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Overview

1 Galaxy clusters
I Cosmological probes
I What we don’t understand
I How to pin them

2 A combined lensing method
I Weak lensing (WL)
I Strong lensing (SL)
I WL + SL
I |WL + SL| > |WL|+ |SL|
I Numerics and GPUs

3 Two applications
I Abell 2744:

Pandora’s Cluster
I The CLASH HST/MCT

programme
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Clusters of galaxies

Largest gravitationally bound
structures in the observable Universe

∼ 1015M� & Mpc scale

They appear as dark matter
dominated
(85% DM, 13% hot gas, 2% stars)

Baryonic component is not dominant,
though not negligible (e.g. Duffy10+)

All cluster components are directly or
indirectly observable in three main
wavelength regimes

⇒ Cosmic laboratories

Powerful gravitational lenses

We do not really understand them...
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Problems with galaxy clusters

(Ludlow11+) (Clowe06+)

(Coe10+) (Ascasibar06+)
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How to understand them better

Galaxy Clusters @ JPL / Caltech 5 / 22



How to understand them better

Galaxy Clusters @ JPL / Caltech 5 / 22



How to understand them better

Galaxy Clusters @ JPL / Caltech 5 / 22



How to understand them better

*sensible*

⇔
comparison
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Gravitational lensing on two sketches
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Gravitational lensing on two sketches
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A combined lensing method: Methodology I

Cluster lensing in a box

β = θ − α(θ)

∂ = ∂1 + i∂2

ψ

2γ = ∂∂ψ

2F = ∂∗∂∂ψ

∂∗ = ∂1 − i∂2

α = ∂ψ

2κ = ∂∗∂ψ

2G = ∂∂∂ψ

Statistical approach

χ2(ψ) = χ2
1 + χ2

2 + χ2
3 + ...

Possible constraints:

Ellipticities of background sources

Flexion (JM10 in prep.)

Multiple image systems (Bradač05+)

Critical curve estimates (JM09+)

The trick

∂χ2(ψk)

∂ψl

!
= 0

⇒ Blkψk = Vl
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A problem of different scales (JM10, Bradač09)

(Abell 1703 in SUBARU r-band)
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A problem of different scales (JM10, Bradač09)
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A combined lensing method: Implementation

α, γ, κ, F and G can be
expressed by derivatives of ψ
via finite differences.

Linearisation of the problem.

2-level iteration scheme with
simple regularisation
(Bradač05).

Problem Runtime

Blkψk = Vl

Blk ∼ aibjCijDilEjk

Vl ∼ aibjCijEil

l , k, i , j ∼ O(grid dim2)

Geeky implementation facts
Parallel C++ code

medium sized ∼ 12000 lines

Uses GSL, LAPACK, ATLAS, MPI

Fully documented, including user
manual

and...CUDA...
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How well does it perform? SkyLens (Meneghetti, JM 08/10)

Developers: Massimo Meneghetti, Peter Melchior, Fabio Bellagamba, JM
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A little detour: GPU implementation

One single GPU allows for massive parallelisation at a fraction of the
cost of a CPU cluster, if problem is suited for ⇒ Data-parallel.
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Cluster performance under your desk

NVIDIA Tesla C2050
1 TFLOP peak performance (SP)

500 GFLOPS peak performance (DP)

3 GB global ECC memory

14 (16) multi-processors

448 (512) streaming cores

Workhorse: Jabba
2x quadcore XEON @
2.4 GHz

16 GB ECC memory

NVIDIA Tesla C1060

NVIDIA Tesla C2050

Cluster performance for
under 5000 e .
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500 GFLOPS peak performance (DP)
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14 (16) multi-processors
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16 GB ECC memory

NVIDIA Tesla C1060

NVIDIA Tesla C2050

Cluster performance for
under 7000 $.

Galaxy Clusters @ JPL / Caltech 12 / 22



Abell 2744: Pandora’s cluster I

(Owers et al. 2010, X-ray, kinematics,
radio)

A2744 (z = 0.308) was well
known to be an interesting,
merging system.

The lensing analysis was not
decisive, yet.

We used HST/ACS (15
orbits), VLT & Subaru
imaging.

Performed a SL analysis for
multiple image
identification.

Applied the presented
method.
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Abell 2744: Pandora’s cluster I

(Cypriano et al. 2004, VLT weak
lensing)

A2744 (z = 0.308) was well
known to be an interesting,
merging system.

The lensing analysis was not
decisive, yet.

We used HST/ACS (15
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Abell 2744: Pandora’s cluster I

(ACS P.I.: R. Dupke)

A2744 (z = 0.308) was well
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Abell 2744: Pandora’s cluster I

(JM, Dan Coe et al. 2011, Method:
A. Zitrin (Tel Aviv))
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known to be an interesting,
merging system.
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Abell 2744: Pandora’s cluster II
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Abell 2744: Pandora’s cluster II
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Abell 2744: Pandora’s cluster III

(JM, Dan Coe et al. 2011)

Observations
HST/ACS

Chandra

Magellan

Gemini South

Simulations
Together with V. Springel
(Heidelberg)

Millennium XXL

MareNostrum Universe

Toy models
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CLASH: A HST/MCT programme
One of three HST/MCT programmes. Start September 2010 (3 cycles).

Science Drivers

To map the dark matter in
galaxy clusters

To detect SN out to
redshifts z > 1.5

To detect and characterise
z > 7 galaxies

To study the galaxies in and
behind the clusters

http://www.stsci.edu/∼postman/CLASH/
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CLASH: Team

United States

M. Postman (P.I.) (STScl) H. Ford (Co-P.I.) (JHU) L. Bradley (STScl) D. Coe (STScl)

M. Donahue (Michigan) G. Graves (UC Berkeley) D. Kelson (Carnegie) D. Lemze (JHU)

E. Medezinski (JHU) L. Moustakas (JPL) A. Riess (STScl/JHU) W. Zheng (JHU)

Europe

M. Bartelmann (Heidelberg) N. Benitez (Granada) R. Bouwens (Leiden) T. Broadhurst (Bilbao)

R. Gonzales-Delgado (Granada) O. Host (London) S. Jouvel (London) O. Lahav (London)

R. Lazkoz (Bilbao) P. Melchior (Heidelberg) M. Meneghetti (Bologna) J. Merten (Heidelberg)

E. Regos (CERN) P. Rosati (ESO) S. Seitz (Munich)

The rest of the world

L. Infante (Santiago de Chile) D. Maoz (Tel Aviv) K. Umetsu (Taipei) A. Zitrin (Tel Aviv)
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CLASH: Team

Granada, September 20th, 2010
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CLASH: Target

25 Clusters

0.18 < z < 0.9

X-ray selected

relaxed

Chandra archival
data
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CLASH: HST observations

ACS/WFC3 in parallel

524 orbits

excellent photo-z
determination

near IR - near UV

20 orbits / cluster

BPZ & LePhare
(Hildebrandt10+)
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CLASH: Parallel data

Nice sideremark: Granted Ground-based and CLASH-related observing
time exceedes already the HST/MCT programme.

SUBARU BVRIZ weak lensing
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CLASH: Parallel data

Nice sideremark: Granted Ground-based and CLASH-related observing
time exceedes already the HST/MCT programme.

GTC/VLT/Magellan spectroscopy
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CLASH: Parallel data

Nice sideremark: Granted Ground-based and CLASH-related observing
time exceedes already the HST/MCT programme.

Bolocam/AMiBA/SZA/Mustang SZE observations
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CLASH: Parallel data

Nice sideremark: Granted Ground-based and CLASH-related observing
time exceedes already the HST/MCT programme.

Chandra/XMM Newton archival data

Galaxy Clusters @ JPL / Caltech 20 / 22



CLASH: First results (Zitrin & CLASH team 2011)
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Conclusions

1 Clusters of galaxies are ideal cosmic laboratories, though we do not
really understand them.

2 Elaborate lensing methods are a powerful tool to map th mass
distribution of clusters.

3 GPU computing provides cluster performance on single node
machines.

4 Abell 2744 is a pearl within the known galaxy clusters: A peek into
cosmic structure formation.

5 The HST/MCT programme CLASH will dissect a sample of 25 galaxy
clusters. A great step towards a better understanding of galaxy
clusters.
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