner-Level Iteration

As we mentioned several times before, we still have a problem with the non-linear terms in
the coefficient matrix and result vector, which we simply held constant until now. We solve
this problem in the same way as in the direct inversion technique in section 3.2.1. We start
from a first guess for the convergence and insert the corresponding non-linear terms. After
that, we perform the reconstruction and obtain a result for the potential. From this result we
calculate convergence and shear. We take this as a new guess for the non-linear terms and
perform another reconstruction. This gives us a converging, iterative process. We control the
convergence behaviour of the iteration by comparing the convergence results from the actual
and the former iteration steps. If the change is below a given threshold, we stop the iteration.
The drawback of this method is that we now need several iterations (3-5 in practice) for a
complete reconstruction, which takes some time at high resolution. Bradač et al. (2005) showed
that the initial guess of the convergence value does not affect the reconstruction, but at most the
number of iterations. Our experience confirms their result, which means that the initial guess
of a convergence equal to zero is fair enough.

6.3.3 Outer-Level Iteration

One reason why we introduced the regularisation terms before is that we also do a second type
of iteration, which we call outer-level iteration. The galaxy density of today’s observations
would allow only a resolution of (∼10 x 10) pixels, with uncorrelated datapoints. Of course
one wants to go to higher resolution, which implies that data points become correlated and
the reconstruction will become affected by that. Another problem at higher resolution is, that
the noise patterns in the data get more and more pronounced and the reconstruction tends
to overfit these noise patterns. And a last problem at high resolution is that the convergence
values of some individual pixels will increase, which makes the initial guess of a vanishing
convergence less and less accurate. The result are many inner-level iterations.
A very elegant way to avoid all these listed problems is to introduce another iteration which
works as follows:

• One starts at the smallest possible resolution, where the pixels are not or almost not cor-
related.

• This resolution will be too coarse for fine-structure noise patterns to appear.

• Starting from the initial convergence guess zero, one performs the inner-level iteration
until the reconstruction converges.

• The obtained result is then interpolated to a slightly higher resolution.

• This interpolation is taken as comparison function in the regularisation and as new initial
guess in the inner-level iteration at the higher resolution.

• This process is repeated until the final resolution is reached.

This two-iteration concept delivered by far the best reconstruction results, but there are two
drawbacks. First you need several iterations, which increases the reconstruction time. Second,
it introduces a new parameter, which is the regularisation weighting η, which has to be well
calibrated in order not to underfit the data in later steps. The transition from a low to high
resolution can be seen in Fig. 6.6 .
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Figure 6.6: Left panel: Resulting Convergence Map on a starting resolution of (15x15). The resolution is
so coarse that no noise patterns appear. Right panel: Final resolution of (32x32), after several iterations.

Figure 6.7: Left panel: Complete combined weak and strong lensing reconstruction at low resolution.
Right panel: Zoom into the interpolated cluster core of the low-resolution reconstruction.

6.4 Strong Lensing at High Resolution

6.4.1 Interpolation

Hence, we have finished a complete reconstruction as described in the previous sections. The
problem that we also mentioned in section 4.2.2 is now that even on the last steps of the outer
level iteration, the grid is still not fine enough to follow the shape of the critical curves. We
deal with the problem by interpolating the lensing potential from the final reconstruction so
far and calculating convergence and shear at that resolution. Then, we zoom into the cluster
core where the strong-lensing information is available. The interpolation is done by a bicubic
spline interpolation routine. The interpolated result serves as template for the following high-
resolution reconstruction.

6.4.2 Modified χ2-Function

We start from a different χ2-function:

χ2(ψ) = χ2
s (ψ) + R(ψ) (6.32)
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Figure 6.8: The convergence map of a high resolution reconstruction, using adaptive grids.

The reason why no weak-lensing χ2-function appears anymore is that at this high resolution,
we do not have weak lensing datapoints anymore, since we do not want to interpolate the
weak lensing data. The strong-lensing datapoints are available at this high resolution, since
one can follow the critical curves very accurately. This does not mean that we do not use the
weak lensing data in this high resolution reconstruction anymore, because the interpolated
result enters in the regularisation function. So the result will be significantly based on the weak
lensing constraints. We finish the reconstruction by inserting the high-resolution cluster-core
result into the result obtained at a coarser resolution, which consists of the complete cluster
field.

6.4.3 Adaptive Grid Usage

Since the cluster-core reconstruction described above is based on interpolated results, we want
to use as few interpolated pixels as possible. Because of this we make use of the adaptive grids,
described in section 6.1.3, which are able to follow the exact shape of the critical-curve estimate
and use much less datapoints for regularisation. So the reconstruction will mainly be based
on the strong-lensing data alone. But still we need the constraints from the interpolated grid
points, because otherwise the linear system would be underdetermined.

6.5 Running the Code

After these longer chapters on the implementation of the reconstruction method, we want to
summarize how the reconstruction is practically done. This should not be a code-listing but a
listing of the different steps which are necessary to achieve the final result.
The whole reconstruction process can be divided into three steps.

6.5.1 Data Preparation

The first thing the code does is to prepare the input data in such a way that it can be used by
the reconstruction routines. The main ingredient here is the adaptive averaging routine.
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1. Starting point is an ellipticity catalog and an arc-position catalog, both as plain text files.
Those files are read by the code.

2. For each resolution between the initial resolution and the final resolution, the ellipticities
are averaged, the covariance matrices are calculated and the arc-positions on the grid are
saved. Typical values for the initial resolution would be a (10x10) grid and a (30x30) grid,
for the final resolution.

3. Arc positions are also marked at a much higher resolution (e.g. (75x75)), where they are
used later for a final high-resolution reconstruction as described in section 6.4.

4. All relevant results are saved in separate FITS files for each resolution, or are directly
passed to the reconstruction routines.

6.5.2 Low Resolution Reconstruction

After the needed data for the reconstruction routines is now available, the combined weak and
strong-lensing reconstruction starts. The main ingredient in these routines is building up the
linear systems whose solutions are the wanted results.

1. The reconstruction starts at the initial resolution.

2. The starting convergence is assumed to be zero and a first reconstruction is performed.
From the result we obtain a new guess for the convergence.

3. This procedure is repeated until we achieve convergence in the result.

4. The potential is interpolated to the next higher resolution and taken as a comparison
function for the reconstructions at this resolution. Again the inner-level iteration is done
until we have a convergent result.

5. This outer-level iteration is repeated until we have a result at the final resolution. The
stepsize of the outer-level iteration can be set by the user.

6.5.3 High Resolution Reconstruction

The last step in the reconstruction is a reconstruction at a resolution which can follow the
critical-curve estimate. It uses adaptive grids.

1. The result of the low-resolution reconstruction is interpolated to the new resolution.

2. The cluster core, where the strong lensing features appear, is cut out.

3. The adaptive grid on the cluster core, which is defined by the concrete shape of the critical
curve estimation, is built up.

4. The reconstruction described in section 6.4 is performed on the adaptive grid. Compari-
son function is the interpolated low resolution result.

5. The high-resolution result is inserted into the low-resolution result and the reconstruction
is finished.
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7 Applications and Results

We will now focus on the application of our reconstruction code. After testing the numerical
efficiency of the code we will perform reconstruction tests with synthetic galaxy-cluster data to
prove that our method is working correctly and reliably. Afterwards we perform cluster recon-
structions with more realistic lensing scenarios, which also include a complete image analysis.
We conclude the applications with a real galaxy-cluster reconstruction, namely with the well
known strong-lensing cluster MS 2137.

7.1 Runtime Comparison

As we pointed out in Chapter 6, we use several techniques to keep the runtime of the code
as short as possible. In two small tests we show that these techniques shorten the runtime
significantly, while not compromising the correct result.

7.1.1 Effective Multiplication Schemes

In the first test we want to show that the code is not wasting time by performing unnecessary
arithmetic operations. For doing so we look at the first term of the coefficient matrix Blk, which
we need to build up to perform a reconstruction by solving a linear system of equations

B1
lk = ∑

i, j
F 1

i j ZiZ jε
1
i ε

1
jKikK jl. (7.1)

A runtime test with this term is set up by computing its contribution to the total coefficient ma-
trix. We choose reconstruction resolutions of (14x14), (20x20) and (25x25) pixels, which means
that we end up with finite differences and coefficient matrices of dimensions (196x196),(400x400)
and (625x625) respectively. For the values of Fi j,Zi and εi, standard values as needed in a typ-
ical reconstruction are used, of course the exact values are unimportant in a runtime test. First
we compute the complete sum over i and j, without taking into account that most of the ele-
ments in the finite differences matrix K are vanishing. After that, we calculate the term again
by just summing over the necessary elements.
In Fig. 7.1 one can see the residuals between the two methods, which just show numerical
noise, so the enhanced method which is not taking the complete sum over i and j delivers the
correct result. This is not very surprising at all, but the difference in runtime (see Table 7.1)
looks very convincing and proves the efficiency of our method.

Resolution Method1: all indices [s] Method2: non-vanishing indices [s]
14x14 282 2
20x20 4715 9
25x25 28507 20

Table 7.1: Runtime comparison of the different methods on different resolutions. 14x14 resolution was
performed on an Intel Pentium 4, 3.2 GHz Dual Core (1 core used), 2MB Shared Cache, 1GB main
memory. 20x20 and 25x25 resolution was performed on an AMD Opteron 250, 2.4GHz, 1MB Cache,
8GB main memory; which has a higher numerical performance.
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Figure 7.1: The residuals between the complete summation method and the speed-optimised term calcu-
lation. The largest difference is 3.73 · 10−8 and is mostly due to the accuracy of the visualisation library.

Final Resolution single [s] MPI [s]
20x20 849 244
24x24 2112 591
30x30 6215 1867

Table 7.2: Runtime comparison of the single processor version and the MPI Implementation. Single
processor machine: Intel Pentium 4, 3.2 GHz Dual Core (1 core used), 2MB Shared Cache, 1GB main
memory. MPI machine: 8 node, 16 processor, AMD Opteron 250, 2.4GHz, 1MB Cache, 2GB main mem-
ory (per node) Linux PC cluster, InfiniBand-Network.

7.1.2 Single Processor and MPI Implementation

In a second test we show the overall runtime of our method and the fact that the MPI-implementation
performs better than the single processor version. In Table 7.2 we show the runtime for differ-
ent reconstruction scenarios. In fact we show the reconstruction time for the simulated cluster
reconstruction, which will be shown in detail in the next chapter. The starting resolution for
all three cases was a (10x10) pixel reconstruction grid, but the final resolution is different. The
outer-level-iteration stepsize was two pixels and for each step, five inner-level iterations were
performed.

7.2 Synthetic Data

We will now test our reconstruction method with simulated data. This data consists of sev-
eral galaxy clusters obtained from N-body simulations described in Bartelmann et al. (1998).
Earlier tests of similar combined weak and strong lensing maximum-likelihood reconstruction
methods are described in Cacciato (2005) and Cacciato et al. (2006).
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7.2.1 Reconstruction Data and Outline of Testing Method

Since our reconstruction routines are constructed to be applied to real observational data, we
use the simulated cluster data to create a semi-realistic lensing scenario. The simulated cluster
data is available in form of the convergence and shear maps of the cluster on a resolution of
(512x512) pixels. This makes it possible to calculate the reduced shear of the cluster, which is the
expected weak lensing observable, for 262144 data points. The exact field size is given by the
parameters of the simulation, so by the box-size and the redshift of the simulation. To define
a coordinate system the (256,256) pixel is taken as coordinate origin and the positions of all
other pixels are calculated, depending on the pixel side length with respect to this origin. From
all available data points we choose now a small number with the help of a random number
generator. This number should be comparable with the number of lensed galaxies in a realistic
field. In this way we obtain a realistic reduced shear catalog for our cluster which can be used
to start the field preparation process implemented in the code. As strong-lensing observable
we use the original critical curve of the cluster. It is calculated by searching for sign changes in
the Jacobian determinant of the simulated cluster and is translated into the coordinates defined
above. With these constraints the code should be able to reproduce the original convergence
map of the cluster with a resolution that is dependent on the number of data points that we use
for the reduced shear catalog.

7.2.2 An Undercritical Cluster Example

The first simulated cluster reconstructed by the code is an undercritical example (see Fig. 7.2),
which means that it does not produce an extended critical curve. In this case the reconstruction
depends completely on the weak lensing observables.
The reconstruction was performed with two different choices for the number of data points. In
a first run 3000 data points were chosen by the random number generator as an example with a
relatively high number of data points, and in a second run this number was drastically reduced
to 750 data points. The two reduced shear fields are plotted in Fig. 7.3.
For both samples the data preparation routines of the code were applied with 10 averaged data
points per reconstruction pixel. This made it possible to reach a reconstruction resolution of
(30x30) pixels for the 3000 data-point sample and a resolution of (20x20) for the 750 data-point
sample. The data-point correlation matrices for both final resolutions are shown in Fig. 7.4.
The resulting κ-maps of the reconstructions are shown in Fig. 7.5 and Fig. 7.6, together with
the appropriately rebinned, original κ-map of the cluster for comparison. As one can see, the
results look very promising. The (30x30) pixel reconstruction resolves all main features of the
cluster almost perfectly and even the (20x20) pixel reconstruction with only 750 input data
points produces a useable result. A more quantitative comparison is done in Fig. 7.7 by the
κ-profile along the increasing main diagonal of the field. The straight line is the original cluster
profile and the crosses are obtained by the two reconstructions. Also in the profile plot the
results look very well, especially because the original κ-profile (red line) was taken from the
full-resolution κ-map. The underestimation of the central peak is typical for a pure weak-
lensing reconstruction and is due to the fact that a smoothing process over a number of galaxies
was applied during the data-point preparation. Of course this step would not be necessary
since one has perfect data in this simulated lensing scenario, but for the application to real data
this step is inevitable and keeps this test closer to real applications. Another reason why the
reconstruction points tend to underestimate the real profile is due to mass-sheet degeneracy.
Again we want to stay close to reality, so we normalised the field simply to be non-negative,
without any further knowledge of the cluster, which means that the point with the lowest
convergence is set to zero. This is not exactly true for the real κ-map.
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Figure 7.2: Lensing potential (left) and corresponding convergence map (right) of an undercritical galaxy
cluster simulated in a ΛCDM scenario. The cluster redshift is zc = 0.93 and the cube-side length of the
simulation is 5 (comoving) Mpc which corresponds to 1.96 arcmins. The total mass of the cluster is
5.5 × 1014MJ. The contours in the right panel start at a convergence value of κ = 0.01 and end at
κ = 0.09 with linear scaling.

Figure 7.3: The chosen reduced-shear data points in the coordinates relative to the central pixel of the
simulated cluster in arcsec. Left panel shows 3000 data points, right panel 750 data points.
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Figure 7.4: Left panel: Number of shared reduced-shear data points for each reconstruction pixel for
the 3000 data-point sample. The reconstruction resolution is (30x30), so one sees a (900x900) correlation
matrix. Right panel: Same matrix for the 750 data point sample. Even at the lower reconstruction
resolution (20x20) one sees more correlation.

Figure 7.5: Left panel: Convergence map of the 3000 data-point reconstruction. The resolution is (30x30)
pixels and the color scale is logarithmic. The contours start at κ = 0.01 and the spacing is ∆κ = 0.008.
Right panel: The convergence map of the original cluster rebinned to the reconstruction resolution. The
parameters for color and contours are identical to the reconstruction.
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Figure 7.6: Left panel: Convergence map of the 750 data-point reconstruction. The resolution is (20x20)
pixels and the color scale is logarithmic. The contours start at κ = 0.01 and the spacing is ∆κ = 0.008.
Right panel: The convergence map of the original cluster rebinned to the reconstruction resolution. The
parameters for color and contours are identical to the reconstruction.

Figure 7.7: The κ-profile along the increasing main diagonal of the field.
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Figure 7.8: Lensing potential (left) and corresponding convergence map (right) of a critical galaxy clus-
ter simulated in a ΛCDM scenario. The cluster redshift is zc = 0.52 and the cube-side length of the
simulation is 5 (comoving) Mpc, which corresponds to 3.13 arcmins. The total mass of the cluster is
1.1× 1015MJ. The contours in the right panel start at a convergence value of κ = 0.1 and end at κ = 0.9
with linear scaling.

7.2.3 A Critical Cluster Example

The second cluster used to test the reconstruction method is critical and develops an extended
critical curve (see Fig. 7.8). With a cluster of this kind the joint reconstruction method can use
its full potential. The weak lensing data were simulated just like before, this time with 2000
data-points. In addition, the critical curve of the simulated cluster was used during the recon-
struction. The reduced shear catalog, together with the position of the critical curve, is shown
in Fig. 7.9. The possible reconstruction resolution with this number of data points is (26x26)
pixels, while averaging over 10 data points per reconstruction pixel. Because of the extended
critical curve it was possible to add an additional high-resolution reconstruction step as de-
scribed in Chapter 6. The resolution for this additional reconstruction step was (75x75) pixels
zoomed into the cluster core.
The result of the joint reconstruction without the additional high-resolution reconstruction step
can be seen in Fig. 7.10, again compared to the rebinned original cluster. The high resolution
reconstruction result was inserted into the low resolution κ-map in Fig. 7.11. One should notice
the increased resolution in the cluster core. The original map at (75x75) pixel resolution shows
of course more detail in the outer parts of the cluster because in these areas the reconstruction
cannot take advantage of the increased resolution. Again it is obvious that the reconstruction
is in good agreement with the original cluster, even with the smoothed input catalog.
In Fig. 7.12 the κ-profile along a horizontal line through the cluster core is shown. The red line
is the real cluster profile, taken from the full resolution κ-map. This time three types of recon-
struction points are added, one showing the result from a pure weak-lensing reconstruction,
one showing the result from a low-resolution combined weak and strong-lensing reconstruc-
tion and the third one showing the results from a high-resolution combined reconstruction.
One can clearly see that we are now even able to reach the κ-peak of the simulated cluster. This
is due to the addition of strong-lensing constraints. Even at low resolution, one sees a signif-
icant increment in the profile, and at high resolution the reconstruction matches the original
cluster almost perfectly.
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Figure 7.9: Reduced-shear catalog and critical curve of the critical cluster.

Figure 7.10: Left panel: Convergence map of the low-resolution reconstruction. The resolution is (26x26)
pixels and the color scale is logarithmic. The contours start at κ = 0.1 and the spacing is ∆κ = 0.08.
Right panel: The convergence map of the original cluster rebinned to the reconstruction resolution. The
parameters for color and contours are identical to the reconstruction.
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Figure 7.11: Left panel: Convergence map of the high-resolution reconstruction. The resolution has
(75x75) pixels in the inner part of the map and the color scale is logarithmic. The contours start at κ= 0.1
and the spacing is ∆κ = 0.08. Right panel: The convergence map of the original cluster rebinned to the
reconstruction resolution. The parameters for color and contours are identical to the reconstruction.

Figure 7.12: The radial κ-profile along the main diagonal of the critical cluster field. The slight shift to
the left of the high resolution reconstruction is due to a one pixel inaccuracy of the routine which inserts
the refined result into the low-resolution map.



68 7 Applications and Results

7.3 Realistic Lensing Simulation

Even if the synthetic cluster data gave very good results and the tests were constructed to be
close to reality, they can just serve as a proof of concept for several reasons. The main drawback
of the performed reconstructions was the perfect input data. The lensing observables, reduced
shear and critical curves were calculated from the simulation and for this reason idealised.
A more realistic input for the reconstruction would be produced by a raytracing simulation
between a number of individual sources and the observer with a given mass distribution in-
between. This takes also into account source properties like intrinsic ellipticity which contam-
inate the weak lensing signal. In fact, intrinsic ellipticity is the reason why it is averaged over
a number of background galaxies. It is also just an approximation that the expectation value of
the image ellipticity is equal to the reduced shear of the lens, based on a locally linearised lens
equation. In a raytracing simulation based on the full lens equation and the knowledge of the
mass distribution of the lens the correct image distortion is calculated. This also leads to the
fact that highly distorted images like arcs were not simulated yet, which should be the case,
because the reconstruction method is based on arc positions, as long as the exact positions of
the critical curves cannot be observed.
The second important point which was so far different to a real lensing analysis is that no real
image frames of a galaxy cluster field were analysed in order to obtain the lensing signal. As
was already pointed out, this step is crucial and highly non-trivial. Measuring the ellipticity
of an image is difficult because one has to take into account image properties like e.g. size or
surface brightness. Even separating different images from each other can be difficult. Further-
more, one has to correct for instrument errors and seeing conditions which means that one has
to have good knowledge of the PSF model. Also the density of distorted background galax-
ies will decrease in the center of a galaxy cluster because of the foreground light of the BCG
galaxy. So not only the reconstruction routines have to be tested in a real lensing scenario with
a known cluster as deflector, but also the methods to obtain the lensing observables. This point
was ignored so far.

7.3.1 Outline of the Method

To set up a realistic galaxy-cluster lensing situation, we used a lensing simulator developed by
M. Meneghetti (INAF-Osservatorio di Bologna) which includes all the points which were listed
above. With this simulator, we are in the position to test our reconstruction method under real
conditions, while we still have full knowledge of the deflecting mass distribution.
We just want to give a short outline of how the simulator works; for a full review on the
topic see Meneghetti et al. (2007b). As a starting point a set of sources is generated in a user-
defined field-of-view at random positions and with random orientation. The distances of the
sources, their morphological types and intrinsic magnitudes are chosen such that the luminos-
ity function of the VIMOS VLT Deep Survey (Le Fèvre et al., 2005) is reproduced. The two-
dimensional surface-brightness distribution of the source galaxies is modelled by a shapelet-
approach, which means that the surface-brightness distribution is decomposed into a set of
shapelet functions (see Refregier, 2003; Melchior et al., 2007) and described by the correspond-
ing shapelet coefficients (see Fig. 7.13). In the simulator, these coefficients are again chosen in
such a way that they adopt observed data, in this case the GOODS HST/ACS data (Giavalisco
et al., 2004). After the sources are created, their images are mapped through the deflecting
mass distribution onto the CCD of a specific instrument, using a ray-tracing code. The lens is
arbitrary and can be obtained by N-body simulations or analytical models. Several ray-tracing
implementations are possible, including tree algorithms, Fast-Fourier-transform methods and
multiple-plane ray-tracing. Before the images are created, the code also simulates typical obser-
vational effects like the PSF and seeing in form of a convolution of the surface brightness. The
form of the PSF-model can be chosen, which makes it possible to mimick a variety of different
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Figure 7.13: Example of generation of synthetic galaxies with shapelets. In the left panel the original
image of a GOODS galaxy is shown. The galaxy is decomposed into 9 x 9 shapelets and reconstructed in
the central panel. A second galaxy is then generated from the same shapelet decomposition by slightly
modifying the coeffcients and displayed in the right panel. The same color scale is used for all three
images. To reproduce the background and the noise properties of the image in the left panel, we have
simulated an observation with HST/ACS (lter F850LP, texp = 10600 sec). Each frame is 2.9” on a side.
(from Meneghetti et al., 2007b)

existing and future instruments. Seeing is included by a convolution with a Gaussian kernel.
Finally, other possible sources of noise, like the sky background or photon noise, are added and
the final image is created.

7.3.2 The Input Data

With the method described above, a simulated (2501x2501) pixel CCD-image was created (see
Fig. 7.14). The field size was 400”x 400” and the PSF-model was taken from the Subaru tele-
scope. The galaxy cluster which serves as a lens was taken from a N-body simulation and is
described in detail by Dolag et al. (2005) and Meneghetti et al. (2007a) (see Fig. 7.14).
The weak lensing analysis of the field was done by M. Radovich (INAF-Osservatorio di Napoli)
using the KSB method. It delivered an ellipticity catalog of 1826 background galaxies. Their
distribution in the observation field can be seen in Fig. 7.16. The arc-positions were obtained
by eye. A zoom of the original image on the area where the strong-lensing features are visible
is shown in Fig. 7.15. We used five arcs in the reconstruction which are also marked in Fig.
7.16.

7.3.3 The Reconstruction

Two different reconstruction runs were performed at low resolution, both using weak and
strong lensing constraints. The first run used ten background galaxies for one reconstruction
pixel. The result looked quite noisy, due to the fact that simulated but realistic observational
data was used. For this reason we decided to increase the number of background galaxies
per reconstruction pixel to 15 for the second run. The quality of the result was increased sig-
nificantly. Both κ-maps are shown in Fig. 7.17. For the second run also a high-resolution
reconstruction on a refined grid was performed and the result is shown in Fig. 7.18. As one
can see, it looks not as good as the results of the synthetic tests. Especially the outskirts of
the cluster are not resolved at all, which is due to the fact that the measured weak-lensing sig-
nal is not reliable enough in those low-density areas of the cluster. Please note the wide field
size of 400”x400”. Additional smoothing is necessary since noise effects clearly dominate the
lensing signal. Promising is the good result for the central part of the cluster, where the main
shape is reproduced well and also substructures are recovered. The size of the central κ-bulge
is still underestimated but this should be fixed easily with improvements in the strong-lensing
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Figure 7.14: Left panel: The simulated CCD-image using the characteristics of the ground based Sub-
aru telescope. The field size is 400”x400”. Right panel: The deflecting galaxy cluster. The side-length
corresponds to 372”.

Figure 7.15: Zoom on the center of the field where the arcs are clearly visible. The size of the image is ∼
50”x50”.
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Figure 7.16: The distribution of the background galaxies and the position of the five arcs used during
the reconstruction. The coordinates are given in arcsec relative to the lower right corner of the field.

Figure 7.17: Left panel: Reconstructed κ-map using 10 galaxies per pixel. The resolution is (26x26) pixels.
Right panel: κ-map using 15 galaxies on a resolution of (28x28) pixels. Both figures use logarithmic color
scale. The contours start from κ = 0.2 with a spacing of ∆κ = 0.045
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Figure 7.18: Left panel: Convergence-map of the high-resolution reconstruction. The color scale is loga-
rithmic and the contours start from κ = 0.18 with a spacing of ∆κ = 0.092. Right panel: Original cluster
rebinned to the reconstruction resolution, color scale and contour properties are identical.

section of the reconstruction method. The pure focus on arc positions is a fair, but relatively
coarse approach and will be improved in future work. Nevertheless the high-resolution re-
construction pushed the convergence in the center by a factor of two and improved the result
tremendously, especially because in this realistic simulation a huge void dominates the field
of distorted background galaxies. This example emphasizes how important the inclusion of
strong-lensing constraints is in a reconstruction of a massive cluster. Unclear is the bad result
in the area of pixel coordinate (45,35) where the original cluster shows substructure and the
reconstruction a huge void.
We conclude that our reconstruction method works very well in areas where we can use both
weak and strong-lensing constraints and where the weak-lensing signal is still high. Unfortu-
nately, it is still significantly limited by the quality of the lensing signal in a real image analysis,
which makes it necessary to calibrate the reconstruction method very carefully with the help
of the lensing simulator. This will be one of the main tasks of future work.

7.4 MS 2137

At the end of this thesis the reconstruction routines are also applied to the real galaxy cluster
MS2137. It is a rich cluster at redshift zc = 0.313, dominated by a bright single cD-galaxy. It
shows a giant, tangential arc and a radial arc. It was the first radial arc which was discovered
(see Fort et al., 1992). Also observed are three additional arclets. The photometric redshift of
all arcs was determined to be zarc = 1.6± 0.1. The tangential arc and two of the arclets belong
to the same source. Also the radial arc produces one counter-image. The cluster was studied
in several works, see Gavazzi et al. (2003); Gavazzi (2005); Comerford et al. (2006) and Sand
et al. (2007). All these studies used parametric reconstruction routines which differ from our
method. A detailed comparison with their results will be the subject of future work but is out
of the scope of this thesis for the following reasons. As mentioned, parametric approaches
were used, which rely on a certain mass distribution model, which makes a direct comparison
difficult since we produce a density map. Another problem is that we believe that our methods
needs more calibration with the simulator developed by Meneghetti et al. to make a legitimate
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Figure 7.19: The field of MS2137 shown in a HST/WFPC2 image. The huge tangential and the radial arc
are clearly visible.

statement about the mass distribution of the cluster. Furthermore a comprehensive error anal-
ysis has to be implemented which is not trivial in a non-parametric likelihood reconstruction.
All these points will be adressed in the continuation of this work.

7.4.1 The Input Data

The weak-lensing analysis is based on an VLT/FORS observation during summer 2001 and
were kindly provided by R. Gavazzi (IAP, Paris). The field size was 405”x405”. The elliptic-
ity catalog was obtained with a KSB-method and provided 1500 background-galaxy ellipticity
measurements. The arc positions were obtained by a HST/WFPC2 exposure using the F702W
filter. It is shown in Fig. 7.19. The field of background galaxies, together with the arc positions
in coordinates relative to the cD-galaxy, are shown in Fig. 7.20.

7.4.2 The Reconstruction

During the reconstruction the correct arc redshifts of zarc = 1.6, which are fortunately very well
known in the case of MS2137, were used. Based on the experience from the simulated tests,
we averaged over 15 galaxies per reconstruction pixel. The low-resolution reconstruction was
performed on a (25x25) pixel grid (see Fig. 7.21), which was refined afterwards to (75x75) pixels
for a reconstruction which resolves the arcs better (see Fig. 7.22). Unfortunately there is large
void in the observational background galaxy data in the upper middle part of the field. In
this area also the reconstruction is not able to resolve any structures while this is the case in
the other parts of the field. But still our results agree with former reconstructions which show
that MS2137 is a quite radially symmetric and relaxed cluster. Furthermore the smooth κ-map
supports the application of our method to real data.
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Figure 7.20: The field of background galaxies and the positions of the five arcs in arcsec relative to the
cD-galaxy of the cluster.

Figure 7.21: Low resolution reconstruction (25x25 pixel) κ-map. The side-length corresponds to 1.8 Mpc.
The color scale is logarithmic and the contours start at κ = 0.02 with a spacing of ∆κ = 0.045.
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Figure 7.22: High resolution reconstruction on a refined grid (75x75 pixel). The contours start at κ = 0.2
with a spacing of ∆κ = 0.07
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8 Conclusions and Outlook

In this work we presented in great detail a newly developed method for galaxy cluster-mass
reconstruction, based on a combination of weak and strong gravitational lensing. One of the
biggest advantages of our method ist the fact that it is fully non-parametric, and allows a re-
construction of the mass distribution of a galaxy cluster without any a priori assumptions on
the density profile. Our reconstruction is purely based on observational data which gives it
an advantage over classical parametric approaches. Of course, especially weak-lensing recon-
struction methods also use non-parametric approaches, but they cannot incorporate additional
strong lensing constraints, which results in an extreme underestimation of the mass distribu-
tion in the central regions of the cluster. We also want to point out that our method is easily
extendable, due to its maximum-likelihood nature.
The numerical implementation is in principle just a technical detail, but we showed that the χ2-
minimisation can be performed by simply solving a linear system of equations. Linear systems
are very well known in numerical mathematics, which means that reliable and fast algorithms
are already implemented. Furthermore we put considerable effort into developing routines
which build up these linear systems as fast as possible and thus allow a complicated two-level-
iteration scheme which accounts for the non-linearities in the reduced shear and for avoiding
an overfitting of intrinsic noise patterns in the input data.
The application of the method to data showed several things. First of all the method gives
almost perfect results when applied to ideal input data. Also in the application to synthetic
data, it became obvious how important the inclusion of strong lensing is in the reconstruction
of critical clusters, in order not to underestimate the central peaks of the mass distribution.
Very valuable was the test with the lensing simulator which gave very good results for the re-
construction of areas with high or intermediate mass, but performed worse in the outskirts of
the galaxy cluster where the lensing signal is weak. Also our method would need additional
smoothing here. The application to the real galaxy cluster MS 2137 showed similar features
like in the κ-map of the cluster in the scenario created by the lensing simulator which make us
assume that the results in the more central regions of the cluster are reliable.
Even if our method already gives remarkable results, there is still much room for improve-
ments. Future work should be structured as follows. First, we want to implement an additional
strong-lensing constraint provided by multiple image systems. Their addition was already
shown by Bradač et al. (2005) and can be included easily in our linear system approach. The
drawback is that multiple image systems are much harder to identify than simple arc positions,
but automated algorithms to find these systems are already announced in Bradač et al. (2007).
What we also want to improve is the usage of arc positions. With our method right now we
are only able to improve the reconstruction of a few points on the reconstruction grid. The use
of additional information will improve the reconstruction of the complete cluster center. An
exciting issue for the future might be gravitational flexion, since more and more methods arise
which are possibly able to measure a flexion signal in the observed data. Finally we should
include a more careful treatment of the mass-sheet-degeneracy for example by using a magni-
fication signal and implement a rather simple Kaiser-Squires routine to obtain an initial guess
as starting condition for the maximum-likelihood-reconstruction routines.
Extensive usage of the lensing simulator will be very important in the future especially for the
calibration of our method. This tool is very useful with respect to the application to real data
because we are able to simulate the characteristics of any instrument, and we can specifically
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calibrate our code before applying it to real data delivered by this instrument. After calibra-
tion, we should be able to draw reliable conclusions ON the mass-distribution of real galaxy
clusters. Since we want to use our method for real data, a close collaboration with groups
involved in image analysis will become necessary since our code is highly dependent on the
quality of the lensing signal. This field is also very active right now and the development of
reliable algorithms for measuring the shear signals is by far not completed yet.
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A Appendix: C++ Implementation

By intention we did not show concrete source code. The complete package is ∼ 10000 lines
long so it would be useless to describe code details. What we want to do is showing the most
important classes of the code and a part of the MPI-version of the driver routine.

A.1 The Inputfield-Class

2 //FINAL MPI
// i n p u t f i e l d . h

4 //def i nes the i n p u t f i e l d c l a s s which deals with data preparat ions wrt
//to e l l i p t i c i t y data and ccurve p o s i t i o n s

6 //methods in i n p u t f i e l d . cpp

8

# ifndef INPUTFIELD H
10 # define INPUTFIELD H

12 # include <iostream>
# include <fstream>

14 # include <s t r i n g>
# include <g s l / g s l m a t r i x . h>

16 # include <g s l / g s l s t a t i s t i c s . h>
# include <g s l / g s l l i n a l g . h>

18 # include <cmath>
# include ” r w f i t s . h”

20 # include ” u t i l . h”
# include ”soph math . h”

22

using namespace std ;
24

c l a s s AdaptiveInputField
26 {

private :
28

s t r i n g name ;
30 //name of c l u s t e r

const char ∗ f i lename ;
32 //fi lename of e l l i p−data a s c i i−f i l e

const char ∗ ccurvef i lename ;
34 //same f o r ccurve−p o s i t i o n a s c i i−f i l e

i n t numgal ;
36 //number of a v a i l a b l e g a l a x i e s

i n t suffnumgal ;
38 //number of g a l a x i e s to average over per p i x e l
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i n t numxpixels ;
40 //number of wanted p i x e l s in x−d i r e c t i o n , y defined

//by f i e l d s i z e
42 i n t numccurvepts ;

//num of a v a i l a b l e ccurve p o s i t i o n s
44 double f i e l d x ;

// f i e l d s i z e in x−d i r e c t i o n in whatever u n i t s
46 double f i e l d y ;

double f i e l d s i z e ;
48 double minrec ;

// s m a l l e s t a v a i l a b l e rec−p o s i t i o n of a galaxy in f i e l d
50 double mindec ;

double maxrec ;
52 double maxdec ;

i n t x dim ;
54 //number of x−p i x e l s in grid−map

i n t y dim ;
56 double p i x e l s i z e ;

//s i de l en gth of a p i x e l in whatever u n i t s
58 double g a ld e n s i ty ;

//galaxy dens i ty of the f i e l d
60 double completemeanell ip1 ;

//average value of o v e r a l l e l l i p 1
62 double completemeanell ip2 ;

double e l l i p 1 v a r i a n c e ;
64 //var iance of o v e r a l l e l l i p 1 sample

double e l l i p 2 v a r i a n c e ;
66 bool covariancecheck1 ;

// f l a g i f inverse of covaraincematr ix i s useable
68 bool covariancecheck2 ;

g s l v e c t o r ∗ rec ;
70 // p o s i t i o n cata logue in rec

g s l v e c t o r ∗dec ;
72 g s l v e c t o r ∗ e l l i p 1 ;

// e l l i p 1 cata logue
74 g s l v e c t o r ∗ e l l i p 2 ;

g s l m a t r i x ∗meanell ip1 ;
76 // e l l i p 1 f o r every p i x e l

g s l m a t r i x ∗meanell ip2 ;
78 g s l m a t r i x ∗ s igmae l l ip1 ;

//var iance of p i x e l e l l i p 1
80 g s l m a t r i x ∗ s igmae l l ip2 ;

g s l m a t r i x ∗ e l l i p ;
82 //modulus of e l l i p per p i x e l

g s l m a t r i x ∗ s i g m a e l l i p ;
84 //var iance of ell ipmodulus

g s l m a t r i x i n t ∗galaxyowners ;
86 //what galaxy uses a p i x e l

g s l m a t r i x i n t ∗galaxyshare ;
88 //which p i x e l s share g a l a x i e s and how many

g s l m a t r i x ∗ covar iance ;
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90 //f o r g o t f o r what t h i s i s , but a f r a i d to d e l e t e i t
g s l m a t r i x ∗ e l l i p 1 c o v a r i a n c e ;

92 //covar iance matrix f o r e l l i p 1
g s l m a t r i x ∗ e l l i p 2 c o v a r i a n c e ;

94 g s l v e c t o r ∗ ccurverec ;
//c c u r v e p o s i t i o n s in rec

96 g s l v e c t o r ∗ ccurvedec ;
g s l m a t r i x i n t ∗ ccurve ;

98 //ccurve in p i x e l s on given r e s o l u t i o n
g s l m a t r i x ∗ ccurveerror ;

100 // e r r o r on ccurve

102

public :
104

AdaptiveInputField ( s t r i n g , const char ∗ , int , i n t ) ;
106 //standard construc tor , needs name , e l l i p f i l e

//and numpixels and suffnumgal
108 AdaptiveInputField ( s t r i n g , const char ∗ , int , int , double , double , double , double ) ;

//same as above , but a cutout−window i s given by the 4 corners
110 ˜ AdaptiveInputField ( ) ;

//des t ruc tor , f r e e s memory
112 void average ( double ) ;

//adaptive averaging , radius increment has to be given
114 void docovariance ( ) ;

// c a l c u l a t e s covar iance matr ices
116 void ccurvebui ld ( const char ∗ ) ;

//marks the c r i t i c a l curve
118 //ccurve−cata log−f i l e has to be given

void w r i t e t o f i t s ( s t r i n g , i n t ) ;
120 //wri tes f i e l d−f i t s−f i l e , s e l e c t i o n s are 0 f o r pure e l l i p info ,

//1 f o r pure ccurve and e l s e f o r both
122 void showinfo ( i n t ) ;

//gives f i e l d i n f o to console , same s l e c t i o n as above
124 void showinfo ( int , const char ∗ ) ;

// p r i n t s to given a s c i i f i l e again s e l e c t i o n s p o s s i b l e
126 } ;

128 # endif /∗ ! INPUTFIELD H ∗/



84 A Appendix: C++ Implementation

A.2 The GalaxyCluster-Class

2 //FINAL MPI
// g a l a x y c l u s t e r . h

4 //Defines the GalaxyCluster c l a s s used to save a l l
//the important informat ions of a c l u s t e r wrt lens ing

6 //The o b j e c t s of t h i s c l a s s are updated every i t e r a t i o n step
//methods in g a l a x y c l u s t e r . cpp

8

# ifndef GALAXYCLUSTER H
10 # define GALAXYCLUSTER H

12 # include <g s l / g s l m a t r i x . h>
# include <s t r i n g>

14 # include ” f i n d i f . h”
# include ” u t i l . h”

16 # include ” r w f i t s . h”

18

using namespace std ;
20

c l a s s GalaxyCluster
22 {

24 private :

26 i n t x dim ;
// s i z e in x−dimension of the grid which r e p r e s e n t s c l u s t e r

28 i n t y dim ;
double x f r c t ;

30 // f r a c t i o n of grid s i z e wrt t o t a l f i e l d s i z e
g s l m a t r i x ∗pot ;

32 //grid which r e p r e s e n t s c l u s t e r p o t e n t i a l
g s l m a t r i x ∗ shear1 ;

34 // f i r s t component of shear
g s l m a t r i x ∗ shear2 ;

36 g s l m a t r i x ∗conv ;
//convergence

38 g s l m a t r i x ∗ j a c d e t ;
// j a c o b i a n determinant

40 g s l m a t r i x ∗ reredshear ;
// f i r s t component of reduced shear

42 g s l m a t r i x ∗ imredshear ;
g s l m a t r i x i n t ∗ ccurve ;

44 // seems to have become u s e l e s s

46 public :

48 GalaxyCluster ( int , int , double ) ;
//standard construc tor , needs x dim , y dim and x f r c t

50 ˜ GalaxyCluster ( ) ;
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//dest ruc tor , f r e e s memory
52 void buildfrompot ( ) ;

//bui lds a l l other p r o p e r t i e s out of p o t e n t i a l
54 void buildwithoutpot ( ) ;

//doing the same with given conv and shear
56 void masssheetnormalise ( ) ;

// doing mass−sheet−t r a f o by s e t t i n g most negat ive conv to 0
58 void bui ldborders ( ) ;

//migrated to f i n d i f
60 void readfrom ( s t r i n g , g s l m a t r i x ∗ ) ;

//reads from e x t e r n a l gsl , s e l e c t i o n s are pot ,
62 //shear1 /2 , conv , j a cd e t , reredahear , imredshear

void readfrom ( s t r i n g , g s l m a t r i x i n t ∗ ) ;
64 //reads the i n t g s l s

void readfrom ( s t r i n g , g s l v e c t o r ∗ ) ;
66 //same in vec tor format

void readfrom ( s t r i n g , g s l v e c t o r i n t ∗ ) ;
68 void wr i t e to ( s t r i n g , g s l m a t r i x ∗ ) ;

//wri tes to e x t e r n a l g s l
70 void wr i t e to ( s t r i n g , g s l m a t r i x i n t ∗ ) ;

void wr i t e to ( s t r i n g , g s l v e c t o r ∗ ) ;
72 void wr i t e to ( s t r i n g , g s l v e c t o r i n t ∗ ) ;

void e d i t ( s t r i n g , int , int , double ) ;
74 // e d i t s point of s e l e c t i o n a t p o s i t i o n i , j

void e d i t ( s t r i n g , int , int , i n t ) ;
76 void r e a d f r o m f i t s ( s t r i n g , s t r i n g ) ;

//reads s e l e c t i o n from e x t e r n a l f i t s pHDU, needs f i lename
78 void r e a d f r o m f i t s ( s t r i n g , s t r i n g , s t r i n g ) ;

//reads s e l e c t i o n from e x t e r n a l f i t s extension ,
80 //needs f i lename and extens ion

double show ( s t r i n g , i n t ) ;
82 double show ( s t r i n g , int , i n t ) ;

// p r i n t s value of s e l e c t i o n a t i , j
84 i n t showx ( ) ;

// p r i n t s x dim
86 i n t showy ( ) ;

double showxfrct ( ) ;
88 i n t showdim ( ) ;

void w r i t e t o f i t s ( s t r i n g , s t r i n g ) ;
90 //wri tes s e l e c t i o n to f i t s pHDU, s e l e c t i o n a l l a l s o poss ib le ,

//which wri tes a l l q u a n t i t i e s
92

void w r i t e t o f i t s ( s t r i n g , s t r i n g , s t r i n g ) ;
94 //wri tes to f i t s extens ion
} ;

96

# endif /∗ !GALAXYCLUSTER H ∗/
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A.3 The ClusterCore-Class

2 //FINAL MPI
// c l u s t e r c o r e . h

4 //Defining the s t r o n g l e n s i n g r e l e v a n t c l a s s which d e s c r i b e s
//the core of the Galaxy Clus ter

6 // f i n a l a n a l y s i s uses adaptive gr ids

8 # ifndef CLUSTERCORE H
# define CLUSTERCORE H

10

# include <iostream>
12 # include <fstream>

# include <g s l / g s l m a t r i x . h>
14 # include <s t r i n g>

# include ” g a l a x y c l u s t e r . h”
16 # include ” a d a p t i v e f i n d i f . h”

18 using namespace std ;

20 c l a s s ClusterCore
{

22 private :

24 i n t x dim ;
// s i z e of the x−dimension of the c l u s t e r spanning grid

26 i n t y dim ;
double x f r c t ;

28 // f r a c t i o n of s i z e wrt coarse grid in x
i n t adapt ivepts ;

30 //# of points i n t e r e s t i n g f o r adaptive grid
i n t maxgap ;

32 //maximum separa t ion between points of the adaptive grid
g s l m a t r i x i n t ∗ type map ;

34 //matrix which d e c l a r e s p i x e l p r o p e r t i e s
g s l m a t r i x i n t ∗ a d a p t i v e i n f o ;

36 // e s s e n t i a l core of the adaptive grid ,
// conta ins a l l necessary information esp . p o s i t i o n i n f o

38 g s l m a t r i x ∗pot ;
// p o t e n t i a l of core grid

40 g s l m a t r i x ∗conv ;
//same in convergence

42 g s l m a t r i x ∗ shear1 ;
g s l m a t r i x ∗ shear2 ;

44 g s l m a t r i x ∗ j a c d e t ; s
g s l m a t r i x ∗ redshear1 ;

46 g s l m a t r i x ∗ redshear2 ;
g s l m a t r i x ∗ e l l i p 1 ;

48 //more or l e s s open s l o t eg . f o r e l l i p i n f o s on c l u s t e r c o r e
g s l m a t r i x ∗ e l l i p 2 ;

50 g s l m a t r i x ∗ e l l i p e r r o r ;
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52 public :

54 ClusterCore ( int , int , double ) ;
//standard construc tor , needs x dim , y dim , x f r c t

56 ˜ ClusterCore ( ) ;
//des t ruc tor , c l e a r s memory

58 i n t showx ( ) ;
i n t showy ( ) ;

60 double showxfrct ( ) ;
i n t showdim ( ) ;

62 i n t numadaptive ( ) ;
// p r i n t s adapt ivepts

64 i n t showmaxgap ( ) ;
//shows the b i g g e s t separa t ion

66 void readfrom ( s t r i n g , g s l m a t r i x ∗ ) ;
void readfrom ( s t r i n g , g s l m a t r i x i n t ∗ ) ;

68 void readfrom ( s t r i n g , g s l v e c t o r ∗ ) ;
void readfrom ( s t r i n g , g s l v e c t o r i n t ∗ ) ;

70 void wr i t e to ( s t r i n g , g s l m a t r i x ∗ ) ;
void wr i t e to ( s t r i n g , g s l m a t r i x i n t ∗ ) ;

72 void wr i t e to ( s t r i n g , g s l v e c t o r ∗ ) ;
void wr i t e to ( s t r i n g , g s l v e c t o r i n t ∗ ) ;

74 void r e a d f r o m f i t s ( s t r i n g , s t r i n g ) ;
void r e a d f r o m f i t s ( s t r i n g , s t r i n g , s t r i n g ) ;

76 void w r i t e t o f i t s ( s t r i n g , s t r i n g ) ;
void w r i t e t o f i t s ( s t r i n g , s t r i n g , s t r i n g ) ;

78 void buildfrompot ( ) ;
void buildwithoutpot ( ) ;

80 void addccurve ( g s l m a t r i x i n t ∗ ) ;
//adds the c r i t i c a l courve to type map ,

82 // makes p o s s i b l e to bui ld up adaptive grid
void bui ldborders ( ) ;

84 //bui lds borders in type map , without ccurve ,
//makes i t p o s s i b l e to use adapt f i n d i f gr id

86 //on c l u s t e r c o r e withhout ccurve
void bui ldadapt ive ( ) ;

88 // c r u c i a l rout ine which bui lds necessary
//borders and adapt ive info , a l s o def i nes adpt ivepts

90 void wri teadatab le ( s t r i n g ) ;
//wri tes a d a p t i v e i n f o to dat

92 void giveadaptivecomponents ( g s l v e c t o r ∗ , g s l v e c t o r ∗ ,
g s l v e c t o r ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ ,

94 g s l v e c t o r ∗ , g s l v e c t o r ∗ ) ;
//gives the r e c o n s t r u c t i o n r e l e v a n t values l i k e conv and shear

96 //in adaptive form with length adapt ivepts
void i n s e r t a d a p t i v e r e s u l t s ( g s l m a t r i x ∗ ,

98 g s l m a t r i x ∗ , g s l m a t r i x ∗ ) ;
//the other way round , i n s e r t s conv and shear in c l u s t e r

100 } ;
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A.4 The Finite-Differences-Class

2 //FINAL MPI
// f i n d i f . h

4 // d e c l a r e s the very importan f i n d i f c l a s s which d e s c r i b e s a f i n i t e
// d i f f e r e n c i n g matrix to approximate second d e r i v a t i v e s

6

8 # ifndef FIN DIF H
# define FIN DIF H

10

# include <s t r i n g>
12 # include <cmath>

# include <g s l / g s l m a t r i x . h>
14 # include ” u t i l . h”

16 using namespace std ;

18 c l a s s F i n d i f g r i d
{

20

private :
22

i n t x dim ;
24 // s i z e in x of the descr ibed grid

i n t y dim ;
26 double x f r c t ;

g s l m a t r i x i n t ∗ type ;
28 // a u x i l l i a r y map to dec l are corners and borders

g s l v e c t o r i n t ∗ type2 ;
30 // j u s t a conversion to vec tor f o r convenience

32 public :
F i n d i f g r i d ( int , int , double ) ;

34 //standard c o n s t r u c t o r needs x dim , y dim , x f r c t
˜ F i n d i f g r i d ( ) ;

36 // d e s t r u c t o r f r e e s memory
i n t showx ( ) ;

38 i n t showy ( ) ;
i n t dim ( ) ;

40 double s1value ( int , i n t ) ; /
//gives value of shear1 f i n d i f−matrix

42 //at p o s i t i o n i , j
double s2value ( int , i n t ) ;

44 //same in shear2
double cvalue ( int , i n t ) ;

46 //same in convergence
void s1wri te ( g s l m a t r i x ∗ ) ;

48 //wri tes shear1 matrix to e x t e r n a l g s l
void s2wri te ( g s l m a t r i x ∗ ) ;

50 void cwri te ( g s l m a t r i x ∗ ) ;
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void s1multvec ( g s l v e c t o r ∗ , g s l v e c t o r ∗ ) ;
52 //gives r e s u l t−vector of s1matrix ∗ e x t e r n a l g s l

void s2multvec ( g s l v e c t o r ∗ , g s l v e c t o r ∗ ) ;
54 void cmultvec ( g s l v e c t o r ∗ , g s l v e c t o r ∗ ) ;

double s1multvecswitched ( int , g s l v e c t o r ∗ ) ;
56 //gives value of

//vector e x t e r n a l g s l ∗ s1mat t r ix a t p o s i t i o n i
58 double s2multvecswitched ( int , g s l v e c t o r ∗ ) ;

double cmultvecswitched ( int , g s l v e c t o r ∗ ) ;
60 double ccproduct ( int , int , g s l v e c t o r ∗ ) ;

//gives value of e x t e r n a l
62 // e x t e r n a l g s l ∗ cmatrix ∗ transposed cmatrix a t i , j

double s1s1product ( int , int , g s l v e c t o r ∗ ) ;
64 double s2s2product ( int , int , g s l v e c t o r ∗ ) ;

double Blkterm ( int , int , g s l v e c t o r i n t ∗ , g s l v e c t o r ∗ ,
66 g s l v e c t o r ∗ , g s l m a t r i x ∗ , g s l m a t r i x ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ ,

g s l v e c t o r ∗ , g s l v e c t o r ∗ , i n t ) ;
68 //gives the c o e f f i c i e n t matrix terms , a t pos i , j

// s e l e c t i o n s are
70 //0−15 f o r weak lens ing terms

//50−52 f o r r e g u l a r i s a t i o n terms
72 //100−102 f o r strong lens ing terms

double Vlterm ( int , g s l v e c t o r i n t ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ ,
74 g s l m a t r i x ∗ , g s l m a t r i x ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ ,

g s l v e c t o r ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ , g s l v e c t o r ∗ , i n t ) ;
76 //gives the r e s u l t v e r t o r terms at pos i ,

// s e l e c t i o n s are
78 //0−7 f o r weak lens ing

//50−52 f o r r e g u l a r i s a t i o n
80 //100 f o r strong lens ing
} ;

82

# endif /∗ ! FIN DIF H ∗/
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A.5 Some of the MPI-Driver-Routine

2 //sawmpi lowres . cpp
//main dr iver of the mpi vers ion

4 //shown i s the i n i t i a l r e c o n s t r u c t i o n ,
//one complete outer−l e v e l i t e r a t i o n

6 //and the fol lowing i n t e r p o l a t i o n

8 # include <iostream>
# include <cmath>

10 # include <g s l / g s l m a t r i x . h>
# include ” r w f i t s . h”

12 # include ”mpi . h”
# include ” mpi corerout ines . h”

14 # include ”mpi comm . h”
# include ” g a l a x y c l u s t e r . h”

16 # include ” r e c o n s t r u c t i o n k e r n e l . h”
# include ” n r i n t e r p o l . h”

18 # include ” u t i l . h”

20 using namespace std ;

22 i n t main ( i n t argc , char ∗∗ argv )
{

24 i n t my rank ;
i n t p ;

26

28 i n t s tar tdim = 1 0 ;
i n t f inaldim = 2 6 ;

30 double reg = 5 0 . 0 ;
double convthresh = 0 . 0 0 1 ;

32

// o b j e c t d e c l a r a t i o n s
34

g s l v e c t o r ∗ e l l i p 1 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
36 g s l v e c t o r ∗ e l l i p 2 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

g s l v e c t o r i n t ∗ ccurve = g s l v e c t o r i n t c a l l o c ( s tar tdim ∗ s tar tdim ) ;
38 g s l v e c t o r ∗dummy = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

g s l m a t r i x ∗C i j 1 = g s l m a t r i x c a l l o c ( s tar tdim ∗ startdim , s tar tdim ∗ s tar tdim ) ;
40 g s l m a t r i x ∗C i j 2 = g s l m a t r i x c a l l o c ( s tar tdim ∗ startdim , s tar tdim ∗ s tar tdim ) ;

double strongsigma ;
42 g s l v e c t o r ∗ e ta = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

g s l v e c t o r ∗wredshi f t = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
44 g s l v e c t o r ∗ s r e d s h i f t = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

46 g s l v e c t o r ∗ recpot = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
g s l v e c t o r ∗ recconv = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

48 g s l v e c t o r ∗ recshear1 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
g s l v e c t o r ∗ recshear2 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

50 g s l v e c t o r ∗ refconv = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
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g s l v e c t o r ∗ r e f s h e a r 1 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
52 g s l v e c t o r ∗ r e f s h e a r 2 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

g s l v e c t o r ∗ c o n t r o l 1 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
54 g s l v e c t o r ∗ c o n t r o l 2 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

56 g s l m a t r i x ∗p r o c c o e f f = g s l m a t r i x c a l l o c ( s tar tdim ∗ startdim , s tar tdim ∗ s tar tdim ) ;
g s l v e c t o r ∗procdata = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

58

60 g s l m a t r i x ∗ F i j 1 = g s l m a t r i x c a l l o c ( s tar tdim ∗ startdim , s tar tdim ∗ s tar tdim ) ;
g s l m a t r i x ∗ F i j 2 = g s l m a t r i x c a l l o c ( s tar tdim ∗ startdim , s tar tdim ∗ s tar tdim ) ;

62 g s l v e c t o r ∗ s t r o n g f a c t o r = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;
double c o n t r o l ;

64

//MPI s t a r t
66

MPI Ini t (&argc ,& argv ) ;
68 MPI Comm rank (MPI COMM WORLD,&my rank ) ;

MPI Comm size (MPI COMM WORLD,&p ) ;
70

// i n i t i a l r e c o n s t r u c t i o n assuming conv=0
72

i f ( my rank == 0)
74 {

GalaxyCluster c l u s t e r 1 ( startdim , startdim , 1 . 0 ) ;
76

read pimg ( ” f i e l d 1 0 . f i t s ” , e l l i p 1 ) ;
78 read imge ( ” f i e l d 1 0 . f i t s ” , ” a v e l l i p 2 ” , e l l i p 2 ) ;

read imge ( ” f i e l d 1 0 . f i t s ” , ” e l l i p c o v a r i a n c e 1 ” , C i j 1 ) ;
80 read imge ( ” f i e l d 1 0 . f i t s ” , ” e l l i p c o v a r i a n c e 2 ” , C i j 2 ) ;

read imgeint ( ” f i e l d 1 0 . f i t s ” , ”CCurve−Pos” , ccurve ) ;
82 read imge ( ” f i e l d 1 0 . f i t s ” , ”CCurve−Error ” ,dummy) ;

strongsigma = g s l v e c t o r g e t (dummy, 0 ) ;
84 g s l v e c t o r s e t a l l ( wredshift , 1 . 0 ) ;

g s l v e c t o r s e t a l l ( s r e d s h i f t , 1 . 0 ) ;
86 g s l v e c t o r s e t a l l ( eta , reg ) ;

88 weak ini t ( startdim , startdim , 1 . 0 , ccurve , e l l i p 1 , e l l i p 2 , Ci j1 ,
Ci j2 , refconv , re fshear1 , re fshear2 , eta , s t r o n g f a c t o r ,

90 wredshift , s r e d s h i f t , recpot ) ;
c l u s t e r 1 . readfrom ( ” pot ” , recpot ) ;

92 c l u s t e r 1 . buildfrompot ( ) ;
c l u s t e r 1 . masssheetnormalise ( ) ;

94 c l u s t e r 1 . wr i te to ( ”conv” , recconv ) ;
c l u s t e r 1 . wr i te to ( ” shear1 ” , recshear1 ) ;

96 c l u s t e r 1 . wr i te to ( ” shear2 ” , recshear2 ) ;
c l u s t e r 1 . w r i t e t o f i t s ( ” a l l ” , ” r e s u l t m p i 1 0 i n i t . f i t s ” ) ;

98 }
//sending the r e s u l t

100

send gsl toworld ( recconv , s tar tdim ∗ startdim , p , my rank ) ;
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102 gsl vector memcpy ( refconv , recconv ) ;
send gsl toworld ( recshear1 , s tar tdim ∗ startdim , p , my rank ) ;

104 gsl vector memcpy ( re fshear1 , recshear1 ) ;
send gsl toworld ( recshear2 , s tar tdim ∗ startdim , p , my rank ) ;

106 gsl vector memcpy ( re fshear2 , recshear2 ) ;
MPI Barrier (MPI Comm MPI COMM WORLD) ;

108

read pimg ( ” f i e l d 1 0 . f i t s ” , e l l i p 1 ) ;
110 read imge ( ” f i e l d 1 0 . f i t s ” , ” a v e l l i p 2 ” , e l l i p 2 ) ;

read imge ( ” f i e l d 1 0 . f i t s ” , ” e l l i p c o v a r i a n c e 1 ” , C i j 1 ) ;
112 read imge ( ” f i e l d 1 0 . f i t s ” , ” e l l i p c o v a r i a n c e 2 ” , C i j 2 ) ;

//read imgeint (” f i e l d 1 0 . f i t s ” ,” CCurve−Pos ” , ccurve ) ;
114 read imge ( ” f i e l d 1 0 . f i t s ” , ”CCurve−Error ” ,dummy) ;

strongsigma = g s l v e c t o r g e t (dummy, 0 ) ;
116 g s l v e c t o r s e t a l l ( wredshift , 1 . 0 ) ;

g s l v e c t o r s e t a l l ( s r e d s h i f t , 1 . 0 ) ;
118 g s l v e c t o r s e t a l l ( eta , reg ) ;

120 // s t a r t inner l e v e l i t e r a t i o n

122 for ( i n t i = 0 ; c o n t r o l > convthresh ; i ++)
{

124 gsl vector memcpy ( contro l1 , recconv ) ;
Weakfactor ( s tar tdim ∗ startdim , s tar tdim ∗ startdim , recconv ,

126 wredshift , F i j 1 , F i j 2 , Ci j1 , C i j 2 ) ;
MPI Barrier (MPI Comm MPI COMM WORLD) ;

128 S t r o n g f a c t o r ( startdim , startdim , recconv , recshear1 , recshear2 ,
s r e d s h i f t , strongsigma , s t r o n g f a c t o r ) ;

130 MPI Barrier (MPI Comm MPI COMM WORLD) ;
procdata = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

132 p r o c c o e f f = g s l m a t r i x c a l l o c ( s tar tdim ∗ startdim , s tar tdim ∗ s tar tdim ) ;
Data vector ( startdim , startdim , 1 . 0 , ccurve , e l l i p 1 ,

134 e l l i p 2 , F i j 1 , F i j 2 , refconv , re fshear1 , re fshear2 , eta ,
s t r o n g f a c t o r , wredshift , s r e d s h i f t , procdata , my rank , p ) ;

136 MPI Barrier (MPI Comm MPI COMM WORLD) ;
Coef f matr ix ( startdim , startdim , 1 . 0 , ccurve , e l l i p 1 ,

138 e l l i p 2 , F i j 1 , F i j 2 , refconv , re fshear1 , re fshear2 , eta ,
s t r o n g f a c t o r , wredshift , s r e d s h i f t , proccoef f , my rank , p ) ;

140 MPI Barrier (MPI Comm MPI COMM WORLD) ;

142 recv gsl fromworld ( procdata , s tar tdim ∗ startdim , p , my rank ) ;
MPI Barrier (MPI Comm MPI COMM WORLD) ;

144 recv gsl fromworld ( proccoef f , s tar tdim ∗ startdim ,
s tar tdim ∗ startdim , p , my rank ) ;

146 MPI Barrier (MPI Comm MPI COMM WORLD) ;

148 //evaluat ing r e s u l t

150 i f ( my rank == 0)
{

152 Solve system ( proccoef f , procdata , recpot , s tar tdim ∗ s tar tdim ) ;
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GalaxyCluster c l u s t e r 1 ( startdim , startdim , 1 . 0 ) ;
154 c l u s t e r 1 . readfrom ( ” pot ” , recpot ) ;

c l u s t e r 1 . buildfrompot ( ) ;
156 c l u s t e r 1 . masssheetnormalise ( ) ;

c l u s t e r 1 . wr i te to ( ”conv” , recconv ) ;
158 c l u s t e r 1 . wr i te to ( ” shear1 ” , recshear1 ) ;

c l u s t e r 1 . wr i te to ( ” shear2 ” , recshear2 ) ;
160 gsl vector memcpy ( contro l2 , recconv ) ;

c o n t r o l = change ( contro l1 , contro l2 , c l u s t e r 1 . showdim ( ) ) ;
162 cout <<”Maximum change in convergence : ” <<c o n t r o l <<endl ;

}
164

// t e l l i n g the MPI−World
166

send gsl toworld ( recconv , s tar tdim ∗ startdim , p , my rank ) ;
168 send gsl toworld ( recshear1 , s tar tdim ∗ startdim , p , my rank ) ;

send gsl toworld ( recshear2 , s tar tdim ∗ startdim , p , my rank ) ;
170 MPI Barrier (MPI Comm MPI COMM WORLD) ;

}
172

//wri t ing r e s u l t
174

i f ( my rank == 0)
176 {

GalaxyCluster c l u s t e r 1 ( startdim , startdim , 1 . 0 ) ;
178 c l u s t e r 1 . readfrom ( ” pot ” , recpot ) ;

c l u s t e r 1 . buildfrompot ( ) ;
180 c l u s t e r 1 . masssheetnormalise ( ) ;

c l u s t e r 1 . wr i te to ( ”conv” , recconv ) ;
182 c l u s t e r 1 . wr i te to ( ” shear1 ” , recshear1 ) ;

c l u s t e r 1 . wr i te to ( ” shear2 ” , recshear2 ) ;
184 c l u s t e r 1 . w r i t e t o f i t s ( ” a l l ” , ” r e s u l t m p i 1 0 i t e r . f i t s ” ) ;

186 }
MPI Barrier (MPI Comm MPI COMM WORLD) ;

188

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
190

// s t a r t outer l e v e l−i t e r a t i o n
192

s tar tdim = star tdim + 2 ;
194 g s l v e c t o r ∗nofuture1 = g s l v e c t o r c a l l o c ( s tar tdim ∗ s tar tdim ) ;

196 //bui lding comparison funct ion

198 i f ( my rank == 0)
{

200 smoothinterpol ( recpot , startdim −2, startdim −2 ,2 , nofuture1 ) ;
}

202

// from here the whole process a t r t s again
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204

.
206 .

.
208 .

.
210 .

.
212 .

214 MPI Final ize ( ) ;
return 0 ;

216 }
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