Julian Merten

An advanced method to recover mass profiles through gravitational lensing

> Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg INAF - Osservatorio Astronomico di Bologna

> > June 1st, 2010

with: Massimo Meneghetti (OABO) & Matthias Bartelmann (ITA)

Outline: A joint lensing reconstruction method

Reconstruction method

- A grid based "nonparametric" approach
- A problem of scales and a solution
- Implementation
 - The basic concept of GPUs
 - GPUs in practice
- 3 Applications
 - Realistic simulations
 - Real data
- Great things to come.
 - CLASH (HST/MCT)
 - Solving some puzzles

The basic idea of an "inverse" method (Bartelmann96)

$Spin\ fields$

$$\beta = \theta - \alpha(\theta)$$

$$\begin{array}{ll} \partial = \partial_1 + i\partial_2 & \qquad \partial^* = \partial_1 - i\partial \\ \psi & \qquad \alpha = \partial \psi \\ 2\gamma = \partial \partial \psi & \qquad 2\kappa = \partial^* \partial \psi \\ 2F = \partial^* \partial \partial \psi & \qquad 2G = \partial \partial \partial \psi \end{array}$$

$Statistical \ approach$

$$\chi^2(\psi) = \chi_1^2 + \chi_2^2 + \chi_3^2 + \dots$$

Possible constraints:

- Ellipticities of background sources
- Flexion (JM10 in prep.)
- Multiple image systems (Bradač05+)
- Critical curve estimates (JM09+)

The basic idea of an "inverse" method (Bartelmann96)

$Spin\ fields$

AIfA

$$\beta = \theta - \alpha(\theta)$$

$$\begin{array}{ll} \partial = \partial_1 + i\partial_2 & \partial^* = \partial_1 - i\partial_2 \\ \psi & \alpha = \partial \psi \\ 2\gamma = \partial \partial \psi & 2\kappa = \partial^* \partial \psi \\ 2F = \partial^* \partial \partial \psi & 2G = \partial \partial \partial \psi \end{array}$$

$Statistical \ approach$

$$\chi^2(\psi) = \chi_1^2 + \chi_2^2 + \chi_3^2 + \dots$$

Possible constraints:

- Ellipticities of background sources
- Flexion (JM10 in prep.)
- Multiple image systems (Bradač05+)
- Critical curve estimates (JM09+)

Other possible constraints Optical Magnification Member dynamics X-ray SZ Bonn

The basic idea of an "inverse" method (Bartelmann96)

$Spin\ fields$

$$\beta = \theta - \alpha(\theta)$$

$$\begin{array}{ll} \partial = \partial_1 + i\partial_2 & \partial^* = \partial_1 - i\partial_2 \\ \psi & \alpha = \partial \psi \\ 2\gamma = \partial \partial \psi & 2\kappa = \partial^* \partial \psi \\ 2F = \partial^* \partial \partial \psi & 2G = \partial \partial \partial \psi \end{array}$$

$Statistical \ approach$

$$\chi^2(\psi) = \chi_1^2 + \chi_2^2 + \chi_3^2 + \dots$$

Possible constraints:

- Ellipticities of background sources
- Flexion (JM10 in prep.)
- Multiple image systems (Bradač05+)
- Critical curve estimates (JM09+)

Example: Weak lensing

AIfA Bonn

/ 19

Example: Strong lensing

19

A problem of different scales

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis

Hel

19

(Abell 1703 in SUBARU r-band)

Clever merging: AMR (Bradač09, JM10)

/ 19

Making it all work: Numerics

- α , γ , κ , F and G can be expressed by derivatives of ψ via finite differences.
- Linearisation of the problem.
- 2-level iteration scheme with simple regularisation (Bradač05).

Geeky implementation facts

- Parallel C++ code
- \bullet medium sized \sim 12000 lines
- Uses GSL, LAPACK, ATLAS, MPI
- Fully documented, including user manual
- and...CUDA...

Problem Runtime

$$\begin{aligned} \mathcal{B}_{lk}\psi_k &= \mathcal{V}_l \\ \mathcal{B}_{lk} &\sim a_i b_j C_{ij} D_{il} E_{jk} \\ \mathcal{V}_l &\sim a_i b_j C_{ij} E_{il} \\ l, k, i, j &\sim \mathcal{O}(\text{grid}_\text{dim}^2) \end{aligned}$$

Single node GPU Parallelisation

Single node GPU Parallelisation -

AIfA Bonn

/ 19

9

GPUs in practice (JM10 in prep.)

NVIDIA Tesla C1060

- 240 streaming cores
- 4 GB DDR3 GPU memory
- 933 GFLOPS peak performance
- Upcoming Fermi cards

Speed-up

• Calculate:

$$\mathcal{B}_{lk} = a_i b_j \mathcal{C}_{ij} \mathcal{D}_{ik} \mathcal{E}_{jl}$$

- one-core CPU: 82.3 s
- 240 core GPU: 1.03 s

Realistic lensing simulations: SkyLens (Meneghetti, JM 08/09)

Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM

Name	Description
D	aperture diameter
g	detector gain
Apix	pixel area
$F(\lambda)$	used filter
$M(\lambda)$	mirror filter curve
$O(\lambda)$	optics filter curve
$C(\lambda)$	CCD filter curve
FoV	total field-of-view
RON	detector readout-noise
f	flat-field accuracy
a	residual flat-field error
PSF	PSF model
t_{exp}	exposure time
$A(\lambda)$	atmospheric extinction
m_{a}	airmass
SED _{sky}	sky-background emission
SEDgal	background population
α	deflection angle map

Realistic lensing simulations: SkyLens (Meneghetti, JM 08/09)

Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM

Weighing simulated galaxy clusters (Meneghetti, JM09)

Weighing simulated galaxy clusters (Meneghetti, JM09)

AIfA Bonn

12 / 19

MS2137 (JM09, Donnarumma09)

CL0024 with: T. Broadhurst, A. Zitrin, K. Umetsu

and the second of the second second

19

CL0024 with: T. Broadhurst, A. Zitrin, K. Umetsu

14 / 19

Not really official yet: COSMOS

with: M. Maturi, T.Schrabback

(HST/ACS, the old one)

(SUBARU)

Great things to come: The CLASH One of three HST/MCT programmes. Start September 2010 (3 cycles).

Cluster Lensing And Supernova survey with Hubble A Hubble Space Telescope Multi-Cycle Treasury Program

P.I. Marc Postman (STScI) Co-P.I. Holland Ford (JHU)

Matzhias Bartelmann + Narciso Benitze + Larry Bradley + Tom Broadhnark + Dan Coe + Megan Donahue + Rosai Gonzales Delgado Leopoldo Infante + Daniel Keison + Oler Lahav + Donn Lemze + Dan Maoz + Elinor Medezinski + Leonidas Moustakas + Eniko Regoe Adam Ress + Nero Roath + Stella Settx + Neichi Umetsu + Arjen van der Wei 1 Weiz Zheng + Ad Zhrin

Bonn

Science Drivers

- To map the dark matter in galaxy clusters
- To detect SN out to redshifts z > 1.5
- To detect and characterise z > 7 galaxies
- To study the galaxies in and behind the clusters

CLASH

CLASH Facts

- 25 X-ray clusters
- 524 orbits

Bonn

AIfA

- ACS + WFC3 obs.
- 14 (16) wave bands
- wide follow-ups with SUBARU

Our contribution

- Full pipeline calibration
- nonparametric DM profiles
- weak-lensing shapes + flexion
- magnification maps for the high-z guys

17

19

Cluster puzzles / Puzzle clusters + c.c.

$Density \ profile$

Strong lensing

$Cool\ cores$

Extreme dynamics

Are those puzzles at all?

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 - Star formation
 - AGN/SN feedback
 - Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

 \Leftrightarrow

Observations

- State-of-the-art data
 - HST/ACS/WFPC3
 - SUBARU/LBT
 - KECK
 - CHANDRA / XMM / SUZAKU
- Joint reconstruction method: lensing, X-ray, dynamics, SZ (JM09+, Bradač05+, Puchwein06+)
 - reliable error bars
 - large cluster sample

Both sides have to be analysed with the same tools.