Julian Merten

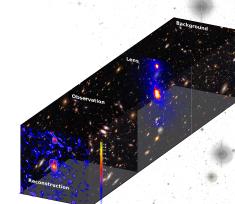
Towards an understanding of galaxy clusters

Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg

May 9th, 2011

Overview

Galaxy clusters


- Cosmological probes
- What we don't understand
- How to pin them

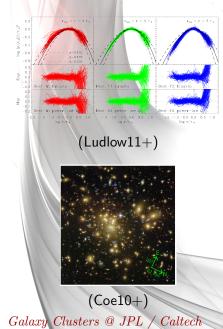
A combined lensing method

- Weak lensing (WL)
- Strong lensing (SL)
- WL + SL
- $\blacktriangleright |\mathsf{WL} + \mathsf{SL}| > |\mathsf{WL}| + |\mathsf{SL}|$
- Numerics and GPUs

Two applications

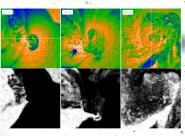
- Abell 2744:
 Pandora's Cluster
- The CLASH HST/MCT programme

Clusters of galaxies

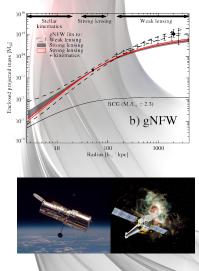

 Largest gravitationally bound structures in the observable Universe

 $\sim 10^{15} M_\odot$ & Mpc scale

- They appear as dark matter dominated (85% DM, 13% hot gas, 2% stars)
- Baryonic component is not dominant, though not negligible (e.g. Duffy10+)
- All cluster components are directly or indirectly observable in three main wavelength regimes
 - \Rightarrow Cosmic laboratories
- Powerful gravitational lenses
- We do not really understand them...

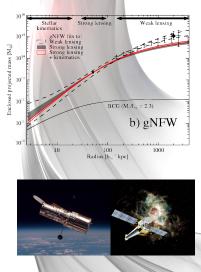


Problems with galaxy clusters


(Clowe06+)

(Ascasibar06+)

How to understand them better

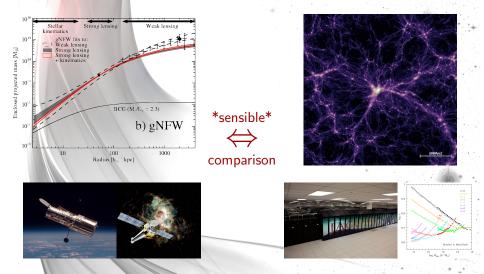

How to understand them better



Galaxy Clusters @ JPL / Caltech

5

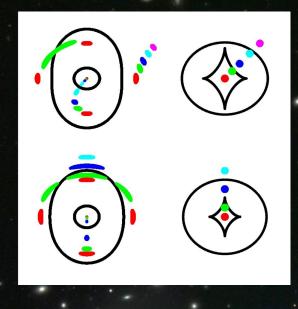
How to understand them better -



Galaxy Clusters @ JPL / Caltech

5 / 22

How to understand them better -



5

22

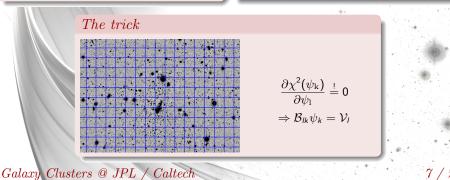
Gravitational lensing on two sketches

Gravitational lensing on two sketches

A combined lensing method: Methodology I

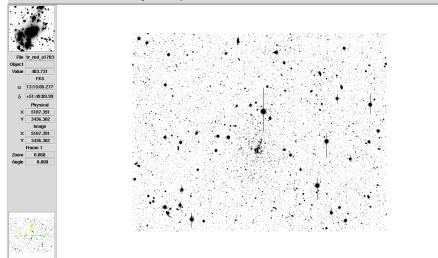
Cluster lensing in a box

$$\beta = \theta - \alpha(\theta)$$


$\partial=\partial_1+i\partial_2$	$\partial^* = \partial_1 - i \partial_2$
ψ	$\alpha=\partial\psi$
$2\gamma = \partial \partial \psi$	$2\kappa = \partial^* \partial \psi$
$2F = \partial^* \partial \partial \psi$	$2G = \partial \partial \partial \psi$

Statistical approach

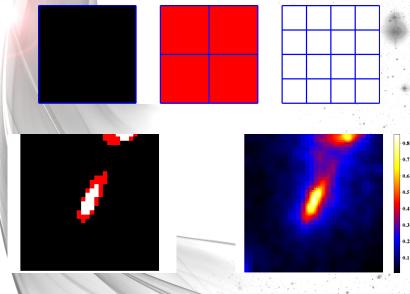
$$\chi^2(\psi) = \chi_1^2 + \chi_2^2 + \chi_3^2 + \dots$$


Possible constraints:

- Ellipticities of background sources
- Flexion (JM10 in prep.)
- Multiple image systems (Bradač05+)
- Critical curve estimates (JM09+)

A problem of different scales (JM10, Bradač09)

Re Edit View Frame Bin Zoom Scale Color Region WCS Analysis

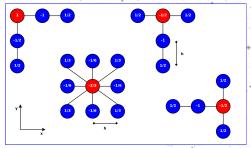

(Abell 1703 in SUBARU r-band)

Galaxy Clusters @ JPL / Caltech

/ 22

lelp

A problem of different scales (JM10, Bradač09)

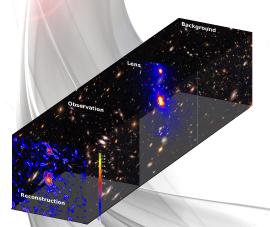


Galaxy Clusters @ JPL / Caltech

8 22

A combined lensing method: Implementation

- α , γ , κ , F and G can be expressed by derivatives of ψ via finite differences.
- Linearisation of the problem.
- 2-level iteration scheme with simple regularisation (Bradač05).


Geeky implementation facts

- Parallel C++ code
- ullet medium sized \sim 12000 lines
- Uses GSL, LAPACK, ATLAS, MPI
- Fully documented, including user manual
- and...CUDA...

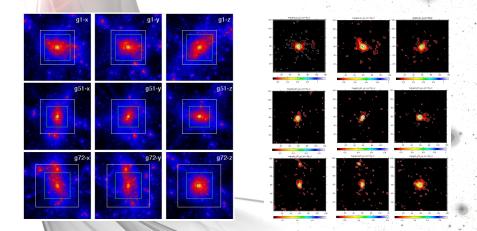
Problem Runtime

$$\begin{aligned} \mathcal{B}_{lk}\psi_k &= \mathcal{V}_l \\ \mathcal{B}_{lk} &\sim a_i b_j C_{ij} D_{il} E_{jk} \\ \mathcal{V}_l &\sim a_i b_j C_{ij} E_{il} \\ l, k, i, j &\sim \mathcal{O}(\text{grid}_\text{dim}^2) \end{aligned}$$

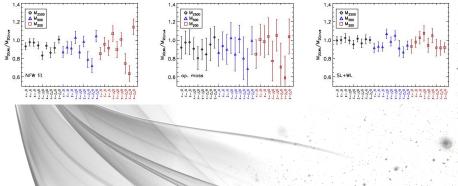
Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM

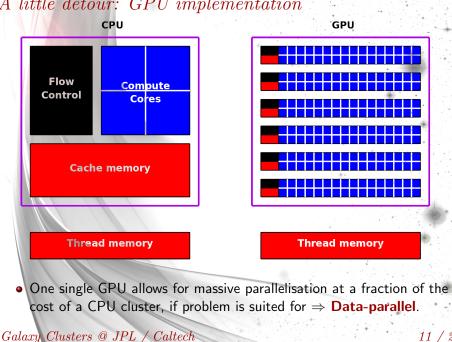
	Name	Description
	D	aperture diameter
	g	detector gain
	A_{pix}	pixel area
	$F(\lambda)$	used filter
	$M(\lambda)$	mirror filter curve
	$O(\lambda)$	optics filter curve
	$C(\lambda)$	CCD filter curve
	FoV	total field-of-view
	RON	detector readout-noise
	f	flat-field accuracy
	a	residual flat-field error
	PSF	PSF model
	t_{exp}	exposure time
	$A(\lambda)$	atmospheric extinction
	m_{a}	airmass
	SED _{sky}	sky-background emission
	SED_{gal}	background population
-	α	deflection angle map

Galaxy Clusters @ JPL / Caltech


0 / 22

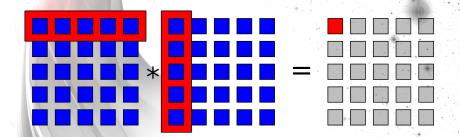
Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM

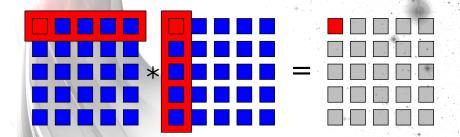

Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM

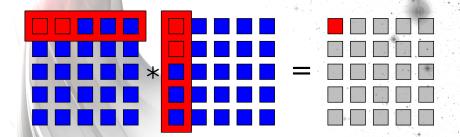


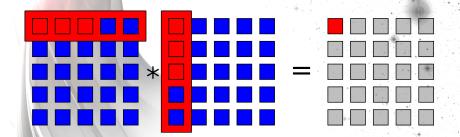
Galaxy Clusters @ JPL / Caltech

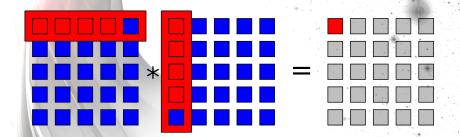
10 / 22

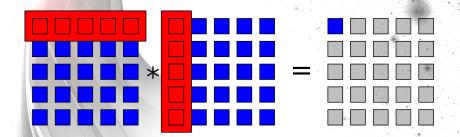

Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM



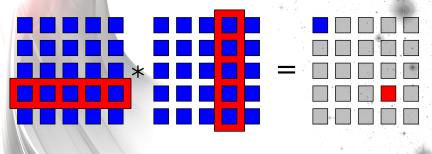

 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.

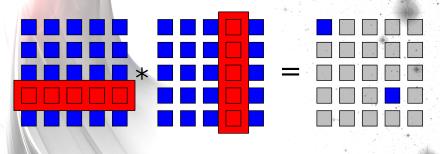

 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.


 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.

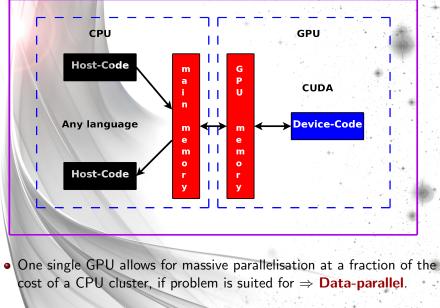

 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.

 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.


 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.


 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.

Galaxy Clusters @ JPL / Caltech


1 / 22

 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.

 One single GPU allows for massive parallelisation at a fraction of the cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.

Galaxy Clusters @ JPL / Caltech

1 / 22

Cluster performance under your desk

NVIDIA Tesla C2050

- 1 TFLOP peak performance (SP)
- 500 GFLOPS peak performance (DP)
- 3 GB global ECC memory
- 14 (16) multi-processors
- 448 (512) streaming cores

Galaxy Clusters @ JPL / Caltech

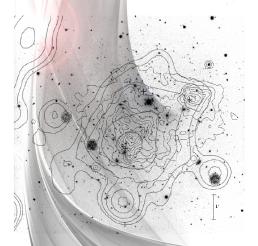
Workhorse: Jabba

- 2x quadcore XEON @ 2.4 GHz
- 16 GB ECC memory
- NVIDIA Tesla C1060
- NVIDIA Tesla C2050
- Cluster performance for under 5000 € .

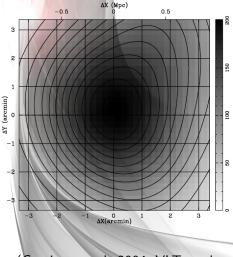
Cluster performance under your desk

NVIDIA Tesla C2050

- 1 TFLOP peak performance (SP)
- 500 GFLOPS peak performance (DP)
- 3 GB global ECC memory
- 14 (16) multi-processors
- 448 (512) streaming cores

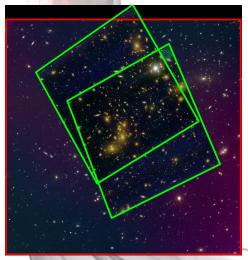


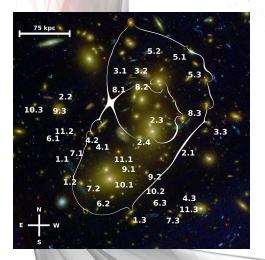
Galaxy Clusters @ JPL / Caltech


Workhorse: Jabba

- 2x quadcore XEON @ 2.4 GHz
- 16 GB ECC memory
- NVIDIA Tesla C1060
- NVIDIA Tesla C2050
- Cluster performance for under 7000 \$.

(Owers et al. 2010, X-ray, kinematics, radio)


- A2744 (z = 0.308) was well known to be an interesting, merging system.
- The lensing analysis was not decisive, yet.
- We used HST/ACS (15 orbits), VET & Subaru imaging.
- Performed a SL analysis for multiple image identification


- A2744 (z = 0.308) was well known to be an interesting, merging system.
- The lensing analysis was not decisive, yet.
- We used HST/ACS (15 orbits), VET & Subaru imaging.
- Performed a SL analysis for multiple image identification.

(Cypriano et al. 2004, VLT weak lensing)

Galaxy Clusters @ JPL / Caltech

- A2744 (z = 0.308) was well known to be an interesting, merging system.
- The lensing analysis was not decisive, yet.
- We used HST/ACS (15 orbits), VLT & Subaru imaging.
- Performed a SL analysis for multiple image identification.
- (ACS P.I.: R. Dupke) Galaxy Clusters @ JPL / Caltech

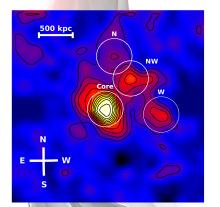
- A2744 (z = 0.308) was well known to be an interesting, merging system.
- The lensing analysis was not decisive, yet.
- We used HST/ACS (15 orbits), VLT & Subaru imaging.
- Performed a SL analysis for multiple image identification.

13

Applied the presented

(JM, Dan Coe et al. 2011, Method: A. Zitrin (Tel Aviv)) Galaxy Clusters @ JPL / Caltech

0.6

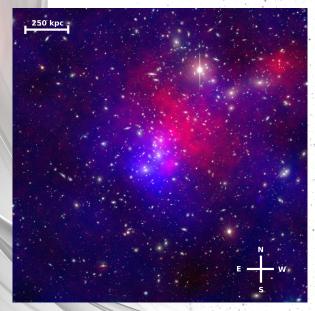

0.5

0.4

0.3

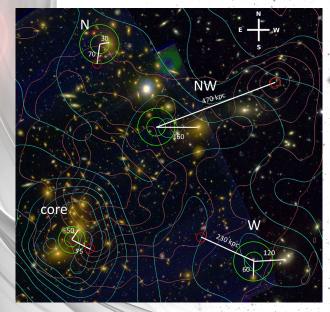
0.2

0.1



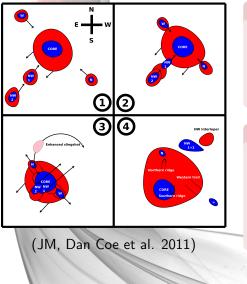
(JM, Dan Coe et al. 2011)

- A2744 (z = 0.308) was well known to be an interesting, merging system.
- The lensing analysis was not decisive, yet.
- We used HST/ACS (15 orbits), VLT & Subaru imaging.
 - Performed a SL analysis for multiple image identification.
 - Applied the presented method.


13

Abell 2744: Pandora's cluster II

Galaxy Clusters @ JPL / Caltech


Abell 2744: Pandora's cluster II

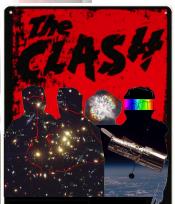
14

22

Abell 2744: Pandora's cluster III

Galaxy Clusters @ JPL / Caltech

Observations • HST/ACS • Chandra • Magellan • Gemini South


Simulations

- Together with V. Springel (Heidelberg)
- Millennium XXL
- MareNostrum Universe

15

• Toy models

CLASH: A HST/MCT programme One of three HST/MCT programmes. Start September 2010 (3 cycles).

Cluster Lensing And Supernova survey with Hubble A Hubble Space Telescope Multi-Cycle Treasury Program PI. Marc Fostman (TSCI) Co-PI. Holland Ford (JHU) unter beneficial and the state of the State of

Science Drivers

- To map the dark matter in galaxy clusters
- To detect SN out to redshifts *z* > 1.5
- To detect and characterise z > 7 galaxies
- To study the galaxies in and behind the clusters

http://www.stsci.edu/~postman/CLASH/

Galaxy Clusters @ JPL / Caltech

16 / 22

CLASH: Team

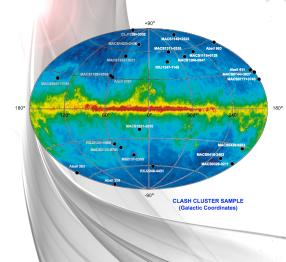
United States

M. Postman (P.I.) (STScl)	H. Ford (Co-P.I.) (JHU)	L. Bradley (STScl)	D. Coe (STScl)
M. Donahue (Michigan)	G. Graves (UC Berkeley)	D. Kelson (Carnegie)	D. Lemze (JHU)
E. Medezinski (JHU)	L. Moustakas (JPL)	A. Riess (STScl/JHU)	W. Zheng (JHU)

Europe

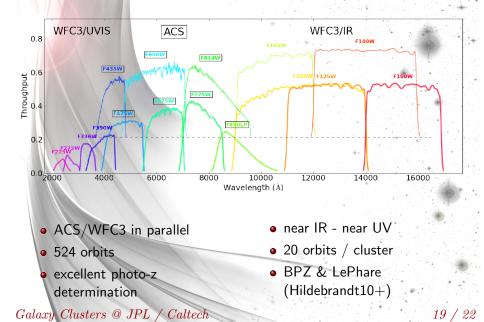
M. Bartelmann (Heidelberg)	N. Benitez (Granada)	R. Bouwens (Leiden)	T. Broadhurst (Bilbao)
R. Gonzales-Delgado (Granada)	O. Host (London)	S. Jouvel (London)	O. Lahav (London)
R. Lazkoz (Bilbao)	P. Melchior (Heidelberg)	M. Meneghetti (Bologna)	J. Merten (Heidelberg)
E. Regos (CERN)	P. Rosati (ESO)	S. Seitz (Munich)	

1000 The rest of the world

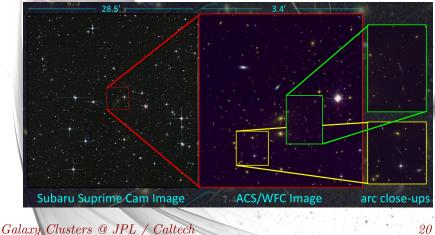

L. Infante (Santiago de Chile) D. Maoz (Tel Aviv) K. Umetsu (Taipei) A. Zitrin (Tel Aviv)

CLASH: Team

Granada, September 20th, 2010

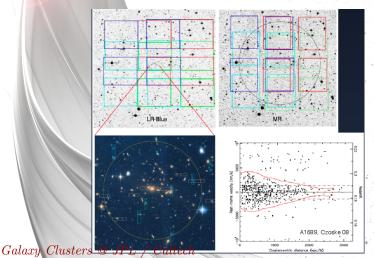

CLASH: Target

- 25 Clusters
- 0.18 < z < 0.9
- X-ray selected
- relaxed
- Chandra archival data


Galaxy Clusters @ JPL / Caltech

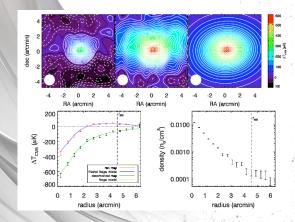
CLASH: HST observations

Nice sideremark: Granted Ground-based and CLASH-related observing time exceedes already the HST/MCT programme.


SUBARU BVRIZ weak lensing

0 / 22

Nice sideremark: Granted Ground-based and CLASH-related observing time exceedes already the HST/MCT programme.

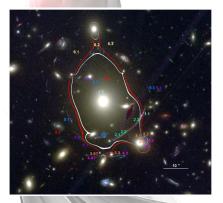

GTC/VLT/Magellan spectroscopy

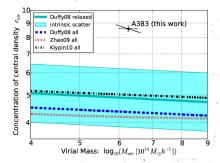
20 / 22

Nice sideremark: Granted Ground-based and CLASH-related observing time exceedes already the HST/MCT programme.

Bolocam/AMiBA/SZA/Mustang SZE observations

Galaxy Clusters @ JPL / Caltech


Nice sideremark: Granted Ground-based and CLASH-related observing time exceedes already the HST/MCT programme.


Chandra/XMM Newton archival data

CLASH: First results (Zitrin & CLASH team 2011)

Conclusions

- Clusters of galaxies are ideal cosmic laboratories, though we do not really understand them.
- Elaborate lensing methods are a powerful tool to map th mass distribution of clusters.
- GPU computing provides cluster performance on single node machines.
- Abell 2744 is a pearl within the known galaxy clusters: A peek into cosmic structure formation.
- The HST/MCT programme CLASH will dissect a sample of 25 galaxy clusters. A great step towards a better understanding of galaxy clusters.

