Julian Merten

New ideas in lensing reconstructions

INAF - Osservatorio Astronomico di Bologna Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg

March 4th, 2010

with:

Massimo, Lauro, Barbara, Paolo Matthias Bartelmann, Ralf Klessen, Peter Melchior, Massimo Viola and hopefully at least with two more PhD students soon New ideas for EUCLID 1/

The advent of GPU's...or the art of shooting monsters.

12

1993

The advent of GPU's...or the art of shooting monsters.

1993

12

The concept of GPU's

- One single GPU allows for massive parallelisation
- Desktop computers become comparable in performance to clusters, at $\sim 1/1000$ of the cost.
- A problem has to be specially suited for GPU-parallelisation \Rightarrow Data-parallel
- Codes have to be ported, separate host and device code

GPU-System in Bologna: Jabba the Hutt

NVIDIA Tesla C1060

- 240 streaming cores
- 4 GB DDR3 GPU memory
- 933 GFLOPS peak performance
- CUDA interface (C-based)

NVIDIA C for CUDA

- Interface to address GPU's
- C functionality with C++ syntax
- Recently, double support
- Some libraries: BLAS, FT
- Special compiler, no constraints for the host-code

Codes to be ported

SaWLens (JM)

- Nonparametric, combined lensing reconstructions on AMR grids.
- Already implemented in MPI.
- Parallelisation strategy: adaptive-averaging of background galaxies, covariance determination, build-up of linear systems of equations.

SkyLens (Massimo)

- Creation of extremely realistic lensing scenarios.
- Ported to C++.
- Parallelisation strategy: background galaxy population, ray-tracing
- SimLens?? (Massimo, Francesco)
 - Creation of deflection angle maps from numerical simulations.
 - Based on ray-tracing.
 - Parallelisation strategies: light rays are independent, different source redshift distributions.

HPC-Europa proposal was submitted on Saturday.

A first small test

- The toy problem:
 - Simulate a typical SaWLens problem
 - Calculate a typical coefficient matrix

$$\mathcal{B}_{lk} = a_i b_j \mathcal{C}_{ij} \mathcal{D}_{ik} \mathcal{E}_{jl},$$

while using Albert's sum convention.

Dimensions:

 $I, k \in [0, ..., 2499], i, j \in [0, ..., 15]$

• Competitors:

Jabba's CPU: Intel XEON quadcore @ 2.5 GHz, one core used
Jabba's GPU: NVIDIA Tesla C1060 @ 1.2 GHz, 240 cores used

• The runtime:

O CPU: 82.3 s

3 GPU: 1.03 s

There is not much to comment on that.

Flexion...or weak lensing goes bananas

What this is all about: (Leonard et al. 2007)

SaWLens 2.0 (JM in prep.)

- Flexion is already implemented
- WL + SL + Flexion + ...
- AMR grids
- on GPU's: runtime $\mathcal{O}(minutes)$

BUT:

RankAuthor		\mathbf{Method}	Q
1	HB	CVN Fourier	211
2	AL	KK99	131
3	ΤK	Lensfit	119
4	CH	KSBf90	52.3
5	PG	gfit	32.0
6	MV	KKshapelets with flexion	28.6
7	KK	KKshapelets	23.0
8	HHS3	${\tt GaussStackForwardGaussCleaned}$	22.4
9	$^{\rm SB}$	im2shape	20.1
10	HHS2	GaussStackForwardGauss	19.9
11	HHS1	Gauss	12.8
12	MJ	BJ02 deconvolved shapelets	9.80
1^{13}	USQM	USQM	1.22

10 / 12

New ideas for $EUCLI_{\underline{D}}^{\underline{13}}$

The bright side and an idea as a side effect

The dark side, but we are working on it

- Most model based techniques will not work, because the model cannot describe Flexion
- An exception are 'Shapelets', but they seem to have severe problems
- You can think about several solutions:
 - Ø Build a model which can describe flexion.
 - Try to fix the Shapelets-approach (Sersiclets)
 - Go back to direct techniques (KSB strikes back)

