Scalar fields and vacuum fluctuations II

Julian Merten

ITA

July 12, 2007

Julian Merten (ITA)

Scalar fields and vacuum fluctuations II

July 12, 2007 1 / 22

Outline

What we did so far

2 Primordial curvature perturbations

- gaussianity
- spectrum/spectral index
- beyond slow-roll

Gravitational waves

- spectrum/spectral index
- gravitational waves vs. adiabatic density perturbations

Isocurvature and multicomponent inflation

Some reminders:

slow-roll-inflation (Ewald)

$$H^{2} \simeq \frac{V(\phi)}{3M_{pl}^{2}} \qquad 3H\dot{\phi} \simeq -V'(\phi)$$

$$\epsilon(\phi) \ll 1 \qquad |\eta(\phi)| \ll 1$$

$$\epsilon(\phi) = \frac{M_{pl}^{2}}{2} \frac{{V'}^{2}}{V} \qquad \eta(\phi) = M_{pl}^{2} \frac{V''}{V}$$

curvature-perturbations (Claudia/Emanuel)

$$\mathcal{R}_{k} = -\left[\frac{H}{\dot{\phi}}\delta\phi_{k}\right]_{t=t_{*}}$$
$$\delta_{k} = \frac{4}{9}\left(\frac{k}{aH}\right)^{2}\mathcal{R}_{k}$$

tensor and isocurvature perturbations (Christian)

$$\mathcal{P}_{grav}(k) = \frac{2}{M_{pl}^2} \left(\frac{H}{2\pi}\right)^2 \bigg|_{k=aH}$$

scalar fields and vacuum fluctuations (Peter)

$$\mathcal{P}_{\phi}(k, t_*) = \left(\frac{H}{2\pi}\right)^2 \bigg|_{k=aH}$$

- 一司

July 12, 2007 3 / 22

So far we were discussing kind of separated things:

- inflaton field driving (slow-roll) inflation (comoving Hubble-Length decreases), during this period all cosmologically interesting scales leave horizon including vacuum fluctuations $\delta \phi_k(t_*)$ of the inflaton field
- This vacuum fluctuation is assumed to be gaussian and linked to a curvature perturbation $\mathcal{R}_k(t)$ which has the great advantage that it stays constant until it reenters the horizon again
- \mathcal{R}_k is then taken as the primordial value and cosmological perturbation theory starts...

$$g_k(t) = T_g(t,k)\mathcal{R}_k$$

- inflaton field is in ground/vacuum state
- QFT says: Let's describe a quantum field by an inifinite series of harmonic oscillators
- As long as ϕ is in vacuum state an individual **k**-mode is drawn from a probability-distribution and independent from all others
- Overall fluctuation $\delta \phi_k$ is obtained by summing over an infinite number of **k**-values
- Using central limit theorem makes $\delta \phi_k$ gaussian

(Sideremark: The fact that even every inidividual ${\bf k}\text{-mode}$ is gaussian seems to be an accident)

Primordial curvature perturbations: spectrum

Now we are able to put all pieces together:

For the spectrum of the primoridal curvature perturbation we obtain

$$\mathcal{P}_{\mathcal{R}}(k) = \left[\left(rac{H}{\dot{\phi}}
ight)^2 \mathcal{P}_{\phi}(k)
ight]_{t=t,t}$$

Using the spectrum for the vacuum fluctuations of the inflaton field we get

$$\mathcal{P}_{\mathcal{R}}(k) = \left(\frac{H}{\dot{\phi}}\right)^2 \left(\frac{H}{2\pi}\right)^2$$

evaluated at horizon exit k = aH, now using slow roll conditions:

$$\mathcal{P}_{\mathcal{R}}(k) = rac{1}{12\pi^2 M_{Pl}^6} rac{V^3}{V'^2} = rac{1}{24\pi^2 M_{Pl}^4} rac{V}{\epsilon}$$

Matching observations

The matter density contrast is given by

$$\delta_{\mathbf{k}}(t) = \frac{2}{5} \left(\frac{k}{aH}\right)^2 T(k) \mathcal{R}_{\mathbf{k}}$$

Which gives us the spectrum

$$\mathcal{P}_{\delta}(k,t) = rac{4}{25} \left(rac{k}{aH}
ight)^4 T^2(k) \mathcal{P}_{\mathcal{R}}(k) = \left(rac{k}{aH}
ight)^4 T^2(k) \delta_H^2(k)$$

defining $\delta_{H}^{2}(k) \equiv \frac{4}{25} \mathcal{P}_{\mathcal{R}}(k)$ and δ_{H} as the rms value of δ at horizon entry.

$$\Rightarrow \delta_{H}^{2}(k) \simeq \frac{1}{75\pi^{2}M_{\rho l}^{6}} \frac{V^{3}}{V'^{2}} = \frac{1}{150\pi^{2}M_{\rho l}^{4}} \frac{V^{3}}{\epsilon}$$

Cobe says: $\delta_H(k_{pivot}) = 1.91 \times 10^{-5}$ normalized on a large scale $k_{pivot} \equiv 7.5 a_0 H_0$

Assuming only contributions of adiabatic density perturbations

$$\frac{V^{3/2}}{M_{pl}^3 V'} = 5.2 \times 10^{-4}$$

or in other words

$$\frac{V^{1/4}}{\epsilon^{1/4}} = 0.027 M_{Pl} = 6.6 \times 10^{16} GeV$$

This relation now provides us a crucial constraint on every model of inflation with respect to the underlying inflaton potential.

Scale dependence/spectral index

Whatever the spectrum will look like wrt the dependence on k we can define an effective spectral index n(k) over an interval of k where n(k) is constant

$$n(k) - 1 \equiv rac{dln \mathcal{P}_{\mathcal{R}}}{dlnk}$$

Assuming a power law behaviour

$$\mathcal{P}_\mathcal{R} \propto k^{n-1}$$

The equations for the spectrum are evaluated at k = aH and the rate of change of H is negligible compared to a

 \Rightarrow dlnk = Hdt and from slow roll we get $dt = -(3H/V')d\phi$

$$\Rightarrow \frac{d}{dlnk} = -M_{pl}^2 \frac{V'}{V} \frac{d}{d\phi}$$

Conclusions for spectral index

Now we can take derivatives of the slow roll parameters,

$$\frac{d\epsilon}{dlnk} = 2\epsilon\eta - 4\epsilon^2$$
$$\frac{d\eta}{dlnk} = -2\epsilon\eta + \xi^2$$
$$\frac{d\xi^2}{dlnk} = -2\epsilon\xi^2 + \eta\xi^2 + \sigma^3$$

$$\xi^{2} \equiv M_{pl}^{4} \frac{V'(d^{3}V/d\phi^{3})}{V^{2}}$$
$$\sigma^{3} \equiv M_{pl}^{6} \frac{V'^{2}(d^{4}V/d\phi^{4})}{V^{3}}$$

Conclusions for spectral index

Now we can take derivatives of the slow roll parameters,

 $\frac{d\epsilon}{dlnk} = 2\epsilon\eta - 4\epsilon^2$ $\frac{d\eta}{dlnk} = -2\epsilon\eta + \xi^2$ $\frac{d\xi^2}{dlnk} = -2\epsilon\xi^2 + \eta\xi^2 + \sigma^3$

with

Consequences for spectral index

$$\mathcal{P}_{\mathcal{R}}(k) = \frac{1}{12\pi^2 M_{Pl}^6} \frac{V^3}{V'^2} = \frac{1}{24\pi^2 M_{Pl}^4} \frac{V}{\epsilon}$$
$$\Rightarrow n - 1 = -6\epsilon + 2\eta$$

This leads to the conlcusion Inflation predicts that the variation of the spectrum is small in an interval $\Delta lnk \sim 1$ we can also caluclate the variation of n to be

$$\xi^{2} \equiv M_{pl}^{4} \frac{V'(d^{3}V/d\phi^{3})}{V^{2}}$$
$$\sigma^{3} \equiv M_{pl}^{6} \frac{V'^{2}(d^{4}V/d\phi^{4})}{V^{3}}$$

$$\frac{dn}{dlnk} = -16\epsilon\eta + 24\epsilon^2 + 2\xi^2$$

This might be observeable by Planck and another test for inflation models

ξ

July 12, 2007 10 / 22

Going beyond slow roll

Simple error estimation

$$\begin{split} \frac{\Delta \mathcal{P}_{\mathcal{R}}}{\mathcal{P}_{\mathcal{R}}} &= \mathcal{O}(\epsilon, \eta) \\ \Rightarrow n - 1 &= 2\eta - 6\epsilon + \mathcal{O}(\xi^2) \\ \Rightarrow \frac{dn}{dlnk} &= -16\epsilon\eta + 24\epsilon^2 + 2\xi^2 + \mathcal{O}(\sigma^3) \end{split}$$

It is also possible to obtain predictions by simply using linear perturbation theory and some of them are solvebale in a analytic way. The caluclations are quite lengthy and include a lot from Chapter 14, but assuming power-law inflation the result is

$$\mathcal{P}_{\mathcal{R}}^{1/2}(K) = 2^{\nu - 3/2} \frac{\Gamma(\nu)}{\Gamma(3/2)} \left(\nu - \frac{1}{2}\right)^{1/2 - \nu} \frac{H^2}{2\pi |\dot{H}|} \bigg|_{k=aH}, \quad \nu = \frac{3}{2} + \frac{\epsilon_H}{1 - \epsilon_H}$$

Normally impovements to the obtained spectrum are so tiny that they are not measureable with fixed parameters of a given inflation model. Until now (2000) the change can be cancelled by varying model parameters.

 \Rightarrow No further constraints on inflation model

Additional constraints are welcome to reduce parameter space.

 \Rightarrow Gravitational waves

As we have seen the spectrum of a gravitational wave amplitudes created by fluctuations of the inflaton field are given by

$$\mathcal{P}_{grav}(k) = \frac{2}{M_{pl}^2} \left(\frac{H}{2\pi}\right)^2 \bigg|_{k=aH}$$

again we define a spectral index

$$n_{grav} = rac{dln \mathcal{P}_{grav}}{dlnk}$$

and by applying the same formalism we obtain

$$n_{grav} = -2\epsilon$$

Gravitational waves: comparison to density perturbations

Looking at the CMB we can see two contributions to the anisotropies and their according spectra

density perturbations

$$I(I+1)C_{I} = \frac{\pi}{2} \left[\frac{\sqrt{\pi}}{2} I(I+1) \frac{\Gamma[(3-n)/2)]\Gamma[I+(n-1)/2]}{\Gamma[(4-n)/2)]\Gamma[I+(5-n)/2]} \right] \delta_{H}^{2}(H_{0}/2)$$

gravitational waves

$$I(I+1)\mathcal{C}_I = \frac{\pi}{9}\left(1 + \frac{48\pi^2}{385}\right)\mathcal{P}_{grav}c_I$$

We can now define the ratio of their contributions

$$r \equiv rac{\mathcal{C}_l(grav)}{\mathcal{C}_l(ad)} \simeq 12.4\epsilon$$

We have seen that the spectra of gravitational waves and density perturbations are related

 $r = -6.2 n_{grav}$

This equation known as consistency equation holds assuming single-field slow-roll inflation, independent of the underlying potential The expression consistency simply states that both quantities which are generated at the same period by the same potential $V(\phi)$ must be connected.

Problems:

- A solid signal for r will be very hard to detect (even for Planck)
- With respect to the detection efficiency every suggested inflation model delivers a negligible contribution for gravitational waves

• We do not exspect that such a perturbartion is present in nature at significant level

- We do not exspect that such a perturbartion is present in nature at significant level
- So what...??

- We do not exspect that such a perturbartion is present in nature at significant level
- So what...??
- The only physically motivated source of such an isocurvature perturbation is the scalar axion field
- Interesting for particle physics
- possible candidate for CDM
- Even the requirement that its isocurvature contribution is not bigger than the total density perturbations gives significant constraint on the axion properties

Isocurvature: the general case

• Assume a non-inflaton-scalar-field χ with a simple potential

$$V(\chi) = \frac{1}{2}m_{\chi}^2\chi^2$$

• We want the field to become classical after horizon exit

 $m_\chi \lesssim H$

 We focus also on a field which mass is small that it has negligible motion during some e-folds of inflation

$$m_\chi^2 \ll V'' (\ll H^2)$$

• At horizon exit we obtain the spectrum

$$\mathcal{P}_{\chi}(k) = \left(\frac{H}{2\pi}\right)^2$$

July 12, 2007 17 / 22

Isocurvature: dark matter contribution

- If χ survived inflation it can create isocurvature perturbations by contributing with a fraction f_{χ} to the nonbaryonic dark matter (only case which is taken into account)
- mechanism is called misalignment: χ starts to oscillate around the minimum of potential, which happens when H falls below m_{χ}
- This leads to an initial isocurvature perturbation

$$S = \frac{\delta \rho_c}{\rho_c} = f_{\chi} \frac{\delta \rho_{\chi}}{\rho_{\chi}}$$

• With $ho_\chi \propto (\chi+\delta\chi)^2$ and assuming $|\delta\chi|\ll |\chi|$ we get the spectrum

$$\mathcal{P}_{\mathcal{S}} = rac{4f_{\chi}}{\chi} \left(rac{H}{2\pi}
ight)^2 \quad \stackrel{obs}{\Rightarrow} \quad f_{\chi} \sim 1$$

• For $|\delta\chi| \gg |\chi|$ we find

$$f_\chi \lesssim 10^{-5}$$

- Pseudo-Goldstone-Boson of the spontaneously broken Peccei-Quinn-symmetry
- predicted by some extensions of the standard model
- in the (very) early universe this symmetry is taken to be exact, what makes the axion massless between $T \sim 1 GeV 100 MeV$ mass increases to its real value
- ullet Astro .-and colliderphysics predict $m \lesssim 10^{-2} eV$
- If symmetrie is broken spontaneously at all epochs after horizon exit, the axion give an isocurvature distribution by the misalignment mechanism and axion number will be conserved
 - \Rightarrow Calculate Ω_{a0} with standard ($\mathcal{T}>1 \textit{GeV})\text{-}cosmology}$

$$\Omega_{a0} \lesssim 1 \quad \Rightarrow \quad m \gtrsim 10^{-3} - 10^{-4} eV$$

- One-component solutions in scalar field space refer to straight line-trajectories
- Multi-component slow-roll models represent a family of curved trajectories in the space of two or more fields
- We refer to the coordinates of the inflation-trajectory in field space as components of the inflaton
- Let's assume that all components fulfil the slow roll condition

$$3H\dot{\phi}_{a} = -\frac{\partial V}{\partial \phi_{a}}$$

$$\Rightarrow \quad \epsilon_{a} \equiv M_{pl}^{2} \left(\frac{\partial V/\partial \phi_{a}}{V}\right) \ll 1 \qquad |\eta_{ab}| \equiv M_{pl}^{2} \frac{\partial^{2} V/\partial \phi_{a} \partial \phi_{b}}{V} \ll 1$$

• Now we have to check how the primordial curvature perturbations arise

Consequences of multicomponent inflation

A formalism that I don't understand at all says (using $\mathcal{R} = H\delta t$ proved in Chapter 14)

$$\mathcal{R} = \delta N$$

 $\Rightarrow \mathcal{R} = \frac{\partial N}{\partial \phi_a} \delta \phi_a$

where N is the number of Hubble times measured by a comoving observer between an initial slice defining $\delta\phi$ and the final slice defining \mathcal{R} Consequences

• $\delta_H^2 = \frac{V}{75\pi^2 M_{pl}^2} \frac{\partial N}{\partial \phi_a} \frac{\partial N}{\partial \phi_a}$ • $n-1 = -\frac{M_{pl}^2 V_{,a} V_{,a}}{V^2} - \frac{2}{M_{pl} N_{,a} N_{,a}} + 2\frac{M_{pl}^2 N_{,a} N_{,b} V_{,ab}}{V N_{,d} N_{,d}}$

• The classical trajectory is not specified by the potential, but has to be given seperately

Julian Merten (ITA)

- The origin of primordial perturbations from vacuum fluctuations of the inflaton field justifies gaussianity and gives theoretical values for the exspected spectra
- By comparing with observations one can reduce parameter-space for the inflaton-model
- Observation of gravitational waves would reduce it even more
- By looking at a hypothetical isocurvature creation by an axion field, one can obtain a relativley small window for the axion mass
- Assuming multicomponent inflation makes things complicated