Combining Weak and Strong Cluster Lensing cont.

July 18, 2008

Julian Merten (ZAH/ITA)

Cluster Mass Reconstruction

July 18, 2008 1 / 17

The Method

We combine weak and strong galaxy cluster lensing in the following way:

Reconstruction quantity is the lensing potential ψ
Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Fully non-parametric
- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

• Reconstruction quantity is the lensing potential ψ • Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Fully non-parametric
- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

- $\bullet\,$ Reconstruction quantity is the lensing potential ψ
- Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Fully non-parametric
- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

- $\bullet\,$ Reconstruction quantity is the lensing potential ψ
- Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

Fully non-parametric

- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

- $\bullet\,$ Reconstruction quantity is the lensing potential ψ
- Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Fully non-parametric
- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

- $\bullet\,$ Reconstruction quantity is the lensing potential ψ
- Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Fully non-parametric
- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

- $\bullet\,$ Reconstruction quantity is the lensing potential ψ
- Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Fully non-parametric
- Grid-based
- Weak lensing input: ellipticity catalogue
- Strong lensing input: critical curve or arc position

Weak Lensing

- State-of-the-art observations allow only for a (~ 10x10) pixel reconstruction grid
- Furthermore galaxies are not distributed homogeneously over the field
- Solution: Adaptiveaveraging-process
 Problem:
 Grid points become
 correlated

$$\chi^{2}_{w}(\psi) = \sum_{i,j} \left(\varepsilon - \frac{Z(z)\gamma(\psi)}{1 - Z(z)\kappa(\psi)} \right)_{i} \mathcal{C}_{ij}^{-1} \left(\varepsilon - \frac{Z(z)\gamma(\psi)}{1 - Z(z)\kappa(\psi)} \right)_{j}$$

Julian Merten (ZAH/ITA)

July 18, 2008 3 / 17

Strong Lensing

- The exact position of the critical curve is not observable
- Position of arcs is a very good approximation for the location of the critical curve
- Arc positions are known with high accuracy
- Using weak lensing grid resolutions would result in information loss

$$\chi_s^2(\psi) = \sum_i \frac{|\det A(\psi)|_i^2}{\sigma_i^2} = \sum_i \frac{|(1 - Z(z)\kappa(\psi))^2 - |Z(z)\gamma(\psi)|^2|}{\sigma_i^2}$$

- Purely synthetic simulations Feed real calculated cluster values into the code together with full critical curve
- Realistic simulations by using Massimo's simulator code Ray-tracing lensing simulation including realistic noise (background galaxy shape, PSF, seeing, foregrounds)
- One reconstruction of a real galaxy cluster MS 2137 using VLT and HST images

- Purely synthetic simulations Feed real calculated cluster values into the code together with full critical curve
- Realistic simulations by using Massimo's simulator code Ray-tracing lensing simulation including realistic noise (background galaxy shape, PSF, seeing, foregrounds)
- One reconstruction of a real galaxy cluster MS 2137 using VLT and HST images

- Purely synthetic simulations Feed real calculated cluster values into the code together with full critical curve
- Realistic simulations by using Massimo's simulator code Ray-tracing lensing simulation including realistic noise (background galaxy shape, PSF, seeing, foregrounds)
- One reconstruction of a real galaxy cluster MS 2137 using VLT and HST images

- Purely synthetic simulations Feed real calculated cluster values into the code together with full critical curve
- Realistic simulations by using Massimo's simulator code Ray-tracing lensing simulation including realistic noise (background galaxy shape, PSF, seeing, foregrounds)
- One reconstruction of a real galaxy cluster MS 2137 using VLT and HST images

A Synthetic Example

Figure: Fieldsize: 120"x120"; 2000 background galaxies, full critical curve

A Synthetic Example

The only 1D profile-plot I will show!

Q

Realistic Simulation

Figure: Fieldsize 400"×400"; 1826 background galaxies

Figure: Simulated CCD-image with Subaru characteristics

Realistic Simulation

Realistic Simulations cont. / g1

Name:	g1
Fieldsize:	1280''×1280''
Weak lensing:	13797 galaxies
Strong lensing:	Full critical curve

Julian Merten (ZAH/ITA)

Cluster Mass Reconstruction

July 18, 2008 11

Realistic Simulations cont. / g51

Name:	g51
Fieldsize:	1900"×1900"
Weak lensing:	30839 galaxies
Strong lensing:	Full critical curve

Julian Merten (ZAH/ITA)

Cluster Mass Reconstruction

008 12 / 17

MS 2137

Figure: Fieldsize 405" x405"; 1500 background galaxies, arcs included Figure: HST/WFPC2 image, first radial arc to be discovered (Fort et al. 1992)

MS 2137

- Comparison of weak, strong and combined lensing-reconstructions with Massimo.
- Web interface for the lensing simulator and reconstructions of a big simulated cluster sample with Peter and Massimo.
- Application to more real data.

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function
- Fast χ^2 -minimisation algorithm
- Testing its implementation
- Reconstructions of synthetic clusters
- Realistic simulations including flexion

Multiple image systems

o ...

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function
- Fast χ^2 -minimisation algorithm
- Testing its implementation
- Reconstructions of synthetic clusters
- Realistic simulations including flexion

Multiple image systems

o ...

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function
- Fast χ^2 -minimisation algorithm
- Testing its implementation
- Reconstructions of synthetic clusters
- Realistic simulations including flexion

Multiple image systems

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function \checkmark
- Fast χ^2 -minimisation algorithm
- Testing its implementation
- Reconstructions of synthetic clusters
- Realistic simulations including flexion

Multiple image systems

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function \checkmark
- Fast χ^2 -minimisation algorithm \checkmark
- Testing its implementation
- Reconstructions of synthetic clusters
- Realistic simulations including flexion

Multiple image systems

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function \checkmark
- Fast χ^2 -minimisation algorithm \checkmark
- Testing its implementation ×
- Reconstructions of synthetic clusters
- Realistic simulations including flexion

Multiple image systems

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function \checkmark
- Fast χ^2 -minimisation algorithm \checkmark
- Testing its implementation ×
- Reconstructions of synthetic clusters ×
- Realistic simulations including flexion

Multiple image systems

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function \checkmark
- Fast χ^2 -minimisation algorithm \checkmark
- Testing its implementation ×
- Reconstructions of synthetic clusters ×
- Realistic simulations including flexion ×

Multiple image systems

Ο...

Flexion

- Flexion finite differences schemes
- Testing their implementation
- Flexion $\chi^2(\psi)$ -function \checkmark
- Fast χ^2 -minimisation algorithm \checkmark
- Testing its implementation ×
- Reconstructions of synthetic clusters ×
- Realistic simulations including flexion ×

Multiple image systems

o ...×

Have a nice semester break!

Julian Merten (ZAH/ITA)