Julian Merten

Supercomputing Techniques in Lensing

Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg INAF - Osservatorio Astronomico di Bologna

April 28th, 2010

Lensing in HD

Outline

Motivation

- HPC Basics
- Cluster riddles
- Careful analysis

Our pipeline

- Cluster extraction
- Lensing simulations
- Cluster reconstructions

3 GPU implementation

- Basic concept
- CUDA
- Machines and performance

"I am not paid by NVIDIA"

econstructio

Supercomputing today

Rapidly increased transistor density

3 14

Supercomputing today

Special Hardware

Massive Parallelisation

- e.g. GRAPE, FPGAs
- Extremely fast

GPU Lensing

• Extremely expensive, difficult to operate

- e.g. Infiniband compute clusters
- Fast and relatively cheap
- Extremely flexible

Rapidly increased transistor density

Supercomputing today

Rapidly increased transistor density

Single node CPU/GPU Parallelisation CPU GPU Flow Compute Control **Cache memory Thread memory Thread memory** • One single GPU allows for massive parallelisation at $\sim 1/1000$ of the cost, if problem is suited for \Rightarrow Data-parallel.

GPU Lensing

/ 14

Clusters of puzzles

Density profile

Strong lensing

GPU Lensing

Cool cores

Extreme dynamics

14

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling Star formation AGN/SN feedback Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

Both sides have to be analysed with the same tools.

 \Leftrightarrow

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 Star formation
 AGN/SN feedback
 Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

Both sides have to be analysed with the same tools.

 \Leftrightarrow

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 - Star formation
 - AGN/SN feedback
 - Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

 \Leftrightarrow

Observations

- State-of-the-art data HST/ACS/WEPC
 - KECK CHANDRA / XMM SUZAKU
- Joint reconstruction method: lensing, X-ray, dynamics, SZ (JM09+, Bradač05+, Puchwein06+)
 - reliable error bars

large cluster sample

Both sides have to be analysed with the same tools.

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 - Star formation
 - AGN/SN feedback
 - Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

Observations

- State-of-the-art data
 HST/ACS/WFPC3
 SUBARU/LBT
 KECK
 CHANDRA / XMM
 SUZAKU
- Joint reconstruction method: lensing, X-ray, dynamics, SZ (JM09+, Bradač05+, Puchwein06+)
 - reliable error bars

large cluster sample

Both sides have to be analysed with the same tools.

 \Leftrightarrow

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 - Star formation
 - AGN/SN feedback
 - Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

 \Leftrightarrow

Observations

- State-of-the-art data
 - HST/ACS/WFPC3
 - SUBARU/LBT
 - KECK
 - CHANDRA / XMM / SUZAKU
- Joint reconstruction method: lensing, X-ray, dynamics, SZ (JM09+, Bradač05+, Puchwein06+)
 - reliable error bars
 - large cluster sample

Both sides have to be analysed with the same tools.

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 - Star formation
 - AGN/SN feedback
 - Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

 \Leftrightarrow

Observations

- State-of-the-art data
 - HST/ACS/WFPC3
 - SUBARU/LBT
 - KECK
 - CHANDRA / XMM / SUZAKU
- Joint reconstruction method: lensing, X-ray, dynamics, SZ (JM09+, Bradač05+, Puchwein06+)
 - reliable error bars
 - large cluster sample

Both sides have to be analysed with the same tools.

Simulations

- State-of-the-art N-body hydro-sims
- As much physics as possible
 - Cooling
 - Star formation
 - AGN/SN feedback
 - Chemical enrichment
- Detailed sims of individual objects
- Cluster populations from cosmological volumes

 \Leftrightarrow

Observations

- State-of-the-art data
 - HST/ACS/WFPC3
 - SUBARU/LBT
 - KECK
 - CHANDRA / XMM / SUZAKU
- Joint reconstruction method: lensing, X-ray, dynamics, SZ (JM09+, Bradač05+, Puchwein06+)
 - reliable error bars
 - large cluster sample

Both sides have to be analysed with the same tools.

CLASH: An HST/MCT Programme

- PI: M. Postman (Co-PIs including Matthias, Arjen, T. Broadhurst, O. Lahav, A. Riess, P. Rosati,...)
- Target: 25 well-chosen X-ray clusters
- Goal: Density profile of clusters, high-z Universe

CLASH Facts

- 524 orbits
- ACS + WFC3 obs.
- 14 wave bands
- wide follow-ups with SUBARU

Our pipeline I: SkyLens (M. Meneghetti, P.Melchior, JM)

Name	Description
D	aperture diameter
g	detector gain
A_{pix}	pixel area
$F(\lambda)$	used filter
$M(\lambda)$	mirror filter curve
$O(\lambda)$	optics filter curve
$C(\lambda)$	CCD filter curve
FoV	total field-of-view
RON	detector readout-noise
f	flat-field accuracy
a	residual flat-field error
PSF	PSF model
t_{exp}	exposure time
$A(\lambda)$	atmospheric extinction
m_{a}	airmass
SED _{sky}	sky-background emission
SEDgal	background population
α	deflection angle map

Parallelisation strategy: Ray-tracing

GPU Lensing

8

Our pipeline II: Cluster extraction

• From snapshots to lensing:

Deflection angle

$$\hat{oldsymbol{lpha}}(oldsymbol{\xi}) = rac{4G}{c^2}\int d^2 \xi' \Sigma(oldsymbol{\xi}') rac{oldsymbol{\xi}-oldsymbol{\xi}'}{|oldsymbol{\xi}-oldsymbol{\xi}'|^2}.$$

- Calculated on a pixelised grid
- Usual approach: Barnes-Hut tree codes
- Better approach: direct N-Body summation

Parallelisation strategy: Ray-tracing

Our pipeline III: SaWLens (JM09/10)

Features

- Fully nonparametric
- Stat. grid-based approach
- AMR implementation
- Computationally rather demanding

Possible input

- Shear/Flexion
- Multiple images + Critical curve estimators
- (Cluster dynamics)
- (ICM-tracers)

Parallelisation strategy:

Independence of grid cells, matrix summation schemes

Programming GPUs: C for CUDA

Basic workflow

- Host-code: "Any language"
- Device-code: C for CUDA or CUDA driver API.
- Host-code calls the device if necessary
- MPI + CUDA possible
- Several GPUs in a code also possible
- Wide range of tools in the CUDA SDK.

C for CUDA

- High-level language
- C++ syntax with C functionality
- Several levels of memory addressing, including on-chip memory
- Easy thread-indexing
- Device-code objects created with nvcc compiler
- Some libraries: FFTW, BLAS, basic math functions

GPU workflow

GPU-Systems Jabba the Hutt (BO) & Kolob (MA)

NVIDIA Tesla C1060

- 240 streaming cores
- 4 GB DDR3 GPU memory
- 933 GFLOPS peak performance
- Upcoming Fermi cards

13 / 14

First results

- The toy problem:
 - Simulate a typical SaWLens problem
 - Calculate a typical coefficient matrix

$$\mathcal{B}_{lk} = a_i b_j \mathcal{C}_{ij} \mathcal{D}_{ik} \mathcal{E}_{jl},$$

while using Albert's sum convention.

Dimensions:

```
l, k \in [0, ..., 2499], i, j \in [0, ..., 15]
```

• Competitors:

Jabba's CPU: Intel XEON quadcore @ 2.5 GHz, one core used
 Jabba's GPU: NVIDIA Tesla C1060 @ 1.2 GHz, 240 cores used

• The runtime:

O CPU: 82.3 s

O GPU: 1.03 s

SaWLens runtime will be reduced to $\mathcal{O}(\min)$.